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5 The Use of Nonparametric Item Response 
Theory to Explore Data Quality

Rob R. Meijer, Jorge N. Tendeiro,  
and Rob B. K. Wanders

Introduction

The aim of this chapter is to provide insight into a number of commonly used nonparamet-
ric item response theory (NIRT) methods and to show how these methods can be used to 
describe and explore the psychometric quality of questionnaires used in patient-reported 
outcome measurement and, more in general, typical performance measurement (personal-
ity, mood, health-related constructs). NIRT is an extremely valuable tool for preliminary 
data analysis and for evaluating whether item response data are acceptable for parametric 
IRT modeling. This is in particular useful in the field of typical performance measurement 
where the construct being measured is often very different than in maximum performance 
measurement (education, intelligence; see Chapter 1 of this handbook). Our basic premise 
is that there are no “best tools” or “best models” and that the usefulness of psychometric 
modeling depends on the specific aims of the instrument (questionnaire, test) that is being 
used. Most important is, however, that it should be clear for a researcher how sensitive a 
specific method (for example, DETECT, or Mokken scaling) is to the assumptions that are 
being investigated. The NIRT literature is not always clear about this, and in this chapter 
we try to clarify some of these ambiguities.

NIRT may serve two aims (Sijtsma & Meijer, 2007): (1) providing a theoretical frame-
work that may serve as a basis for IRT modeling (e.g., Hemker, Sijtsma, Molenaar, & 
Junker, 1997) and (2) providing methods and procedures that can be used to analyze test 
and questionnaire data mainly to explore data quality. In this chapter we are primarily 
interested in how to apply NIRT as an exploratory model to obtain information about the 
data structure. Software for nonparametric IRT analyses can be found in the R-packages 
irtoys (Partchev, 2013), KernSmoothIRT (Mazza, Punzo, & McGuire, 2012), mokken 
(van der Ark, 2007, 2012), and PerFit (Meijer, Niessen, & Tendeiro, 2014; Tendeiro, 
2014).

There are several good introductions written on NIRT at varying levels of technical 
sophistication. For example, Santor and Ramsay (1998) and Meijer and Baneke (2004) 
provided an introduction and empirical examples of the usefulness of NIRT in the context 
of personality and psychopathology measurement. Sijtsma and Molenaar (2002) wrote 
a monograph on NIRT and Sijtsma and Meijer (2007) provided an extensive psycho-
metric and statistical overview of the foundations of NIRT. Also Stout and colleagues 
(e.g., Stout, 1987; Stout, Habing, Douglas, & Kim, 1996) wrote many theoretical and 
empirical papers on NIRT.

In general, the advantage of NIRT approaches is that through inspecting the sim-
ple covariance structure between items and using tools like nonparametric regression  
(a) results are obtained that can be interpreted very easily by practitioners, (b) data are not 
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forced into a structure they do not have, and (c) analyses can be run through user-friendly 
software programs. Finally, NIRT models may serve as alternatives to model data to para-
metric models to answer the question of “the robustness of conclusions under variations 
in model choice” (Molenaar, 2004).

Interesting in this respect was a study by Chernyshenko, Stark, Chan, Drasgow, and 
Williams (2001), who found that nonparametric maximum-likelihood formula scoring 
models to noncognitive dichotomous and polytomous data provided a better description 
of these data than the two- and three-parameter logistic model and the graded response 
model. Meijer and Baneke (2004) also argued that for data for which the response process 
is not well understood, such as noncognitive and clinical data (see Reise & Waller, 2009), 
NIRT may provide an interesting basis to investigate data quality. This is not to argue for 
an overall replacement of parametric by nonparametric models. Parametric IRT models 
lead to point estimates of the latent trait. Such scales can be very convenient, for example, 
for comparing the results from different questionnaires selected from the same item bank 
or for the study of change. However, we do think that NIRT approaches may serve as 
handy tools to describe and explore item response data. As Molenaar (2004) stated, “The 
question whether misfit is significant or not is in my view less relevant than the explora-
tion, detection, and description.” Exploring data quality may help researchers to uncover 
the structure of the data so that, when needed, appropriate confirmatory parametric mod-
els can be chosen.

Although NIRT models are based on weaker assumptions than parametric IRT mod-
els, NIRT models often do make several assumptions about the data. Sijtsma and Meijer 
(2007) stated that “the reason for calling one class of IRT models nonparametric and 
another parametric, is that the former only puts order restrictions on response functions 
and the latter assumes a specific parametric function, such as the logistic or the normal 
ogive.” Thus in this sense the parametric assumptions are weakened. For example, NIRT 
typically assumes that there is a monotone relationship between the probability of endors-
ing an item and the latent variable. On the other hand programs like TESTGRAF do not 
specify this relationship.

In this chapter, we present and explore the usefulness of methods to investigate non-
parametric assumptions in typical performance data and we apply these methods to data 
from an Aggression Questionnaire and a Physical Functioning scale. We present a critical 
evaluation of a number of often-used NIRT models and, in particular, we explore some 
recently proposed methods to investigate invariant item ordering (IIO). A set of items pos-
sesses the IIO property when the ordering of the items according to their mean score is 
the same for persons with different latent variable scores. There are three reasons why we 
consider this an interesting property to investigate for typical performance data: (1) many 
applied researchers and practitioners seem unaware of the fact that the item ordering 
according to the mean score in the population does not necessarily hold at the individual 
level, (2) the few studies that investigate IIO in clinical practice often use the wrong meth-
ods, and experience on how to interpret results has to accumulate as more applications 
become available, and (3) investigating IIO gives us a good idea about the general quality 
of the data. In particular it may provide us information about the psychometric quality of 
items in a particular population.

Research Methods

Both parametric and nonparametric IRT models try to explain the structure in the mani-
fest item and test responses by assuming the existence of a latent scale (θ ) on which 
persons and items have a position. Because an IRT model places restrictions on the data, 



Use of IRT to Explore Data Quality 87

a researcher can check whether the data fit the model. Models have been formulated for 
both dichotomous (e.g., true-false) and polytomous (e.g., disagree-neutral-agree) items. 
We start with the models for dichotomous items. For dichotomous items, most IRT mod-
els assume unidimensionality (UD assumption) and a specified form for the so-called item 
response function (IRF). The IRF denotes the probability that an item i is answered cor-
rectly or is endorsed in the keyed direction as a function of the latent trait θ and is denoted 
Pi(θ). We refer to Chapter 2 of this handbook for a discussion of unidimensionality and 
“essential unidimensionality.” From this chapter it is clear that dimensionality depends 
on the population of persons. Especially in clinical and outcome measurement, this is 
a constant source of worry because in clinical assessment it is often unclear what the 
exact population is. Unidimensionality implies the assumption of local independence (LI 
assumption), which states that the responses in a test are statistically independent condi-
tional on θ. Furthermore, it is assumed that the probability of endorsing an item is mono-
tonically non-decreasing in θ (M assumption).

Nonparametric IRT models differ from parametric models in that the form of the IRFs 
is not parametrically defined. In parametric IRT models, like the well-known two- and 
three-parameter logistic models, the IRF is specified through the logistic function and 
through item parameters like the discrimination parameter (a parameter) and the item 
difficulty or threshold parameter (b parameter). In nonparametric models there are no 
restrictions with regard to the form of the IRFs, except that they should be non-decreasing. 
Furthermore, in parametric IRT often specific distributions are required for the trait scores; 
this is not the case in nonparametric IRT.

Because NIRT models do not parameterize the response function, there is no θ metric 
available as in parametric models. However, dichotomous NIRT models imply an ordinal 
scale in the sense that the latent variable θ is stochastically ordered by the total score X+ 
(Sijtsma & Molenaar, 2002). Thus, in practice any IRT model that is based on UD, LI, and 
M implies the ordering of respondents on the latent variable θ by means of the ordering of 
respondents on the observable sum score X+, except for error.

Mokken Models

Two models that are based on the three assumptions of UD, LI, and M are Mokken’s 
(Mokken, 1971) monotone homogeneity model (MHM) and Mokken’s double mono-
tonicity model (DMM). These models are probably the most researched and applied 
nonparametric IRT models, and chapters have been devoted to these models in several 
psychometric handbooks (e.g., Mellenbergh, 2011; Rao & Sinharay, 2007; van der  
 Linden & Hambleton, 1997). Furthermore, there is a stand-alone computer program 
MSP5.0 (Molenaar & Sijtsma, 2000) and an R program package mokken (van der Ark, 
2007, 2012) that can be used to analyze data through these models. In this chapter, we 
therefore use these Mokken models as the basis to discuss nonparametric data analyses. 
This is not to say that we are not critical about some of the methods suggested in the litera-
ture to check the fit of these models. However, we believe that these models provide a good 
basis to discuss useful nonparametric data analyses for typical performance measurement, 
as we show later in this chapter.

As mentioned earlier, the MHM assumes UD, LI, and increasing IRFs. The DMM also 
assumes UD, LI, and increasing IRFs, and an additional assumption is that the IRFs do not 
intersect. This makes the DMM a special case of the MHM, which means that when the 
DMM holds the weaker MHM also holds, but the reverse is not true. The assumption of 
nonintersecting IRFs implies IIO. More formally, when IIO holds for a set of k items and 
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the items are ordered in decreasing popularity (or decreasing proportion-correct score), it 
applies that:

P P Pk1 2θ θ θ( ) ≥ ( ) ≥ ≥. . . ( ),  for all θ. (5.1)

Molenaar (1997) discussed polytomous versions of Mokken’s original dichotomous 
models, which are based on the same set of assumptions as the dichotomous models. Cen-
tral in his approach is the item step response function (ISRF). Let Xi be the score on item 
i, with values xi = 0, . . . , m; thus for five-point rating scales, this means xi = 0, . . . , 4.  
The ISRF is the probability of obtaining an item score of at least xi and is denoted 
P X xi i≥( )|θ  for xi = 1, . . . , m, thus ignoring xi = 0 because this probability by definition 
equals one. Molenaar (1997) also discussed the DMM for polytomous items, which adds 
to the MHM the assumption that the ISRFs of different items do not intersect.

The polytomous DMM, however, does not imply that items can be invariantly ordered, 
it only implies that the ISRFs do not intersect across items. This was extensively discussed 
in Sijtsma, Meijer, and van der Ark (2011) and Meijer (2010), but it has been a source 
of confusion in a number of empirical papers. For example, Watson, Deary, and Austin 
(2007) claimed to investigate whether sets of the items have IIO. In that study, however, 
methods were used that were sensitive to checking whether sets of ISRFs do not intersect, 
not whether items have IIO.

Methods to Check Nonparametric IRT

As discussed earlier, NIRT models do not offer estimates of item parameters, neither do 
they allow for point estimates of θ. However, several methods have been proposed to 
check the assumptions of the NIRT models without using model parameters. In the fol-
lowing paragraphs we discuss methods for each model assumption.

Monotonicity Assumption

To investigate whether IRFs or ISRFs are non-decreasing in the latent variable, several 
nonparametric regression methods are available. An approach that obtained some pop-
ularity especially in applied clinical testing is TESTGRAF (Ramsay, 1991, 2000). For 
example, Santor, Ramsay, and Zuroff (1994) used TESTGRAF to inspect the IRFs for a 
depression questionnaire. Through TESTGRAF, category response functions (CRFs) can 
be plotted. A CRF gives the probability of endorsing each response category as a function 
of the trait score (here approximated by the total score). In general, good items should 
have CRFs with steep trace lines that exceed all other response functions in one interval of 
the total score. When the categories are ordered in increasing order, the total score values 
for which a response function is optimal should reflect the order in which the response 
choices of an item are presented. If this is not the case, two or more response functions 
may be combined to one response function. Items with flat or unsatisfactory response 
functions may be reformulated or may be removed from a questionnaire.

TESTGRAF uses so-called kernel smoothing to estimate IRFs/CRFs. This technique 
takes weighted averages at each trait score value; the weights are determined by the kernel 
function. The formula is given by:
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where i, m, index the item and the response category, respectively, and a, b, and q index 
persons (ranked by total score), respectively, K is the kernel function, h is a smooth-
ing parameter, and yima is an indicator variable (1 if person a chose option m of item i;  
0 otherwise). The trait score θq of person q is estimated as a quantile of the standard nor-
mal distribution, taking the ranking of the persons by the total sum score into account. 
The kernel function K() is chosen so that larger weights are given to trait values in 
the neighborhood of θq; common options are the uniform, quadratic, and Gaussian 
functions (Ramsay, 1991). The user-specified bandwidth value h controls the trade-off 
between bias and sampling variation. Low values of h yield estimated functions with 
large variance and small bias, and high values of h yield estimated functions with small 
variance but large bias. Generally, the bottom line is to choose a bandwidth minimiz-
ing the mean-square error, which is the sum of the variance and the squared bias (i.e., 
MSE = Bias2 + Variance).

It should be realized that smoothing can be affected by the bandwidth and that one 
should be careful in choosing a bandwidth, especially when there are not many observa-
tions. TESTGRAF uses the value 1.1N−1/5 as default. Note that kernel smoothing does not 
enforce monotonicity in θ, and as such it may be a handy tool to investigate local devia-
tions from monotone increasing IRFs.

The KernSmoothIRT (Mazza et al., 2012) R package provides another possibility 
for performing nonparametric regression smoothing to estimate IRFs. As an alternative, 
both the MSP5.0 and the R package mokken provide a simpler method to investigate 
monotonicity. Here the discrete estimates of IRFs and ISRFs based on binning are con-
structed. That is, groups of persons who have similar total scores (or rest scores, that is 
the total score minus the score on the researched item) are formed for each item i, and 
for each group the proportion that answers item i correct is calculated. These propor-
tions are plotted as a function of the total scores. This approach yields a limited number 
of plots (at most the number of items in the test). For two sample proportions it can be 
tested whether the item proportions are non-decreasing. This graph then forms the IRF 
or in the case of polytomous items the ISRF. The reason why sometimes a rest score is 
used instead of total score is that, theoretically, it can be shown that for polytomous item 
scores the total score does not need to have monotonicity in θ (Sijtsma & Meijer, 2007, 
p. 732).

The assumption of monotonicity can be fairly easily investigated using graphical meth-
ods, eyeball inspection, and simple statistical significance testing. In general, however, 
there seems to be a great reluctance by especially trained psychometricians to use graphs. 
We often see fit statistics and large tables full of numbers that certainly do not provide 
more information than graphs (see also Wainer, 2005, for a more thorough presentation 
of this topic). As we discuss later in this chapter, graphs are also excellent tools to inspect 
the assumption of invariant item ordering.

Unidimensionality Assumption

When reviewing the NIRT literature, it is not always clear how sensitive the different 
methods are to investigating the unidimensionality assumption. Later in this chapter, 
we discuss a number of techniques that are all presented under the label of unidimen-
sionality assessment tools but that are sensitive to sometimes different characteristics of 
the data.

As mentioned in Sijtsma and Meijer (2007), nonparametric unidimensionality analysis 
is based on conditional association (Holland & Rosenbaum, 1986). Let X denote a vec-
tor of ordered item scores. Split X in two disjoint vectors, X = (Y,Z). Let f1 and f2 denote 
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non-decreasing functions in the ordered item scores from Y, and let g be some function of 
the item scores in Z. Conditional association (CA) means that:

Cov[f1(Y), f2(Y) | g(Z)=z] ≥ 0, (5.3)

for all z. CA is a necessary condition for UD, LI, and M. Therefore, necessary conditions 
for NIRT model fit based on CA are available after proper specification of Y, Z, f1, f2, and g.  
One such condition that can be used to check unidimensionality for the MHM states that 
all k(k-1)/2 inter-item covariances within a test should be non-negative in the sample. 
Strictly speaking, one negative covariance indicates misfit of the MHM. However, impor-
tant is that if one finds only positive signs in the data this does not mean that the MHM 
fits. Hence, having nonnegative inter-item covariances is a necessary, but not sufficient, 
condition for unidimensionality to hold.

To investigate the unidimensionality assumption in the context of the Mokken models, 
several methods have been proposed. A popular method, but sensitive to specific item 
characteristics as we discuss later in this chapter, is the automated item selection algorithm 
(AISP). This algorithm uses the scalability coefficient H. H is defined at the item(step)-
pair level (Hij) and item level (Hi). All coefficients can be expressed as ratios of (sums of) 
observed covariances and maximum possible covariances. For the interpretation of H, 
Sijtsma and Molenaar (2002, p. 60) give the following guidelines. The scale H coefficient 
should be above 0.3 for the items to form a scale. When 0.3 ≤ H < 0.4 the scale is con-
sidered weak, when 0.4 ≤ H < 0.5 the scale is considered medium, and when H ≥ 0.5 the 
scale is considered strong. There is, however, a lack of literature with respect to the exact 
meaning of these benchmarks.

The AISP is based primarily on the inter-item covariances and the strengths of the rela-
tionship between items and the rest score as expressed by the item Hi coefficients. Based 
on such information, clusters of related items may be identified. The AISP “bottom-up” 
procedure starts by selecting the pair of items for which (a) Hij is significantly larger than 
0 and (b) Hij is the largest among the coefficients for all possible item pairs. Then a third 
item l is selected that (c) correlates positively with the items already selected, (d) has 
an Hl coefficient that is larger than 0, and (e) has an Hl coefficient that is larger than a 
user-specified value c. The procedure continues to select items as long as items are avail-
able that satisfy conditions c, d, and e. The end result may be one or more item clusters 
such that each taps a different latent trait or latent trait composite. The substantive inter-
pretation of the clusters is done on the basis of the content of the clustered items and the 
substantive knowledge one has about the data structure. For Mokken scale analysis the 
AISP plays a crucial role. Sijtsma and Molenaar defined a Mokken scale as a set of items 
that “a) measure a common trait . . . with b) reasonable discriminative power determined 
by lowerbound c” (Sijtsma & Molenaar, 2002, p. 68).

The AISP is a bottom-up selection algorithm that selects an item only once, without the 
possibility of taking back the assignment later on. Thus, AISP does not consider all pos-
sible item partitionings. Straat, van der Ark, and Sijtsma (2013) suggested a new selection 
algorithm that uses a genetic search (GA) algorithm that avoids this problem. In contrast 
to the AISP algorithm, this GA is probabilistic and approximates all possible subdivisions. 
As a result it may produce different item partitionings than the AISP procedure.

Because for a fixed distribution of θ both H and Hi are increasing functions of the 
slopes of logistic IRFs, this selection procedure selects items that have (together) high 
discrimination parameters. Thus, what is very important to understand is that the mono-
tonicity assumption forms the basis of the dimensionality analysis in Mokken procedures. 
This may have important consequences for the selection of items in the noncognitive area. 
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Theoretically, selecting items on the basis of monotonicity may result in selecting items 
within a cluster that are locally dependent. As several authors have shown for parametric 
IRT models (e.g., Chen & Thissen, 1997), item discrimination parameters may be inflated 
when the items are locally dependent. How strong this effect is in the AISP procedure is 
not clear from the literature. Recently, Straat (2012, chapter 6) suggested a number of 
statistics to detect violations of local independence, but there is not yet much experience 
with these statistics.

Local Independence

Chen and Thissen (1997) showed that, for parametric IRT models, item discrimination 
parameters may be inflated when the items are locally dependent. To investigate what the 
effect of local dependence on the Hi scalability coefficient is we replicated and extended 
the study by Chen and Thissen (1997, p. 266) as follows. A data set with scores of 1,000 
subjects on six items was generated using the 2PL model; the true a and b parameters that 
were used are shown in Table 5.1 (second and third columns). Two cases were considered: 
Local independence (LI) and local dependence (LD). The LI case consisted of using the 
generated data set without any further changes. In the second data set LD was simulated 
using the same item scores for both item 3 and item 6 (like in the Chen & Thissen, 1997 
study). Item parameters a’s, b’s and scalability coefficients Hi were then estimated for 
each case (LI, LD) using IRTPRO (using default program options) and the R mokken 
package, respectively. Results are depicted in Table 5.1. It is clear that the estimation of 
the parameters of items 3 and 6 in the LD case was greatly affected by the fact that their 
scores are dependent (equal in this case). Moreover, the associated Hi values seem to be 
larger, on average, than the Hi values for items that do not contribute to the LD problem. 
This effect was confirmed by replicating the experiment 100 times, as shown in Table 5.2 
(second column). 

The study was further extended by increasing the number of items from 6 to 12. Only 
item scalability Hi values were computed. Table 5.3 shows the results for one data set 
only; Table 5.2 (third column) shows the average results of more than 100 replications. It 
can be seen that the effect of LD on the Hi values was somewhat reduced, implying that 
test length is an important factor. More specifically, the scalability of locally dependent 

Table 5.1  True Item Parameters, Estimated Item Parameters, and Item Scalability Coefficients Hi 
Under Local Independence and Local Dependence of Items 3 and 6

Item

True 
parameters

First case: LI Second case: LD 
(item 3 = item 6)

a b a (SE) b (SE) Hi (SE) a (SE) b (SE) Hi (SE)

1 1.0 −1.0 1.07 (.14) −0.88 (.11) 0.27 (.03) 0.62 (.08) −1.42 (.18) 0.27 (.03)

2 1.0 −0.5 1.11 (.14) −0.45 (.08) 0.25 (.02) 0.54 (.07) −0.85 (.15) 0.24 (.03)

3 1.0 0.0 0.98 (.13) −0.05 (.08) 0.22 (.02) 207.75 (*) −0.11 (**) 0.44 (.02)

4 1.0 0.5 1.10 (.14) 0.53 (.09) 0.25 (.02) 0.52 (.07)  0.89 (.17) 0.24 (.03)

5 1.0 1.0 1.03 (.14) 0.98 (.12) 0.27 (.03) 0.66 (.08)  1.31 (.17) 0.27 (.03)

6 1.0 0.0 1.06 (.14) 0.02 (.07) 0.23 (.02) 207.75 (*) −0.11 (**) 0.44 (.02)

Note: * = 51964.62. ** = 37.64. LI = local independence. LD = local dependence.
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items may become less problematic if the number of items violating the LI assumptions 
is relatively small with respect to the total number of items. More studies are needed to 
clarify which proportions of locally dependent items are admissible in a data set to still 
allow for good scaling of individual differences.

Maximizing H Values: Some Drawbacks

In the literature there is a strong emphasis on selecting items with Hi values larger than 
some lower bound as, say, Hi = 0.3. Egberink and Meijer (2011) observed, however, that 
a researcher should also be careful when Hi values are very high. They argued that repeat-
ing items with a similar content will result in scales with high Hi values but, sometimes, 
scales that measure extremely narrow-band constructs. That is, strong Mokken scales may 
very reliably differentiate persons, but at the cost of construct validity. High Hi values 
may also point at items that define the construct (“I am often depressed” in a depression 
questionnaire).

Table 5.2 Mean (SD) Hi Values Across 100 Replications for Data Sets With 6 and 12 Items

k = 6 k = 12

LI 0.24 (.03) 0.23 (.03)

LD 0.43 (.02) 0.32 (.02)

Note: k = number of items. LI = local independence. LD = local dependence.
All Hi values in each replicated data set are used in the LI cases.
Only Hi values concerning items 3 and 6 (k = 6) and items 6 and 12 (k = 12) in each replicated data set are used 
in the LD cases.

Table 5.3  True Item Parameters and Item Scalability Coefficients Hi 
Under Local Independence and Local Dependence of Items 
6 and 12

True parameters First case: LI Second case: LD 
(item 3 = item 6)

Item a b Hi (SE) Hi (SE)

1 1.0 −1.25 0.26 (.03) 0.24 (.03)

2 1.0 −1.00 0.26 (.02) 0.26 (.02)

3 1.0 −0.75 0.24 (.02) 0.25 (.02)

4 1.0 −0.50 0.25 (.02) 0.25 (.02)

5 1.0 −0.25 0.24 (.02) 0.25 (.02)

6 1.0 0.00 0.21 (.02) 0.32 (.02)

7 1.0 0.25 0.23 (.02) 0.23 (.02)

8 1.0 0.50 0.22 (.02) 0.21 (.02)

9 1.0 0.75 0.19 (.02) 0.20 (.02)

10 1.0 1.00 0.29 (.02) 0.29 (.02)

11 1.0 1.25 0.23 (.03) 0.24 (.03)

12 1.0 0.00 0.21 (.02) 0.32 (.02)

Note: LI = local independence. LD = local dependence.
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Following this line of reasoning, Meijer, de Vries, and van Bruggen (2011) also argued 
to consider the 18 items of the BSI-18 scale (Derogatis, 1983) as one scale instead of form-
ing subscales with each higher Hi value. Often subscales of clinical questionnaires contain 
items that are semantically similar, like “I get a sort of frightened feeling as if something 
awful is about to happen” and “I get a sort of frightened feeling like butterflies in the stom-
ach” (both items from the Anxiety scale in the HADS questionnaire, Zigmond & Snaith, 
1983), or “I still enjoy the things I used to enjoy” and “I look forward with enjoyment  
to things” (Depression items from the HADS). These items will result in high Hij values, but 
a researcher may question whether it is strictly necessary to have both items in the same 
scale. A similar observation was reported by Reise (2009). He reported that fatigue and 
sleep disturbance are conceptually narrow and have a limited pool of item indicators. The 
Mokken scalability coefficient for the fatigue item bank equaled H = 0.71. As Reise (2009) 
remarked, there is little conceptual distance between the symptoms (items) and the con-
struct. In this case one may conclude that it is not necessary to ask several questions, but that 
asking a few questions may suffice to estimate a person’s standing on the latent trait scale.

Because the AISP focuses on the monotonicity assumption, several studies showed that 
this procedure performs worse in recovering the correct dimensionality structure than 
other methods (Mroch & Bolt, 2006; Smits, Timmerman, & Meijer, 2012; van Abswoude, 
van der Ark, & Sijtsma, 2004). In particular, those studies revealed that Mokken scale 
analysis does not function well in conditions in which the traits correlate (Mroch & Bolt, 
2006; van Abswoude et al., 2004), or in which the items load on more than one trait 
(Smits et al., 2012; van Abswoude et al., 2004).

DETECT

Several alternative procedures have been proposed to assess unidimensionality in non-
parametric contexts. In this chapter we restrict ourselves to DETECT because it is the 
most often used alternative to Mokken scale analyses and alternatives such as DIMTEST 
are based on assumptions that assume the knowledge of existing unidimensional subtests. 
DETECT uses conditional covariances between items to assess dimensionality and it is 
based on the early work by Stout (1987, 1990). He defined essential unidimensionality 
(Stout, 1987), essential independence, and weak monotonicity. Essential unidimensional-
ity states that there is one dominant latent variable and several nuisance parameters. In 
this respect, it resembles common (general) factors and unique (group) factors as in factor 
analysis. Essential independence states that for infinitely many items the mean inter-item 
covariance conditional on θ equals 0. Also weak monotonicity assumes that the mean of 
the k IRFs is monotone on θ. This means that assumption M is dropped as a requirement 
for individual IRFs but that it is active for the test response function under the name of 
weak monotonicity. A drawback of these procedures is that the properties implied by UD, 
LI, and M with respect to stochastically ordering persons on θ by means of the total score 
are lost. Therefore, we restrict ourselves here to dimensionality analyses.

To check the dimensionality assumption, Stout and coworkers based their method on 
a special case of conditional association, namely that the covariance between items i and j  
must be nonnegative for subgroups that have the same rest score. Assuming that the items 
measure Q latent variables to a different degree, we may assume that θq is a linear com-
bination of these variables. The performance on the Q latent variables is estimated by 
means of total score or rest scores that both summarize test performance but ignore multi-
dimensionality. Zhang and Stout (1999), however, showed that the sign of cov(Xi, Xj | θq) 
provides useful information about the dimensionality of the data. It is positive when two 
items measure the same latent variable and negative when they clearly measure different 
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latent variables. This observation forms the basis of DETECT that divides a data set of 
items into clusters that together approach essential independence as well as possible given 
all possible item clusters.

Assume that several of the latent variables measured by the items are dominant and 
that others are nuisance variables. Consider an arbitrary partitioning, denoted P, of the set 
of items into disjoint clusters; and let dij(P) = 1 if items i and j are in the same cluster and 
dij(P) = -1 if they are not. DETECT is then defined as:
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The DETECT procedure tries to find the partitioning of the items, denoted P*, that maxi-
mizes Equation (5.4). This is the item clustering that best approximates weak LI between 
item sets, and it is taken as the best description of the dimensionality of the data. Thus, 
important here is that DETECT is sensitive to violations of LI, whereas Mokken scaling 
is sensitive to the monotonicity assumption. Several studies suggested rules of thumb that 
can be used to decide whether a data set is unidimensional or multidimensional. Stout 
and colleagues (1996) considered DETECT values smaller than 0.1 indicating essential 
unidimensionality and DETECT values larger than 1 as indicating multidimensionality. 
Roussos and Ozbek (2006) suggested the following rules of thumb; DETECT < 0.2: weak 
multidimensionality/approximate unidimensionality; 0.2 < DETECT < 0.4: weak to mod-
erate multidimensionality; 0.4 < DETECT < 1.0 = moderate to large multidimensional-
ity, and DETECT > 1.0: strong multidimensionality. Recently, however, Bonifay, Reise, 
Scheines, and Meijer (2014) discussed that these values are sensitive to the factor structure 
of the data set and the relation between general and group factors. Thus, these values 
should be used with care. We will return to this in the data analyses we discuss at the end 
of this chapter.

Invariant Item Ordering

The measurement of patient-reported outcomes through questionnaires sometimes 
assumes that the items used in these questionnaires represent different levels of intensity 
with respect to the attribute of interest. For example, when we consider two items of the 
Aggression Questionnaire that we analyze later, then it is assumed that an item “Some-
times I fly off the handle for no good reason” represents a much higher level of aggression 
than the item “I tell my friends openly when I disagree with them.” On the other hand, 
we often encounter questionnaires that consist of items that are repetitions of similar 
questions and with conditional item means that cluster together, suggesting that there are 
no differences between the intensity of the items. The question then is whether the item 
ordering according to severity (or mean score) established at the group level can be used 
for persons at different individual trait levels, that is, whether IIO holds (Ligtvoet, van der 
Ark, te Marvelde, & Sijtsma, 2010; Sijtsma et al., 2011). Thus the IIO assumption holds 
when the ordering of the items according to their severity is the same across different val-
ues of the latent variable.

Methods to Investigate IIO

Several methods have been developed to establish IIO for dichotomously scored items 
(see Sijtsma & Junker, 1996, for an overview). Meijer and Egberink (2012) suggested, 
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however, to first inspect plots of item-rest score regression before checking possible viola-
tions of IIO. Then, to further investigate IIO for dichotomous items, the rest-score method, 
the P-matrix method, and the coefficient HT can be used. These methods are implemented 
in the R package mokken.

It should be emphasized that two different kinds of methods can be used together. One 
type of method checks whether IRFs intersect (e.g., the rest-score method and the P-matrix 
methods, see later in this chapter). The other method (HT) provides information about 
the spread of IRFs, that is, how far the IRFs are apart. The idea is that when the IRFs are 
further apart, we may have more confidence in IIO.

Rest-Score Method

Under the null hypothesis of nonintersecting IRFs Equation (5.1) applies. In the rest-score 
method the IRFs for each pair of items are estimated and compared using the item 
rest-score functions. For the dichotomous case, item rest-score functions relate the rest 
score (summed score minus the item score) on the x-axis with the observed response pro-
portions for each rest-score group on the y-axis. Rest scores are grouped together when 
there are not enough persons at each possible rest score to compute reliable item propor-
tions. For each pair of items i and j, with item j more popular than item i in the total 
group, it is checked whether:

P X R r P X R rj ij i ij= =( ) ≥ = =( )( ) ( )1 1| | , for r = 0, . . . , k – 2, (5.5)

with R(ij) denoting the summary score that contains neither Xi nor Xj. Thus, when two item 
rest-score functions are compared, the conditioning is based on the remaining k – 2 items. 
When IIO holds, the order of the item proportions for the different rest-score groups is 
the same as the ordering of the item proportions for the total group. Rest-score functions 
for all item pairs are compared to investigate whether IIO holds for a set of k items. A 
violation is reported when the response proportion is reversed in a rest-score group as 
compared to the response proportion order for the total group. The null hypothesis of 
equal item proportions can be tested against the one-sided alternative that the proportion 
of item i is larger than the proportion of item j.

Because significant violations sometimes have low impact, Molenaar and Sijtsma (2000) 
discuss an effect size measure named Crit that consists of a weighted number of different 
indicators of violations for which the following guidelines have been suggested: Crit val-
ues smaller than 40 indicate no serious violations; Crit values between 40 and 80 indicate 
minor violations, and Crit values larger than 80 indicate serious violations. The numerical 
values are based on several practical data analyses but should be interpreted with care. 
For example, there are no simulation studies that endorse these values. We will use these 
Crit values to get an idea about the seriousness of model violations in our data analyses.

The P-Matrix Method

To investigate nonintersection of the IRFs, the P-matrix method uses two square 
 symmetric k x k matrices in which the items are ordered from difficult to easy (based 
on the probabilities in the overall group). The cells in the first matrix, P(+ +), con-
tain all joint proportions Pij(1,1) of persons “passing” both items i and j. The cells in 
the second matrix, P(- -), contain all joint probabilities Pij(0,0) of persons “failing” 
both items i and j. Nonintersection of the IRFs means that the rows and columns of 
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the P(+ +) matrix are non-decreasing and of the P(– –) matrix non-increasing. A viola-
tion is reported when there is a decrease in one of the rows or columns of the P(+ +) 
matrix and when there is an increase in one of the rows or columns of the P(– –) matrix. 
Like the rest-score method, significance testing is done using the McNemar’s test.

Coefficient HT

Coefficient HT (Sijtsma & Meijer, 1992) can be used as a measure for the accuracy of the 
item ordering. A low HT value suggests that the IRFs are close together, whereas a high 
value of HT suggests that the IRFs are further apart. When IIO holds for k items, it can be 
shown that 0 ≤ HT ≤ 1. For practical purposes, Sijtsma and Meijer (1992) suggested using 
HT ≥ 0.3 as a lower bound. It is important to emphasize that HT is only related to all k 
items together, and cannot be used to assess which items cause intersections. Therefore, 
Sijtsma and Meijer (1992) suggested combining information from HT with the results 
from other methods such as the rest-score method and the P-matrix method.

Polytomous Data: Method Manifest IIO

Ligtvoet and colleagues (2010) developed a method to investigate IIO for polytomous 
items, which is named method manifest IIO. Method manifest IIO (MIIO) compares the 
ordering of the item means for all item pairs for different rest-score groups. This is investi-
gated by numbering and ordering the items in increasing order of difficulty (i.e., from easy 
to difficult) for the entire test. IIO holds when:

E X R r E X R ri ij j ij| | ,( ) ( )=( ) ≥ =( )  for all r and all i < j, (5.6)

and with R(ij) denoting, once more, the total test score excluding the scores on items i and j.  
Then, one-sided one-sample t-tests are conducted to test the significance of each sample 
violation of the IIO condition stated earlier. The null hypothesis is that the expected con-
ditional item means are equal, and it is tested against the alternative that the expected 
conditional mean of item j exceeds that of item i, which is a violation of IIO. A violation is 
reported when there is a reverse ordering of the conditional sample means for a particular 
rest score. To prevent taking very small violations seriously, these reverse orderings are 
only reported when they exceed a minimum value, denoted minvi.

Reliability in Nonparametric IRT

In parametric IRT a latent trait variable is estimated and the variance of this estimate 
across (hypothetical) repeated test administrations of the same test is the variance of the 
trait score. When this variance is small the estimate is precise, when it is large it is not pre-
cise. Because this variance is defined for a particular person it is within-person precision. 
Often the reciprocal of the within-person variance of the trait estimate is used, which is 
the test information at the given trait estimate.

In parametric IRT, reliability is concerned with the differentiation between trait scores 
of different persons. When the trait score can be precisely predicted from the test score 
reliability is satisfactory and it is unsatisfactory when it cannot.

Because in nonparametric IRT there are no θ estimates, Mokken (1971) proposed a 
method in the context of the DMM model that is based on the same definition as classical 
reliability and that results in a reliability estimate. TESTGRAF gives plots for a reliability 
estimate conditional on the estimated score.
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Fit of Item Score Patterns

Thus far, we have discussed model data fit from the perspective of the items and set of 
items. Once a researcher concluded that a set of items can be described by an NIRT model, 
it can be checked whether there are persons who do not comply to the model assumptions.

Psychologists and clinicians have become increasingly aware of the need to evaluate 
carefully and routinely the veracity of information obtained from testing, clinical inter-
views, and other methods that are based on self-report. Deliberate exaggeration, or fab-
rication of problems to obtain a desired external goal, may invalidate test scores. Thus, 
feedback provided by simple statistics about the consistency of answering behavior can be 
useful, especially in clinical treatment and outcome measurement settings.

In personality and clinical assessments a tradition exists to detect invalid test scores 
using different types of validity scales. The utility of validity scales to detect “faking bad” 
or exaggerating symptoms has generated quite some debate. For example, Pinsoneault 
(2007) found that different MMPI validity scales had enough power to be used in practice. 
However, other authors have questioned the usefulness of validity scales to detect “faking 
good” or social desirability. One of the problems of validity scales is that they may be con-
founded with valid personality trait variance and show a relationship with other content 
scales. For example, Ones, Viswesvaran, and Reiss (1996) found that social desirability 
measures correlate with Emotional Stability (r = 0.37), Conscientiousness (r = 0.20), and 
Agreeableness (r = 0.14) in normal (honest) assessment situations. Because of this, a high 
social desirability score can indicate either legitimate favorable trait elevations or dissimu-
lation. Also, many clinical scales do not have separate validity scales.

As an alternative, some authors have suggested using consistency measures (Tellegen, 
1988). Since the 1980s with the increased use of item response theory modeling, statistics 
have been proposed to identify item score patterns that are unlikely under an IRT model. 
These unlikely patterns can be identified and further inspected. Although many statistics 
can be used to identify invalid score patterns (see Meijer & Sijtsma, 2001 for an over-
view), only a few studies show their practical usefulness (e.g., Meijer, Egberink, Emons, & 
Sijtsma, 2008).

Despite this lack of empirical evidence, we think that although a particular question-
naire can be a good measure of a psychological construct for a group of persons, it may 
be a poor measure of the construct for a particular individual, and that checking the 
consistency of answering behavior on questionnaires may be of help in outcome mea-
surement. Perhaps it is the lack of easy-to-use software and the lack of the presence in 
often-used software programs (such as Multilog or IRTPRO) that make this technique 
relatively unpopular. However, the recently developed R packages irtoys, PerFit, and mirt 
(Chalmers, 2012) contain parametric person-fit statistics, which may increase the use of 
these statistics.

Application

To illustrate the different nonparametric IRT methods described so far we used two differ-
ent data sets we obtained from the PROMIS® Wave 1 data (www.nihpromis.org). First, we 
analyzed data from two subscales of the Aggression Questionnaire (Buss & Perry, 1992): 
the Verbal Aggression scale and the Anger scale. We analyzed the 12 items of the com-
bined subscales as one scale (denoted as AQ) because this enabled us to illustrate the per-
formance of the different nonparametric IRT methods. Items were scored on a five-point 
Likert scale from 0 (extremely uncharacteristic of me) through 4 (extremely characteristic 
of me). Second, we analyzed data from the Physical Functioning (PF) scale of the SF-36 

http://www.nihpromis.org
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(Ware & Sherbourne, 1992) consisting of 10 items scored from 0 through 2 (0 = limited a 
lot; 1 = limited a little; 2 = no, not limited at all).

Aggression Scale

The sample consisted of 819 persons of the normal population (Mage = 51.3, SD = 18.21); 
50.7 percent were men. Sijtsma and colleagues (2011) suggested a procedure for analyzing 
data according to the DMM. Because the DMM implies the MHM this procedure nicely 
fits the aim of the present study. For dichotomous items they distinguished the following 
steps: (1) investigate scalability/unidimensionality through an automated item selection 
procedure (AISP), (2) investigate monotonicity through inspecting item rest-score regres-
sions, (3) investigate IIO through inspecting methods like rest score and P-matrix, and 
finally (4) investigate the precision of the item ordering through the HT coefficient.

For polytomous data, a similar methodology was proposed by Sijtsma and colleagues 
(2011), with the exception that the method manifest IIO proposed by Ligtvoet and col-
leagues (2010) should be used to investigate IIO. We will loosely follow this methodology. 
That is, our aim is to illustrate how the data can be checked with respect to the MHM and 
the DMM. Analyses were performed using the R package mokken.

For the methodology as proposed by Sijtsma and colleagues (2011) it is not strictly 
necessary to use c = 0.3 as a lower bound in the AISP procedure. An alternative is to check 
whether all inter-item covariances are positive, thus using Hij = 0 as a lower bound.

For both data sets, we started with the AISP procedure with c = 0. Although this lower 
bound is seldom used, it provides interesting information about which items comply to the 
minimum requirements of the MHM. Then we checked monotonicity by inspecting the IRFs.

Second, we used a lower bound of c = 0.30 for the AISP, minvi = 0.03 to investigate 
monotonicity, and minvi = 0.03 times the number of item step response functions (m) to 
investigate IIO. Ligtvoet and colleagues (2010) investigated the sensitivity and specific-
ity of method manifest IIO. They used different minvi values and their simulation study 
showed that a minvi of 0.03 times m is an appropriate choice for investigating IIO with 
polytomous items. Furthermore, we used the following rules of thumb for the HT coef-
ficient: HT < 0.3 implies that the item ordering is too inaccurate to be useful; 0.3 ≤ HT < 
0.4 implies low accuracy of item ordering; 0.4 ≤ HT < 0.5 implies medium accuracy; and 
HT ≥ 0.5 implies high accuracy.

Ligtvoet and colleagues (2010) suggested the following sequential data-analysis pro-
cedure for method manifest IIO. First, for each of the k items the number of significant 
violations (i.e., that exceed minvi) is determined and the item with the highest number of 
violations is removed. When different items have the same number of significant viola-
tions, the item with the smallest Hi coefficient may be removed, but other criteria might 
also be considered, for example the item content. Second, this procedure is repeated for the 
remaining items until none of the remaining items have significant violations, which means 
that IIO holds for all items. When IIO holds for the (remaining) items, the HT coefficient 
for polytomous items can be computed. This coefficient is a generalization of the original 
HT coefficient to polytomous data and it allows checking the accuracy of the item ordering.

Results

Descriptive Statistics

Table 5.4 shows the content of the items, the mean item scores, and the item-total score cor-
relation. A first observation is that the distribution of the item scores is skewed to the right; 
that is, most persons chose options 0, 1, or 2. This is as expected because most persons in 
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the general population will not endorse statements that indicate (very) aggressive behavior. 
In Figure 5.1 we depicted the conditional reliability as calculated through TESTGRAF. As 
can be seen, reliability was highest for scores between 5 and 15 (to be further discussed later 
in this chapter). To obtain a first impression about the relative first-factor strength to assess 
unidimensionality we determined the ratio of the first to second eigenvalues—the larger this 
ratio, the more appropriate the item response data are thought to be for unidimensional 
IRT modeling. The ratio between first and second order factors was 4.7/1.5 = 3.1 for the 
Aggression scale and 6.3/1.0 = 6.0 for the Physical Functioning scale, so there is a stronger 
general factor running through the PF data than the AQ data. 

Checking Monotonicity and Scalability

We start with inspecting the mean ISRF plots to obtain a first impression about the func-
tioning of the items across different rest-score groups (see Figure 5.2). Note that we 
grouped many rest scores at the higher end of the total scores because there are relatively 
few persons with a high rest score. This plot already teaches us some interesting things 
about the item quality. It tells us (1) which items are most related to the underlying latent 
variable, aggression (steepest functions) and (2) in what range of the rest scores the items 
discriminate best. From Figure 5.2 it is clear that the item rest-score functions for all items 
are non-decreasing, although the mean ISRF of item 2 “I tell my friends openly when I dis-
agree with them” is rather flat (i.e., not discriminating well between different rest scores). 
The rest-score function of item 11 “My friends say that I’m somewhat argumentative” has 
one of the steepest item rest-score functions. Note that one should be careful in interpret-
ing the steepness of the IRFs because high rest scores are pooled together, thus the x-axis 
is not interval scaled.

Also note that items 10 and 12 discriminate well in the high rest-score range, but do 
not discriminate in the low rest-score range. Another observation is that for low rest-score 
levels the mean scores on items 2, 5, 6, and 8 are far from zero and for high rest-score 

Table 5.4 Descriptive Statistics for the Aggression Scale

Item Subscale Item content Mean SD Item-total 
correlation

1 Anger Some of my friends think I am a hothead 0.66 1.04 0.70

2 Verbal I tell my friends openly when I disagree with them 2.54 1.12 0.39

3 Verbal I can’t help getting into arguments when people 
disagree with me

1.06 1.13 0.67

4 Anger I am an even-tempered person (reverse scored) 1.01 1.08 0.55

5 Anger I flare up quickly but get over it quickly 1.69 1.28 0.54

6 Verbal When people annoy me, I may tell them what 
I think of them

1.51 1.28 0.56

7 Anger I have trouble controlling my temper 0.74 1.09 0.72

8 Anger When frustrated, I let my irritation show 1.90 1.21 0.64

9 Verbal I often find myself disagreeing with people 1.48 1.09 0.64

10 Anger I sometimes feel like a powder keg ready to explode 0.55 1.02 0.63

11 Verbal My friends say that I’m somewhat argumentative 1.12 1.22 0.71

12 Anger Sometimes I fly off the handle for no good reason 0.53 0.97 0.66



100 Rob R. Meijer, et al.

levels this mean score is below three out of a maximum of four, thus indicating that the 
upper asymptote is far from the maximum category. This would suggest that for these data 
a parametric IRT model with an upper asymptote parameter lower than one is needed. 
These plots and similar results can also be obtained using TESTGRAF. To further explore 
item quality we return to the descriptive statistics in Table 5.4; these statistics confirm some 
of the observations obtained from inspecting the graphs in Figure 5.2. For example, item 
2 does have a relatively low item-test correlation and the scores are skewed to the right.

Next, we ran the AISP using c = 0. Interesting is that 11 out of 12 items were selected; 
only item 2 was not selected because of a negative correlation with item 4. From these first 
analyses, it is clear that item 2 is a candidate for removal from the scale. When we ran the 
AISP with c = 0.3 as a lower bound item 6 was also removed from the scale because of 
an Hi value smaller than 0.3. When using the new AISP approach proposed by Straat and 
colleagues (2013) we found the same results; that is, both items 2 and 6 were not selected 
in the final scale.

Checking the monotonicity assumption for the remaining 10 items, we observed that the 
most problematic case concerned item 4. In Figure 5.3 we depicted the ISRFs of item 4. Note 
that there are five options (scores from 0 through 4) and thus four ISRFs. The figure shows 
that ISRF 1 is (almost) non-decreasing, but that the remaining ISRFs decrease between 
rest-score groups (3–4) and (5–6). ISRF 3 is also decreasing between rest-score groups 9–11 
and 12–14 and ISRF 4 is also decreasing between rest-score groups 5–6 and 7–8. This 
results in a decreasing mean item step (bold line) and thus a violation of the MHM model.

To explain how monotonicity is checked consider Figure 5.3. There are eight rest-score 
groups with a varying number of persons (with a minimum of 81 persons per group in 
the present analysis). For each item step we now compare the proportions across the 

Figure 5.1 Conditional reliability for the Aggression scale scores.
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rest-score groups and a decrease larger than 0.03 is indicated as a violation against mono-
tonicity. For example, for item step 2 there were violations for rest-score groups 1 and 3, 
2 and 3, and 2 and 4.

To further explore this and to investigate how serious these violations are, in Table 5.5 
we depicted some relevant statistics for all 10 selected items, but we concentrate on item 4 
(in bold). In Table 5.5 we give the Hi values, the so-called number of active pairs, number 
of violations, and Crit values. The number of active pairs is the number of pairs that are 
taken into account when comparing the proportion-correct scores for each ISRF.

As can be seen in Table 5.5, item 4 had 15 violations out of 108 active pairs.1 Between 
each two rest-score groups an observed decrease in proportion could be due to sampling 
variation. For example, for item step 2, the maximum violation was found when com-
paring the proportions of rest-score groups 3–4 and 5–6; the conditional probability 
P (X(4) ≥ 2|R(4)) decreased 0.05. This decrease could be due to random fluctuation and not 
necessarily due to a large difference between both rest-score groups. This can be tested 
in a 2*2 table containing the number of persons in the rest-score groups 2 and 3 and the 
number of persons with item step < 2 and item step ≥ 2. Using a normal approximation 
for this hypergeometric distribution resulted in z = 0.91, thus we conclude that this spe-
cific violation is not significant. The same line of reasoning allows us to confirm that no 
significant violations exist for item steps 1 and 2. For item step 3 there were 4 violations 
(all significant) and for item step 4 there were 8 violations (6 significant). Thus in total 
there were 10 significant violations that resulted in a Crit value of 92. The researcher may 
consider removing this item from the item set.

Figure 5.2 Mean ISRFs for the 12 items of the Aggression Questionnaire.

1  There are 108 active pairs for item 4 because there are eight rest-score groups (see Figure 5.2) and there are 
four ISRFs per item. For each item there are thus (8*7/2)*4 = 112 possible comparisons. However, because 
there were zero results for the fourth rest group, the comparisons with rest-score groups 5, 6, 7, and 8 did not 
exist. Hence the number of active pairs for item 4 is 112 –  4 = 108.
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Sijtsma and Molenaar (2002) suggested investigating multidimensionality by increasing 
the lower bound c values in the AISP. When this increase clearly resulted in the creation of 
different scales that are easy to interpret, multidimensionality may exist. If not, then the 
scale may be considered unidimensional. When we used c = 0.4 we found two scales: a 
first scale with items (10, 12, 7, 8, 1, 11, 9, 3) and a second scale with items (2, 6); items 
4 and 5 were unscalable. With a lower bound of c = 0.5 there were two scales (10, 12, 7, 
8, 1) and (11, 9, 3) and items 2, 4, and 6 are unscalable. There was no clear distinction 

Table 5.5 Item Hi Values and Monotonicity Checks for 10 Items of the 
Aggression Questionnaire

Item Hi # Ac pairs # violations # sign Z-test crit

1 .47 72 2 0 12

3 .41 112 1 1 33

4 .37 108 15 10 92

5 .32 112 3 0 21

7 .51 92 1 0  3

8 .43 105 3 0 19

9 .42 97 2 0 12

10 .47 92 0 — —

11 .45 103 0 — —

12 .49 64 0 — —

Note: # Ac pairs = number of active pairs. # violations = number of violations. # sign 
Z-test = number of significant z tests. crit = Crit values.

Figure 5.3 ISRFs for item 4, Aggression scale.
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between anger items and verbal aggression items. As we discussed earlier, maximizing H 
values leads to clusters of items that are very narrow in content. For example, item cluster 
(3, 9, 11) only consists of verbal disagreeing items and these items are thus very similar in 
content. On the basis of this analysis we conclude that there is no clear multidimension-
ality present in the data, and that items 2, 4, and 6 are candidates for removal from the 
scale.

Results Using DETECT

The DETECT procedure was used to further study the dimensionality of the data. We used 
the stand-alone program polyDETECT described in Zhang (2007) and obtained from the 
author. For the AQ items, DETECT selected three subscales: one consisting of items from 
the Anger subscale (items 1, 4, 7, 10, 12), another subscale consisted of Verbal Aggression 
items (items 2, 3, 6, 9, 11), and a cluster of two items (5, 8) formed a third subscale. The 
maximum DETECT value equaled 6.1, indicating multidimensionality. When we forced 
the data to have two dimensions, both the Anger and the Verbal Aggression subscales 
were identified. We will further elaborate on these results in relation to the Mokken analy-
ses results when we discuss the results for the Physical Functioning scale.

Invariant Item Ordering

We checked for violations of IIO without items 2, 4, and 6. There was only one vio-
lation for items 10 and 12 and this violation was not significant according to MIIO, 
therefore these items were kept in the scale. For the subscale consisting of the remain-
ing nine items we found HT = 0.38, which following the rules of thumb tentatively 
proposed by Ligtvoet and colleagues (2010) indicates that the accuracy of the order-
ing of the items is low. This is also reflected in the plots of the mean ISRFs (see Figure 
5.2). The ISRFs of items 1, 7, 10, and 12 cluster together and even cross (although not 
resulting in a significant different ordering of the items, as discussed earlier). Note that 
MIIO only investigates a reversed ordering and that item response functions may clus-
ter together without violating the assumption of IIO. Important now is that it is clear 
that many mean ISRFs cluster together as is typical for many clinical scales (Meijer & 
Egberink, 2012).

How can we apply this information for further analyses? Based on these analyses one 
may choose a parametric model with a fixed a-parameter to describe the data. Another 
implication is that there is not a strong item ordering according to the p-values (i.e., the 
items’ proportion-correct). Note that item 2 is not a good item because it does not differ-
entiate between respondents with a low and high total score, although the item is respon-
sible for a larger spread in the mean ISRFs; removing this item results in a decrease of the 
HT coefficient from 0.41 to 0.31.

Physical Functioning Scale

The sample consisted of 714 persons (Mage = 51.1, SD = 18.94); 48.9 percent were men. An 
interesting conceptual difference between the AQ and the PF scale is that the AQ measures 
a psychological construct, whereas the PF scale measures physical activities and clearly not 
a psychological construct. As our results show, this has a strong influence on the psycho-
metric quality of the scale. Because the questions of the PF scale refer to concrete activities 
a person can perform and because there seems to be a clear ordering of those activities 
from easy to difficult, the scale seems to be much more like a Guttman (1950) scale than 
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the AQ. Thus, for the PF scale there is much similarity between the construct and the items 
that measure the construct. In contrast, for the AQ items the difference between the con-
struct and the indicators (items) is larger than for the PF items and as a result scalability 
is lower. This is indeed reflected in the mean ISRF for the PF scale as compared to the AQ 
scale: Compared to the PF scale, the mean ISRFs of the AQ scale are less steep.

Table 5.6 gives the descriptive statistics for the 10 items of the PF scale. As expected, 
item-test correlations and Hi values are very high. Hi values varied between 0.69 and 
0.80, resulting in an overall H value of 0.77 and thus indicating a very strong scale. As a 
consequence all items were selected by the AISP procedure using c = 0.3 (and thus also for 
c = 0). Inspecting the mean ISRFs of the PF items it is clear that most items discriminate 
much better across groups with different rest scores than the mean ISRFs of the Aggres-
sion scale (see Figure 5.4).  

This is also reflected in the result from the IIO analyses. There were no violations 
against IIO with HT = 0.65 indicating a high precision of the item ordering according to 
the rules proposed by Ligtvoet and colleagues (2010). However, one should be careful 
when interpreting this value. As Meijer and Egberink (2012) showed, HT is sensitive to 
outliers. The mean ISRFs of items 1 and 10 are far apart from the other IRFs and these 
mean ISRFs are partly responsible for the high HT value. When we removed these items, 
HT dropped from 0.65 to 0.40. Thus, it is important to inspect the IRFs to get an idea 
about the spread of the IRFs.

Furthermore, it is clear that the IRFs of item 3 (Lifting or carrying groceries) and item 
9 (Walking one block) almost coincide, indicating that these items do not reflect a differ-
ent severity of physical functioning, at least in this population (note that the mean value 
of both items is 1.78). Given the fact that these items are so highly related (Hij = 0.69), 
one may consider removing one of these items from the scale because each item does not 
overly contribute to the item ordering in the presence of the other. Also the mean ISRFs of 
items 2 and 6 are close together.

Figure 5.4 Mean ISRFs for the 10 items of the Physical Functioning scale.
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Results Using DETECT

Concerning data dimensionality, for the PF scale DETECT identified three subscales: 
(1,4,5), (2,3,6,10), and (7,8,9) with a maximum DETECT value of 0.89, implying some 
multidimensionality (Roussos & Ozbek, 2006). Note that cluster (7,8,9) consists of the 
“walking items” and two out of the three items from the cluster (1,4,5) are about “climb-
ing stairs.”

What should we make of these results? It is clear that the much lower DETECT value 
for the PF data as compared to the AQ data is the result of the stronger general factor in 
the PF data than the AQ data. As we mentioned earlier, there are several rules of thumb 
(e.g., Roussos & Ozbek, 2006) that would classify the AQ scale as multidimensional and 
even the PF scale would be considered moderately to largely multidimensional. However, 
Bonifay and colleagues (2014) discussed that “the flaw of DETECT, in terms of predict-
ing parameter bias, is that its values are based on the size of the conditional covariances. 
These conditional covariances are determined by the size of the loadings on the group fac-
tor, but they are, by definition, independent of the general factor.” Bonifay and colleagues 
(2014) in the context of bifactor modeling suggested therefore to consider DETECT val-
ues in the context of the general factor strength. In a nonparametric context it is interest-
ing to consider the Mokken results in relation to the DETECT results. Remember that 
the ratio between the first and second order factors equaled six for the Physical Function 
scale and that the Mokken analysis showed that the Hij values were very high (roughly 
between 0.7–0.9). These results point at a strong general factor. Thus, because DETECT 
is aimed at maximizing the differences between the item clusters and because it does not 
take the general factor into account, it is very sensitive to classifying items into different 
clusters. And perhaps most importantly, content-wise the DETECT results also lead to 
very narrow-band subscales, namely a three-item “walking scale,” a three-item “climbing 
flights of stairs scale,” and a subscale with the other items. Thus, it seems rather absurd to 
consider the PF data as multidimensional.

These conclusions are in line with the results reported in Bonifay and colleagues (2014), 
who found in a simulation study that using the rules of thumb suggested by Roussos 
and Ozbek (2006) for DETECT leads to many classifications of “multidimensionality” 

Table 5.6 Descriptive Statistics of the PF Scale

Item Item content Mean SD Item-total 
correlation

Hi

PF1 Vigorous activities, running, lifting 1.00 0.83 .74 .79

PF2 Moderate activities, moving table 1.60 0.63 .87 .79

PF3 Lifting or carrying groceries 1.78 0.50 .77 .74

PF4 Climbing several flights of stairs 1.38 0.78 .85 .78

PF5 Climbing one flight of stairs 1.75 0.53 .82 .78

PF6 Bending, kneeling, or stooping 1.52 0.66 .77 .69

PF7 Walking more than a mile 1.43 0.75 .88 .80

PF8 Walking several blocks 1.68 0.62 .84 .78

PF9 Walking one block 1.78 0.52 .80 .78

PF10 Bathing or dressing yourself 1.91 0.35 .55 .72
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whereas a strong common factor was present in the data. Like in the present study, this 
was due to strong group factors.

Person-Fit Results

To illustrate the usefulness of person-fit analysis, we investigated the score patterns of 
the PF scale in more detail. As shown earlier, the scale consists of 10 items that allow 
for IIO.

Given that we order the PF items from most popular to least popular, a simple and 
powerful person-fit statistic is the number of Guttman errors (Meijer, 1994). For dichoto-
mous items, the number of Guttman errors equals the number of zero scores preceding a 
one score in a score pattern, thus, the pattern (10110010) contains five Guttman errors. 
A drawback of this statistic, however, is that it is confounded with the total score (Meijer, 
1994). For polytomous items Emons (2008), therefore, proposed a normed version of the 
number of Guttman errors:

G
G

G X
N
p

p

p
=

( )+max
.

In this statistic the number of Guttman errors ( )Gp  is weighted by its maximum value 
given the sum score (for details see Emons, 2008). GN

p  values ranged from zero (i.e., no 
misfit) through one (i.e., maximum misfit); for perfect response patterns the statistic is 
undefined.

We used the R-package PerFit (Tendeiro, 2014) to calculate GN
p . The mean GN

p  equaled 
M = 0.05 (SD = 0.09). Most persons obtained low GN

p  values, indicating model conform 
behavior. However, there were outliers. One of the most extreme patterns was the pattern 
of person 535 with GN

p  = 0.66. It is instructive to compare the score pattern of person 535 
with the score pattern of a randomly chosen person (person 165) with a low GN

p  value and 
a similar total score of X+ = 8.

Person 165: [2 1 2 1 0 1 0 1 0 0] total score 8: GN
p  = 0.06.

Person 535: [0 0 1 2 0 1 0 0 2 2] total score 8: GN
p  = 0.66.

The items are ordered so that item 1 reflects the easiest tasks (Bathing or dressing your-
self) and item 10 the most difficult tasks (Vigorous activities). Intriguing is that person 535 
reports problems in bathing and dressing (item score 0), whereas there are no problems 
with “Vigorous activities, such as running, lifting heavy objects, participating in strenuous 
sports” (item score 2). This is rather unexpected and certainly deserves closer attention. It 
is also clear that the total score patterns of both persons do indicate different things about 
physical functioning.

Summary

Reise and Waller (2009) wrote: “the clinical measures we examined are characterized 
by relatively small samples of poorly defined mixtures of patient groups of convenience, 
highly skewed score distributions, poorly articulated content domains, constructs with a 
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limited number of potential indicators, narrow band constructs (e.g., fatigue), quasi-traits, 
and high correlations among scales measuring different traits (e.g., due to the omnipres-
ent negative affectivity dimension).” In this context, we hope to have shown that non-
parametric IRT methods that explore data quality can be very useful before using more 
complex models or models that are based on more restrictive assumptions than nonpara-
metric approaches. In contrast to the statistical tradition of data exploration, plotting 
data, looking for outliers, and carefully considering different models and approaches, the 
psychometric literature sometimes seems obsessed with all kinds of “model wars” and to 
formulate “do’s” and “don’ts” to support a “Holy Grail” model. We do not endorse this. 
We see psychometric modeling more as a way to explore data quality than as a model fit 
contest (so researchers need to stop being fitidiots). Nonparametric approaches are excel-
lent tools to decide whether parametric models are justified. Moreover, given the often 
not-so-easy-to-interpret fit statistics for parametric models, nonparametric tools provide a 
nice extension of the parametric toolkit to IRT modeling.

This is not to say that in some situations parametric models and even restrictive para-
metric models may be preferred over nonparametric models. For example, using θ scoring 
instead of total scores can reduce ceiling effects. Also the use of computer adaptive testing 
is much easier using parametric models than nonparametric approaches.

Finally and returning to the content of many outcome measures, our analyses once 
again showed that many clinical scales are simple instruments that require little or no 
understanding of psychological theory. This also makes it difficult, for example, to inves-
tigate IIO.2 We seldom find detailed descriptions that made clear that the content of one 
item reflected a less severe type of the construct that is being measured than the content of 
another item. For example, we do not encounter many clinical or personality scales that 
a priori describe symptoms in order of severity. Perhaps this reflects the fact that many 
symptoms go together and that there is no real ordering in item severity. On the other 
hand we have the impression that not much thought is given to the theoretical underpin-
nings of many constructs.

References

Bonifay, W. E., Reise, S. P., Scheines, R., & Meijer, R. R. (In press). When are multidimensional data 
unidimensional enough for structural equation modeling? An evaluation of the DETECT multidi-
mensionality index. Structural Equation Modeling.

Buss, A. H., & Perry, M. (1992). The aggression questionnaire. Journal of Personality and Social 
Psychology, 63(3), 452–459.

Chalmers, R. P. (2012). Mirt: A multidimensional item response theory package for the R environ-
ment. Journal of Statistical Software, 48(6), 1–29.

Chen, W., & Thissen, D. (1997). Local dependence indexes for item pairs using item response 
theory. Journal of Educational and Behavioral Statistics, 22(3), 265–289.

Chernyshenko, O. S., Stark, S., Chan, K., Drasgow, F., & Williams, B. (2001). Fitting item response 
theory models to two personality inventories: Issues and insights. Multivariate Behavioral 
Research, 36(4), 523–562.

2  Ligtvoet (2010) showed that very large samples (almost 3,000 persons) are needed to distinguish realistic 
numbers of ISRFs. Ligtvoet (2010) suggested that alternative approaches are needed to establish IIO in prac-
tice. One suggested approach was to form clusters of items that have similar adjacent IRFs and to establish 
IIO across different item clusters. A drawback of this approach may be that item clusters may consist of items 
that are redundant.



108 Rob R. Meijer, et al.

Derogatis, L. R. (1983). Brief Symptom Inventory: Administration, scoring, and procedures manual. 
Minneapolis, MN: National Computer Systems.

Egberink, I. L., & Meijer, R. R. (2011). An item response theory analysis of Harter’s Self-Perception 
Profile for Children or why strong clinical scales should be distrusted. Assessment, 18(2), 
201–212.

Emons, W. M. (2008). Nonparametric person-fit analysis of polytomous item scores. Applied Psy-
chological Measurement, 32(3), 224–247.

Guttman, L. (1950). The basis for scalogram analysis. In: S. A. Stouffer, L. Guttman, E. A. Suchman, 
P. F. Lazersfeld, S. A. Star, & J. A. Clausen (Eds.), Measurement and prediction (pp. 60–90). Princ-
eton, NJ: Princeton University Press.

Hemker, B. T., Sijtsma, K., Molenaar, I. W., & Junker, B. W. (1997). Stochastic ordering using the 
latent trait and the sum score in polytomous IRT models. Psychometrika, 62(3), 331–347.

Holland, P. W., & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in 
monotone latent variable models. Annals of Statistics, 14(4), 1523–1543.

Ligtvoet, R. (2010). Essays on invariant item ordering. Unpublished doctoral dissertation, Univer-
sity of Tilburg.

Ligtvoet, R., van der Ark, L., te Marvelde, J. M., & Sijtsma, K. (2010). Investigating an invari-
ant item ordering for polytomously scored items. Educational and Psychological Measurement, 
70(4), 578–595.

Mazza, A., Punzo, A., & McGuire, B. (2012). KernSmoothIRT: An R package for kernel smoothing 
in item response theory. Retrieved from http://arxiv.org/pdf/1211.1183v1.pdf.

Meijer, R. R. (1994). The number of Guttman errors as a simple and powerful person-fit statistic. 
Applied Psychological Measurement, 18(4), 311–314.

Meijer, R. R. (2010). Watson, Deary, and Austin (2007) and Watson, Roberts, Gow, and Deary 
(2008): How to investigate whether personality items form a hierarchical scale?: Comment. Per-
sonality and Individual Differences, 48(4), 502–503.

Meijer, R. R., & Baneke, J. J. (2004). Analyzing psychopathology items: A case for nonparametric 
item response theory modeling. Psychological Methods, 9(3), 354–368.

Meijer, R. R., de Vries, R. M., & van Bruggen, V. (2011). An evaluation of the Brief Symptom 
Inventory–18 using item response theory: Which items are most strongly related to psychological 
distress? Psychological Assessment, 23(1), 193–202.

Meijer, R. R., & Egberink, I. L. (2012). Investigating invariant item ordering in personality and 
clinical scales: Some empirical findings and a discussion. Educational and Psychological Measure-
ment, 72(4), 589–607.

Meijer, R. R., Egberink, I. L., Emons, W. M., & Sijtsma, K. (2008). Detection and validation of uns-
calable item score patterns using item response theory: An illustration with Harter’s Self-Perception 
Profile for Children. Journal of Personality Assessment, 90(3), 227–238.

Meijer, R. R., Niessen, A. S. M., & Tendeiro, J. N. (2014). A practical guide to check the consistency 
of item response patterns in clinical research through person-fit statistics: Examples and a com-
puter program. 

Meijer, R. R., & Sijtsma, K. (2001). Methodology review: Evaluating person fit. Applied Psychologi-
cal Measurement, 25(2), 107–135.

Mellenbergh, G. J. (2011). A conceptual introduction to psychometrics: Development, analysis, 
and application of psychological and educational tests. The Hague: Eleven International.

Mokken, R. J. (1971). A theory and procedure of scale analysis. The Hague: De Gruyter.
Molenaar, I. W. (1997). Nonparametric model for polytomous responses. In W. J. van der Linden & 

R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 369–380). New York: 
Springer-Verlag.

Molenaar, I. W. (2004). About handy, handmade and handsome models. Statistica Neerlandica, 
58(1), 1–20.

Molenaar, I. W., & Sijtsma, K. (2000). User’s manual MSP5 for Windows. IEC ProGAMMA, 
Groningen.

Mroch, A. A., & Bolt, D. M. (2006). A simulation comparison of parametric and nonparametric 
dimensionality detection procedures. Applied Measurement in Education, 19(1), 67–91.

http://arxiv.org/pdf/1211.1183v1.pdf


Use of IRT to Explore Data Quality 109

Ones, D. S., Viswesvaran, C., & Reiss, A. D. (1996). Role of social desirability in personality testing 
for personnel selection: The red herring. Journal of Applied Psychology, 81(6), 660–679.

Partchev, I. (2013). Package “irtoys”: Simple interface to the estimation and plotting of IRT models. 
Retrieved from http://cran.r-project.org/web/packages/irtoys/irtoys.pdf.

Pinsoneault, T. B. (2007). Detecting random, partially random, and nonrandom Minnesota Multi-
phasic Personality Inventory-2 protocols. Psychological Assessment, 19(1), 159–164.

Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve esti-
mation. Psychometrika, 56(4), 611–630.

Ramsay, J. O. (2000). TestGraf: A program for the graphical analysis of multiple choice test and 
questionnaire data. Retrieved from www.psych.mcgill.ca/faculty/ramsay/TestGraf.html.

Rao, C. R., & Sinharay, S. (2007). Handbook of Statistics 26. Psychometrics. Amsterdam: Elsevier.
Reise, S. P. (2009). The emergence of item response theory models and the patient reported outcomes 

measurement information systems. Austrian Journal of Statistics, 38(4), 211–220.
Reise, S. P., & Waller, N. G. (2009). Item response theory and clinical measurement. Annual Review 

of Clinical Psychology, 5, 27–48.
Roussos, L. A., & Ozbek, O. (2006). Formulation of the DETECT population parameter and evalu-

ation of DETECT estimator bias. Journal of Educational Measurement, 43(3), 215–243.
Santor, D. A., & Ramsay, J. O. (1998). Progress in the technology of measurement: Applications of 

item response models. Psychological Assessment, 10(4), 345–359.
Santor, D. A., Ramsay, J. O., & Zuroff, D. C. (1994). Nonparametric item analyses of the Beck 

Depression Inventory: Evaluating gender item bias and response option weights. Psychological 
Assessment, 6(3), 255–270.

Sijtsma, K., & Junker, B. W. (1996). A survey of theory and methods of invariant item ordering. 
British Journal of Mathematical and Statistical Psychology, 49(1), 79–105.

Sijtsma, K., & Meijer, R. R. (1992). A method for investigating the intersection of item response 
functions in Mokken’s nonparametric IRT model. Applied Psychological Measurement, 16(2), 
149–157.

Sijtsma, K., & Meijer, R. R. (2007). Nonparametric item response theory and special topics. In C. R. Rao & 
S. Sinharay (Eds.), Handbook of Statistics 26. Psychometrics (pp. 719–746). Amsterdam: Elsevier.

Sijtsma, K., Meijer, R. R., & Andries van der Ark, L. L. (2011). Mokken scale analysis as time goes 
by: An update for scaling practitioners. Personality and Individual Differences, 50(1), 31–37.

Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory. Thou-
sand Oaks, CA: Sage.

Smits, I. M., Timmerman, M. E., & Meijer, R. R. (2012). Exploratory Mokken scale analysis as a 
dimensionality assessment tool: Why scalability does not imply unidimensionality. Applied Psy-
chological Measurement, 36(6), 516–539.

Stout, W. (1987). A nonparametric approach for assessing latent trait unidimensionality. Psy-
chometrika, 52(4), 589–617.

Stout, W. F. (1990). A new item response theory modeling approach with applications to unidimen-
sionality assessment and ability estimation. Psychometrika, 55(2), 293–325.

Stout, W., Habing, B., Douglas, J., & Kim, H. (1996). Conditional covariance-based nonparametric 
multidimensionality assessment. Applied Psychological Measurement, 20(4), 331–354.

Straat, J. H. (2012). Using scalability coefficients and conditional association to assess 
monotone homogeneity (Doctoral dissertation). Retrieved from http://arno.uvt.nl/show.
cgi?fid=128094.

Straat, J. H., Van der Ark, L. A., & Sijtsma K. (2013). Comparing optimization algorithms for item 
selection in Mokken scale analysis. Journal of Classification, 30, 75–99.

Tellegen, A. (1988). The analysis of consistency in personality assessment. Journal of Personality, 
56(3), 621–663.

Tendeiro, J. N. (2014). PerFit (version 1.2) [Computer software]. University of Groningen. Available 
from http://cran.r-project.org/web/packages/PerFit/.

van Abswoude, A. H., van der Ark, L., & Sijtsma, K. (2004). A comparative study of test data 
dimensionality assessment procedures under nonparametric IRT models. Applied Psychological 
Measurement, 28(1), 3–24.

http://cran.r-project.org/web/packages/irtoys/irtoys.pdf
http://www.psych.mcgill.ca/faculty/ramsay/TestGraf.html
http://arno.uvt.nl/showcgi?fid=128094
http://cran.r-project.org/web/packages/PerFit/
http://arno.uvt.nl/showcgi?fid=128094


110 Rob R. Meijer, et al.

van der Ark, L. A. (2007). Mokken scale analysis in R. Journal of Statistical Software, 20, 1–19.
van der Ark, L. A. (2012). New developments in Mokken scale analysis in R. Journal of Statistical 

Software, 48, 1–27.
van der Linden, W. J., & Hambleton, R. K. (Eds.) (1997). Handbook of modern item response the-

ory. New York: Springer-Verlag.
Wainer, H. (2005). Graphic discovery. A trout in the milk and other visual adventures. Princeton, 

NJ: Princeton University Press.
Ware, J. E., Jr., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36): 

Conceptual framework and item selection. Medical Care, 30, 473–483.
Watson, R., Deary, I., & Austin, E. (2007). Are personality trait items reliably more or less 

“difficult”? Mokken scaling of the NEO-FFI. Personality and Individual Differences, 43(6), 
1460–1469.

Zhang, J. (2007). Conditional covariance theory and detect for polytomous items. Psychometrika, 
72(1), 69–91.

Zhang, J., & Stout, W. (1999). The theoretical DETECT index of dimensionality and its application 
to approximate simple structure. Psychometrika, 64(2), 213–249.

Zigmond, A. S., & Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiat-
rica Scandinavica, 67(6), 361–370.


