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Feedback linearization of piecewise linear systems?
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Abstract. One of the classical problems of nonlinear systems and control theory is feed-
back linearization. Its obvious motivation is that one can utilize linear control theory if the
nonlinear system at hand is linearizable by feedback. This problem is well-understood for
the smooth nonlinear systems. In the present paper, we investigate feedback linearizability
of a class of piecewise linear, and hence nonsmooth, systems. Copyright c©2005 IFAC

1 Introduction

Feedback linearization is a topic that is well-studied in the context of smooth nonlinear systems
(see e.g. [14, 15, 17]). Its obvious motivation stems from the fact that the linear systems theory
can be employed for both analysis and synthesis for feedback linearizable systems. As far as the
authors knowledge, the non-smooth case has not been studied yet in the depth in the literature.

This paper aims at investigating feedback linearization problem for a class of piecewise linear
systems that are called conewise linear systems. Basically, these systems consist of a number of
linear dynamics that are active on certain cones in the state-space. The papers [3–5] studied the
controllability properties of these systems in an increasing level of generality and provided algebraic
necessary and sufficient conditions. In this paper, we show that these results on the controllability
make it possible to solve the feedback linearization problem for this class of systems.

The organization of the paper is as follows. The next section introduces the notations and
the conventions in force throughout the paper. This is followed by a quick review of the feedback
linearization problem in the context of smooth nonlinear systems. The main results of the system
are presented in two subsequent sections. The first one is devoted to the relatively easier case of
bimodal piecewise linear systems. This section gives a flavor of the proof of the presented results
and will be followed by a section on conewise linear systems. Finally, the conclusions section closes
the paper.

2 Notation

The symbol R denotes the set of real numbers, R
n n-tuples of real numbers, R

n×m n × m real
matrices.

For a matrix A ∈ R
n×m, AT stands for its transpose, ker A for its kernel, i.e. the set {x ∈ R

m :
Ax = 0}, im A for its image, i.e. the set {y ∈ R

n : y = Ax for some x ∈ R
m}.

The notation 〈A | im B〉 denotes the linear space im B + A im B + · · ·+ An−1 im B where A ∈
R

n×n and B ∈ R
n×m. We say that the pair (A,B) is controllable if the relation 〈A | im B〉 = R

n

holds.
The set of all locally integrable functions are denoted by Lloc

1 . Sometimes we say that a function
is sufficiently smooth meaning that the function is sufficiently many times continuously differen-
tiable.

? This work was published in the Proceedings of the IFAC World Congress, Prague, Czech Republic,
2005.
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A set Y is said to be a cone if αx ∈ Y for all x ∈ Y and α > 0. For a nonempty set Y (not
necessarily a cone), we define its dual cone as the set {x | xT y > 0 for all y ∈ Y}. It is denoted by
Y∗.

3 Feedback linearization of nonlinear systems

The problem of rendering a nonlinear system to a linear system by means of a state feedback
is called feedback linearization problem. The motivation of this problem comes from the obvious
fact that one can employ linear systems theory for the analysis and the synthesis of feedback
linearizable nonlinear systems.

To formulate the problem precisely, consider the single-input nonlinear systems of the form

ẋ = f(x) + g(x)u (1)

where f : R
n → R

n, g : R
n → R

n are sufficiently smooth. We say that the system (1) is feedback
linearizable if there exist sufficiently smooth functions α : R

n → R
n, β : R

n → R
n, and φ : R

n →
R

n such that the feedback transformation

u = α(x) + β(x)v (2)

and the state transformation

z = φ(x) (3)

render the system (1) to the linear system

ż = Az + bv (4)

where A ∈ R
n×n, b ∈ R

n, and the pair (A, b) is controllable.
The solutions of the feedback linearization problem and its variations are among the classical

results of the nonlinear system theory (see e.g. [14,15]). It is well-known that the problem is closely
related to the notion of relative degree.

Consider the single-input nonlinear system (1) together with the single-output

y = h(x) (5)

where h : R
n → R is a sufficiently smooth function. The system (1) and (5) is said to have relative

degree k at x0 if

LgL
i
fh(x̄) = 0 (6a)

for all x̄ ∈ R
n and i = 0, 1, . . . , k − 2, and

LgL
k−1

f (x0) 6= 0. (6b)

Here Lfh(x̄) denotes the Lie derivative of h with respect to the vector field f at the point x̄, i.e.

Lfh(x) =
n

∑

i=1

∂h

∂xi

(x̄)fi(x̄). (7)

In the linear case, i.e. when f(x) = Ax, g(x) = b, and h(x) = cT x, one gets

LgL
i
fh(x̄) = cT Aib.

Hence, the usual definition of relative degree for linear systems is compatible with the above
definition.

The following theorem presents necessary and sufficient conditions for the solvability of the
feedback linearization problem.
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Theorem 1 (Thm. 9.8 of [15]). The
system (1) is feedback linearizable if and only if there exists a sufficiently smooth function h such
that the system (1) and (5) has relative degree n at a point x0.

This paper aims at studying a special class of nonlinear systems: piecewise linear systems.
As the smoothness assumptions are not satisfied by these systems, one cannot directly apply the
available results.

4 Bimodal piecewise linear systems

For the moment, we focus on the bimodal piecewise linear systems given by

ẋ =

{

A1x + bu if cT x 6 0
A2x + bu if cT x > 0

(8)

where x ∈ R
n is the state, u ∈ R

m is the input, A1, A2 ∈ R
n×n, b ∈ R

n, and 0 6= c ∈ R
n. We

assume that the overall vector field is continuous across the hypersurface ker cT = {x | cT = 0},
i.e.,

cT x = 0⇒ A1x = A2x. (9)

Equivalently,

A2 −A1 = ecT (10)

for some n-vector e.
The right hand side of (8) is Lipschitz continuous in the variable x. Hence, it follows from the

theory of ordinary equations that for each initial state x0 ∈ R
n and input u ∈ Lloc

1 there exists a
unique absolutely continuous function x satisfying (8) almost everywhere.

4.1 Controllability

In what follows we will discuss the controllability of the piecewise linear systems as it play an
important role in our treatment.

The fundamental concept of controllability in the state space framework was introduced by [13].
The system (8) is said to be completely controllable if given any pair of states (x0, xf ) there exists
an input u ∈ Lloc

1 such that the solution of (8) with x(0) = x0 satisfies x(τ) = xf , for some τ > 0.
For (finite-dimensional) linear systems, the notion of controllability is well-understood. In this

case, algebraic necessary and conditions have been provided by Kalman, Popov, Belevitch, and
Hautus. We refer to [12,17] for the historical remarks. When it comes to piecewise linear systems,
however, necessary and sufficient conditions are hard to come by. In [1], the authors showed that the
controllability problem is undecidable even for very simple piecewise linear systems. Nevertheless,
the bimodal systems of the form (8) posses a certain structure which can be exploited in order to
derive necessary and sufficient conditions.

Theorem 2 (Thm. 5 of [4]). Let e be as in (10). The bimodal piecewise linear system (8) is
completely controllable if and only if the following conditions hold.

1. The pair (A1, [b e]) is controllable,
2. The implication

[

wT µi

]

[

λI −Ai b

cT 0

]

= 0,

λ ∈ R, w 6= 0, i = 1, 2 ⇒ µ1µ2 > 0.

holds.
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Remark 1. In case e ∈ im b (i.e. e = fb for some real number f), the first condition implies the
second. To see this, let w 6= 0 and µi i = 1, 2 be such that

[

wT µi

]

[

λI −Ai b

cT 0

]

= 0

where λ is a real number. Since e ∈ im b, one gets (µ1 − µ2)c
T = 0. As c is a nonzero vector, we

get µ1 = µ2. The first condition, i.e. the fact that (A1, b) is controllable, guarantees that µ1 6= 0.
To see this, suppose that µ1 = 0. Then, one has wT (λI − A1) = 0 and wT b = 0. Since (A1, b) is
controllable, we get w = 0: contradiction! The second condition is satisfied as µ1 = µ2 6= 0.

4.2 Feedback linearization

The bimodal piecewise linear system (8) is said to be feedback linearizable if there exists a control
of the form

u =

{

kT
1 x + v if cT x 6 0

kT
2 x + v if cT x > 0

(11)

with the property

cT x = 0⇒ kT
1 x = kT

2 x (12)

such that the closed loop system is linear, i.e. of the form

ẋ = Ax + bu

for some matrix A and vector b with the property that (A, b) is controllable.

Theorem 3. The bimodal piecewise linear system given in (8) is feedback linearizable if, and only
if, e ∈ im b and (A1, b) is controllable.

Proof: Suppose that e ∈ im b and (A1, b) is controllable. Let e = fb where f ∈ R. Consider
the feedback transformation

u =

{

kT
1 x if cT x 6 0

kT
2 x if cT x > 0

where k1 is arbitrary and kT
2 = kT

1 +fcT . Note that the condition (12) is satisfied. Straightforward
calculations show that the system (8) takes the form

ẋ = (A1 + bkT
1 )x + bv (13)

in the closed loop. Since (A1, b) is controllable, so is (A1 + bkT
1 , b). Thus, we can conclude that

the system (8) is feedback linearizable in view of Remark 1. Suppose, now, that the system (8) is
feedback linearizable, i.e. there exists a feedback transformation of the form (11) which render the
system into the form

ẋ = Ax + bv (14)

for some matrix A ∈ R
n×n where (A, b) is controllable. This would mean that

A = A1 + bkT
1 = A2 + bkT

2 .

Hence, one gets

A1 −A2 = bkT
1 − bkT

2 (15)

ecT = fbcT (16)

for some f ∈ R. The last equation is satisfied only if e = fb, i.e., e ∈ im b. Then, it is enough to
show that the pair (A1, b) is controllable in order to conclude the proof. Note that A = A1 + bkT

1

for some k1 ∈ R
n. Since (A, b) is controllable, so is (A1, b).

One can relate Theorem 1 to Theorem 3 in the following way.
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Theorem 4. There exists a vector h ∈ R
n such that the relative degree of the systems

ẋ = Aix + bu

y = hT x

for i = 1, 2 is n if, and only if, the bimodal system (8) is feedback linearizable.

5 Conewise linear systems

We can extend the above results to a class of piecewise linear systems which consist of a number
of linear dynamics that are active on some cones in the input-state space. More specifically, they
are systems of the form

ẋ(t) = Ax(t) + Bu(t) + f(Cx(t)) (17a)

Cx(t) ∈ Y (17b)

where x ∈ R
n is the state, u ∈ R

m is the input, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, Y ⊆ R

p is a
cone, and f is a conewise linear function on Y, i.e. there exist an integer r, cones Yi, and matrices
M i ∈ R

n×p for i = 1, 2, . . . , r such that

∪r
i=1Yi = Y, (18a)

f(y) = M iy if y ∈ Yi. (18b)

These systems will be called conewise linear systems (CLS). Throughout the paper, we assume
that

A1. the cones Yi are closed, convex, and solid, and
A2. the cones M iYi are closed.

For polyhedral cones, Assumption A1 implies A2. However, this does not happen in general (see
e.g. [9, Example 2.2.8]).

The simplest examples of CLSs, except the trivial case of linear systems, are the bimodal
piecewise linear systems, i.e. systems of the form (8). To fit the system (8) into the framework
of CLS (17), one can take A = A1, B = b, C = cT , r = 2, Y1 = −R+, M1 = 0, Y2 = R+, and
M2 = e.

An interesting example of CLSs arise in the context of linear complementarity systems. Consider
the linear system

ẋ = Ax + Bu + Ez (19a)

w = Cx + Du + Fz (19b)

where x ∈ R
n, u ∈ R

m, and (z, w) ∈ R
p+p. When the external variables (z, w) satisfy the so-called

complementarity relations

0 6 z ⊥ w > 0 (19c)

the overall system (19) is called a linear complementarity system (LCS). A wealth of examples, from
various areas of engineering as well as operations research, of these piecewise linear (hybrid) systems
can be found in [7,16,20]. For the work on the analysis of general LCSs, we refer to [2,6,10,11,18,19].
A special case of interest emerges when all the principal minors of the matrix F are positive. Such
matrices are called P -matrices in the literature of the mathematical programming. It is well-known
(see for instance [8, Thm. 3.1.6 and Thm. 3.3.7]) that every positive definite matrix is in this class.
P -matrices enjoy several interesting properties. One of the most well-known is in the context of
linear complementarity problem , i.e. the problem of finding an p-vector z satisfying

0 6 z ⊥ q + Fz > 0. (20)
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for a given p-vector q and a p × p matrix F . It is denoted by LCP(q, F ). When the matrix F

is a P -matrix, LCP(q, F ) admits a unique solution for any q ∈ R
p. This is due to a well-known

theorem (see [8, Thm. 3.3.7]) of mathematical programming. Moreover, for each q there exists an
index set α ⊆ {1, 2, . . . , p} such that

1. −(Fαα)−1qα > 0 and qαc − Fαcα(Fαα)−1qα > 0,
2. the unique solution z of the LCP(q, F ) is given by zα = −(Fαα)−1qα and zαc = 0

where αc denotes the set {1, 2, . . . , p} \α. This shows that the mapping q 7→ z is a conewise linear
function. In fact, one can come up 2p (i.e. r = 2p) (polyhedral) cones Yi and matrices M i satisfying
A1-A2 by using the above relations.

5.1 Controllability

Controllability properties of the CLSs are addressed in [5].

Theorem 5 ( [5]). Consider the CLS (17). Suppose that the transfer matrix C(sI − A)−1B is
invertible as a rational matrix. The CLS (17) is completely controllable if, and only if,

1. the relation

r
∑

i=1

〈A + M iC | im B〉 = R
n (21)

is satisfied and
2. the implication

λ ∈ R, z ∈ R
n, and wi ∈ R

m

[

zT wT
i

]

[

λI −A−M iC −B

C 0

]

= 0 and

wi ∈ Y
∗

i for all i = 1, 2, . . . , r ⇒ z = 0

holds.

Remark 2. Similar to the bimodal case, the first condition implies the second if Y = R
p and

im M iC ⊆ im B for all i = 1, 2, . . . , r. To see this, λ ∈ R, z ∈ R
n, and wi ∈ Y

∗

i for i = 1, 2, . . . , r
be such that

[

zT wT
i

]

[

λI −A−M iC −B

C 0

]

= 0 (22)

holds. Since zT B = 0 and imM iC ⊆ im B, one gets

zT (λI −A) + wT
i C = 0 (23)

for all i = 1, 2, . . . , r. Since Y = R
p, for each x ∈ R

n there exists i ∈ {1, 2, . . . , r} such that
Cx ∈ Yi. By right-multiplying (23) by x, we get zT (λI − A)x > 0 as wi ∈ Y

∗

i . This means that
zT (λI − A) = 0. Consequently, z ∈ 〈A + M iC | im B〉⊥ for all i = 1, 2, . . . , r. Thus, we get z = 0
from the first condition.

5.2 Feedback linearization

The CLS (17) is said to be feedback linearizable if there exists a feedback transformation of the
form

u = Kix + v if Cx ∈ Yi (24)
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where Ki ∈ R
m×n and

Kix = Kjx if x ∈ Yi ∩ Yj .

such that the closed loop system is linear, i.e.

ẋ = A′x + Bu (25)

for some matrices A′ ∈ R
n×n and B ∈ R

n×m with (A′, B) is controllable.
The following theorem presents necessary and sufficient conditions for the feedback lineariz-

ability of CLSs.

Theorem 6. Consider a CLS of the form (17) with Y = R
p. Assume that M1 = 0. Then, (17) is

feedback linearizable if, and only if, im M iC ⊆ im B for all i = 1, 2, . . . , r and
∑r

i=1
〈A + M iC |

imB〉 = R
n.

Proof: For the ‘if’ part, suppose that im M iC ⊆ im B for all i = 1, 2, . . . , r and
∑r

i=1
〈A +

M iC | im B〉 = R
n. Note that the CLS takes the form

ẋ = (A + M iC + BKi)x + Bv if Cx ∈ Yi (26)

with the application of the feedback law (24). Since im M iC ⊆ im B, one can choose Ki such that
M iC + BKi = 0. Then, the CLS (26) becomes a linear system of the form

ẋ = Ax + Bv. (27)

To conclude the proof, it is enough to show that the pair (A,B) is controllable. Note that 〈A+M iC |
im B〉 = 〈A + M iC + BKi | im B〉 = 〈A | im B〉. Since

∑r

i=1
〈A + M iC | im B〉 = R

n, one gets
〈A | im B〉 = R

n, i.e. (A,B) is controllable.
For the ‘only if’ part, suppose that the CLS (17) is feedback linearizable. This means that

there exists a feedback law of the form (24) such that the closed loop system is of the form (25)
where (A′, B) is controllable. Note that the feedback law (24) yields

ẋ = (A + M iC + BKi)x + Bv if Cx ∈ Yi (28)

in the closed loop. Since the cones Yi are all solid, one gets

A + M iC + BKi = A′ (29)

for all i = 1, 2, . . . , r. Therefore, one gets

M iC + BKi = M jC + BKj (30)

for all i, j ∈ {1, 2, . . . , r}. Since M1 = 0 by the hypothesis, we reach M iC = B(K1 −Ki). In turn,
this results in imM iC ⊆ imB. Note that 〈A + M iC | imB〉 = 〈A + M iC + BKi | im B〉 = 〈A′ |
im B〉 for all i. Since (A′, B) is controllable, we get

∑r

i=1
〈A + M iC | im B〉 = R

n.
Note that the structure of (17) reveals that the assumption M1 = 0 can be made without loss

of generality.

6 Conclusions

We studied the problem of feedback linearization for a class of piecewise linear systems for which
the state space partitioned into cones and on each of these cones the dynamics is linear. Earlier
work on the controllability of these systems led us to state necessary and sufficient conditions
for the solvability of the feedback linearization problem. We also made connections between the
results on the smooth nonlinear case and on the nonsmooth piecewise linear case. To extend the
results of this paper to more general classes of piecewise linear systems is one of the possibilities
for future work.
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