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Introduction 

 

 

 

 

 

 

 

 

1.1 Block copolymers: magic of self-assembling 

A polymer is a large molecule (macromolecule) composed of many repeating structural 

units typically connected by covalent chemical bonds [1-3]. The number of monomers N 

is called its degree of polymerization and the molecule is called a polymer if N >> 1. The 

chain length can vary within wide limits. The simplest polymer polyethylene (-CH2-)N, 

which is also the most widely used plastic, has a degree of polymerization N ≈ 10
2
-10

5
. 

This number is typical for synthetic polymers (polyethylene, polystyrene, polyisoprene, 

etc.). Natural polymers can be much longer even, for example, the longest natural 

polymer is DNA which consists of up to 10
9
 monomer units. Because of the large number 

of monomer units it is often possible to ignore the specific chemical structure and to 

represent the polymer as beads freely linked together, Fig. 1.1. This allows the 

development of a polymer description in the framework of statistical mechanics where 

the microscopic details are not dominant in comparison with the large number of possible 
polymer conformations. 
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Figure 1.1. Schematic illustration of a homopolymer consisting 

of 1N   monomer units. 

 

If two chemically different homopolymer are connected by their ends a so-called called 

diblock copolymer is formed. The presence of two different units in the system 

introduces new interactions that are usually unfavorable. In a melt of two different 

homopolymers this tendency for the mutual interactions to be unfavorable often leads to 

macrophase separation in two phases. Due to the large chain length even small repulsive 

interactions are sufficient to drive the system to phase separation. If the chemically 

different homopolymers are connected macrophase separation is no longer possible and 

the system undergoes microphase separation. This phenomenon of microphase 

separation, or maybe more correctly nanophase separation, is one of the most interesting 

aspects of block copolymer systems, because it leads to a variety of different 
nanostructures that are of direct interest for many nanotechnology applications.  

To describe the interactions between chemically different species the Flory-

Huggins interaction parameter χ is introduced [4]. For monomer units A and B, it is 
defined by: 

                                        (1.1) 

where z is the number of nearest neighbor monomers, T denotes the temperature, kB is the 

Boltzmann constant and  and  are the interaction energies of the A-A, B-B and 

A-B interactions respectively. For  the A- and B-component interact unfavorably. 

In the opposite case, if , the different species attract each other. As already 

mentioned above, there is a strong tendency for  to be positive, i.e., in most cases the 

chemically different species interact repulsively. Since the thermal translational energy 

per macromolecule is of the order , whereas the interaction energy per 

macromolecule is proportional to the length N , the product AB N  rather than  is the 

relevant quantity. 
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NA                                                                 NB 

Figure 1.2. Schematic illustration of a diblock copolymer consisting of N = NA+NB monomer units. 

 

Fig. 1.2 presents a schematic illustration of a diblock copolymer with NA and NB A and B 

monomer units which for simplicity reasons often are assumed to have the same size.  

In terms of the volume fractions the composition is then given by fA = NA/N, respectively  

fB =1-fA = NB/N, where N=NA+NB. If fA = fB the diblock copolymer is called symmetric, 

otherwise - asymmetric. By varying the interaction parameter χ and the composition fA, 

the diblock copolymer will microphase separate in different well-ordered structures with 

a characteristic size of the order of a few times the radius of gyration, Rg, of the 
constituent blocks and thus in the range from 10 to 100nm [7]. 

Microphase separation of block copolymer systems has been the focus of attention 

for many years [7–12], because the nanostructures can be explored for nanotechnology 

applications, for example, for creating catalysts, membranes, arrays of nanowires, and 

photonic crystals [13]. The characteristic phase behavior of a diblock copolymer melt, as 

calculated by Matsen and Schick in 1994, [5] is presented in Figure 1.3. Only the 

lamellar, hexagonal(cylindrical), cubic(spherical) and gyroid morphologies were found to 

be stable. The corresponding nanostructures are schematically illustrated in Figure 1.4. In 

the meantime the phase diagram has been slightly refined, [6] but the main features 

remain as given. The diblock copolymer composition and the product χN determine the 
stability regions for the different morphologies.  

 

Figure 1.3. Phase diagram of diblock copolymer melt. 

L denotes the lamellar morphology, H - hexagonal, G - 

gyroid, C- spherical morphology, D – disordered state. 

 



Chapter 1 Introduction 

 

4 

 

 

                              

              a                                  b                                     c                              d 

Figure 1.4.  Schematic presentation of the different diblock copolymer microstructures: (a) lamellar, 
(b) cylindrical(hexagonal), (c) spherical, (d) gyroid.  

Changing the diblock copolymer composition results in different nanophase separated 

structures because the system foremost tries to reduce the amount of contact surface 

where the unfavorable interactions take place. The periodicity length scale of a 

particular structure is determined by the competition between the interfacial energy Fint 

and the chain stretching free energy Fstr. Apart from the above mentioned structures, 

many more morphologies may be found for block copolymers with a more complex 

molecular architecture, such as linear tri(multi)block copolymers, comb copolymers, 

star copolymers, etc. Multiblock copolymers will be briefly reviewed below because 

representatives of this class of block copolymers have been shown to exhibit 

hierarchical structure formation, i.e. structure formation at different length scales, 

which is the main topic of the work described in this thesis. 

 

 

1.2 Multiblock copolymers: second characteristic length scale 

 

As already discussed, simple AB diblock copolymers self-assemble in classical 

morphologies like lamellar, hexagonally ordered cylinders, body-centered cubic 

spheres and bicontinuous gyroid. All these morphologies have one thing in common: 

they can be described by one characteristic length. This fact is directly connected to 

the diblock structure. To obtain microphase separation involving two or more length 

scales (Fig. 1.5-1.7), more complex molecular architectures are needed. There are 

several ways to accomplish this. One possibility is to increase the number of 

chemically different monomers, as in ABC triblock copolymers, and another option is 

to change the diblock structure into, e.g., a linear binary multiblock copolymer 

structure. 
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1.2.1 Experimental overview 
 

One of the first examples of self-assembled morphologies characterized by two 

different length scales is polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) 

diblock copolymers with hydrogen-bonded pentadecylphenol (PDP) side chains 

attached to the P4VP block [13-15]. For common molar masses, the PS blocks 

separate from the comb-like P4VP(PDP) blocks, giving rise to the first characteristic 

length scale. At sufficiently low temperatures, below ca. 65
o
C, the alkyl tails of the 

PDP molecules start to microphase separate from the P4VP blocks introducing a 

second (small) characteristic length scale. By varying the volume fractions of the 

components and the temperature, a large number of different hierarchical microphase 

separated structures have been observed, see Fig. 1.5-1.6.  

 

 

 
 

Figure 1.5. Schematic representation of PS-b-P4VP diblock copolymers with 

hydrogen-bonded PDP blocks self-assembled in a lamellar-in-lamellar morphology. 

 
 

            

Figure 1.6. TEM pictures of lamellar-in-lamellar self-assembled PS-b-P4VP(PDP). 

 

The above mentioned system is characterized by the presence of three chemically 

different species (PS, P4VP, PDP) and, in combination with the considerable 

difference in intrinsic length scales involved (PDP is much shorter than PS and P4VP), 

hierarchical structure formation seems quite natural Fig. 1.6. However, surprisingly 

enough, binary systems can also exhibit two-length-scale behaviour [16]. 

Experimentally, this was first demonstrated by Matsushita and co-workers. Based on 

polystyrene (S) and polyisoprene (I) blocks, they synthesized linear multiblock 

copolymers. A lamellar-in-lamellar structure was found for undecablock S-ISISISISI-
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S copolymers with styrene end blocks that are much longer than the other blocks. The 

long polystyrene tails are responsible for the primary structure and the relatively short 

blocks of the multiblock part (IS)n are responsible for the secondary structure. For this 

particular system the multiblock part phase separated in three internal layers. The 

reason that phase separation in binary multiblock copolymers with a molecular 

architecture characterized by two length scales results in hierarchical structure 

formation has been discussed in some detail in ref. [43] 

 

 

  
a)                                              b) 

 
Figure 1.7. Structure inside structure a) P-b-(I-b-S)4-I-b-P; b) P-b-(I-b-S)2-b-I. 
(Reprinted with permission from J. Masuda, A. Takano, J. Suzuki, Y. Nagata, A. Noro, K. 

Hayashida and Y. Matsushita, Macromolecules, 2007, 40 (11), 4023. Copyright 2007 

American Chemical Society.) 

 

In another study the polystyrene tails were replaced by poly(2-vinylpyridine)[17]. This 

turns the system from binary into ternary. Of course, due to its symmetric composition, 

the system still phase separates in a lamellar-in-lamellar morphology, however, now 

with five rather than three internal layers. By replacing the original S tails with a third 

type 2VP block, none of the blocks (S and I) of the multiblock middle part are able to 

penetrate in the layers formed by the long S blocks. This leads to the additional 

internal layers observed. In the systems described above, the molar mass (and, hence, 

also the volume fraction) of the tails and the multiblock was approximately the same 

and the blocks of the middle multiblock were also all of a similar, but much smaller, 

molar mass. Multiblock terpolymers with different volume fractions were also studied 

by Matsushita and co-workers [18]. An undecablock terpolymer of the P(IS)4IP type 

was found to exhibit a spheres-in-lamellar structure when P amounts to 8%w/w and 

terpolymers of the same type showed cylinders-in-lamellar (Fig. 1.7a) and lamellar-in-

lamellar structures for weight percentage of the P component equal to 21% and 53%. 

In turn, hexablock terpolymers with P of 64%, 75%, and 87% exhibited a lamellar-in-

lamellar structure, coaxial cylinders in a continuous matrix (Fig. 1.7b), and onionlike 

spheres in a continuous matrix, respectively. Figure 1.8 shows schematically the phase 

behavior for the multiblock terpolymers of A(BC)4BA and A(BC)2B type. The A(gray) 

domain transforms from spheres into cylinders into lamellae and finally into the matrix 
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with increasing fraction of the A component, while the domains of the B-C phase 

transform from matrix into lamellae, into cylinders and into spheres while keeping its 

alternating layered structure. This sequence of morphological transitions is very 

similar to the transitions in AB and ABA block copolymer systems.  

 

 

Figure 1.8. Schematic illustration of the composition-dependent morphological transitions of the 

multiblock terpolymers of A(BC)nBA type and A(BC)nB type. Gray, black, and white regions, 
correspond to A, B, and C domains, respectively.  
(Reprinted with permission from J. Masuda, A. Takano, J. Suzuki, Y. Nagata, A. Noro, K. Hayashida and Y. 

Matsushita, Macromolecules, 2007, 40 (11), 4023. Copyright 2007 American Chemical Society.) 

 

Recently Fleury and Bates [19, 20] investigated the properties of a hexablock 

terpolymer C-E-C-E-C-P, consisting of cyclohexylethylene (C), ethylene (E) and 

propylene (P) blocks. This multiblock copolymer, which contained equal volume 

fractions of P and the compositionally symmetric CECEC, microphase separates due 

to the incompatibility between C, E, and P and exhibits a lamellar-in-lamellar 

morphology with two different length scales related to the local (C-E) and overall (C-

E-P) sequences. They identified for the first time a perpendicular lamellar-in-lamellar 

mesostructure where the thin alternating CE layers are oriented perpendicularly to the 

P-layers. The issue of parallel versus perpendicular lamellar-in-lamellar structures will 
be discussed in more detail in Chapter 3.  

In the case of a parallel lamellar-in-lamellar structure, the number of internal layers 

is directly connected to the probability of forming loops and bridges inside layers. 

Experimental efforts [22, 23] have been directed toward estimating the bridging 

fraction in A-B-A triblock systems. Monitoring the dynamics of the center block in 

poly(styrene-block-cis-isoprene-block-styrene) (S-I-S) with dielectrical techniques, 

Karatasos et al.[22] estimated the bridging fraction to be in the range of 0.37–0.5, 

which agreed with the results of mean-field calculations [21]. 

Star copolymers are also able to phase separate in structures with a multi length 

scale character. ABC-like star-shaped terpolymers, where the three different 

components are connected at the same junction point, were investigated by Matsushita 

et al.[24, 25]. The systematic transitions of the two-dimensional tiling patterns have 

been studied extensively for two series of star-shaped terpolymers: I1.0S1.8PX and 

I1.0SYP2.0. Investigation of the influence of the compositions X and Y on the periodic 

structures (Fig. 1.9) demonstrated that the transitions can be effectively described by 

the concept of the average coordination number, which is defined as the mean value of 
the side numbers of polygonal domains formed by each component. 
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Figure 1.9. TEM images of four ISP star-shaped terpolymer samples (top) and the 

corresponding schematic tiling patterns (bottom): (a) I1.0S1.8P1.0, (b) I1.0S1.8P1.6, (c) 
I1.0S1.8P2.0, (d) I1.0S1.8P2.9.  
(Reprinted with permission from K. Hayashida, A. Takano, S. Arai, Y. Shinohara, Y. Amemiya, 

and Y. Matsushita, Macromolecules, 2006, 39, 9402. Copyright 2006 American Chemical Society.) 

 

Another way to obtain multiscale structures is mixing copolymers with different 

topologies. Stadler proposed to construct self-assembled periodic noncentrosymmetric 

lamellar (NCL) structures oriented on the micrometer scale by mixing suitably 

chosen ABC triblock copolymers with AC diblock copolymers [26]. Such structures 

were indeed obtained in mixtures of polystyrene-block-polybutadiene-block-poly(tert-

butyl methacrylate) (SBT) triblock copolymers with polystyrene-block-poly(tert-butyl 

methacrylate) (ST) diblock copolymers and in polybutadiene-block-polystyrene-block-

poly(methyl methacrylate) (BSM) triblock copolymers mixed with polybutadiene-

block-poly(methyl methacrylate) (BM) diblock copolymers.[26] Subsequently, the 

NCL structures were obtained in a blend of two SBT triblock copolymers, which 

differed only in the length of their middle blocks. Archimedean tiling structures were 

observed in bulk morphologies of block copolymer blends of AB/CD and ABA/CD 

types [27, 28]. It was found that the hierarchical structural formation is related to the 

bridged conformation of the B block chain in an ABA triblock copolymer. The 

symmetric PIP-91/SH-91 = 1/1 [poly(2-vinylpyridine-block-isoprene-block-2-

vinylpyridine) / poly(styrene-block-4-hydroxystyrene)] blend showed a cylinder-in-

lamellar three-phase structure with a cross section corresponding to the (33.42) two-

dimensional Archimedean tiling pattern, while the asymmetric PIP-91/SH-91 = 2/1 

blend exhibited another peculiar cylindrical three-phase structure with the (3.4.6.4) 
two-dimensional symmetry. 

 

javascript:void(0);


Multiblock copolymers: second characteristic length scale   

 

9 

1.2.2 Theoretical overview 

 

Already in 1994 Matsen and Shick [29] investigated microphase separation of 

binary multiblock copolymer melts. They calculated the relative stability of several 

ordered phases for a system consisting of a binary multiblock copolymer system 

consisting of a sequence of identical diblock copolymers in the limit of a large number 

of blocks. The results were similar as those obtained for diblocks [5]. They found that, 

in addition to the lamellar, hexagonal, and cubic phases, the gyroid phase is also 

stable. It was the first observation of a gyroid phase in multiblock copolymers systems. 

It exists between the lamellar and hexagonal phase but does not extend all the way to 

the weak- segregation limit. It was shown that phases which are nearly stable between 

the lamellar and hexagonal ones are also of interest. They predicted that ordered, 

bicontinuous, double-diamond phase can be stable. At intermediate segregations, they 

found that two mono-continuous catenoid-lamellar phases are close to being stable. 

Both these phases are characterized by a triangular array of tubes which penetrate the 

minority lamellae and connect the majority ones. In these phases, CLab and CLabc, the 

tubes are staggered in abab ... and abcabc ... sequences, respectively.  

Multiblock copolymers while forming lamellar structures make loops and bridges 

inside the layers. The bridging ability of the triblock system ABA has been examined 

by treating the middle B layer for the lamellar case as two polymer brushes, [30, 31] 

by self-consistent mean-field theories, [12] with generator-matrix methods, [32] and 

by Monte Carlo simulations [13]. At the other end of the multiblock copolymer 

spectrum—many-block systems—only a single calculation of the bridging fraction 

exists, [33] again with the self-consistent mean-field formalism. For many-block 

systems this study found the bridging fraction to be close to 0.45, decreasing slightly 

as the segregation strength increased. It has also been established that in the extremely 

strongly segregated regime this dependence scales as ~(χN)
−1/9 

[30]. Rasmussen et al. 

used the self-consistent field theory technique to establish that more than 25% of the 

blocks consisted of bridges in the already strongly segregated lamellar morphology 
[34]. 

Several studies involved the weak segregation limit [35 - 39]. Nap et al. showed the 

possibility of microphase separation at two different length scales in AB block 

copolymers consisting of a homopolymer A block and either a linear 

alternating AB copolymer block (poly(A)m-block-poly(B-alt -A)n) or an AB comb 

copolymer block poly(A)m-block-poly(A-graft-B)n [35, 36]. An analysis of the 

structure factor revealed that in the (n,m)-parameter space three different cases can be 

distinguished: I) The structure factor has only one minimum corresponding to the short 

length scale (i.e. the characteristic length of the repeating unit of the alternating or 

comb block). II) The structure factor has only one minimum corresponding to the long 

length scale (the characteristic length of the blocks). III) Two minima are present 

leading to a competition between microphase separation at the short and the long 

length scale. Depending on the choice of n and m, one of these three possibilities will 

occur. Later a more detailed analysis was performed for Am-b-(A-graft-B)n block 

copolymers. On increasing the length of the A end block, the system goes through a 
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characteristic series of structural transitions. Starting from the pure comb copolymer, 

the first series of structures involve a short length scale followed by structures 

involving a large length scale. A maximum of two critical points exists. Furthermore, 

in the two parameter space characterizing the comb−coil diblock copolymer molecules 

considered, a nontrivial bifurcation point exists beyond which the structure factor can 

have two maxima. Within the weak segregation approach the possibility of microphase 

separation at two length scales in a melt of binary multiblock copolymers with two 

intrinsic length scales was studied by Kuchanov and co-workers. It was found that 

under certain conditions a pronounced change in the mesophase period may be 

observed, a phenomenon that appears to be characteristic for this type of multiblock 

copolymers [37, 38]. The same theoretical approach was used to investigate the phase 

behaviour of A-b-(B-alt-A)m-b-B block copolymers [39]. It was shown that this system 

has far richer phase behaviour than simple multiblock block copolymer. The stability 

of the different phases strongly depended on the number of diblocks in the multiblock 

part of the considered polymer. If m > 2 the double gyroid structure became stable in a 

certain region. For m > 3 regions appeared where the nonconventional cubic phases 

FCC, SC, or the noncentrosymmetric cubic phase BCC2 (single gyroid) replaced the 

LAM phase as the most stable low-temperature phase. For n > 5 a continuous change 

of m results in an abrupt jump not only in the symmetry but also in the periodicity of 

the ordered phases (for n = 10 up to ten times), which is the most transparent 
manifestation of the two-length-scale nature of the system. 

In the group of An-Chang Shi many different self-consistent field theory (SCFT) 

investigations were performed during the last decade. In 2001 the phase behavior of 

blends of ABC triblock and ac diblock copolymers were examined [40]. Several 

different equilibrium lamellar structures were observed, depending on the volume 

fraction φ2 of the diblocks, the monomer interactions, and the degrees of 

polymerization of the copolymers. For segregations just above the order−disorder 

transition the triblocks and diblocks mix together to form centrosymmetric lamellae. 

As the segregation is increased, the triblocks and diblocks spatially separate either by 

macrophase-separating or by forming a noncentrosymmetric (NCS) phase of 

alternating layers of triblock and diblock (...ABCcaABCca...). The NCS phase is stable 

over a narrow region near φ2 = 0.4. This region is widest near the critical point on the 

phase coexistence curve and narrows to terminate at a triple point at higher 

segregation. Above the triple point there is two-phase coexistence between almost pure 

triblock and diblock phases. The theoretical phase diagram is consistent with 

experiments. Formation of noncentrosymmetric lammelae was predicted and found 
experimentally by Erukhimovich, Stadler and Leibler [26].  

Later in 2005 by using a two-dimensional (2D) real-space self-consistent field 

theory, the phase diagrams of monodisperse ABC triblock copolymers (Fig. 1.10) were 

presented in a three-component triangle style with the interaction energies given 

between the distinct blocks; this system displays richer phase behavior when compared 

with the corresponding diblock copolymers [41]. Polydispersity of the end blocks or 

the middle block in the ABC linear block copolymer chains resulted in a completely 

different phase diagram. The presence of a polydisperse end block may cause strong 

segregation to occur among the three distinct components and larger domain sizes of 
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the dispersed phases; a polydisperse middle block may allow a connection to form 
between the two phases of the two end blocks. 

 

 

Figure 1.10. Phase diagram linear ABC triblock copolymers having binary interaction 

bparameters χABN = χBCN = χACN = 35. The red, green, and blue regions represent the density 

distributions of the monomers belonging to the A, B, and C blocks, respectively a) monodisperse 
case b) ABC triblock copolymers exhibiting polydispersity in the C block at a polydispersity index 

of I
C

pdi = 1.5 
(Reprinted with permission from Y. Jiang, X. Yan, H. Liang and A. Shi, J. Phys. Chem. B, 2005, 109 (44), 

21047. Copyright 2005 American Chemical Society.) 

 

The phase behavior of A-b-(B-b-C)n-b-B-b-A multiblock copolymer melts was 

also investigated using self-consistent field theory (SCFT) [42]. Solutions of the SCFT 

equations corresponding to hierarchical lamellar structures were obtained. The free 

energies of these structures were used to construct phase diagrams. It was predicted 

that hierarchical lamellar structures with different number of ―internal‖ BC layers can 

be formed. More BC layers are preferred when the interactions between A and BC 
blocks are much stronger than that between B and C blocks. 

In our group a strong segregation limit study was performed by Klymko. The 

number k of ―internal‖ layers for the lamellar self-assembled state of a new class of 

multiblock copolymers A-b-(B-b-C)n-b-B-b-A was determined as a function of n . 

Here the outer A-blocks are assumed to be considerably longer than the m + 1 blocks 

of equal length of the (B-b-C)m-b-B middle multiblock, and the self-assembled state is 

assumed to consist of k ―thin‖ B- and C-layers sandwiched between ―thick‖ A-layers. 

The predictions are in excellent agreement with the available experimental data. [43] 

Using the Alexander-de Gennes approximation and dissipative particle dynamics, the 
same results was obtained. [44] 

Recently, a theoretical description of the lamellar-in-lamellar self-assembly of 

binary A-b-(B-b-A)m-b-B-b-A multiblock copolymers in the strong segregation limit 
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was presented as well. The essential difference between this binary multiblock system 

and the previously considered C-b-(B-b-A)m-b-B-b-C ternary multiblock copolymer 

system was discussed [45]. In the case of the binary system there exists a layer where 

the A blocks from the multiblock part penetrate into the layers of the long A tails. 

Because of this the stretching energy of the A tails close to junction points is strongly 

increased. The free energy of the lamellar-in-lamellar self-assembled state was 

analyzed as a function of the number k of "thin" internal layers for different numbers 

m of repeating (B-b-A) units and different values of the Flory-Huggins χAB interaction 

parameter.  

In the group of An-Chang Shi the ordered phases of ABC star terpolymer melts 

were investigated using a generic reciprocal-space implementation of the self-

consistent field theory (SCFT) of polymers [46]. It was shown that the distinct 

topology of ABC star terpolymers constraints the junction points on one-dimensional 

lines, resulting in novel microphase-separated morphologies such as tiling patterns Fig. 

1.11. Two types of star triblock terpolymers, with symmetric and asymmetric 

interaction parameters, were studied in detail. A variety of tiling patterns in ABC 

star terpolymers were predicted from these SCFT calculations and characteristic phase 

diagrams were constructed. The phase transition sequences predicted were in 

qualitative agreement with experimental data and with Monte Carlo simulation results 

from Gemma et al. [47]  

In this thesis both the strong segregation theory and SCFT calculations will be 

used to address the self-assembly in several two-length-scale copolymer systems. 

Furthermore, dissipative particle dynamics (DPD) simulations will be used to illustrate 

some of the hierarchical structure features predicted theoretically. 

 

Figure 1.11. Phase behavior of an idealized A1.0B1.0Cx star triblock terpolymer with 

symmetric interactions, χABN = χBCN = χACN = 30.0, and with equal statistical segment 

lengths for each block. The structures shown are schematics that have been reconstructed 
from the nonzero Fourier weights of the density distribution functions of monomers A, B, 

and C, denoted by blue, green, and red colors. 
(Reprinted with permission from G. Zhang, F. Qiu, H. Zhang, Y. Yang, A. Shi, 

Macromolecules, 2010, 43 (6), 2981. Copyright 2010 American Chemical Society.) 
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In the literature it has been shown already that the DPD technique also can predict 

microphase separation with more than one characteristic length scale.  

A2-star-(B-alt-C)n molecules were investigated by Huang and co-workers [48] using 

this technique. They observed various types of hierarchical structure-in-structures, 

such as A-spheres in a matrix formed by B and C alternating layers, hexagonally 

packed A-cylinders in the matrix of B and C segregated layers, B and C alternating 

layers-in-lamellae, coaxial B and C alternating domains within hexagonally packed 

BC-formed cylinders in the A-matrix, and co-centric BC-alternating domains within 

BC-spheres in the A-matrix, by increasing the A composition. The authors also 
investigated A-block-(B-graft-C) copolymers using the same simulation technique. 
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2.1 Introduction 
 

Hierarchically ordered block copolymer-based systems have become an active area of 

research recently [1-26]. In many cases diblock copolymers are involved where one of 

the blocks contains side chains that are either fully flexible or contain mesogenic units. 

Furthermore, the side chains can be covalently linked or attached via physical 

interactions such as, e.g., hydrogen bonding. Here the diblock copolymer introduces 

one of the length scales while a second one is associated with the side chains and thus 

with the graft-like nature of one of the blocks. Self-assembly in such systems with 

hierarchical structure formation was observed by ten Brinke and co-workes and is 

reported in Ref.[1,2]. 

Ternary P2VP-b-(PI-b-PS)4-b-PI-b-P2VP linear undecablock copolymers, introduced 

and studied by Matsushita and co-workers [20], is an example of  block copolymers 

with a linear architecture where double periodic behavior has been also observed 

experimentally. Here P2VP denotes poly-2-vinylpyridine end blocks, PI denotes 

polyisoprene and PS denotes polystyrene. In the multiblock copolymers used all 

chemically different species are mutually incompatible. It was observed that this 

undecablock copolymer self-assembled in a 5-layered lamellar-in-lamellar structure. 

The thick layers consist of the relatively long P2VP end blocks, and the thin layers are 

due to the PI-PS separation within the internal (PI-b-PS)4-b-PI part of the multiblock. 

In this Chapter we consider the simplest representative of this class of systems 

consisting of a C-b-(B-b-A)m-b-B-b-C multiblock copolymers. We consider the 

situation when all three Flory-Huggins parameters χAB, χAC, χBC are relatively large and 

A- and B-layers are formed in between C-layers. Furthermore, strong segregation with 

respect to all chemically different species involved will be assumed. This situation 

corresponds to the experimental multiblock copolymer system investigated by 

Matsushita and co-workers [20]. 

The central problem addressed in this Chapter concerns the number k of internal  

A- and B-layers for lamellar-in-lamellar self-assembled C-b-(B-b-A)m-b-B-b-C 

multiblock copolymers as a function of the pertinent parameters, notably m.  
 

 

2.1 Theoretical investigation 
 

A theoretical analysis of the lamellar-in-lamellar self-assembled state of ternary  

C-b-(B-b-A)m-b-B-b-C multiblock copolymer melts in the strong segregation limit is 

presented using the Alexander-de Gennes approximation.  

 

2.1.1 Model 

 

 Considering the ternary C-b-(B-b-A)m-b-B-b-C multiblock copolymer melt in 

the Alexander-de Gennes approximation implies that we assume all 12 m  middle A- 

and B-blocks as well as the outer C-blocks to be stretched uniformly inside their 

respective layers. We assume that the 12 m  short middle blocks self-assemble into k 

internal layers confined between relatively ―thick‖ C outer layers. 
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 In general, a global multiblock conformation can be either a bridge or a loop as 

illustrated in Figure 2.1. Both global bridges and global loops consist in turn of local 

loops and bridges. Due to assumed strong incompatibility between the three 

chemically different species, the first and the last B-block of the middle multiblock 

will be present in the form of a local bridge conformation in the first and the last 

boundary B-layers (Figure 2.1). 

Let x be the fraction of global bridges and 1-x the fraction of global loops. The average 

free energy per multiblock copolymer chain is then given by 

 

 

)1ln()1(ln)1( xxxxFxxFF loopbridge                          (2.1) 

 

where bridgeF  and loopF  are the free energies of a global bridge and a global loop 

conformation. The last two terms in (2.1) represent the entropy of mixing between 

global loops and bridges. We will simply assume as a first approximation that 

,  and thus . Hence, from now on we will 

restrict ourselves to a global bridge conformation and discuss its free energy in the 

Alexander-de Gennes approximation. 

 

 

 

 

 
Figure 2.1.  Schematic representation of a global bridge (top) and a global loop (bottom) 

conformation for a C-b-(B-b-A)4-b-B-b-C multiblock copolymer. A, B and C blocks are denoted by 
red, yellow and green colors, respectively. 

 

2/1x loopbridge FF  2ln bridgeFF

 global bridge conformation 

   global   loop conformations 
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2.2.2 Theoretical analysis 
 

Let n  denote the degree of polymerization of the internal A- and B-blocks alike and N 

denote the degree of polymerization of the outer C-blocks, with N n . The statistical 

segment length and monomer volume are denoted as a  and  , respectively, and are 

assumed to be equal for all chemically different components. The thickness of the 

internal layers and the outer layer are denoted as h  and H  (Figure 2.2). Furthermore 

  is used to denote the interfacial area per multiblock copolymer chain. The Flory-

Huggins interaction parameters ,  and  are taken positive implying 

unfavourable interactions between all the chemically different species. 

 

 

 
Figure 2.2. Schematic representation of a global bridge conformation of a C-b-(B-b-A)m-b-B-b-C 

copolymer for m = 2. h  and H  denote the thickness of the internal layers and half of the outer layers, 

respectively.  

 

Incompressibility implies 

                                HN                                                               (2.2) 

 

 

         khnm )12(                                                        (2.3) 

 

The total free energy per multiblock copolymer bridge can be written as 

 

 

                    (2.4) 

 

 

Here ABF  and BCF  are the interfacial free energies related to the interfacial tensions 

and the average interfacial area   per multiblock copolymer by 

 

 

           BCBCF                                              (2.5) 

 

 

AB
BC AC

confCBAABBCbridge FFFmmFFkFF  2)1()1(2 00

 ABABF 

H   h 



                                                             Theoretical analysis and DPD investigation  

 

19 

with interfacial tensions given by 
6

AB
AB

a 


   and 

6

BC
BC

a 


  . 

 

The elastic free energies of uniformly stretched short A- and B-blocks AF0  and BF0  

are the same and are given by 

 

             
2

2

000
2

3

na

h
FFF BA                                            (2.6) 

 

 

Likewise, the elastic free energy CF0  for the outer C-blocks is given by 

 

2

2

2

3

Na

H
FC                                                       (2.7) 

 

The conformational contribution  takes into account the number of different 

possibilities to create multiblock conformations and, as in our previous work [21], will 

be considered in a simplified way by representing the middle multiblock by a chain of 

2k  blobs propagating in one direction. The corresponding probability is  

resulting in an increase in free energy (in  energetic units) given by 

 

                                                    (2.8) 

 

Taking into account Eqs. (2.2), (2.3) and Eqs. (2.5)-(2.8), the free energy expression 

(2.1) transforms into 
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Minimization of the free energy (2.9) with respect to   yields the equilibrium 

interface area 

 

                       

3/1

*0

2




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






Q
                                                         (2.10) 

 

which results in the final expression for the total free energy: 

 

    2ln)3(2
2

3 3/13/2*  kQF                                            (2.11) 

 

2.2.3 Results and discussions 

 

We consider first the only system investigated experimentally so far, i.e., 

P2VP-b-(PI-b-PS)4-b-PI-b-P2VP. It corresponds to 4.0BC , 1.0AB , 340NBC , 

17nAB , 4m  and 2.0/ Nn . The free energy (eq. 2.11) as a function of the 

number of internal layers k is presented in Figure 2.3a. The minimum occurs for 5k , 

precisely as found experimentally [4]. Results for different values m = 3, 5 and 6 are 

presented in Figure 2.3b, c and d. The values of k found are 5, 5 and 7. Note, that for m 

= 5 the free energies for k = 5 and  k = 7 are very close. These results are in good 

agreement with the ones obtained from a much more elaborated mean-field calculation 

using the same set of parameters, where the minima for m = 3, 4, 5 and 6 occurred for 

k = 5, 5, 7 and 7 [21].   
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c    d  
 

Figure 2.3.  Free energy F of lamellar-in-lamellar self-assembled  C-b-(B-b-A)m-b-B-b-C multiblock 

copolymer melt as a function of the number k of internal layers for 340NBC , 17nAB , n/N = 

0.2.  (a) m = 4, (b) m = 3, (c) m = 5, (d) m = 2.  

 

2.2.3.1 Influence of interaction strength  
 

 In order to investigate the effect of interfacial tension, numerical calculations 

were performed for different values of the Flory-Huggins BC -parameter for 5,4,3m  

and 6, 1.0AB  and fixed length of the internal blocks 200n . Throughout the rest of 

this section the length N of the outer blocks is assumed to satisfy Nnm 2)12(  , thus 

assuring an equilibrium lamellar structure. The results are summarized in Table 2.1. 

Figure 2.4a-d shows the free energy as function of k for m = 4 and Flory-Huggins 

parameter values 5.1,4.0,1.0BC  and 5, where the minima are found at k = 3, 5, 7 

and 9, respectively. 

 

 

                                                 

kopt m = 3 

N = 700 

m = 4 

N = 900 

m = 5 

N = 1100 

m = 6 

N = 1300 

m = 7 

N = 1500 

    3   0.1 – 0.25       0.1        0.1      < 0.1  

    5   0.3 – 1.7 0.15 – 0.75    0.15 – 0.4    0.1 – 0.25      0.1 – 0.2 

    7     1.75 0.8 – 3.3   0.45 – 1.65   0.3 – 0.95     0.25 – 0.6  

    9    3.35   1.7 – 5.55   1.0 – 3.04   0.65 – 1.85 

   11        5.6   3.06 – 8.3    1.9 – 4.9  

   13         8.35   4.95 – 11.75 

   15          11.8 

 

Table 2.1.  Equilibrium number of internal domains  as a function of  for   

and n = 200. 
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Larger  values force a reduction in the BC interfacial area which in turn forces the 

internal short blocks to become more stretched. To relieve this stretching the system 

starts to create more AB interfaces, i.e. larger values of k. Of course, in reality the 

values of the Flory-Huggins interaction parameters hardly ever exceed unity. The 

calculations for larger values are nevertheless useful to track and understand the 

tendencies in the layer formation in ternary C-b-(B-b-A)m-b-B-b-C multiblock 

copolymers. 

a    b  

 

  c    d  

 
Figure 2.4.   Free energy F of lamellar-in-lamellar self-assembled C-b-(B-b-A)4-b-B-b-C multiblock 

copolymer melt as a function of the number k of internal layers for n = 200, N = 900,  and  

(a) , (b) , (c) , (d) .  
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2.2.3.2 Influence of chain length 
 

To see how these results depend on the elastic stretching of the blocks, the length of 

the internal blocks was decreased to 100n  with the outer block length N still 

satisfying Nnm 2)12(  . We first consider fixed . The equilibrium number of 

internal domains  as a function of m and  are given in Table 2.2. A comparison 

with Table 2.1 shows that the decreased length of the blocks, implying ―stiffer‖ 

springs, indeed requires larger values of  to obtain the same number of internal 

layers. 

 
 

                                                 

kopt m = 3 

N = 350 

m = 4 

N = 450 

m = 5 

N = 550 

m = 6 

N = 650 

m = 7 

N = 750 

    3   0.05 – 0.25   0.05 – 0.15    0.05 - 0.1 0.05 – 0.08   0.05 – 0.07 

    5   0.3 – 2.05    0.2 – 0.9    0.15 – 0.5   0.09 – 0.3      0.08 – 0.2 

    7     2.1   0.95 – 4.1   0.55 – 2.0 0.35 – 1.15     0.25 – 0.75  

    9    4.15   2.05 – 2.85   1.2 – 3.7   0.8 – 2.25 

   11        2.9 3.75 – 10.35     2.3 – 2.05  

   13        10.4    2.1 – 14.6 

   15          14.65 

 

Table 2.2.  Equilibrium number of domains  as a function of  for 100n  and .   

 

 

Numerical calculations were also performed for a constant  as a function of

 with internal block lengths of 200n  and 100n . The results are collected in 

Table 2.3 and 2.4. Figure 2.5 presents free energy graphs as a function of k for m = 4,  

n = 200, N = 900,  and (a),  (b) . 

 

 

 
                                         kopt 

 

  m = 3 

N = 700 

m = 4 

N = 900 

m = 5 

N = 1100 

m = 6 

N = 1300 

m = 7 

N = 1500 

0.05 20 3 5 5 5 5 

0.1 40 3 3 3 5 5 

0.15 60 3 3 3 3 5 

0.2 80 3 3 3 3 3 

0.25 100 3 3 3 3 3 

Table 2.3.  Equilibrium number of domains  as a function of  for and . 
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                                         kopt 

 

  m = 3 

 N = 350 

m = 4 

N = 450 

m = 5 

N = 550 

m = 6 

N = 650 

m = 7 

N = 750 

0.1 20 3 3 3 5 5 

0.15 30 3 3 3 3 3 

0.2 40 3 3 3 3 3 

0.25 50 3 3 3 3 3 

 

Table 2.4.  Equilibrium number of domains  as a function of  for 100n  and . 

 

a b  

 

 
Figure 2.5.   Free energy F of lamellar-in-lamellar self-assembled C-b-(B-b-A)4-b-B-b-C multiblock 

copolymer melt as a function of the number k of internal layers for n = 200, N = 900,  at   

(a) , (b) . 

 

For the given value of , nearly always the minimal number of k = 3 internal 

layers are found. Only when  is sufficiently small a transition to a 5-layered 

structure (more A/B interface) is observed. Of course,  has to be considerably 

larger than 10 to really have a strongly segregated lamellar-in-lamellar self-assembled 

state. The interfacial contribution to the free energy is given by 

ABBCinterface FkFF )1(2  , which can be simply rewritten as 
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 where Eqs.2.3 and 2.5 have been used. From 

this expression it follows straightforward that when BCAB  4  )2( BCAB    a 3-

layered has a lower interfacial free energy than a 5-layered one. The results presented 

in the various tables, however, show that in reality a 3-layered structure is already 

formed at considerably smaller values of , thus demonstrating in particular the 

importance of the conformational 2ln)3( k  contribution (see eq. 2.9) favoring small 

values of k. The tendencies observed are corroborated by the results of computer 

simulations obtained by using dissipative particle dynamics simulation technique. The 
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results are described in the next section, whereas the computational details are 

presented in the Appendix. 

 

2.3 Dissipative particle dynamic simulations of C-b-(B-b-A)m-b-B-b-C 

multiblock copolymers 

 

In the dissipative particle dynamics simulation technique, described in more detail in 

Ch. 7 Appendix, a large series of monomers are collected into a few bead-and-spring 

particles which interact with each other by soft sphere like potential. Only repulsive 

interactions are possible. This technique allows the simulation of the molecular 

behavior on a longer time- and length-scale [23-31]. 
 

2.3.1 Model 
 

In our study one block from the multiblock part of the terpolymer was represented by 

one or two DPD beads. In Fig. 2.6. the DPD model C4-(B1A1)4B1-C4, where one bead 

is used to describe the small blocks, is shown. Due to spring type bonds one bead is 

enough to simulate bridge and loop formation. 

 

 
 
Figure 2.6. DPD model of C-b-(B-b-A)4-b-B-b-C terpolymer. Green beads represent C blocks,  

yellow – B blocks and red – A blocks. 

 

2.3.2 Computational details 

 

The following values of the constants were used: λ = 0.65, ∆t = 0.06, ρ = 3 and σ = 3. 

The DPD simulations are performed in a cubic box of L
3
 grids with periodic boundary 

conditions. Since the particle density   is set equal to 3, the total number of simulated 

DPD beads equal 3L
3
. As reported in Refs. 28-30, the morphology obtained by DPD 

simulations may depend on the finite size of the simulation box. In our simulations we 

have periodic structures with large periods and to exclude finite size effects we have to 

take the simulation box sufficiently large. The number of DPD beads per chain is in 

the range 9-17. The size of the simulation box volume used was taken in the range  

V = 10
3
 - 30

3
, in such a way that for each case considered L exceeded the length of the 

chains. All simulations were started from random positions. 

Following the work of Groot and Warren [25], the repulsive parameters between the 

same types of particles is taken as 25iia . For different types of particles aij can be 
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chosen from the relation between the energy parameter aij and the Flory–Huggins 

interaction parameter χij 

 

ijiiij aa 497.3                                                                                     (2.12) 

 

2.2.3 Results 
 

In the dissipative particle dynamics simulation technique a large series of monomers 

are collected into a few bead-and-spring particles in order to simulate the molecular 

behavior on a longer time- and length-scale [23-31]. The first situation simulated 

resembled the experimentally studied ternary P2VP-b-(PI-b-PS)4-b-PI-b-P2VP linear 

undecablock copolymer system, i.e. m = 4 [5]. Figure 2.6 shows the corresponding 

self-assembled state observed for C4-(B1A1)4B1-C4 with the energy parameters 

representing the soft repulsion (see eq. A2) equal to aBA = 85, aBC  = 320. Using 

equation 2.12 for the relation between these energy parameters and the familiar  

Flory-Huggins parameters this corresponds to  and . Figure 2.7 

demonstrates that a self-assembled lamellar state is formed with 5 ―thin‖ internal 

layers as observed experimentally [4]
 
and calculated theoretically (Figure 2.3a and ref. 

21). The same result is obtained for internal blocks that are twice as long  

C4-(B2A2)4 B2-C4 (the subscripts of A, B and C denote the number of beads taken for 

the calculations).  

Subsequently, we address the issue of the dependence of the number of internal 

layers on the interfacial tension. Tables 2.1-2.3 suggest that for this purpose it may be 

best to take m = 5 because then reasonable variations in the values of the Flory-

Huggins parameters are theoretically predicted to induce transitions between different 

number of internal layers. That this is also the case in the simulations is shown in 

Figure 2.8, where 3 snapshots of the same system C4-(B1A1)5 B1-C4 are presented for 

different energy parameters ABa , BCa . 

Figure 2.7 demonstrates that when the A-B interaction becomes less unavorable 

and the B-C interaction becomes more unfavorable, indeed transitions are observed 

from 3 to 5 to 7 internal layers. There is the obvious tendency to decrease the BC 

interface with a corresponding increase in the AB interface. For the system with m = 4, 

C4-(B1A1)4 B1-C4, 3 and 5 internal layers were observed varying the energy 

parameters.  

To illustrate the dependence of the number of internal layers on the length of 

the internal blocks two systems C3-(B1A1)3 B1-C3 and C3-(B2A2)3 B2-C3 were 

simulated using the same energy parameter values.  Figure 2.9 shows that in the 

former case 3 internal layers are formed and 5 in the latter.  

 Similar simulations have been performed for m equal to 4, 5 and 6 for the same 

aAB = 75, aBC = 120 taking n =1 and n =2. The number of internal layers found were 5, 

5 and 7 for m = 4, 5 and 6, respectively, independently of n.  

338BCN 2.17ABn
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Figure 2.7. Snapshot of C4-(B1A1)4B1-C4  for aBA  = 85, aBC  = 320. 

 

 

a.  b.  c.  

 
 

Figure 2.8. Snapshots of self-assembled C4-(B1A1)5 B1-C4  multiblock copolymer melt for:  

(a) aAB = 250, aBC = 50; (b) aAB = 75, aBC = 120; (c) aAB = 65, aBC = 300 

 

a.   b.  

 
 
Figure 2.9. Snapshots of (a) C3-(B1A1)3 B1-C3 and (b) C3-(B2A2)3 B2-C3 for aAB = 75 and aBC = 120. 
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2.4 Concluding remarks 
 

In this Chapter, we presented a simple theoretical analysis of the strongly segregated 

lamellar-in-lamellar self-assembled state of ternary C-b-(B-b-A)m-b-B-b-C multiblock 

copolymers using the Alexander-de Gennes approach. This simplified description 

allowed us to discuss in detail the influence of the pertinent parameters on the number 

of internal layers k formed. The main observation concerns the sensitivity of k on the 

interfacial tension between the outer C-layers and the adjacent internal B-layers. The 

theoretically observed general tendencies were corroborated by the results of computer 

modeling using dissipative particle dynamics technique.  
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3.1 Introduction 

 

In recent years, multiblock copolymers that self-assemble in the form of 

periodical hierarchical structures involving different length scales have become an 

attractive area both for experimental
 
[1-12] and theoretical [13-21] investigations. The 

simplest hierarchical structures characterized by two length scales can best be 

described as a structure-in-structure morphology. One of the first observations of a 

system having two periods concerned comb-shaped supramolecules consisting of 

polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymers and 

hydrogen-bonded pentadecylphenol (PDP) side chains attached to the P4VP blocks. 

[1-3] Depending on the relative volume fraction of the polystyrene block the 

hierarchical structures lamellar-in-lamellar, lamellar-in-spheres, spheres-in-lamellar, 

etc. were identified. 

Undecablock copolymers PS-b-(PI-b-PS)4-b-PI-b-PS and P2VP-b-(PI-b-PS)4-

b-PI-b-P2VP appeared to be the first examples of block copolymers with a linear 

architecture forming a double periodic parallel lamellar-in-lamellar structure. [4,5] 

Here P2VP, PI and PS denote poly(2-vinylpyridine), polyisoprene and polystyrene, 

respectively, components that are mutually strongly immiscible. Recently Fleury and 

Bates demonstrated [11,12] that a terpolymer A-B-A-B-A-C, consisting of 

cyclohexylethylene (A), ethylene (B) and propylene (C) blocks, self-assembled in the 

form of a perpendicular lamellar-in-lamellar structure when the copolymer chain 

length exceeded some critical value. The authors attributed this particular mutual 

arrangement of the layers to a relatively small value of the Flory-Huggins interaction 

parameter between the B and C blocks as compared to that between the A and C 

blocks. 

Multiblock copolymers have been extensively studied theoretically in the 

framework of a self-consistent field theory, [13-16] the weak segregation Landau 

approach [17, 18] as well as the strong segregation theory. [19-21] In this paper we 

focus on a theoretical description of the lamellar structure formation in  

A-b-(B-b-A)n-b-C ternary multiblock copolymers in the strong segregation regime. 
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3.2 Theoretical investigation of A-b-(B-b-A)n –b–C ternary multiblock 

copolymer melts in strong segregation limit 

 

Different types of the lamellar-in-lamellar structure formation in  

A-b-(B-b-A)n-b-C terpolymer melts, with volume fraction of components A, B and C 

in the ratio 1:1:2, are analyzed in the strong segregation limit using a simple 

theoretical approach. We consider the lamellar, parallel lamellar-in-lamellar and 

perpendicular lamellar-in-lamellar self-assembled states. The influence of the 

copolymer chain length N , the value of the Flory-Huggins interaction parameters 

BCACAB  ,,  and the number of blocks n  in the AB multiblock chain on the phase 

behavior will be discussed.  

 

 

3.2.1 Model and simple lamellar structure 

 

We assume that all blocks are Gaussian chains, the total A-b-(B-b-A)n-b-C 

copolymer chain length is N and the length of the C block 2/NNC   equals the length 

of the total AB multiblock. The fraction of A and B segments are assumed to be equal, 

hence the length of the A and B blocks are 
 14 


n

N
N A  and 

n

N
NB

4
 , respectively. 

The volume and the length of the statistical segments of all components are assumed to 

be equal and denoted as v  and a. The interaction energy between the different species 

are described by the Flory-Huggins interaction parameters ACAB  ,  and BC . They are 

assumed to be positive in accordance with unfavorable interactions.  

We first consider the transition from the disordered (D) phase to the ordered 

lamellar phase consisting of alternating layers of C-blocks and AB multiblocks. The 

dominating contribution to the free energy of the disordered phase is due to 

interactions between different segments. Per copolymer chain this energy is given by 

 

8816

NNN
F BCACAB

I


                                                  (3.1) 

 

For a fixed chain architecture and positive interaction parameters an increase in the 

chain length N will result in incompatibility between the different blocks and the 
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lamellar (L) structures formation. The simplest one is the lamellar structure with one 

periodicity length scale corresponding to phase separation between the C blocks and 

the AB multiblocks (fig. 3.1). 

 

 

Figure 3.1. Schematic representation of the simple lamellar structure consisting 

of C and AB layers.  

 

It is easy to see that this structure can appear only if BCAC
AB 




2
. Indeed, 

complete separation between the AB and C components without taking the polymer 

connectivity into account gives an interaction energy per chain equal to 

0
2

1

42

1


NAB
, where the first term represents the interaction energy of A and B 

segments, which occupy half of the volume, and the second term represents the energy 

of C segments occupying the other half of the volume. Comparison of this energy with 

eq.(3.1) gives the desired condition. The polymer connectivity of the segments leads to 

an additional contribution to the free energy due to conformational loss associated with 

the non-homogeneous structure formation. In the strong segregation limit, where the 

thickness of the interfacial layer   between the C and AB domains is much smaller 

than the Gaussian size of the copolymer chain 2/1

0 aNR  , the stretching energy of the 

blocks and the interfacial energy should be taken into account (we will omit the 

translational energy of the chains). The interfacial energy can be derived from 

minimization of the free energy with respect to the profiles of the components. Let us 

denote the thickness of the C layer as H (it is equal to the thickness of the AB layer) 

and the concentration profile of C segments as )(zC . Assuming that the size of a AB 

diblock, which equals   2/1

BA NNa  , is smaller than the thickness of the interfacial 

layer   (the concentration profiles of A and B segments are nearly equal, 

2

)(1
)()(

z
zz C

BA





 ), the free energy per copolymer chain in the scope of the 

Alexander de Gennes approximation is given by 
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      (3.2) 

 

Here NvH 2 , with   the interface surface per chain, and the period of the lamellar 

structure is HL 4 . The total energy (2) includes the elastic energies of C and AB 

blocks, the gradient term due to the non-homogeneous composition profiles of the 

components and the interaction energy between A, B and C segments. After 

minimization of this free energy with respect to )(zC  using the additional condition 

2/)( Nzdz
v

H

H

C 




  (in eq. (3.2) we can put    CCCC   111
2

 and then use the 

method of ref.22) to arrive at 



















z
zC tanh1

2

1
)( , where 

 NNN
R

ABBCAC  5.03

1
0


  is the interfacial thickness. With this the free 

energy becomes 

 

812

5.0

2

3
2

2

2 N

H

Na

Na

H
F ABABBCAC

L





                         (3.3) 

 

Further minimization with respect to H gives 

 

 
8

5.0
2

3 3/1

3/5

N
NNNF AB

ABBCACL


                            (3.4) 

 

For large values of N the free energy (3.4) increases linearly with N. The period of the 

lamellar structure equals to 

 

  6/1

0 5.0916.04 NNNRHL ABBCAC                                (3.5) 

 

The transition between the isotropic and lamellar phases occurs when the free energies 

(3.1) and (3.4) are equal. Hence, the lamellar phase becomes stable for  
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8.205.0  NNN ABBCAC                                                 (3.6) 

 

As an example we consider the copolymer A-B-A-B-A-C consisting of 

cyclohexylethylene (A), ethylene (B) and propylene (C) blocks as investigated in the 

group of Bates. [11, 12] The Flory-Huggins interaction parameters (at 140

 C) satisfy 

034.0,054.0  ACAB   and 0054.0BC . The last ones were calculated using the 

fitting formulas proposed in ref.23. According to eq. (3.6) the transition to the simple 

lamellar phase should occur at 1680 CNN . This value is indeed in the range of the 

molecular masses where the lamellar phase was observed experimentally. 

 

 

3.2.2 Perpendicular lamellar-in-lamellar structure 

 

With increasing N additional separation between the A and B blocks inside the 

AB layer will occur resulting in the formation of more complicated lamellar structures 

such as parallel lamellar-in-lamellar ( //LL , fig. 3.2a) or perpendicular lamellar-in-

lamellar ( LL , fig. 3.2b). First we consider the perpendicular lamellar-in-lamellar 

structure. In this case thin A and B layers are arranged perpendicularly with respect to 

the thick C layers. We denote the thickness of the C-layer as H2  (along z-axis) and 

the thickness of the A and B layers as d2  (along x-axis). In the perpendicular lamellar-

within-lamellar structure both A and B layers have the same thickness since we 

assume that their volume fractions are equal. The period of the lamellar structure in x-

direction is dLx 4 and in z-direction it is HLz 4 . For further calculation we 

consider the volume containing half of the periods along the z- and x-direction and 

take the origin of the (x, z) plane on the line where the A, B and C layers intersect (see 

fig. 3.3). The y-axis is perpendicular to the (x, z) plane. The junction points between 

the A and C blocks are located on a strip of width d2  and are characterized by the 

distribution function )(x .  
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(a) 

 

 

(b) 

 

Figure 3.2. Schematic representation of parallel lamellar-in-lamellar (a) and 

perpendicular lamellar-in-lamellar (b) structure. 

 

 

We start with the elastic stretching energy of the C-blocks which are extended 

inside the C layers so that their conformations can be described by trajectories. For 

simplicity we assume that these trajectories are straight lines characterized by a 

bending angle )(x  with the x-axis, fig. 3.3.  
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Figure 3.3. Conformation of C-b-(A-b-B)m-b-A copolymer chain in the 

perpendicular lamellar-in-lamellar structure. 

 

On average a C-block occupies a box of size dHl2 , where 
dH

vN
l C

2
  is its 

dimension along the y-axis. The length of the trajectory which start at the point x is 

equal to 
)(cos x

xd




 if *0    and *0 xx  , and 

)(sin x

H


 if 

2
*


   and 

dxx * , where 
*

*tan
xd

H


 . Coordinate *x  can be found from the 

incompressibility condition. The number of C-blocks that start on the surface area 

dxdy  in the vicinity of point x is dxdyxdQ )(  and the volume occupied is given by 

dQvNdV C . This volume can also be obtained using the incompressibility condition 

and simple geometrical arguments,  
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Thus we arrive to the following equations 
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The solutions to these equations can be written in the form 
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dxxdxx
H

vN
xd

H
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                          (3.9) 

 

The normalization condition implies that  

d

CvN

dH
dxx

0

2
')'( . For *)(0   x , the  

z–coordinate of the free end of the trajectory is )(tan)()( xxdxzN   and its x-

coordinate is dxxN )( . Similarly, for 2/)(*   x  the free end has coordinates 

)(cot)( xHxxxN   and HxzN )( . 

The local stretching of the C-block can be obtained from similar arguments. 

The number of segments that are inside the interval dr  at a distance r  along the 

trajectories starting at the point with coordinate x  is dxdydr
dx

d
r

v
dN 











sin

1
. 

Therefore, the number of segments belonging to one block equals 

dr
dx

d
r

xvdQ

dN
dn 














sin

)(

1
. The equation for the local chain stretching is given by 
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The elastic energy of stretching for the C-block can be written as 
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Using eq. (3.10) we get 
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'

x  can be eliminated from the last equation using relationship (8) and results in 






































































d

x

C

C

x

C

C

C
C

x
H

vN

x
H

vN

xH
dx

xd

xvN

xd

xvN

xxd
dx

dHa

Nv
F

* 2

2

*

0

2

2

2

1)(
2

ln

1)(sin2

)(

1
tan)(

)(2
ln

1
tan)(

)(
2sin

)()(

4

3


















     (3.13) 

   

To simplify further calculations we assume that the junction points between the 

A and C blocks are distributed homogeneously on the AC interface. This implies that 

vN

H

vN

H
x

C

x

42
)( 0   . From the incompressibility condition we get 3/* dx  , and 

after some calculations the final equation for the elastic energy of the C block  

becomes 
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Na

d

Na

H
FC 2

2

2

2

29.565.2                                    (3.14) 

 

The situation is more complicated for the short period AB lamellar structure, 

where the blocks are stretched both in the x- and z-direction and their ends located at 

the AB interface. Here we use a simple approach assuming that the blocks are 

stretched homogeneously. A AB multiblock occupies the volume 2/2 vNdHl  . 

Therefore its average end-to-end distance along the z-axis is H and the average 

stretching force of the multiblock along the z-direction is 
N

H

a
Ez 2

3
 . The internal A 

and B blocks form either bridge or loop conformations. Assuming that the energy of a 

bridge and a loop is the same, which implies that the middle of a loop is located on a 

distance d from the interface, the average tension of the A and B blocks are 

Na

dn
E Ax 2,

)1(12 
  and 

Na

nd
E Bx 2,

12
 , respectively. The total elastic energy of the AB 

multiblock is given by 

 

  2222

2,, )1(8
3

2)1(2 dnnH
Na

dnEdEnHEF BxAxzAB             (3.15) 

 

The interfacial energy is determined by the Flory-Huggins interaction parameters 

ACAB  ,  and BC , and is given by 
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Here 
H

vN

d

vN C
BCAC

C
AB

2
,

2
  are the areas of contact between the different 

components per copolymer chain. The total free energy is equal to the sum of the 

elastic energies of the C, A and B blocks and the interfacial energy. 
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Further minimization of this energy with respect to H and d is trivial. The periods of 

the structure are 
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The final equation for the free energy is given by   

 

      3/23/13/1
73.061.0)1(

2

3
BCACABLL NNNnnF  
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          (3.19) 

 

This energy scales as 
3/1NFLL 


. Comparison of the energies LF  (eq. 3.4) and 

LLF   

(eq. 3.19) shows that the perpendicular lamellar-in-lamellar becomes stable when N 

exceeds some critical value 1cN . For the terpolymer A-B-A-B-A-C consisting of 

cyclohexylethylene (A), ethylene (B) and propylene (C) blocks this value is 

22001 cN . 

 

3.2.3 Parallel lamellar-in-lamellar structure 

 

Next we address the parallel lamellar-in-lamellar structure where the thin A and 

B layers are parallel to the thick C layers. We assume that two neighboring C layers 

are separated by 1m  A layers and m  B layers (the total number of thin layers inside 

the AB multiblock domain is 12  mk , fig.3.4) . A similar structure has been 

considered before for copolymer chains with the chemical structure  

C-b-(A-b-B)n-b-A-b-C. [19-21]  
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Figure 3.4. Conformation of C-b-(A-b-B)m-b-A copolymer chain in the parallel lamellar-in-

lamellar structure. 

 

We denote the thickness of the B layers as Bd2  and the thickness of the C 

layers as H2 . Among the A layers we will distinguish between the boundary layers 

which are in a contact with C layers and have thickness Adh   and the internal A 

layers having thickness .2 Ad  Homogeneous stretching of the blocks in the proposed 

structure imply that the stretching force of the C blocks is 
Na

H
EC 2

3
 , the stretching 

force of the B blocks is 
Na

nd
E B

B 2

12
  and the stretching force of the A blocks is 

Na

dn
E A

A 21

)1(12 
 . The exception is the first half of those A blocks that are directly 

connected to C blocks and occupy a domain of thickness h  in the boundary A layer. 

The stretching force of this section is 
Na

hn
EA 22

)1(12 
 . If the interfacial area per 

copolymer chain equals  , incompressibility implies  
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The total free energy per multiblock copolymer chain includes the local stretching 

energy of A, B and C blocks, AB and AC interfacial energy and a combinatorial term 

which takes into account the different ways that the AB multiblock chain can pass 

through the m  AB interfacial layers. 
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The combinatorial term combF  can be estimated from imagining the extended 

multiblock conformation as a one-dimensional random walk consisting of n2  steps 

[21] (this is the total number of AB links) drifting on a distance m : i.e., the number of 

steps in the positive direction is 2/)2( mn   and in the opposite direction is 2/)2( mn   
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After minimization of 
//LLF  with respect to   using eq.( 3.20) we get 
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The period of the structure is given by 

 

 
3/1

2

2

2

32
3/1

0
4

1

2)1(16

)12(
82.04 















m

n

nm

nm
NNmRHL ACABz                (3.24) 

 

For large N  the free energy scales as 
3/1

//
NFLL  . The transition between the simple 

lamellar phase (L) and the parallel lamellar-in-lamellar structure occurs when the 

energies (3.4) and (3.23) are equal. Turning back to the terpolymer A-B-A-B-A-C 

consisting of cyclohexylethylene (A), ethylene (B) and propylene (C) blocks we find 

that 20402 cN . The transition occurs to a structure with 5k  thin layers. 
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3.2.4 Discussion and concluding remarks 

 

The analysis of the terpolymer A-B-A-B-A-C consisting of cyclohexylethylene 

(A), ethylene (B) and propylene (C) blocks shows that for large chain lengths N  the 

parallel lamellar-in-lamellar structure is more preferable than the perpendicular 

lamellar-in-lamellar structure (the transition to the lamellar-in-lamellar structure 

occurs first for 119110 12  ABcABc NN  . This result is in contradiction with the 

experimental observations. [11,12] However, we note that these two transition points 

are very close to each other and using more rigorous calculations in part concerning 

the energy of the terminal A blocks may well change this sequence. The self-consistent 

field method seems the most appropriate way for the analysis of terpolymers with a 

small numbers of blocks in the AB multiblock chain. 

When the number of blocks in the multiblock is large ( 1n ) the contribution of 

the terminal A blocks to the free energy is small and the transition between the 

different lamellar structures can be done using the approach presented. In this limiting 

case the dominating contribution to the free energy of the complex lamellar structures 

appears to be due to the AB multiblock. This energy is the same both for the parallel 

and perpendicular lamellar-in-lamellar structures. An expansion of the free energies 

eqs. (3.19, 3.23) with respect to the small parameter 1/1 n , with the additional 

assumption that nm 1  (this inequality should be verified after the calculations), 

results in  
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In the last equation we used the approximation 
n

m
Fcomb

4
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 . Minimization of the free 

energy (3.25.b) with respect to m  gives 
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After substitution of this value in eq.(3.25.b) we get the final formula for the free 

energy of the parallel lamellar-in-lamellar structure 
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The last term is connected with the combinatorial energy and is small since 

  12/ nNAB . Here, the parameter  nNAB 2/  determines the energy of the (A-B) 

diblock. In our case this parameter is responsible for the transition between the simple 

lamellar and the complex lamellar structures. Comparing the free energies eq.(3.4) and 

eqs. (3.25a, 3.25b) gives the range of stability of the complex lamellar structures 
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Here nNM 2/  is the length of AB diblock. This value exceeds the critical value 

1.15* M  of the lamellar phase formation in AB multiblock copolymers obtained 

using the random phase approximation approach. [24, 25] The essential discrepancy 

between these two values appears because in the present approach loops and bridges 

have the same energy. The separation line between the parallel and perpendicular 

lamellar-within-lamellar structures can be found by equating the energies (3.25a) and 

(3.27). The perpendicular lamellar-in-lamellar structure becomes stable when  

 

22.0
AC

BC




                                                (3.29) 

According to this criterion the transition to the perpendicular lamellar-in-lamellar 

phase for the terpolymer A-b-(B-b-A)n-b-C consisting of cyclohexylethylene (A), 

ethylene (B) and propylene (C) blocks with 1n   should occur before the transition to 

the parallel lamellar-in-lamellar phase as far as 22.016.0/ ACBC  . Contrary to the 

direct calculations the formal application of this criterion to the case when 2n  is in 

agreement with the experimental observations. [11, 12]  
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(a)  

(b)  

Figure 3.5. Phase diagram for 2n  (a) and 10n  (b) when ACAB   . 

Two different phase diagrams for 2n  and 10n  and ACAB NN    are shown 

in fig. 3.5. One can see that the area of stability of the parallel lamellar-in-lamellar 

structure exceeds the area of stability of the perpendicular lamellar-in-lamellar 

structure, which occurs for small values of BC . When BC  is very small, i.e. 

1)/( nNBC , the B blocks start to penetrate inside the C-layers and the BC interface 

is destroyed. In this case we expect stabilization of the parallel lamellar-in-lamellar 

structure. 



Chapter 3                       Parallel versus perpendicular lamellar-within-lamellar structures 

 

46 

3.3 Dissipative particle dynamics simulations of A-b-(B-b-A)2–b–C and  

(B-b-A)2–b–C ternary multiblock copolymer melts 

 

The SSL method has as a disadvantage that only the most obvious structures are 

investigated, which makes it difficult to find new ones. As will be shown in part 3.4 of 

this Chapter, the SCFT also suffers from limitations for systems with three types of 

monomers. Hence, it is interesting to look at the type of systems under investigation 

using another approach. For this the dissipative particle dynamics DPD simulation 

method was chosen. 

 

3.3.1 Model 

 

In order to simulate linear ternary multiblock copolymers the chains are replaced 

by a coarse grained version. As it is typical for the DPD technique a number of 

monomers, usually this number corresponds the Kuhn segment, is considered as one 

bead. For the A-b-(B-b-A)2 -b–C copolymer, the blocks of type A were replaced by 

two, B – by three and C – by twelve DPD beads. For the (B-b-A)2 -b–C copolymer the 

DPD chain is the same except that the A blocks are now represented by three DPD 

beads in order to maintain the volume fraction of the multiblock part and the C tail at 

50/50. Furthermore, the volume fraction of the A and B blocks are in both cases equal 

to 0.25. The total length of the polymer chain was in both cases equal to N = 24. 

 

3.3.2 Technique 

 

The chains were placed in a box size of L = 30 in each direction, with density 

equal to three. One advantage of the DPD method is that it allows to use large time 

steps in order to solve the equations of motion, which was chosen to be Δt = 0.06. 

Each numerical experiment was done by a fixed protocol. For the first 5*10
4
 time 

steps all interaction parameters in system were equal to 25 ( aij = 25 for any i and j). 

After that the annealing technique was applied to obtain the desired values for the 

interaction parameters. This annealing took place during 10
6
 time steps where at each 

step the interaction parameter value was increased with amax/10
6
 (amax corresponding to 

the final increment). Subsequently the relaxation time was equal to 4*10
6
 time steps. 

The interaction parameter values were changed in the ranges listed in Table 3.1  

(see also Ch. 7 Appendix). 
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b) 

Table 3.1. Range of interaction parameter in term of a) aij; b) χij 

 
 

3.3.3 Results 

 

Using the DPD technique it is possible to investigate the transition from the 

ternary to binary system by changing χBC from 7.14 (ternary case) to 0 (binary).  

3.3.3.1 Highly fluctuating disordered structure  

 

As shown in Table 3.1, the values of χAB and χAC are always quite big to achieve 

phase separation between A and C and between A and B blocks. Let us consider the 

structures formed by the A-b-(B-b-A)n -b–C copolymer system. When aBC = 25  

( χBC = 0 ) and aAB = 2aAC = 70 ( χAB = 2χAC = 12.8 ), a highly fluctuating disordered 

structure is formed. As shown in Fig. 3.6, the A blocks form blobs covered by B 

blocks and these blobs are disordered in the matrix of C blocks. Because χBC = 0, for 

the B blocks it is preferable to be mixed with C blocks. Due to the geometrical 

structure of the copolymers this leads to two possibilities. One possibility is to increase 

the stretching of the C blocks close to AC interface to allow for the B blocks and the 

aij A B C 

A 25 70-160 47.5-67.5 

B 70-160 25 25-50 

C 47.5-67.5 25-50 25 

χij A B C 

A 0 70-160 6.4-19.3 

B 12.8-38.6 0 0-7.14 

C 6.4-19.3 0-7.4 0 
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other is to increase the area of the AC interface by bending making it possible to 

allocate parts of C blocks and B blocks close to interface without extra stretching. 

From the picture one can conclude that the free energy of the system is lower in the 

second case. It appears that χAB is not too high to increase the interface surface and 

lower the free energy as compared to the case where parts of the C blocks and the B 

blocks are severely stretched. 

 

Figure 3.6. Snapshot of highly fluctuating 

disordered structure formed by A-b-(B-b-A)n-b–C 

chains for aBC = 25 ( χBC = 0 ) and aAB = 2aAC = 70 

( χAB = 2χAC = 12.8 ). 
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a)                    b) 

Figure 3.7. Snapshot of inverted lamellar structure formed by A-b-(B-b-A)n-b–C chains 

a) Three internal layers aBC = 25 ( χBC = 0 ) and aAB = 2aAC = 130 ( χAB = 2χAC = 30 ). 

b) Five internal layers aBC = 30 ( χBC = 1.4 ) and aAB = 2aAC = 130 ( χAB = 2χAC = 30 ) 

 

 

3.3.3.2 Inverted lamellar structures 

 

By increasing χAB = 2χAC, the system transforms to a lamellar state. Increasing of 

the AC interface is no longer the best way to minimize the free energy and the system 

tries to decrease this interface by adding extra stretching to the C and B blocks. 

Because χBC = 0, the B blocks mix with the C blocks but separate from the A blocks. 

Increasing χBC leads to separation between B and C blocks. First the C blocks 

segregate and make C channels in B layers. This is how the BC interface appears. 

Then, if χBC becomes larger it is preferable for the system to add one more B layer to 

decrease the BC interface with extra stretching of C blocks. We call this structure 

inverted lamellar because the order of the layers C-B-A in lamellar phase is not the 

same as in the molecular structure of the polymer (see Fig. 3.7).  
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3.3.3.3 Perpendicular lamellar-in-lamellar structure 

 

Further increasing the incompatibility between the B and C blocks forces the 

system to minimize the BC interface as well. Due to sufficiently high incompatibility 

between B and A blocks, it is still not preferable to form the parallel lamellar-in-

lamellar (L||) structure. Instead a perpendicular lamellar-in-lamellar ( L ) structure is 

formed, Fig. 3.8. From our theoretical investigations it is known that the free energies 

of the parallel and perpendicular states are quite close to each other. A delicate balance 

between stretching and interfacial energies makes one of the structures preferable over 

the other. In the case of L  the stretching energy of the C blocks is more complex and 

higher than for the L||, but the interfacial energy is lower. DPD is not accurate enough 

to find difference between shifted and not shifted L  structures. According to the DPD 

experiments these two structures are identical. Structures where A and B lamellae 

from one layer are perpendicular to AB lamellas from another one are also possible. 

During experiments such kind of structures occurred very infrequently compared to 

shifted and not shifted L  structures, one out of ten. Therefore we believe this 

structure to be metastable 

 

Figure 3.8. Snapshot of perpendicular lamellar-in-

lamellar structure formed by A-b-(B-b-A)n-b–C chains 

at aBC = 35 ( χBC = 2.85 ) and aAB = 2aAC = 130  

( χAB = 2χAC = 30 ). 
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3.3.3.4 Parallel lamellar-in-lamellar 

 

When the incompatibility between the B and C blocks increases even further, it is no 

longer preferable to have a BC interface and the system can easily avoid it because 

there are no direct bonds between the B and C blocks. Now parallel lamellar-in-

lamellar structures are formed with a different number of internal layers, Fig.3.9. 

These kinds of structures were already investigated using the DPD simulations and the 

SSL approach presented in Chapter 2 of this thesis. The only difference is in the 

primary structure of the polymers considered.  

 

 

 

a)                                                                 b) 

Figure 3.9. Snapshot of parallel lamellar-in-lamellar structure formed by  
A-b-(B-b-A)2-b–C chains  

a) Three internal layers aBC = 25 ( χBC = 0 ) and aAB = 2aAC = 130 ( χAB = 2χAC = 30 n).  

b) Five internal layers aBC = 30 ( χBC = 1.4 ) and aAB = 2aAC = 130 ( χAB = 2χAC = 30 ) 

 

3.3.3.5 Morphology diagrams 

 

To summarize the results conformational diagrams for the two types of polymers 

were plotted. Fig. 3.10 presents the conformational diagram for A-b-(B-b-A)2-b–C. 

The diagram shows that there are several pathways by which ternary systems by 

decreasing χBC to zero transform into binary systems. One possibility is the sequence: 



Chapter 3                       Parallel versus perpendicular lamellar-within-lamellar structures 

 

52 

highly fluctuating disordered state – perpendicular lamellar-in-lamellar - parallel 

lamellar-in- lamellar. Another, and longest with respect to the number of different 

structures, is: inverted lamellae with three internal layers - inverted lamellae with five 

internal layers - perpendicular lamellar-in-lamellar - parallel lamellar-in-lamellar. It is 

interesting to notice that inverted lamellae with 3 and 5 internal layers appear 

simultaneously while increasing χAB = 2χAC. The stability area of L  increases with 

increasing of incompatibility between A and B and between A and C blocks.  

The morphology diagram of (B-b-A)2 -b–C is presented in Fig. 3.11. Due to the 

smaller number of blocks in the multiblock part but at the same fixed volume fractions 

blocks of A type are now longer. The order-disorder transition line lies lower with 

respect to χAB = 2χAC because nχAB is now larger than for the previous structure. 

Another influence of the smaller number of blocks is that lamellae with five internal 

layers no longer exist. The stability region of the perpendicular lamellar-in-lamellar 

structure is more restricted 

 

 

Figure. 3.10. Conformational diagram for polymer melt consist of A-b-

(B-b-A)2-b–C chains. Here: d – disordered; il3 - inverted lamellae with 

three internal layers; il5 - inverted lamellae with five internal layers; p - 

perpendicular lamellar-in-lamellar; l3 – parallel lamellae with three 

internal layers; l5 - parallel lamellae with five internal layers. 
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Figure. 3.11. Conformational diagram for polymer melt consist of 

(B-b-A)2-b–C chains. For notation see Fig. 3.10. 

 

3.3.3.6 Conclusions 

 

The phase behavior of A-b-(B-b-A)2-b–C and (B-b-A)2-b–C copolymer melts 

were investigated using the DPD technique. It was shown that the perpendicular 

lamellar-in-lamellar structure is more likely to occur for the A-b-(B-b-A)2-b–C 

copolymers. The results are compared with those obtained by SSL (Chapter 2, Part 

3.3) and SCFT (Chapter 2, Part 3.5). 
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3.4 Self-consistent field theory investigation of A-b-(B-b-A)2–b–C and (B-b-

A)2–b–C ternary multiblock copolymer melts 

 

First, the restrictions of the self-consistent field theory approach as applied to 

ternary block copolymer systems are discussed and a new self-consistent field theory 

technique is introduced. Then the lamellar-in-lamellar structure formation in A-b-(B-b-

A)2-b-C and (B-b-A)2-b-C terpolymer melts, with volume fraction of components A, B 

and C in the ratio 1:1:2, is analyzed with the self-consistent field theory. Depending on 

the values of the Flory-Huggins interaction parameters BCACAB  ,, , the different 

layers will be parallel or perpendicular. Two types of perpendicular lamellar-in-

lamellar structures, shifted and not-shifted, are investigated.  

 

 

3.4.1 Model and the SCFT technique 

 

A SCFT analysis of the phase behavior of A-b-(B-b-A)2-b–C (fig. 3.12a) and  

(B-b-A)2-b–C (fig. 3.12b) copolymers with volume fraction of components A, B and C 

in the ratio 1:1:2 is presented. 

 

 

 

    Figure 3.12. Ternary undecablock copolymers. a) A-b-(B-b-A)2-b–C; b) (B-b-A)2–b-C. 

 

The two strategies that have been applied to solve the SCFT equations are the spectral 

method [26] and the real-space method. [27-31] The first strategy is based on the 

representation of the spatially varying density fields in a Fourier-type basis, using a 

large number of harmonic terms.[32] The second computational formalism employs an 
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appropriate relaxation iterative procedure in order to reach a local minimum of the free 

energy functional, adjusting simultaneously the chemical potential fields and the 

conjugate monomer densities at every iteration step. Both schemes have advantages 

and disadvantages. A disadvantage of the fully spectral schemes is that the 

computational effort per single iteration scales very poorly as nF 
3
, where nF is the 

number of basis functions. Also, it requires that the symmetry of a formed 

microstructure be specified in advance so that a proper set of harmonic terms can be 

utilized. The real-space methods do not require the system symmetry in advance but 

are rather time consuming in three dimensions even on supercomputers. Recent 

progress in this field has been achieved by using the so-called pseudo-spectral 

technique. [33-36] In the context of polymer physics, this technique was first applied 

by Rasmussen and Kalosakas [34] in order to solve the modified diffusion equation 

that describes the propagation of monomer densities. Subsequently, Ceniceros and 

Fredrickson [35] further extended this approach. In particular, they introduced a robust 

class of semi-implicit numerical methods that employ supplementary information 

about the nonlocal density operators. As a result, the total computational cost has been 

reduced by an order of magnitude. Another way to speed up convergence of the SCFT 

equations for polymeric systems, we employ here, is to use the iterative scheme by Ng, 

[37] linearizing the solution around stationary points. A similar procedure was used by 

Thompson et al. [38]. We believe that incompressible multicomponent block 

copolymers need a new SCFT technique due to the degeneracy problem taking place 

when the χ-parameters belong to some specified set. This degeneracy problem has not 

been considered yet. The new technical details can be easily understood in the case of 

incompressible three-component block copolymers. 

To discuss this we consider an incompressible melt of linear ternary ABC 

triblock copolymers consisting of end blocks A and C and middle block C. The free 

energy functional for the system under consideration reads [27]: 

 

   

1 3 [ ( ) ( ) ( ) ( ) ( ) ( )
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r

 

           (3.30) 

 

where the Flory-Huggins parameters   describe the interaction between the 

monomers of the sorts  α and β,  V – is the volume of the system, n is the total number 

of chains in the volume V, Bk  is Boltzmann’s constant and T is the absolute (Kelvin) 

temperature. From here on we set 1Bk   (in other words, we measure the temperature 
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in energetic units). The deviation of the local volume fraction )(r  of component α 

from its average (over the volume V) value f  is designated in (3.30) as follows: 

 

           f )()( rr                                            (3.31) 

 

The quantity    Q w r  is the partition function of a single ideal chain subject to the 

external fields )(rw , acting on the component α 

 

    1 3 ( ,1)Q w V d q

  r r r     (3.32) 

 

where the density distribution ),( sq r  satisfies the modified diffusion equation 

 

2( , ) ( , ) ( , ) ( , ), ( ,0) 1q s s q s s q s q     r r r r r  (3.33) 

 

in which the variable ]1,0[s  labels the monomer’s relative distance from an end of 

the chain, therewith the field )(),( rr  ws   in case the monomer located on the distance 

s belongs to the sort α. Finally, ( ) r  is the Lagrange multiplier corresponding to the 

incompressibility condition: 

 

( ) ( ) ( ) 0A B C   r r r      (3.34) 

 

When we consider the melt in bulk then we stipulate periodic boundary conditions on 

the computation cell boundaries; when the melt is confined then some special 

boundary conditions have to be used that will have to be defined more precisely.  

Varying the free energy functional (3.30) both over the fields ( )w r  and volume 

fractions )(r , one gets the full set of the self-consistent field equations: 
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)()()()( rrrr   CACBABAw     (3.35) 

)()()()( rrrr   CBCAABBw     (3.36) 

)()()()( rrrr   BBCAACCw     (3.37) 

 

appended by the incompressibility condition (5). 

Therewith, the local volume fractions )(rA , )(rB  and )(rC  are defined by equations 
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where the multiplier 1)( s  in case the monomer located on the distance s belongs 

to the sort α, and 0)( s  otherwise. 

The distribution function ),(~ sq r  satisfies the modified diffusion equation 

 

2( , ) ( , ) ( ,1 ) ( , )q s s q s s q s     r r r r   , 1)0,(~ rq   (3.41) 

 

with the same boundary conditions as in the case of eq. (3.33). 

Eqs. (3.34)-(3.37) can be considered as simultaneous linear equations with respect to 

the variables   f )()( rr  and   r : 
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If the matrix 
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                                               (3.43) 

 

is not degenerate then the auxiliary field )(r , which assures that the incompressibility 

condition (3.34) is fulfilled, can be expressed in terms of the fields  ( )w r  and, thus, 

eliminated: 

 

)(2

)()()(

313221

213132

CCCCCC

wwCCwwCCwwCC CACBBA




   (3.44) 

 

Where 

ABBCACC  1 ,   BCABACC  2 ,   ACBCABC  3     (3.43) 

 

The set of equations (3.34)-(3.41) can be represented as a non-linear operator 

 

][xAx       (3.46) 

 

with respect to an unknown vector-function 
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Here the operator A is defined as follows: 
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where the functions )(r  are expressed in terms of the fields )(rAw , )(rBw  and )(rCw  

via the integral operators (3.38) - (3.40) and the auxiliary field )(r  is given via 

equalities (3.42) – (3.44). The operator equation (3.46) can be solved using the Picard 

iteration procedure  

)][(1 nnnn xxAxx   , ,...2,1,0n    (3.49) 

 

with a positive parameter τ. 

To speed up the iteration procedure convergence, after certain number of the Picard 

iterations (3.47) one should switch to the iteration method by Ng, which is 

characterized by a faster convergence. The details of the Ng method are described in 

[37,40]. 

If the matrix (3.43) is degenerate then it can be shown that the Flory-Huggins 

parameters   satisfy the Hildebrand condition[39]
 

 

2)(~         (3.50) 

 

where   are so-called Hildebrand solubility parameters. 

Indeed, the determinant of the matrix (14) )(2 313221 CCCCCC   is a quadratic 

form of three variables AB , BC  and AC . This quadratic form is reducible to the 

diagonal form via the following change of variables: 
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3 3 32 1 1 2 2, ,
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In terms of the new variables, the determinant of the matrix (3.43) reads 
2

3

2

2

2

1 2xxx  , which implies that the degeneration condition for the matrix 0  

holds on the cone surface in the space ),,( 321 xxx , the upper inner part of the cone 

 2 2

3 1 2 2x x x   describes the region where the self-consistent approximation is 

physically applicable (outside of the region the SCFT solution corresponds to a saddle 

point or maximum rather than to a minimum of the free energy). Introducing new 

variables 
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We get a trigonometric representation of the three Flory-Huggins parameters: 
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Figure 3.13. The υ-parameter set (24) with 1.00   

 

In the trigonometric variables the determinant  takes the form )1(6 2

0   . The 

region 0  coincides with the upper inner part of the cone  2 2

3 1 2 2x x x  . If the 

value of ε is fixed, the point ),,( ACBCAB   defined by Eqs.(3.53) belongs to the υ-

parameter set represented by three curves in Fig. 3.13. If 0 , these curves lie in the 

upper halfplane )φ,(  . Otherwise ( 0 ) , this set contains points ),,( ACBCAB   

with 0 . Notice that if 0 , the iterations (3.49) do not converge for any point 

),,( ACBCAB   belonging to the set (3.53), including the case 0AB , 0BC , 0AC

. 

Now, let the matrix (3.43) be degenerate (ε=0), and, for definiteness, let 

max( , , )AB AB AC BC     . Then it follows from (3.53) that 

 

1
AB
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


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
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It is easy to show that Eq.(3.54) is equivalent to the Hildebrand conditions (3.50).  Let 

designate the second addendum in the left hand side of eq. (3.54) as g: 

 

BC ABg         (3.55) 

 

 We can show now that if the Hildebrand approximation is valid then the simultaneous 

equations (3.30)- (3.41) for the three-component ABC triblock copolymer are 

equivalent to those for the two-component AB multiblock copolymer shown in Fig. 

3.14. 

In this case i) the field )(rCw  can be expressed as a linear combination of the fields 

)(rAw  and )(rBw : 

 

)()1()()( rrr BAC wggww     (3.56) 

 

and ii) formally, the original three-component system of triblock copolymers becomes 

equivalent to the two-component system of triblock copolymers in which the middle 

block C can be represented as a mixture of the A and B monomers with fractions g and 

1-g of the sorts А and В, respectively: 

 

.

 

 

Figure 3.14. Cartoon explaining the idea of the SCFT implementation for the degenerated 

system of the -parameters appearing in the case of the Hildebrand Approximation. 
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)()1()()( rrr BAC gg                                   (3.57) 

 

Let Ag , Bg   and )(rA , )(rB  be the average and local volume fractions of the 

components A and B, respectively, for the two-component multiblock copolymer 

shown in Fig.3.14. One can check readily that 

 

( ) ( ) ( ), ( ) ( ) (1 ) ( )A A C B B Cg g          r r r r r r           (3.58a) 

, (1 )A A C B B Cg f g f g f g f                  (3.58b) 

 

 

Substitution of the relations (3.58) into eqs. (3.34)-(3.37) shows that the latter are 

equivalent to equations 

 

( ) ( ( ) ) ( )A AB B Bw g    r r r             (3.59a) 

( ) ( ( ) ) ( )B AB A Aw g    r r r             (3.59b)  

1)()(  rr BA                (3.59c) 

 

where 

 

 ( ) ( ) ( ) 2, ( ) ( ) (1 )( ( ) (1 ) ( ) )A B AB A B Cw w g g g g f           r r r r r r r  

 

Recall that solution of the self-consistent field equations for two-component 

copolymer melts can be achieved via iteration procedures as described in ref [15]. 

It is also worth to consider explicitly small values of the parameter ε corresponding to 

the ill-conditioned matrix (3.43) since the iterative algorithm (3.49) becomes unstable 

when 0 . The physical solutions correspond to positive values of the parameter ε 

(Δ>0). The longest block C can be represented as a mixture of A, B, and D monomers: 
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Figure 3.15. Cartoon explaining the idea of the SCFT implementation for the  

ill-conditioned system of -parameters appearing close to the Hildebrand Approximation  

( 0 ). 

 

Species D is found in such a way that the three parameters AB , BD , and AD  are far 

enough from Hildebrand condition (3.54). Then the matrix (3.43), where the 

parameters AB , BC , and AC  are replaced by AB , BD , and AD , is well-

conditioned. E.g., the parameters AB , BD , and AD  may be the sides of a triangle 

(see Fig.3.16). The best choice is the equilateral triangle. 

 

 

Figure 3.16. The triangle with side lengths AB , BD , and AD . 

 

To find the composition of C block consisting of A, B, and D species providing the 

prescribed values of AB , BC , AC  we consider the block C as composed of the 

species D and E (see Fig. 3.17). 

 



Self Consistent Field Theory approach   

 

65 

 

Figure 3.17. Cartoon explaining the idea of representing block C as a mixture of 

the species D and E. 

 

It can be shown readily that 

 

DEEEAEEADEAC gggg  )1()1(                 (3.60a) 

DEEEBEEBDEBC gggg  )1()1(               (3.60b) 

 

where Eg  is the volume fraction of E in block C. Notice that E is a mixture consisting 

of A and B with a volume fraction Ag  of A  monomer units. Therefore, 

 

ABAAE g  2)1(                   (3.61a) 

ABABE g  2                   (3.61b) 

ABAAADABDADE gggg  )1()1(               (3.61c) 

 

Eqs. (3.60)-( 3.61) can be considered as the conditions that determine the parameters 

Ag  and Eg . The parameters BC , AC , AB , AD , and BD  are assumed to be known. 

The parameter Ag  can be eliminated. The parameter Eg  is the root of the quadratic 

equation 

 

0)1( 2  qgp E                 (3.62) 
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with 

 

2/12/2  bap ,  2/12/2  dcq ,            (3.63a) 

)(1

BDADABa    ,  )(1

BDADABb    ,            (3.63b) 

)(1

ACBCABc    ,  )(1

ACBCABd    ,            (3.63c) 

 

If 0/ qp , equation (3.62) has two real roots. Only the roots Eg  and Ag , which 

belong to the interval (0,1), have physical meaning. Finally, the desired solution of  

eqs. (3.60)-( 3.61) reads 

 

qpgE /1 , 2/]/)(1[ EA gbdbg                         (3.64) 

 

As a result, we obtain a mathematically equivalent polymer system with the C block  

(see Fig. 3.15) consisting of monomer units A, B, and D. This system is described by 

eqs. (3.34)-(3.41), where C is replaced by D. The recalculated average volume 

fractions of A, B, and D are  

 

AECAA ggfff  , )1( AECBB ggfff  , )1( ECD gff            (3.65) 

 

For the results presented further on, the calculations in the region near the 

Hildebrand line were carried out using the equilateral triangle with the side lengths 

ABBDAD   . The contour step size was taken to be equal to 0.01s  . Smaller 

values were tested as well, but had no effect on the free energy value. The simulations 

were done in two dimensions with periodic boundary conditions because all observed 

structures are 2D. The free energy was optimized with respect to the size of simulation 

box. The spatial resolutions were equal to 0.03 , 0.015g gx R y R    . The numerical 

simulations proceeded until the relative free energy changes at each iteration were 

smaller than 10
-5

 and the incompressibility condition was achieved. 
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3.4.2 Results and discussions 

 

Using the SCFT outlined in the previous section we calculated phase diagrams 

for (B-b-A)2-b–C (Fig. 3.18) and A-b-(B-b-A)2-b–C (Fig. 3.19)  as a  function of 

BCN  and 2AB ACN N  , up to and including the Hildebrand line where the solubility 

parameter approximation holds. As shown in the Section 2, the Hildebrand line 

satisfies Eq. (3.54). In the case of 2AB ACN N   considered, this implies 

BCAB NN  66.11 . The composition of both multiblock copolymers is assumed to 

satisfy 5.0C ,  25.0 BA  . N  denotes the total length of the multiblock 

copolymer.  

 

 

Figure 3.18 Phase diagram of (B-b-A)2-b–C  as a  function of BCN  and 2AB ACN N  . ||LAM , 

LAM  and SLAM  denote the parallel, the perpendicular and the shifted perpendicular layered 

morphologies. The number in between brackets, i.e. || (5)LAM , denotes the total number of 

―internal‖A plus B layers. Circles represent the points where the transitions occur according to the 

calculations. 
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Under the conditions selected, the multiblock copolymers self-assemble in three 

different morphologies 
||LAM , LAM  and SLAM . These denote the parallel lamellar-

in-lamellar, the perpendicular lamellar-in-lamellar and the shifted perpendicular 

lamellar-in-lamellar structure. In the 
||LAM  a parallel layered structure is formed, 

where the layer in between successive C-layers contains a number of A- and B-layers. 

The precise number of ―internal‖ layers depends on the multiblock copolymer and the 

values of the interaction parameters and is indicated by the number in between 

brackets, i.e. 
|| (3)LAM  denotes 3 internal layers (A-B-A). In the LAM  morphology the 

―internal‖ A- and B-block layers are oriented perpendicularly to the C-layers. The 

same is true for the SLAM  structure except that now the successive ―internal‖ layers 

are shifted with respect to each other over half the long period of the A/B structure 

(see also Figures 3.23 and 3.24 further on).  

Figure 3.18 shows the phase diagram of the (B-b-A)2 -b–C multiblock copolymer 

and demonstrates the stability of both perpendicular lamellar-in-lamellar structures. In 

the interaction parameter region covered the parallel lamellar-in-lamellar structure 

contains 5 internal layers. Note that 9 would be the maximum number. Figure 3.19 

presents the phase diagram of the A-b-(B-b-A)2-b–C multiblock copolymer. 

Significant differences with the previous diagram are the absence of a stability region 

for the LAM  structure, the appearance of || (5)LAM  and a small region of the simple 

lamellar structure L where C-rich layers microphase separate from mixed A- and B-

rich layers. Figure 3.20 illustrates the composition profile for the latter case. 

Furthermore, the position of the ODT line in both figures differ due to the increased 

number of A blocks in A-b-(B-b-A)2 -b–C and the concurrent smaller length of the A 

blocks. But even more striking is the increase of the SLAM  region of the A-b-(B-b-

A)2-b–C multiblock copolymer for increasing 2AB ACN N  , whereas exactly the 

opposite happens for the (B-b-A)2 -b–C multiblock copolymers. In the latter case the 

SLAM  region diminishes as a function of 2AB ACN N   to the expense of the 

|| (5)LAM  region.  
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Figure 3.19. Phase diagram of A-b-(B-b-A)2-b–C as a function of BCN  and 2AB ACN N  . 

||LAM , LAM  and SLAM  denote the parallel, the perpendicular and the shifted perpendicular 

lamellar-in-lamellar morphologies. The number in between brackets, i.e. || (5)LAM , denotes the total 

number of ―internal‖ A plus B layers. Circles represent the points where the transitions occur 

according to the calculations. 

 

 

Figure 3.20. Composition profile of A-b-(B-b-A)2-b-C  for simple 

lamellar structure for 2 80AB ACN N    and 24BCN   

To discuss the self-assembly characteristics in more detail we will consider specific 

points of the phase diagram.  
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Figure 3.21 shows the volume densities maps for the parallel lamellar-in-lamellar 

structure 
||LAM  of A-(B-b-A)2-b–C for 2 100AB ACN N    and 40BCN  . In this 

particular case 2 A-layers and 1 B-layer are formed in between two successive C-

layers. For a slightly larger value of 2 120AB ACN N  
 
(Figure 3.22) the number of 

internal A- resp. B-layers increases to 3 resp. 2. 

  

                     a)                                   b)                                  c) 

Figure 3.21. Volume density maps for the parallel lamellar-in-lamellar 
||LAM  

structure of A-b-(B-b-A)2-b–C with two A-type internal layers at 

2 100AB ACN N    and 40BCN  . a) A blocks; b) B blocks; c) C blocks 

  

                              a)                           b)                           c) 

Figure 3.22. Volume density map for the parallel lamellar-in-lamellar structure ||LAM  of 

A-b-(B-b-A)2-b–C with three A-type internal layers at 1202  ACAB NN   and 

40BCN  . a) A blocks; b) B blocks; c) C blocks. 

 

Figure 3.23 shows the composition profiles in more detail. Besides the strong peaks 

corresponding to the various layers there are two additional smaller peaks due to the 

presence of B-blocks, which are not directly linked to the C-blocks, at the A/C 

interface. This is, obviously, due to the least unfavorable BC interactions, i.e. 

40BCN  .  
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a) 

 

b) 

Figure 3.23. Composition profiles of A-b-(B-b-A)2-b–C 

for parallel lamellar-in-lamellar 
||LAM with  

a) 2 100AB ACN N    and 40BCN  ;  

b) 1202  ACAB NN   and 40BCN  . 
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Next we turn our attention to smaller values of 20BCN  , where the perpendicular 

lamellar-in-lamellar structure becomes favorable. Figures 3.24-3.26 show the LAM  

resp. SLAM  morphology  for the A-b-(B-b-A)2-b–C  multiblock copolymer. For this 

particular set of interaction parameter values the SLAM  structure is the stable state 

and the non-shifted LAM  is a metastable (see phase diagram Fig. 3.19). In fact for the 

A-b-(B-b-A)2-b–C multiblock copolymer 

 

                              a)                                           b)                                               c) 

Figure 3.24. Volume density maps for non-shifted perpendicular lamellar-in-lamellar 

structure LAM  of A-b-(B-b-A)2-b–C at 1202  ACAB NN   and 20BCN   a) A 

blocks; b) B blocks; c) C blocks. 

  

      a)                                        b)                                        c) 

Figure 3.25. The volume density maps of the shifted perpendicular lamellar-in-lamellar 

structure SLAM  of A-b-(B-b-A)2-b–C at 1202  ACAB NN   and 20BCN   a) A 

blocks; b) B blocks; c) C blocks. 

Figures 3.26 and 3.27 present similar composition profile maps for the (B-b-A)2 -b–C 

multiblock copolymer for 2 90AB ACN N   , 15BCN  resp. 2 120AB ACN N    and 

15BCN  . As shown in the phase diagram Fig. 3.18, in the former case the non-

shifted LAM  is the equilibrium state, whereas in the latter case the shifted SLAM  is 

the equilibrium structure. 
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     a)                                       b)                                       c)     

Figure 3.26. Volume density maps for the non-shifted perpendicular lamellar-in-lamellar 

structure LAM  of (B-b-A)2 -b–C at 2 90AB ACN N    and 15BCN   a) A blocks; 

b) B blocks; c) C blocks. 

  

    a)                                        b)                                       c) 

Figure 3.27. Volume density maps of the shifted perpendicular lamellar-in-lamellar structure 

SLAM  of (B-b-A)2-b–C for 1202  ACAB NN   and 15BCN   a) A blocks; b) B 

blocks; c) C blocks. 

 

In order to understand how the copolymer chains fold in the perpendicular lamellar-in-

lamellar structure ( LAM , SLAM ) it is useful to present volume density maps for the 

most relevant parts of the chains. Fig. 3.28a shows the volume density map of the A 

blocks of (B-b-A)2-b–C that are directly connected to the long C blocks under 

conditions where LAM  is the equilibrium state. Because of this connection these A 

blocks are near the AC interface. The A blocks that are not directly linked to the C 

blocks form the core of the structure (Fig. 3.28b). The first B blocks that are connected 

at both ends to A blocks are preferentially present near the AB interface but also near 

the AC interface where they shield the AC interactions (Fig. 3.28c). The B end blocks 

form the core of the B domains but are also present at the AC interface (Fig. 3.28d).  
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         a)                                                          b) 

       

         c)                                                         d) 

Figure 3.28. Volume density maps of the different A and B blocks of the multiblock part of the (B-

b-A)2-b–C multiblock copolymers at 1202  ACAB NN   and 12BCN   where LAM  is the 

equilibrium state. a) A blocks connected to the C blocks; b) A blocks that are not directly 

connected to the C blocks; c) the B blocks that are connected at both ends to an A block; d) the B 

end blocks. 

 

Another interesting issue is the observation that the AC interface is not a straight 

line for the perpendicular lamellar-in-lamellar structures, as would be required to 

minimize the unfavorable contact between the A and C monomers (Fig. 3.24-3.27). 

This is due to the fact that the interface is formed by the junction points between the A 

and C blocks. As discussed in our previous theoretical work, the C blocks have to fill 

the space that equals that of the A and B blocks together. As a consequence, the C 

blocks are stretched in the direction perpendicular and parallel to this interface. In 

order to fill this space uniformly, and in particularly the region opposite the B phase, 

the polymers should be stretched a lot at the AC interface and much less far away from 
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the interface. To minimize the stretching close to the interface the shape of the 

interface becomes curved inwards into the region of the C blocks. The distance 

between successive AC junction point increases and the stretching energy of the C 

blocks decreases. Additionally the B blocks that are also present at the AC interface 

reduce the interfacial energy. 

As it is shown in Figs. 3.24c and 3.25c the shape of the interface between the C 

blocks and the AB blocks looks sinusoidal. In Fig. 3.24c, corresponding to the LAM  

structure, the AC interfaces in successive layers are in phase, whereas in Fig. 3.25c, 

corresponding to SLAM  phase, they are out of phase. Obviously this phenomenon 

should affect the stretching of the long C blocks. To illustrate this, the volume density 

maps of the ends of the C blocks are presented in Figure 3.29. For the non-shifted 

LAM  (Fig. 3.29a) the concentration of the open ends exhibits maxima. Not 

surprisingly, these are located in the middle of the C layers opposite the middle of the 

domains formed by the B blocks. In the shifted SLAM  case the C ends are distributed 

more uniformly along the midplane of the C layers with less pronounced maxima in 

front of the AB interfaces. This is the reason why the shifted structure is usually the 

preferred state (see phase diagrams Figs. 3.18 and 3.19). From an entropy point of 

view the system will have lower free energy when the C ends are uniformly distributed 

along the midplane.  

                  a)                                                b)  

Figure 3.29. Volume density maps of the free ends of C blocks of (B-b-

A)2-b–C for 2 120AB ACN N    and 15BCN  . a) Not shifted 

structure LAM ; b) Shifted structure SLAM  (equilibrium state). 

 

It is interesting to show how the key harmonics depend on the interaction 

parameters in order to investigate the transition from LAM  to SLAM . In Fig. 3.30 

the amplitudes of the key harmonics are presented for both structures of (B-b-A)2 -b–C 
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polymers as a function of 2AB ACN N   at fixed 15BCN   (see phase diagram  

Fig. 3.18). We see that the amplitude of the (2,0) harmonic approaches zero at the 

transition point between LAM  and  SLAM , i.e. 972  ACAB NN  . The phase of 

this harmonic also changes significantly. The (2,1) harmonic also decreases to zero but 

at 1052  ACAB NN  .  

 

 

Figure 3.30. Amplitudes of key harmonics for (B-b-A)2-b–C polymers as a 

function of 2AB ACN N   for fixed 15BCN   . Top: SLAM ; bottom: 

LAM . 

Another difference between SPLAM and PLAM structures is periods along the 

AB interface Lx and along AC interface Ly. Interesting that Lx for the SPLAM 
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structure is a little bit more than for PLAM and Lx less at 2 100AB ACN N    and 

15BCN  . In the transition point Lx and Ly for both states are equal. At 

2 97AB ACN N    the PLAM structure becomes more extended in y direction. 

 

 

3.4.3 Conclusion 

 

A new SCFT technique for incompressible three-component block copolymers is 

developed. This technique is more general because it takes into account all possible 

cases when the matrix (3.43) is degenerate or non degenerate. The limits of the SCFT 

applicability are outlined for such copolymer systems. 

Two types of multiblocks copolymers were investigated using SCFT method. It 

was shown that the standart technique to solve system of SCFT equation for ternary 

systems has restrictions. The standart iteration scherm do not converge in, on and close 

to so called Hildenbrand surface. Therefore different ways were introduced to solve 

the system of SCFT equations on and close to this surface. The parameter space inside 

the Hildenbrand surface can, however, still not be calculated using the standard ways 

of solving the system of SCFT equations.  

It was shown that (B-b-A)2-b–C and A-b-(B-b-A)2-b–C ternary copolymers self-

assembly in such structures as: parallel lamellar-in-lamellar, shifted perpendicular 

lamellar-in-lamellar and perpendicular lamellar-in-lamellar. Phase diagrams were 

presented. A significant difference was found between the phase behavior of (B-b-

A)2-b–C and A-b-(B-b-A)2-b–C copolymers. PLAM is stable only for first one. 

Furthermore, the region of stability of the SPLAM structure extended to higher values 

of 2AB ACN N   for the second copolymer. By comparing the volume fraction 

profiles it was shown that the free ends of the C blocks distributed more uniformly 

along the midplane in the case of SPLAM compared to PLAM.  

Different parallel lamellar-in-lamellar structures were observed. For relatively 

small values of BCN  an extra layer of the A, B and C blocks mixture appears. The 

blocks of type B, due to the reduced incompatibility with the C blocks, penetrate into 

the interface formed by the directly connected A and C blocks. Increasing the value of 

2AB ACN N  , results into reconfiguration of internal layers composition. Due to fact 

that investigation was done in 2d, it is still an open question how the B blocks are 

distributed in the AC interface in three dimensions. 
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3.5 Summary 

 

A-b-(B-b-A)n–b–C and (B-b-A)n–b–C ternary multiblock copolymer melts were 

investigated using different theoretical approaches. The first part of this chapter is 

devoted to the SSL approach. The free energies for the four different structures found 

experimentally by Bates and co-workers, disordered, simple lamellae, parallel and 

perpendicular lamellar-in-lamellar, were calculated. By comparing these free energies 

it was found that the perpendicular lamellar-in-lamellar state becomes stable when the 

interaction parameters satisfy the relation ACBC  22.00  . In order to find new 

structures DPD was performed and the results are presented in part two of this chapter. 

A few new structures were found: inverted lamellae with different number of internal 

layers and two perpendicular lamellar-in-lamellar structures, i.e. ―shifted‖ and ―not 

shifted.‖ A metastable perpendicular lamellar-in-lamellar state that occurred 

sometimes involved AB lamellae from one layer which were perpendicular to the AB 

lamellae from the next one. By changing χBC from zero to NχBC >>10 the transition 

from binary to ternary multiblock copolymer melts were investigated. DPD allowed us 

to find different pathways for this transition. One sequence is: highly fluctuating 

disordered state – perpendicular lamellar-in-lamellar - parallel lamellar-in- lamellar. 

Another one is: inverted lamellae with three internal layers - inverted lamellae with 

five internal layers - perpendicular lamellar-in-lamellar - parallel lamellar-in-lamellar. 

To verify the DPD and SSL data a SCFT study was next performed. We restricted 

ourselves to 2d in order to save calculation time. The traditional SCFT approach has 

some limitations for ternary systems which implies that not every point in the 

parameter space ( BCACAB  ,, ) is accessible. A new technique of solving SCFT 

system of equations was implemented in order to extend the accessible parameter 

value space. With SCFT stability regions of shifted and not shifted perpendicular 

lamellar-in-lamellar states were found. Complex phase behavior and alignment of 

blocks in different structures were discussed. It was shown that the distribution of the 

C end blocks is involved in the reduction of the free energy of the shifted structure 

with respect to the not shifted. Phase diagrams were calculated and they were shown to 

be in good agreement with SSL and DPD results. 
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4.1 Introduction 

 

The ability of block copolymer-based systems to form highly ordered complex 

nanostructures has been the focus of attention for many years [1-10]. This continued 

interest is driven by the prospects to develop nanotechnology applications, such as 

nanostructured membranes, complex catalysts, nanowires, photonic crystals, to mention 

only a view [11-14]. The self-assembly of diblock copolymers is well understood by now 

[5,6], although new developments still occur [7,8], and much of the research shifted to 

the study of self-assembly in copolymers with a more complex molecular architecture, 

such as tri- star- and multiblock copolymers, where already many new structures have 

been found experimentally and theoretically [15-24].  

In the present paper we focus on comb copolymers, where the same types of side 

chains are attached to both blocks of a diblock copolymer. The structure formation in 

conventional comb copolymers, i.e. with a homopolymer backbone, has already been 

presented in some detail in the literature [25-30]. Phase diagrams of various comb 

copolymer systems have been published and, although different in details, the general 

trends are the same as for diblock copolymers. Most importantly, rather than the overall 

chain length, it is the length of the ―repeat unit‖ that determines the order-disorder 

transition temperature as well as the characteristic length scale of the ordered structures. 

Gido and co-workers [31-34] used this observation to initiate a strong segregation 

description of comb copolymers based on the so-called ―constituting block copolymer 

hypothesis.‖ According to this hypothesis, the repeat unit of a comb copolymer system is 

the determining factor for the microphase separated morphology. The weak segregation 

description of these systems lends further support to this proposition. The behavior of 

molecules with large, complex architectures is dictated by the behavior of the smaller 

architectural units from which they are comprised. Existing theory (e.g. ref. 35) is then 

used to predict the behavior of the repeat unit (i.e. the constituting block copolymer), 

which is then applied to the overall multigraft architecture. 

Since the length scale of the structures corresponds to the length scale of the repeat 

unit, the characteristic domain size will usually be smaller than in the case of linear 

diblock copolymers. Combining a comb copolymer and a homopolymer into a comb-coil 

diblock copolymer molecule, the microphase separation between the homopolymer block 

and the comb block gives rise to a large length scale structure. Subsequent microphase 

separation inside the comb block containing domains will introduce the second shorter 

length scale [36, 37]. The experimental realizations of these kinds of structures are all 

based on comb-coil diblock copolymer-based supramolecules, where the side chains of 

the comb block are bonded by physical interactions [38-42]. So far mainly diblock 

copolymers of polystyrene and poly(4-vinylpyridine), PS-b-P4VP, have been used in 

combination with, e.g., pentadecylphenol (PDP) or dodecylbenzenesulfonic acid 

(DBSA), that form hydrogen bonds with the pyridine moiety of P4VP. Our current 

experimental activities seek to replace the PS block by another polymer block that also 

allows hydrogen bonding to PDP, thus obtaining supramolecular diblock copolymer-
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based comb copolymers [43]. In the present paper we present a theoretical strong 

segregation analysis of the self-assembly in such systems, assuming the side chains to be 

covalently linked to both blocks of the diblock copolymer backbone. 

 

 

4.2 Theoretical investigation 

 

The phase behavior of (A-comb-C)-b-(B-comb-C) diblock copolymer melts is 

investigated using the strong segregation theory approach introduced by Semenov.  

 

 

4.2.1 Model and theoretical approach 

 

A schematic representation of the (A-comb-C)-block-(B-comb-C) comb diblock-

copolymer chains investigated is shown in Fig. 4.1. Before we start with the analysis we 

will introduce our notation. 

 

 
Figure 4.1. Schematic representation of comb-like diblock-copolymer chain. 

 

The A- and B-blocks consist of NA and NB statistical segments, respectively. The C 

side chains contain Cn  segments and the number of all C-segments per copolymer chain 

is denoted by NC. Hence, the number Cm  of C side chains per molecule is given by 

C
C

C

N
m

n
 . The total number of segments per copolymer chain is denoted by N2  and 

equals NA + NB + NC = 2N . It is assumed that all chain segments have the same length a 

and volume υ. The volume fraction of C segments is denoted by C . The volume fractions 

of A- and B-blocks are  1A C A     and  1B C B    , respectively, where A , resp. 

B , denotes the volume fractions of the diblock backbone in absence of side chains, i.e. 
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1B A   . The length of the chain section between two neighbouring C blocks is 

A B
b

C

N N
n

m


 , so that the  A-blocks contain A

A

b

N
m

n
  short blocks of length n  and the B-

blocks B
B

b

N
m

n
  of such short blocks. Each of these short A- and B-blocks contain one C 

side chain grafted to the middle of it. The total number of AC + BC repeat units in the 

copolymer chain is denoted as m  ( Cm m ). Hence, the total number of segments in the 

AC (BC) repeat unit equals 
2N

n
m

 . Obviously, ,   A A B Bm m m m   , 

 1 ,   b C C Cn n n n    . We will assume that n
 
is sufficiently larger than Cn  so that the 

comb-copolymer chains do not form a bottle-brush. The interactions between the 

segments of different types are described by the Flory-Huggins interaction parameters 

ACAB  ,  and BC , all of which are assumed to be positive. 

We first consider the disordered state, which is realized when the values of the interaction 

parameters are sufficiently small. The dominating contribution to its free energy comes 

from the interactions between the different components, which per copolymer chain is 

given by 

       2
2 1 1 1DIS AB C A B AC C C A BC C C BF N                                      (4.1) 

 

Increasing the unfavorable interactions between the segments various kinds of 

microphase separation between the different blocks become possible. We focus on three 

different situations, (1) – microphase separation occurs between the AC and BC comb-

blocks only, (2) – microphase separation occurs between the C blocks and the AB 

diblocks and (3) – microphase separation occurs between all block species A, B and C. 

We will analyse these three situations employing the strong segregation limit (SSL). We 

will furthermore restrict our discussion to the simplest (classical) structures.  

To denote the different self-assembled structures, superscripts will be used to indicate the 

different phases and subscripts to denote the minority phase. As an example, /AC BC

ACHEX  

denotes hexagonal microphase separation between the AC and BC comb blocks with the 

AC blocks forming the core of the cylinders. 

 

 

4.2.2 AC comb blocks microphase separated from BC comb blocks 

 

In the case of microphase separation between the AC and BC comb-blocks only, 

the concentration profile of the C component may assumed to be constant throughout the 

system, C const  . In the strong segregation limit the thickness of the interface layer   

between the AC and BC domains is much smaller than the Gaussian size of the 
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copolymer chain which is of the order of 1/ 2

0R aN . In this case the free energy can be 

presented in the form 

 

intel gradF F F F                                                         (4.2) 

 

Here elF  is the stretching energy of the A and B blocks (it is assumed that the C-blocks 

are not stretched),  is the conformational free energy loss due to the non-

homogeneous profiles of the A and B species (the corresponding free energy density is 

given by 
2 22 ( ) ( )

24 ( ) ( )

A B
grad

A B

z za
f

z z

 

  

  
  

 
) and  is the interaction energy. The free energy 

(4.2) per one copolymer chain, which occupies on average an interface area  , is given 

by  

 

 

 
   

22
21 ( )

1 ( ) 1 ( )
24 ( ) 1 ( )

C A

el AB C A A

A A

AC C A BC C B

za
F F dz z z

z z

N N

 
   

  

   





 
        





             (4.3)

 

 

Here we use . After minimization this expression with 

respect to  we obtain , where  is the 

interfacial thickness. With this the free energy becomes 

 

                                            (4.4) 

 

where  
3/ 2

/ 1
6

AB
AC BC C

a 
 


   is the effective surface tension and /AC BCF  is the 

interaction energy of the AC/BC mixture 

 

                                   (4.5) 

 

 

4.2.2.1 Lamellar structure 

 

When the volume fraction of the A and B components are sufficiently close to 

each other a lamellar structure will be formed. The layers consist of alternating AC and 

BC mixtures (Fig. 4.2). The A and B blocks are stretched in the direction perpendicular 

to the interface on a distance dA and dB respectively. The C blocks are assumed not to be 

stretched. 

gradF

intF

 ( ) 1 ( ),   ,j C jz z j A B    

( )A z
1

( ) 1 tanh
2

A

z
z

  
    

    

1

6 1AB C

a
 

 


/ /tot el AC BC AC BCF F F  

   / 2 1AC BC C C AC A BC BF N        
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Figure 4.2. Schematic representation of the lamellar phase 
/AC BCLAM  when AC blocks 

microphase separate from BC blocks. 

 

We will use the Alexander – de Gennes approximation for the stretching energy of the  

A- and B-blocks, which implies that the free energy per copolymer chain is given by  

 

 /

2 2

/ /2 2

3 3

2 2
AC BC

A B
AC BC AC BCLAM

A B

d d
F F

N a N a
                                   (4.6) 

 

Here the first two terms represent the stretching energy of the A- and B-blocks, the third 

term is the interfacial free energy and the last term the interaction energy of the AC and 

BC mixtures. Minimization of this free energy with respect to the interfacial area   

taking into account the incompressibility conditions 

 

2 ,      2A A B Bd N d N                                                     (4.7) 

 

results in the following period of the lamellae structure 

 

   
1/ 6

5

0

4
2 (1 )

6
A B AB Cd d R N                                           (4.8) 

 

and a free energy 

 

         /

1/3 2/31.5( ) (1 ) 2 1AC BC AB C C C AC A BC BLAM
F N N                           (4.9) 
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4.2.2.2 Hexagonal structure 

 

When the volume fraction of B-blocks (A-blocks) decreases the formation of the 

hexagonal structure  ( ) is expected.  

 

 

Figure 4.3. Schematic representation of the hexagonal phase  when the AC blocks 

microphase separate from the BC blocks that form the core. 

 

Assuming that the chains are stretched non-uniformly in the core [2] and uniformly in the 

shell, the free energy per copolymer chain in the hexagonal structure with the BC comb-

blocks forming the core can be written as: 

 

 /

2 2

/ /2

3 1
ln 2

16 8
AC BC
BC

in
in AC BC AC BCHEX

B B

R
F R L F

N a


 



  
      

  
               (4.10) 

 

where 
2 2

2 16

in

B

R

N a


 is the stretching energy of the polymer chains forming the core and 

2

2

3 1
ln

8

in

B B

R

N a 

 
 
 

 is the stretching energy of the chains in the shell. The second term is the 

interfacial energy, with L the length of the cylinder per copolymer chain. After 

minimization of this energy with respect to inR  using the incompressibility conditions  

 

    
2 22 ,    2ex in BR L N R L N                                          (4.11) 

 

/AC BC

BCHEX /AC BC

ACHEX

/AC BC

BCHEX
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we get  

 

1/ 6

4 5
1/ 2

0 2
2

(1 )
R 4 ,   R R

6 6ln

B C AB
in ex in B

B

N
R

  


 



 
  

 
                                (4.12) 

 

The corresponding free energy per copolymer chain is 

 

     

   

/

1/3 1/32/3 1/3 20.83 1 6ln

2 1

AC BC
BC

C B B ABHEX

C C AC A BC B

F N

N

    

     

   

 
                (4.13) 

 

Of course, when the AC comb-blocks form the core a similar expression is obtained. 

 

 

4.2.2.3 BCC structure 

 

At a sufficiently small volume fraction of B blocks the  structure, with 

BC comb blocks forming the spheres, becomes preferable (Fig. 4.4). Using the same 

assumptions as for the hexagonal structure, the free energy per copolymer chain is given 

by 

 

  /

2 2
1/3 2

/ /2

3 1 1
1 4

80 2
AC BC
BC

in
B in AC BC AC BCBCC

B

R
F R F

N a Q


  

 
     

 
                   (4.14) 

 

where Q is the number of copolymer chains in the spherical domain. The stretching 

energy for the core is , and for the shell  
2

1/3

2

1
1

2

in
B

B

R

N a
 . The second term is the 

interfacial energy. 

Incompressibility implies: 

 

    3 34 4
2 ,     2

3 3
ex in BR N Q R N Q                                          (4.15) 

 

After minimization with respect to  the free energy is found to be 

 

      

   

/

1/3 1/32/3 1/3 2 1/30.63 1 3 40 1

2 1

AC BC
BC

C B B ABBCC

C C AC A BC B

F N

N

    

     

    

 
                        (4.16) 

 

/AC BC

BCBCC

2 2

2

3

80

in

B

R

N a



inR
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The internal and external radii of the micelle are given by  

 

  

1/ 6

4 5
1/3

0 2
2 1/3

75 (1 )
R 4 ,   R R

8 3 40 1

B C AB
in ex in B

B

N
R

  


 



 
  

 
                              (4.17) 

 

Again, the opposite case of AC comb-blocks forming the core follows by a simple AB 

permutation.  

 

 
 

Figure 4.4. Schematic representation of  phase where the AC blocks microphase 

separate from the BC blocks that form the core. 

 

 

4.2.2.4 Phase diagram 

 

Equations 4.1, 4.9, 4.13 and 4.16 allows us to construct phase diagrams for different 

volume fractions of the C-component, where the transition from the disordered to the 

ordered state is estimated by comparing the free energy of the disordered state (eq. 4.1) 

with any of the SSL expressions 4.9, 4.13 and 4.16. Figure 4.5 shows the phase diagram 

in terms of ABN  versus the volume fraction of B  of the B-block in the A-b-B diblock 

for 10,5.0  BCACC NN   and total number of side chains 20m . The critical 

Flory-Huggins parameter cAB, corresponding to the order - disorder transition at fixed 

0.5B   is 
 2,
1

4.10
2

C

cABN





 . When the volume fraction of C blocks equals zero we 

/AC BC

BCBCC
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arrive back at the simple diblock copolymer case of 4.102 , cABN . In the phase diagram, 

Fig. 4.5, the order – disorder transition occurs at 422 , cABN  for 0.5B  . 

 
Figure 4.5. Phase diagram for (A-comb-C)-block-(B-comb-C) when the C 

blocks are molecularly mixed with the microphase separated A and B blocks for 

fixed . Note, e.g.  denotes 

microphase separation between A-comb-C and B-comb-C with the former 

forming the core of the cylinders. 

 

 

 

4.2.3 AB backbone microphase separated from C side chains 

 

Increasing the repulsion between the backbone and the side chains while at the 

same time reducing the repulsion between the A- and B-blocks results in the second type 

of microphase separation that we consider, i.e. microphase separation between the side 

chains C on the one hand and the AB backbone on the other. In the SSL approach the free 

energy of the resulting microstructures is given by  

 

10,5.0,20  BCACC NNm 
/AC BC

ACHEX
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  (4.18) 

 

where Fel is the elastic free energy of the A, B and C blocks. Minimization of this free 

energy with respect to the concentration profile  C z  gives  
1

1 tanh
2

C

z
z

  
    

  
 

where 
 0

1

6 AC A BC B AB A B

R
      

 
 

 is the interfacial thickness. With this the free 

energy becomes 

  /tot el AB C AB A B A BF F N N                                    (4.19) 

 

Here 
/

6

AC A BC B AB A B
AB C

a       




 
  is the surface tension of the AB/C interface.  

 

4.2.3.1 Lamellar structure 

 

Varying the volume fraction of the side chains and the value of the interaction 

parameters different microphase separated morphologies can be formed. The simplest 

case corresponds to the lamellar structure where the alternating layers consist of C blocks 

and mixed A and B blocks. As shown in Fig. 4.6, the A and B chain sections between 

two successive C blocks can form either bridges or loops. To deal with this we will use 

the approximation that the stretching energies of loops and bridges are equal. A 

schematic picture of the lamellar structure with period 2(H1+H2) is shown in Fig. 4.6.  

 

 
Figure 4.6. Lamellar structure 

/AB CLAM  with C and AB lamellae. 
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               (4.20) 

 

Here the first term corresponds to stretching free energy of the C blocks, the second term 

represents the stretching free energy of the A and B blocks, the third term is the surface 

free energy of the (AB)/C interface and the last term is the interaction energy of the AB 

mixture. 

Incompressibility implies 

 

                               (4.21) 

 

After minimization of the free energy with respect to   using Eq. (4.20) we obtain for 

the period of the structure 

 

                    (4.22) 

 

Its free energy is 

 

     /

1/31/32/31.5 4 3 2 1AB C C AC A BC B AB A B AB A B CLAM
F m N N N N                

   
 (4.23) 

 

For large values of N the free energy increases linearly with N.  

 

 

4.2.3.2 Hexagonal structures 

 

Besides the lamellar structure, two different hexagonally ordered cylindrical 

structures, denoted as  and , are possible (Fig. 4.7). In the former the 

core of the cylinders is formed by the AB diblocks and in the latter by the C side chains. 

The internal and external radii of the cylinders are denoted as Rin and Rex, and L denotes 

the cylinder length per copolymer chain. When the core is formed by AB diblocks, the 

―short‖ A and B sections between consecutive side chains form only loops. The free 

energy of the phase can be written as: 
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Taking into account the incompressibility conditions  and , 

we obtain after minimization of the free energy with respect to Rin 

 

,      (4.25) 

 

where . Using the expressions for Rin and  the free energy can 

be written as  

 

          (4.26) 

 

The other possibility arises when the volume fraction of the backbone is much higher 

than that of the side chains. In that case the AB diblocks form the matrix and, therefore, 

the copolymer chain can belong to more than one cylinder. Assuming again that the 

stretching free energy of the loops and the bridges connecting different elementary cells 

is equal, the free energy per copolymer chain is given by 

 

           (4.27) 

 

After minimization with respect to the radius of the core taking into account the 

incompressibility conditions 
 
and  we get 

 

 ,          (4.28) 

 

where . Using this expression for Rin and the expression for /AB C  the 

free energy becomes 
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a)                                                                            b) 

Figure 4.7. Schematic illustration of hexagonal structure: a) with core of the cylinder formed 

by the AB diblocks,  b) with core of the cylinder formed by the C side chains. 

 
 

Figure 4.8. Schematic illustration of hexagonal structure where the core of the cylinders is 

formed by the C side chains.  
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4.2.3.3 BCC structures  

 

When the volume fraction of either C or AB is sufficiently small BCC structures 

may appear (see Fig. 4.9). Using the standard approach [2], the free energy of the 
/AB C

ABBCC  structure when the core of the cylinders is formed by the AB diblocks is given 

by 
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          (4.30) 

 

 
 

Figure 4.9. Schematic illustrations of the two BCC structures: a) , where core of the sphere is 

formed by AB diblocks and b) , where core of the sphere is formed by the C side chains. 
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. When 

the matrix consists of the AB diblocks the free energy is given by 
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The incompressibility conditions in this case read 24
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After minimization of the corresponding free energies we arrive at the following results: 

 

 , , 

 ,       (4.32)                      
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Using eqs. (4.30-4.32) the free energy of the  phase (matrix of C-blocks) can be 

written as 
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               (4.33) 

 

For the second BCC phase (matrix of AB diblocks) we find 
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4.2.3.4 Phase diagram 

 

Free energies as a function of the volume fraction of C blocks for the different 

morphologies are shown in Fig. 4.10. It is easy to see that the free energy behavior of all 

the structures is asymmetric. This effect can be explained by the way the matrix is 

formed by either AB diblock chains or by C side chains. In Fig. 4.11 the stretching 

energy for the lamellar case of the AB diblocks and the C blocks versus the volume 

fraction of C blocks is presented at fixed values of the Flory-Huggins interaction 

parameters. It is easy to see that the stretching energy of the AB loops becomes equal to 

the stretching energy of C side chains when the volume fraction of the latter 

approximately equals . This big difference in stretching energies automatically 

leads to the asymmetric behavior observed.  

 

1

2 3
1/6

,1 0 2

1

6(1 )
R C

in AC A BC B AB A BR N N N
m


      



 
   

 
 

1/3

,1 ,1R R 1ex in C


 

 

1

2 3
1/6

,2 0 2

2

6
R C

in in AC A BC B AB A BR R N N N
m


      



 
    

 

1/3R Rex in C


/AB C

ABBCC

0.8C 



Strong segregation limit approach   

 

 97 

 
Figure 4.10. Free energies as a function of the volume fraction C  of the C blocks for Flory-

Huggins interaction parameters , ,  and 1000,20  Nm . Here 

the notation of, e.g., Hex C denotes hexagonal structure with C blocks forming the matrix. 

 
Figure 4.11. Streching energy for lamellar case for the AB diblocks and the C blocks versus the 

volume fraction C  of the C blocks for Flory-Huggins interaction parameters ,

,  and 1000,20  Nm . Solid line corresponds to stretching energy of AB 

blocks and dotted line to that of the C blocks. 

 

Figure 4.12 presents one possible phase diagram in terms of the volume fraction of 

the C blocks and the interaction between C and AB diblocks, for fixed values 
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Figure 4.12. Phase diagram of (A-comb-C)-b-(B-comb-C) when A and B are mixed as a function  

of the volume fraction C  of C blocks and interaction strength  for fixed 

. 

 

The effect of the asymmetry is obvious. Compared to simple diblocks, the lamellar 

region shifts, in agreement with the analysis presented in ref. 35, to higher values of the C 

volume fraction. At small values of the volume fraction of C blocks  the  

structure with the cores formed by the C blocks becomes stable. At higher values of  

the hexagonal structure becomes preferable. For  the lamellar structure is 

formed. A further increase of C  transfers the system directly into the  phase 

where the core is formed by the AB blocks, thus bypassing the hexagonal structure. The 

hexagonal structure becomes unfavorable because of an insufficient amount of AB blocks 

to form the core.  

 

 

4.2.4 Hierarchical Structure Formation 

 

Finally we consider the most interesting case where all three different types of 

blocks microphase separate from each other. For simplicity we restrict ourselves to the 

case where the C and A+B monomers form a lamellar structure, with additional 

microphase separation between the A- and B-blocks inside the corresponding layer. 
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Three different morphologies, namely a perpendicular lamellar-in-lamellar, a parallel 

lamellar-in-lamellar and a hexagonally packed disks-in-lamellar structure will be 

considered.  

 

 

4.2.4.1 Perpendicular lamellar-in-lamellar structure 

 

The perpendicular lamellar-in-lamellar structure can appear when the volume 

fraction of the B blocks is close to the volume fraction of the A blocks, Fig. 4.13. As 

above, we assume that the loops formed by the ―short‖ A and B sections are stretched in 

the y direction (the direction perpendicular to the C layers) up to the mid plane (= 

distance H1). In the x direction, which is perpendicular to the secondary lamellar 

structure, the full A resp. B blocks are stretched up to a distance dA (dB), respectively (see 

Fig. 4.13). The C blocks are stretched only in the y direction up to a distance H2.  

The free energy (per copolymer chain) of this structure can be approximated as the sum 

of the stretching and interfacial free energies : 

 

ll A B C AB AC BCF F F F F F F                                        (4.35) 

 

Here  are the stretching free energies of the A, B and C blocks, respectively, 

given by 

 
2 2 2 2

1 1
, , , ,2 2 2 2

2

2
, 2

3 3(2 ) 3 3(2 )
;

2 2 2 2

3

2

A B
A A x A y A B B x B y B

A b B b

C C y C

C

d H d H
F F F m F F F m

N a n a N a n a

H
F F m

n a

       

 

            (4.36) 

and  are the interfacial energies: 

 

                           (4.37) 

 

where , ,  are the interfacial areas per copolymer chain.  

Incompressibility implies 

 

            (4.38) 
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Figure 4.13. Schematic illustration of the perpendicular lamellar-in-lamellar structure. 

 

 

After minimization of the free energy (4.35) with respect to the variables , 

 using eqs. (4.36-4.38) we find for the periods of the lamellar structure 

  

; 

                                           (4.39) 

 

Using these, the free energy (4.35) becomes 

 

 
 

(4.40) 

1 2,  ,  ,  A BH H d d

,  ,  AC BC AB  

 
 

 

1

3

1 2 0 2

12
2 2

3 4 3

B BC B AC

C

N N
H H R

m

   



  
   

  

     
2/3 1/6

0

2
2 2 1

3
A B C ABd d R N   

         
2/3

1/3 1/3 1/3 1/ 2 1/ 2/ / 2 /31.5 1 4 3 (1 )A B C

C AB C AC B BC BF N m N N      

       
   



Strong segregation limit approach   

 

 101 

4.2.4.2 Parallel lamellar-in-lamellar structure 

 

Another possibility is to have the AB interface parallel to the AC and BC 

interfaces as illustrated in Fig. 4.14. Now the stretching of the C blocks and the ―short‖ A 

and B sections occurs only in the direction perpendicular to the interfaces between the 

components. The C blocks that are connected to the A blocks are stretched over a 

distance HC1 and the C blocks connected to the B blocks are stretched over a distance 

HC2. The A blocks are stretched over a distance HA and the B blocks over a distance HB. 

Hence, the period of the lamellar structure is .  

The stretching free energies are given by 

 

                                      (4.41) 

 

And the interfacial free energies by 

 

                                  (4.42) 

 

 

 

 
 

Figure 4.14. Schematic illustration of parallel lamellar-in-lamellar structure. 
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Incompressibility implies 

 

                     (4.43) 

 

Here   is the interfacial area per copolymer chain (section) of the different components. 

After substitution of eqs. (4.41 -4.42) in the free energy eq. (4.35) and minimization, the 

period is found to be  

 

                        (4.44) 

 

With this the free energy becomes 

 

      (4.45) 

 

The free energy of the parallel lamellar-in-lamellar structure is a function of 

 with a minimum at .  

 

 

4.2.4.2 Hexagonally packed disks in lamellar structure 

 

When the volume fraction of the B or A component is sufficiently small, 

microphase separation inside the AB layers may result in hexagonally packed disks with 

the core of the disks formed by the minority component (Fig. 4.15). Suppose the B blocks 

form the core and the A blocks the matrix. The C blocks form lamellar layers. The 

thickness of the C-layers is 2H2 and the thickness of the AB layers is 2H1.  

As always, the free energy of the structure can be written as the sum of the elastic and the 

interfacial free energies (4.35).The stretching free energies of the different blocks are 

given by 
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The interfacial energies
 

are 

 

         (4.47) 

 

where Q is the number of copolymer chains per disk. 

 

 

 
a)                                                                                        b) 
Figure 4.15. Schematic illustrations of hexagonally packed disks inside a lamellar structure a) three 

dimensional view, b) interface between AB and C bocks. . 

 

Incompressibility implies 

 

 
2 2 2

1 1 22 ( ) ;   2 ;   2ex A B in A ex CR H N N Q R H N Q R H N Q                            (4.48) 

 

When 1Q  (this condition will be verified afterwards) minimization of the total free 

energy (4.35) with respect to parameters of the hexagonal structure using eqs. (4.46-4.48) 

results in a  period 2(H1 + H2) and a radius Rin given by 

 

, ,AB AC BCF F F

 1 2 2 1 2 1

14 ; 2 ; 2AB in AB BC ex in BC AC in ACF R H Q F R R Q F R Q          
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                                          (4.49) 

 

This results in a free energy given by 

 

                  (4.50) 

 

The number of chains per disk is found to satisfy 

 

                 (4.51) 

 

In order to prove the assertion that 1Q , Q is plotted in Figs. 4.16 and 4.17 as a 

function of the composition resp. as a function of the interaction parameters. Figure 4.16 

demonstrates that for  and  the number of chains Q > 10 for interaction 

parameter values satisfying .  

Figure 4.17 shows Q as a function of the interaction parameters  at 

fixed volume densities when the hexagonal structure is formed. Starting from 50N   

the number of chains remain at Q>10.  
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Figure 4.16. The number of chains Q per disk as a function of different volume factions: 1)

 A  at 

fixed , 2) C  at fixed . All calculations were performed at fixed 

. 

 

 
Figure 4.17. The number of chains Q per disk as a function of the Flory-Huggins interaction 

parameters 1) , 2) , 3)  at fixed . 

Extreme values were chosen to prove that Q does not drop below 10. 

0.7C  0.5A 

100, 200AB AC BCN N N    

ABN AC BCN N  AB AC BCN N N    0.1, 0.9A C  
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4.2.4 Results and discussion 

 

We will now discuss several scenarios. We start with fixed volume fractions 

 and plot phase diagrams in the ( ABN , AC BCN N  )-plane for 

different values of the number of side chains m. Because of the volume fractions selected 

only lamellar domains are possible (cf. Fig. 4.12). At sufficiently small values of the 

Flory-Huggins interaction parameters  the disordered state DIS is stable. By 

increasing the interaction between the A and B blocks, keeping the interaction between 

backbone and side chains fixed, the system self-assembles in the lamellar state LAM
AC/BC

 

with alternating layers formed by AC and BC mixtures. As discussed above, this regime 

corresponds to that of simple symmetric diblocks with effective Flory-Huggins parameter 

. On the other hand, if the interaction between the A and B blocks remains 

sufficiently small and the interaction between the backbone and the side chains increases, 

at some point a lamellar state LAM
AB/C

 will be formed with alternating layers consisting 

of C side chains and AB mixtures. At sufficiently high values of all three interaction 

parameters all three components will microphase separate from each other. Then two 

types of lamellar phases are possible, one where the layers formed by the A or B blocks 

are aligned perpendicularly with respect to layers formed by the C blocks, , and 

one where all layers are parallel, 
/ /

||

A B CLAM . Figure 4.18a presents the phase diagram for 

m = 2. The transition between the partially and fully micro phase separated states occurs 

at small values of  (from /AC BCLAM  to / /A B CLAM  ) and small values of  

(from /AB CLAM  to 
/ /

||

A B CLAM ). The border between parallel lamellar-in-lamellar and 

perpendicular lamellar-in-lamellar is the straight line . At m = 3 

(Fig. 4.18b) the region of parallel lamellar-in-lamellar  becomes smaller and the 

straight transition line between 
/ /

||

A B CLAM  and  changes into 

. At higher values of m the parallel lamellar-in-lamellar 

phase disappears (Fig. 4.18c). Increasing the number of side chains m the chain sections 

between consecutive side chains and the side chains become shorter and higher values of 

the Flory-Huggins parameters are required to induce microphase separation. As a 

consequence, the stability regions of /AB CLAM , /AC BCLAM  and the disordered phase DIS  

all increase. The parallel lamellar-in-lamellar phase becomes unfavorable due to the high 

AB interfacial energy. In Fig. 4.19 the free energies of the parallel and perpendicular 

lamellar phases are shown as a function of the number of side chains m. For the fixed 

values of the other parameters selected, the free energies become approximately the same 

for m = 3.  

 

0.7, 0.5C A B    

, ,AB AC BC  

 
2

1 C AB 
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2 2AB AC BCN N N   

/ /
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a) 

 
 

b)  
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c)  
Figure 4.18. Phase diagrams of the lamellar phases of (A-comb-C)-b-(B-comb-C) as a function of 

the Flory-Huggins interaction parameters  and  for fixed 

 a) m =2; b) m =3; c) m =10 

 

 
 

Figure 4.19. Free energy of the lamellar phases as a function of the number of side chains m. Solid 

line represents free energy of the perpendicular lamellar-in-lamellar phase and the dotted line the 

parallel lamellar-in-parallel lamellar phase. 
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Next we turn our attention to asymmetric diblock backbones. Figure 4.20 presents 

phase diagrams as a function of the Flory-Huggins interaction parameters  

and the volume fraction B  of B. The diagrams are calculated at a fixed volume fraction 

of C blocks , because in that case the fully separated system consists of 

alternating C and AB layers with different internal structures in the AB layers. Figure 

4.20a corresponds to . In this case, as long as , the 

phase behavior has already been presented in phase diagram Fig. 4.5. When 

, four different phases are stable. As a function of the volume fraction 

 these are the lamellar /AB CLAM  phase, the disk-in-lamellar phase  (Fig. 4.15, 

core formed by B), the perpendicular lamellar-in-lamellar structure , the disk-

in-lamellar phase  (core formed by A) and again the lamellar /AB CLAM  phase. 

For sufficiently low or high volume fraction B  the A and B blocks form a disordered 

phase and the system essentially resembles a simple comb copolymer system. When  

m = 2 (Fig. 4.20b) the parallel lamellar-in-lamellar state  appears in the range 

. At  the lowest transition point occurs at ≈ 98. 

The border line between the fully microphase separated system and AC/BC phases shifts 

to smaller values of Flory-Huggins interaction parameters  ≈ 25. 

Decreasing  to 100 changes the phase diagram considerably (Fig. 4.20c). The BCC 

phases are not stable anymore and the width of disordered state area increases.  

 
a) 

AC BCN N 

0.7C 

10, 200ABm N  100AC BCN N  

100AC BCN N  

B
/ /A B C

BHEX

/ /A B CLAM

/ /A B C

AHEX

/ /

||

A B CLAM

0.385 0.615B  0.5B  AC BCN N 
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b)  

 
c) 

 
Figure 4.20. Phase diagrams of (A-comb-C)-b-(B-comb-C)  in terms of 

Flory-Huggins parameters  versus volume fraction B :  

a)  b) ;  

c) 
 

 

Figure 4.21 presents another series of phase diagrams, now in terms of the Flory-

Huggins interaction parameters  and the volume fraction of B blocks B . For fixed 

values  four different structures are possible.  

AC BCN N 

10, 200, 0.7AB Cm N    2, 200, 0.62AB Cm N   

2, 100, 0.7AB Cm N   

ABN

7.0,200,20  CBCAC NNm 
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At small values of  the lamellar phase with mixed AB blocks /AB CLAM  is 

formed. The borders between the different structures are similar to the borders in the 

phase diagram for simple diblock copolymers with the noticeable exception that the BCC 

structure is absence. Of course, the disordered state of the latter is replaced by the 
/AB CLAM , the HEX by / /A B CHEX  and the simple lamellar by . The reason 

becomes clear by comparing the free energy of the structures considered with the free 

energy of simple diblocks. The difference is the extra energy due to the C side chains, 

however, this extra energy is the same for all structures considered.  

When m = 3, the diagram is no longer similar to that of simple diblocks due to the 

appearance of . Its stability region is restricted to  for 

 (Fig. 4.21 b). Increasing the AC and BC interaction to 

 
(Fig. 4.21c) the stability region of  also increases  

to .  

 

 

 

 
a) 

24ABN 
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/ /
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b) 

 
c) 

Figure 4.21. Phase diagrams of (A-comb-C)-b-(B-comb-C) in terms of Flory-

Huggins interaction parameter  versus volume fraction B :  

a)  b) ;   

c) . 

ABN

,10, 200, 0.7AC BC Cm N   
,2, 200, 0.7AC BC Cm N   

,2, 400, 0.7AC BC Cm N   
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a) 

]  

b) 
Figure 4.22. Phase diagrams in terms of grafting density m versus 

volume fraction B  of B  blocks.  

a)   

b) . 

200, 0.62AB AC BC CN N N      

100, 0.7AB AC BC CN N N      
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Finally, in Fig. 4.22 phase diagrams are presented in terms of the grafting density m 

versus the volume fraction B  of B blocks. For increasing m the number of segments of 

the repeat unit n = 2N/m decreases and these diagrams are a kind of inverted versions of 

Fig.4.20 with two differences. Due to the integer values of m we have horizontal 

borderlines and secondly ABn  is not fixed any more The most striking observation 

concerns the stability region of 
/ /

||

A B CLAM , which strongly depends on m, the larger m, 

the smaller the region. 

 

 

4.2.5 Concluding remarks 

 

Using the strong segregation theory the self-assembly of diblock copolymer-based 

comb copolymers with chemically identical side chains (A-comb-C)-b-(B-comb-C) was 

investigated. Different regimes were considered. When the repulsion between the C side 

chains and the AB backbone is insufficient, the C blocks are mixed with the AB blocks 

with the A blocks microphase separated from the B blocks. In that case the behavior is 

equal to that of simple diblock copolymers with a renormalized Flory-Huggins parameter 

. The second case is characterized by mixed A and B blocks microphase 

separated from the C side chains. Due to the side chain architecture the phase stability 

region of the lamellar phase is shifted to . For the specific case considered  

( ) the hexagonal structure with the core of the cylinders formed by 

loops from the A and B blocks is no longer stable. Furthermore, the stability region of the 

BCC structure where the core of the spheres is formed by the C side chains is 

significantly increased compared to the simple diblock case. All these observations are in 

excellent agreement with previously reported results by Milner on the effect of chain 

architecture on the asymmetry in copolymer phase behavior [35]. The final case 

considered concerned the most interesting situation where all three components 

microphase separate from each other and hierarchically ordered structures are formed. 

The volume fraction of C side chains was assumed to satisfy  so that only 

lamellar structures, where one layer is formed by the C side chains and the other by the 

AB backbones, are stable. Perpendicular lamellar-in-lamellar and parallel lamellar-in-

lamellar and disk-in-lamellar phases were found and characteristic phase diagrams 

presented. In the case of a lamellar-in-lamellar morphology, the perpendicular lamellar-

in-lamellar is usually the preferred state. Only when the grafting density is relatively 

small, i.e. 4m , does the parallel lamellar-in-lamellar state become possible.  

 
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1 C AB 

0.6 0.8C 
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4.3 Comb-like diblock copolymers: dissipative particles dynamics 

investigation 
 

In order to verify some results obtained by SSL theory it was decided to use 

dissipative particle dynamics (DPD) [44-46]. This simulation technique was chosen 

because the collection of many monomers into a few bead-and-spring particles allows us 

to investigate the molecular behavior on a longer time- and length-scale. From the 

beginning DPD was proposed to simulate fluids, that is why it can be used to investigate 

dynamics of polymer melts.  

 

 

4.3.1 Model and calculation details 

 
The comb-like diblock copolymer DPD model is represented in Fig. 4.23. In our 

DPD simulations the lengths of the backbone and the side chains were taken to be 11 and 

3 DPD, respectively. The spacing between the side chains was fixed at 1 DPD bead, i.e. a 

side chain is attached to every other backbone bead. Hence, the volume fractions of the 

backbone and the side chains equal  and , respectively. These numbers 

were selected because this should give rise to large length scale lamellar structures, as 

demonstrated in Part 4.2 of this thesis. The size of simulation box was chosen to be 

almost twice as large as the backbone length Lbox = 20 to avoid boundary effects. The 

coefficients for the DPD soft-core potential are presented in Table 1. 

 

aij A B C 

A 25 120 120 

B 120 25 120 

C 120 120 25 

 

Table 1. Potential coefficients for different types of beads. 

 

 
 

Figure 4.23. Comb-like diblock copolymer DPD model, with NA = 6 NB = 5 NC =18. 

0,38bbf  0.62Cf 
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4.3.2 Results and discussion 

 
We start with the most asymmetric backbone where NA = 1, NB = 10, NC =18. 

When all interactions are strongly unfavorable the chains align well into a lamellar 

structure, where one type of layers consists of C beads and the other of A and B beads. 

The thickness of the alternating layers is different due to the unequal volume fractions of 

backbone and side chains. Because the repulsion between the A and B beads was taken to 

be high, a second scale microphase separation exists inside the AB layers. Since only one 

side chain is connected to the A block, the A beads are located at the interface between 

the C and B blocks (fig. 4.24a,b). There is not enough material to form A layers, so the A 

beads form a kind of disks. The radius of these disks is not large enough to have a 

hexagonal ordering (fig. 4.24c). They are too far apart and do not affect each other. The 

structure formation within the successive AB layers is independent from each other 

because they are screened by C layers. Hence there is no alignment between the A 

domains in the different layers.  

 

 
a)                                                                    b) 

 
   c) 

Figure 4.24. NA = 1, NB = 10, NC =18. a) Snapshot; b) Snapshot without B 
component; c) Density volume fraction profile of BC interface. White color represents 

B component.  
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In the present study the interactions between the backbone beads A, B on the one 

hand and the side chain C beads on the other were taken to be equal. This results in a flat 

interface between the C and AB compounds. Otherwise, if the interaction between A and 

C differs from that between B and C it is possible that the interface is no longer flat, 

because system will try to find a balance between interfacial and stretching energies. In 

that case the stretching of the C blocks becomes more complex and long range 

correlation between different AB layers can appear.  

When the volume fraction of the A species increases (NA = 2 or 3) the A type 

domains become bigger. The primary structure remains lamellar because of the volume 

fraction of C and A, B blocks. As shown by the SSL investigation, a cylindrical structure 

of the A domains appears at the same volume fraction ratio as for simple diblock 

copolymers. And, indeed, in our DPD simulations for NA = 2 or 3 we observe this 

cylindrical structure. Fig. 4.25a shows a snapshot of a characteristic disks-in-lamellar 

structure. Fig. 4.25b and c show one AB layer where it is clearly showing the hexagonal 

ordering of the A domains. By increasing the volume fraction fA, the radius of the 

cylinders increases. As in the previous case there is no correlation between the 

microphase separated structures in different layers. 

 
a)                                                                                   b) 

c)   
Figure 4.25. NA = 2, NB = 9, NC =18. a) Snapshot; b) Single AB layer, C component is 

not shown; c) Volume fraction profile of AB layer. White color represents A 

component.  
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The most interesting case is the near symmetric backbone case when NA = 5 or 6. 

For a simple AB diblock copolymer there should be a well-defined lamellar structure. 

Characteristic snapshots clearly show that a lamellar-like AB morphology is also 

established for our comb-like structures, Fig. 4.26. The A and B blocks self-assemble in 

stripes in each layer, but these stripes are not always well aligned. Fig 4.27 presents 

several volume fraction profiles for the A blocks. Well-aligned (Fig. 4.27b and c) and 

stripes that change direction (rotation on 90 degrees) are observed (Fig. 4.27a). This 

rotation can be explained by the kinetics of the strip formation. For example two centers 

with different directions of growth appear at the beginning of the microphase separation 

and after some time they will grow to maximum size and split with each other, because 

there are constrains by the side chains such a situation becomes quite stable and this 

defect has a very long relaxation time. 

It is should be mentioned that there is only a small amount of chains that belong to 

more than one layer. Never more than 10 chains on a total number of chains per 

simulation box equal to approximately 827. 

 
 

Figure 4.26. NA = 5, NB = 6, NC =18. a) Snapshot; b) Snapshot without A component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

           a)                                                     b)                                                     c) 

 

Figure 4.27. NA = 5, NB = 6, NC =18. Volume fraction profiles of A species in different layers, 

obtained by the annealing method. Red color represents maximum of volume fraction of B 
component. 
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           a)                                                     b)                                                     c) 

 

 

Figure 4.28. NA = 5, NB = 6, NC =18. Volume fraction profiles of A species in different layers 

obtained by fast cooling method. Red color represents maximum of volume fraction of B component. 

 

 

The ―quality‖ of the A- and B-stripes in the layers strongly depends on the method 

they were obtained. In principle there are two different methods. One is so-called fast 

cooling. In this case the interaction parameters change value in one step. If the 

parameters of the system change fast, the system can freeze in a metastable phase. The 

fast cooling method is good to find new phases, because such metastable states may be 

stable under certain conditions. The other method is annealing where the interaction 

parameter values change slowly. It our case the parameter values changed from their 

initial value to their end value during 2•10
6
 DPD time steps. Usually, the structures 

formed using the annealing technique have less defects. Fig. 4.27 presents volume 

fraction profiles of different layers obtained with the annealing method and Fig. 4.28 

those obtained with the fast cooling technique. The stripes in the first case are either 

straight or with one defect like changing direction with 90 degrees. In the second case the 

stripes are not straight and are connected to each other. Due to the comb-like architecture, 

the side chains strongly restrict the possibility for chains reconfiguration. As a 

consequence, such non-aligned stripes were stable during the calculation time of 5*10
6
 

DPD time steps.  

To study the dynamics of the A, B strip formation inside the layers, the order 

parameter S based on the Saupe tensor (Eq. 4.52) [47]) was calculated. 

 
3

( )
2

Q r r                                                       4.52 

 

Here r is a unit vector directed either along the bond which connects the A and the B 

beads or the bonds that connect the A and B beads with the attached side chain. The 

characters α and β are Cartesian indices, δ is the Kronecker symbol. The order parameter 

S is equal to the largest eigenvalue of the volume average of Qαβ. S is zero in the 

completely disordered state, and it should be equal to one if the system is perfectly 

aligned. Values of the other eigenvalues indicate the degree of ordering in secondary 

directions. If r is a unit vector directing along the bond which connects the DPD A,B 
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with C beads we address ordering of C layers. Fig. 4.29 shows the order parameter 

dependence on time in DPD time steps. In the case of fast cooling the order parameters 

increased to fixed values in the first 3*10
2
 time steps and remain the same during 

subsequent calculation time. The graph shows that the ordering between the backbone 

and the side chains goes faster than that between the A and B blocks. In the case of the 

annealing procedure the formation consist of two parts. First blobs are formed during 10
6
 

steps, than there is jump when the blobs connect to each other and form stripes. From 

time 10
6
 to 1.7*10

6
 the system undergoes ordering and after that the order parameters do 

not change until the end of the experiment. The value of S for the ordering between the A 

and B blocks is far less than for the ordering between side chains and backbone. This is 

due to the fact that the orientation of A and B strips in different layers is not correlated. 

Comparing values of S for fast cooling and for annealing, they are as expected higher in 

the latter case. 

 

 

 

 
a) b) 

 
Figure 4.29. Order parameter dependence on time. Black line describes ordering between backbone and 

side chains, red line describes ordering between A and B blocks in the layers. a) Fast cooling,  

b) Annealing. 

 

 

 

4.3.3 Concluding remarks 
 

Using dissipative particle dynamics, a comb like diblock copolymer melt was 

investigated. Only one type of polymers was considered with a fixed grafting density and 

fixed volume fraction of side chains. It was found that three types of structures are 

possible for this system. For all backbone compositions the C side chains formed nearly 

perfectly ordered layers. The difference is only in the structures formed inside the AB 

layers. For the smallest A fraction, the A blocks form not ordered disks. These disks pack 
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hexagonally at higher A fractions. Finally near symmetric backbone compositions lead to 

lamellar ordering or more accurately stripes. There is no correlation between the AB 

ordering in the successive AB layers. To achieve highly ordered structures the so-called 

annealing procedure is preferred. The morphologies observed are in excellent agreement 

with the theoretical SSL predictions. 

 

 

4.4 Summary 

 
Self-Assembly of (A-comb-C)-b-(B-comb-C) block copolymers in a melt was 

investigated using two different approaches. A theoretical study was presented using the 

strong segregation theory. Three major cases were considered. In the first case both 

disordered comb blocks are microphase separated from each other, in case 2 the side 

chains C are microphase separated from the disordered A-b-B diblock backbones and, 

finally, in case 3 all species A, B and C are microphase separated from each other. In the 

first case the phase behavior is almost the same as for simple diblock copolymers. The 

only difference is a renormalized Flory-Huggins interaction parameter. In the second case 

the region of stability of the different phases is significantly changed compared to simple 

diblocks due to the comb architecture. The fully microphase separated case is 

characterized by hierarchical structure formation. We restricted the analysis to systems 

where self-assembly results in the formation of alternating C-layers and internally 

microphase separated AB layers. The latter consist of either alternating A- and B-stripes 

or disks of the minority component. In the former case, the A- and B-stripes are generally 

perpendicular to the C-layers. The parallel orientation is only possible for small grafting 

densities. As a second approach the DPD simulation technique was used to investigate 

only the fully microphase separated case with fixed volume fraction of side chains and 

fixed grafting density. The DPD simulations confirmed the structures found in the SSL 

theory. Aspects of the dynamics of the  lamellar(stripes)-in-lamellar formation were 

discussed.  
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5.1 Introduction 

 

The characteristics properties of nanomaterials may depend strongly on the size. A 

good example is provided by single wall carbon nanotubes (SWNT), where changes in 

structure at the atomic scale can influence electronic and optical properties in a 

discontinuous manner. For most practical technologies it is therefore important to have 

control over the size of the nanostructures. The strong correlations between physical 

properties and size forced researches to find ways to prepare samples of SWNTs with 

well-defined geometrical properties, such as diameter, length and chirality. There are 

several approaches to sort SWNTs: selective chemistry, electrical breakdown, 

dielectrophoresis, chromatography, ultracentrifugation and improving monodispersity 

while growing SWNTs [1-7]. One of the latest surfactant-based separation methods of the 

purification process, the so-called density gradient ultracentrifugation, makes it possible 

to obtain narrow distributions of SWNTs in which over 97% of the SWNTs are within a 

0.02-nm-diameter range [8]. Using more complex dispersing agents, such as  

poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) it is possible to selectively solubilize certain 

semiconducting nanotube chiralities [9].  

One of the most interesting macromolecules is DNA. In recent years researches 

started to use DNA as highly flexible building blocks for devices [10–12]. Due to its 

amphiphilicity DNA can wrap around SWNTs and make them soluble in water [13]. It 

was shown that using specific oligonuceotide (ODN) sequences and chromatography it is 

possible to isolate individual SWNT species in solvent [13]. Other features of DNA can 

be used for non-destructive functionalization of SWNTs. Using hybridization of DNA 

highly ordered structures from SWNTs can be prepared [14,15]. Usually in studies of 

DNA and SWNT complexes, the macromolecules are bound by covalent bonds [16] or 

DNA is chemically modified [17,18]. DNA hybridization is hindered in such techniques 

due to the strong interaction between sidewalls and ODNs [19]. Another way is to 

combine two approaches by using a dispersant to isolate individual SWNTs and using 

DNA with a predefined structure to manipulate these SWNTs [20]. 

DNA – SWNT complexes were also studied by computer simulations [21-25]. 

Recent molecular dynamics simulations [24] of a SWNT interacting with DNA 

demonstrated that the DNA could be spontaneously encapsulated inside a SWNT in 

water. The van der Waals attraction between the nanotube and the DNA was found to be 

the main driving force for this phenomenon. However, the behavior of DNA depends on 

the diameter of the SWNT and on the initial position of both. If they are not specifically 

tuned, DNA wraps around SWNT [25]. 

 

In order to make water soluble CNT complexes with the ability to control the 

diameter of the carbon nanotube, nanotube/PFO-b-DNA block copolymer complexes 

were prepared. To proof that the PFO part of PFO-b-DNA is responsible for the 
selectivity properties, computer simulations were performed. 
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5.2 Model and Molecular Dynamics properties 

The Molecular Dynamics computer simulations performed used the freeware 

package, Gromacs [28] v 3.3.1, with the following force fields: amber99p [29] for 

simulation ssDNA interactions and OPLS force field [30] for PFO and DNA interactions. 

The 5’-end of a 22mer ssDNA (5-CCT CGC TCT GCT AAT CCT GTT A-3) was 

connected via phosphodiester linkage to PFO consisting of 6 monomer (9,9-

dioctylfluorene) units with phenyl group at the open end. The length of the SWNT used 

was approximately the same as the length of the PFO block to reduce simulation time and 

to completely cover the SWNT length by one PFO molecule. The molecular complexes 

were dissolved in a periodic 11 × 13 × 12 nm box with TIP3P water [31] as the solvent. 

The number of Na
+
 ions was equal to the number of negative charges on the 

oligonucleotides to make the system charge neutral. The carbon nanotube was generated 

using parameters listed in Table 5.1 [32]. The carbon atoms of nanotubes were treated as 
uncharged Lennard-Jones particles and the force field parameters are shown in Table 5.2. 

 

Name Parameter or formula 

C–C bonding length aC−C 0.142 nm 

Unit vector R_1, R_2 (1, 0), (1/2, √3/2) 

Chiral vector B_ 
21 RmRnB


  

Circumference of nanotube L )(3 22 mnmnaL cc    

1-D translation vector T


 
2211 RtRtT


  

Length of T


 

d

L
T

3



 

Number of atoms per unit cell N 

d

mnmn
N

)(4 22 
  

Chiral angle θ 
)

2

3
arctan(

mn

m


  

Table 5.1. Selected parameters for (n, m) CNTs.  

d is the highest common divisor of (2n + m, 2m + n). 
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KCr = 478.9 kJ mol
-1

 Å
-2

 rC = 1.418 Å 

KCθ = 562.2 kJ mol
-1

 θC = 120.0 º 

KCφ = 25.12 kJ mol
-1

 γ = 2.1867 Å
 -1

 

εC–C = 0.4396 kJ mol
-1

 σC–C = 3.851 Å 

Table 5.2. Force field parameters for CNT interaction potentials
8
. KCr, rC, and γ are the parameters of the 

Morse potential, KCθ and θC the angle parameters, and KCφ, is the torsion parameter; EC–C and σC–C are the 
Lennard-Jones parameters for the carbon-carbon interaction. 

 

5.3 Results 

In the initial state, the CNT and the DNA-b-PFO block copolymers were aligned 

along the nanotube. The total simulation time was equal to 8 ns. Two cases were 

investigated. First, at the initial state the DNA part of the diblock copolymer (PFO-b-

DNA) was closer to the CNT than the PFO block (fig. 5.1). During the first 100 ps some 

monomer units of DNA adsorbed onto the CNT surface. The more monomers adsorbed 

the closer the PFO block becomes to the CNT. When the distance between CNT and PFO 

became sufficiently small, PFO rapidly adsorbed on the CNT surface. The number of 

adsorbed DNA monomer units is highly fluctuating due to the thermal motion of its free 
end.  

In the second case, in the initial state the PFO part of the diblock copolymer (PFO-

b-DNA) was closer to the CNT than the DNA block. In a time less than 50 ps the 

distance between the PFO block and the CNT surface rapidly decreased. While the CNT 

is covered by PFO blocks, DNA blocks were stable in water showing free waving during 

the whole simulation time. Some part of the DNA can be adsorbed by the CNT, but 
because of the entropy loss it again detaches rapidly from the CNT surface.  

By putting five PFO-b-DNA block copolymers and one CNT in the simulation box 

it was shown that only four diblocks are enough to cover the surface of the CNT. The 

length of the alkyl tails determines how many PFO blocks are needed to cover the whole 

surface of the CNT. In our experiments this length was equal to 5 monomer units. The 

distance between CNT and the adsorbed PFO was measured to be 4.4 Å. Both CNT and 

PFO are hydrophobic molecules which is responsible for the strong interaction between 

them in water. Another point is that PFO is a stiff flat molecule which increases the 

surface contact between PFO and CNT. Hence PFO displaces DNA from the CNT 

surface, creating a dense hydrophobic core with a hydrophilic shell of DNA chains. 

In conclusion, our simulations demonstrate that because only the PFO block from 

the PFO-b-DNA diblock binds to SWNT, it becomes possible to extract from solution 

SWNTs with precisely defined diameter. The length of the alkyl subchains of the PFO 

block determines how many diblocks can bind to SWNT. This implies that SWNTs with 

different diameters will bind different number of diblocks. This then allows to extract 

SWNTs with a precisely predetermined diameter from solution. 
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Figure 5.1. Snapshots of two DNA-b-PFO block copolymers and one SWNT at different time steps, 

where at the initial point the DNA block was closer to the SWNT. 
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Figure 5.2. Snapshots of two DNA-b-PFO block copolymers and one SWNT at different time steps, 

where at the initial point the PFO block was closer to the SWNT. 
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Figure 5.3. Snapshots of two DNA-PFO block copolymers and one SWNT at different timesteps, where 
at initial point block copolymer was closer to SWNT by PFO block 
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Chapter 6.  

6.1 Summary 

 

In the main body of this thesis a theoretical study of the self-assembly in a special 

class of block copolymers melts is presented. Block copolymers are macromolecules 

consisting of chemically different blocks. Due to unfavorable interactions between the 

connected blocks, described by the Flory-Huggins parameter χ, copolymer melts undergo 

microphase separation into well-ordered nano structures. In this work results obtained by 

three different theoretical approaches are presented. In the first one, the so called strong 

segregation limit theory (SSL) introduced by Semenov, it is assumed that χN >> 10  

(N being the chain length). In this case the interface thickness is small and the chains are 

considerably stretched. This allows us to describe the polymer conformations by the most 

probable ones. The second approach concerns computer simulations based on the 

dissipative particle dynamics (DPD) simulation technique. Here a number of monomers, 

usually of the order of a Kuhn segment, are represented by a single DPD bead. Beads are 

connected by a spring type potential and their mutual interaction is described by a soft 

repulsive potential. The final approach is the self-consistent field theory (SCFT). Here 

the main idea is that the interaction between a particle and all other particles can be 

described by an external field that has to be determined self-consistently. 

The first chapter starts with an overview of self-assembly in simple diblock 

copolymer melts. Block copolymers with a more complex molecular architecture in some 

cases self-assemble in hierarchically ordered structures with two characteristic length 

scales. An experimental and theoretical overview of secondary characteristic length scale 

phenomena in block copolymer melts is given in the final part. 

Lamellar-in-lamellar self-assembly in linear ternary multiblock copolymers is 

investigated in Chapter 2. Our main goal was to find correlation between the number of 

blocks m in the middle multiblock part of the copolymers under investigation and the 

number of ―internal‖ layers k of the lamellar-in-lamellar self-assembled state of  

C-b-(B-b-A)m-b-B-b-C multiblock copolymers. In our analysis it is assumed that the C 

end blocks are of the same length and that the volume fraction of C equals the volume 

fraction of the A, B multiblock part, where the latter consists of A and B blocks of equal 

length. Furthermore we take χN>>10 for all types of monomers. Due to these 

assumptions self-assembly results in a lamellar-in-lamellar state. In the first part of this 

chapter this is studied by the SSL approach using the Alexander-de Gennes 

approximation for the chain trajectories. The simplified description allows us to predict 

the number of internal layers as a function of the interaction parameters and the number 

of blocks in the multiblock middle part. The results are in good agreement with a more 

detailed theoretical study performed before and with experimental studies. Increasing the 

unfavorable interactions between the A and B components, the structure with a minimal 

number of internal layers becomes favorable. The opposite behavior is observed when the 
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interaction between the B and C components is increased. These tendencies follow 

simply from the fact that the system tries to minimize the most unfavorable contacts by 

stretching the chains involved. In the second part of this chapter we show that these 

theoretical predictions are in good agreement with DPD simulations. 

If the assumption that χN>>10 is not valid for all types of monomers involved, 

different microphase separated states become possible. In the experimental work by 

Bates and co-workers it was shown that A-b-(B-b-A)2-b-C type block copolymers can 

self-assemble in perpendicular lamellar-in-lamellar states rather than the parallel 

considered above. In the third chapter we study this parallel versus perpendicular 

lamellar-in-lamellar self-assembly for A-b-(B-b-A)2-b-C linear ternary multiblock 

copolymer melts. The volume fractions are assumed to satisfy fA=fB = 0.25 and fC = 0.5, 

in agreement with the above mentioned experimental study. In this case only lamellar 

states are possible. This issue is studied by the three different approaches, 1) SSL theory, 

2) DPD simulation and 3) SCFT. 

In the first part the SSL approach was used to investigate phase behavior of ternary 

block copolymer A-b-(B-b-A)n-b–C melt. Four different states are considered: disordered, 

simple lamellar, parallel and perpendicular lamellar-in-lamellar. The influence of the 

copolymer chain length N , the value of the Flory-Huggins interaction parameters 

 and the number of blocks n  in the AB multiblock chain on the phase 

behavior is discussed. We show that in the limiting case of 1n  the perpendicular 

lamellar-in-lamellar state becomes stable when the interaction parameters satisfy the 

relation ACBC  22.00  . Two different phase diagrams in terms of (χABN, χBCN) for 

2n , 10n  and ,  are calculated. 

The results of dissipative particle dynamics simulations of A-b-(B-b-A)2-b–C and 

(B-b-A)2 –b–C ternary multiblock copolymers are presented in the second part of this 

chapter. It is shown that at small unfavorable interactions a highly fluctuating disordered 

structure appears as an intermediate state in between the disordered and the lamellar 

state. When χACN is large, but χBCN is small the inverted lamellar-in-lamellar structure is 

favorable. Here the order of the blocks in the ordered state is ABC, whereas in the 

copolymer chain itself it is BAC. Morphology diagrams in terms of (χABN, χBCN) for 

 are calculated for both multiblock copolymers. It is shown that there is a 

stronger tendency to form a perpendicular lamellar-in-lamellar state for  

A-b-(B-b-A)2 -b–C than for(B-b-A)2 –b–C.  

The last part of Chapter 3 is devoted to a SCFT investigation of the  

A-b-(B-b-A)2-b–C and (B-b-A)2–b–C ternary multiblock copolymers. We show that for a 

range of  values the common solution procedure does not work. A new 

approach is introduced that allows us to calculate the phase behavior on, close and far 

away from the so-called Hildebrandt approximation. Stability regions for the shifted and 

not shifted perpendicular lamellar-in-lamellar states are found. In the shifted state the 

internal AB layers in successive AB layers are shifted over half a period with respect to 

each other. It was shown that the distribution of the C end block can reduce the free 

BCACAB  ,,

ACAB NN   1.6AB ACN N 

2AB ACN N 

BCACAB  ,,
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energy of the shifted structure compared to the not shifted structure. Phase diagrams in 

terms of (χABN, χBCN) at  for both polymer structures are calculated and 

found to be in good agreement with the results from the DPD investigation. In the 

parallel lamellar-in-lamellar structure at sufficient small χBCN the B blocks were shown 

to penetrate into the AC interface to reduce the interfacial tension. Decreasing the BC 

interaction even further leads to SCFT restrictions, but this case was already covered by 

the DPD study. 

In Chapter 4 the self-assembly of diblock copolymer-based comb copolymers with 

chemically identical side chains (A-comb-C)-b-(B-comb-C) was investigated. When the 

repulsion between the C side chains and the AB backbone is small whereas it is large for 

the A and B blocks, the C blocks are mixed with the AB blocks while the A blocks 

microphase separate from the B blocks. In that case the behavior is equal to that of simple 

diblock copolymers with a renormalized Flory-Huggins parameter. The second case is 

characterized by mixed A and B blocks that microphase separate from the C side chains. 

Due to the side chain (graft) architecture, the phase stability region of the lamellar phase 

is shifted to C volume fractions satisfying . For the specific case considered  

( ) the hexagonal structure with the core of the cylinders formed by 

loops from the A and B blocks is no longer stable. Furthermore, the stability region of the 

BCC structure where the core of the spheres is formed by the C side chains is 

significantly increased compared to the simple diblock case. All these observations are in 

excellent agreement with previously reported results by Milner on the effect of chain 

architecture on the asymmetry in copolymer phase behavior. The final case considered 

concerned the most interesting situation where all three components microphase separate 

from each other and hierarchically ordered structures are formed. The volume fraction of 

C side chains was assumed to satisfy  so that only lamellar structures, where 

one layer is formed by the C side chains and the other by the AB backbones, are stable. 

Perpendicular lamellar-in-lamellar and parallel lamellar-in-lamellar and disk-in-lamellar 

phases were found and characteristic phase diagrams presented. In the case of a lamellar-

in-lamellar morphology, the perpendicular lamellar-in-lamellar is usually the preferred 

state. Only when the grafting density is relatively small, i.e. 4m , the parallel lamellar-

in-lamellar state become possible.  

Chapter 5, finally, is devoted to the question how DNA-b-poly(9,9-di-n-

octylfluorenyl-2,7-diyl) (PFO) diblock copolymers bind to single wall nanotubes 

(SWNT) in a water solution. It is shown that the PFO part preferentially binds to the 

SWNT. If both DNA and PFO block would bind to SWNT it would be impossible to get 

from solution SWNTs of selected diameters. When only the PFO block from the  

PFO-b-DNA diblock binds to SWNT, it becomes possible to extract from solution 

SWNTs with selected diameter. The length of the alkyl subchains of the PFO block 

determines how many diblocks can bind to SWNT. To SWNT with different diameters 

different number of diblocks can bind, which allows to extract SWNT with a precisely 

predetermined diameter from solution. 

2AB ACN N 

0.6 0.8C 

20;5.0  mBA 

0.6 0.8C 
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6.2 Samenvatting 

 

Dit proefschrift beschrijft het resultaat van een theoretisch onderzoek naar de zelf-

assemblage in een bijzondere klasse van blokcopolymeren. Blokcopolymeren zijn 

macromoleculen die bestaan uit chemisch verschillende polymeerblokken. Ten gevolge 

van de karakteristieke ongunstige interactie tussen chemisch verschillende stoffen, voor 

polymeersystemen uitgedrukt door de Flory-Huggins interactieparameter 𝜒, treedt in 

blokcopolymeren microfasescheiding in geordende nanostructuren op. Hier beschouwen 

we dit met behulp van een drietal verschillende benaderingen. De eerste is de 

zogenaamde sterke segregatie limiet theorie (SSL), geïntroduceerd door Semenov, 

waarbij wordt aangenomen dat χN >> 10 (N is de ketenlengte). In deze limiet is er sprake 

van scherpe grensvlakken en aanzienlijk uitgerekte ketens. Dit maakt het mogelijk om in 

plaats van alle mogelijke polymeerconformaties alleen de meest waarschijnlijke mee te 

nemen. De tweede benadering betreft computersimulaties met behulp van de ―dissipative 

particle dynamics‖ (DPD) simulatietechniek. Hierbij worden een aantal monomeren 

samengenomen in één DPD deeltje. Deze deeltjes, voor zover behorend tot dezelfde 

polymeerketen, zitten aan elkaar vast met behulp van een veerachtige potentiaal. Hun 

onderlinge interactie wordt beschreven door een zachte repulsieve potentiaal. De laatste 

theoretische benadering betreft de zelf-consistente veldtheorie (SCFT).De belangrijkste 

aanname binnen deze theorie is dat de interactie van een deeltje met alle andere deeltjes 

kan worden beschreven door een uitwendig veld, een veld dat vervolgens zelf-consistent 

moet worden bepaald. 

In hoofdstuk 1 beginnen we met een overzicht van de zelf-assemblage in simpele 

diblokcopolymeren om vervolgens blokcopolymeren met een meer complexe moleculaire 

architectuur te behandelen. In het bijzonder wordt aandacht geschonken aan systemen die 

een hiërarchische ordening vertonen, een ordening op meerdere lengteschalen. Er wordt 

een kort overzicht gegeven van experimentele en theoretische resultaten in het 

eenvoudigste geval van twee verschillende lengteschalen. 

Het resultaat van het onderzoek naar gelaagde laag-in-laag structuren voor ternaire 

multiblokcopolymeren wordt gepresenteerd in Hoofdstuk 2. De belangrijkste 

onderzoeksvraag betreft het verband tussen het aantal interne ―dunne‖ lagen k als functie 

van het aantal blokken m in het multimiddenblok voor C-b-(B-b-A)m-b-B-b-C 

multiblokcopolymeren. Onze analyse beperkt zich tot het symmetrische systeem met C 

eindblokken van gelijke lengte en A en B blokken van gelijke lengte, waarbij verder de 

volumefractie van C 50% bedraagt. Verder wordt aangenomen dat χN>>10 voor elk van 

de drie verschillende polymeerparen. Door deze aannames resulteert zelf-assemblage in 

een laag-in-laag structuur. In het eerste deel van dit hoofdstuk beschouwen we dit 

systeem in de sterke segregatie benadering waarbij we verder gebruik maken van de 

Alexander-De Gennes benadering voor de ketenconformaties. Deze vereenvoudiging stelt 

ons in staat om het aantal interne lagen te voorspellen als functie van het aantal blokken 

in het midden multiblok en als functie van de interactiesterkte. De resultaten zijn in goede 
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overeenstemming met de resultaten van een meer gedetailleerde theoretische 

beschouwing en met de weinige beschikbare experimentele gegevens. Wanneer de 

interactie tussen de A en B componenten ongunstiger wordt worden structuren met 

minder interne lagen gevormd. Het omgekeerde gedrag wordt gevonden als de interactie 

tussen de B en C componenten ongunstiger wordt. Dit gedrag volgt eenvoudig uit het feit 

dat het systeem het aantal ongunstige interacties tracht te minimaliseren door het 

uitrekken van de betreffende polymeerblokken. In het tweede deel van dit hoofdstuk laten 

we zien dat deze theoretische voorspellingen goed overeenkomen met de DPD 

simulaties. 

Wanneer de aanname χN>>10 niet voor alle monomeerparen geldt is het mogelijk 

dat de parallelle laag-in-laag structuur plaats maakt voor een loodrechte laag-in-laag 

structuur. Bates and co-workers lieten experimenteel zien dat bepaalde A-b-(B-b-A)2-b-C 

type blokcopolymeren deze structuur aannemen. In het derde hoofdstuk beschouwen we 

deze twee mogelijkheden nader voor A-b-(B-b-A)n-b-C multiblokcopolymeren. Voor de 

volumefracties nemen we fA = fB = 0.25 en fC = 0.5, in overeenstemming met de 

experimentele situatie. De parallel versus loodrecht optie wordt bestudeerd met de eerder 

genoemde drie verschillende benaderingen: 1) SSL theorie, 2) DPD simulaties en  

3) SCFT. 

De SSL benadering gebruiken we om vier verschillende structuren te vergelijken: 

niet-geordend (homogeen), simpel gelaagd, parallelle en loodrechte laag-in-laag. We 

onderzoeken de invloed van de totale polymeerlengte N, de waarde van de 

interactieparameters en het aantal blokken n. In het limietgeval n>>1 blijkt 

de loodrechte laag-in-laag structuur stabiel te zijn voor . Twee 

verschillende fasediagrammen in het (χABN,χBCN)-vlak worden berekend voor n = 2 en  

n = 10 en , . 

Vervolgens worden DPD simulaties toegepast op A-b-(B-b-A)2-b–C en (B-b-A)2 –

b–C. Voor relatief kleine waarden van de interactieparameters wordt een sterk 

fluctuerende ongeordende structuur gevonden als een tussentoestand tussen homogeen 

ongeordend en de gelaagde structuur. Voor χACN groot en χBCN klein wordt een 

geïnverteerde laag-in-laag structuur gevonden. De volgorde van de lagen is ABC terwijl 

de volgorde in het blockcopolymeer BAC is. Fasediagrammen worden gepresenteerd in 

het (χABN,χBCN)-vlak voor . De tendens op vorming van de loodrechte 

laag-in-laag structuur is groter voor A-b-(B-b-A)2 -b–C dan voor (B-b-A)2 –b–C.  

Het laatste deel van Hoofdstuk 3 is gewijd aan de SCFT studie van  

A-b-(B-b-A)2-b–C en (B-b-A)2–b–C. Voor een gebied van -waarden blijkt de 

gangbare oplosmethode niet te werken. Omdat het hier juist om het meest interessante 

gebied gaat wordt er een nieuwe benadering geïntroduceerd. Stabiliteitsgebieden voor 

twee verschillende loodrechte laag-in-laag structuren worden gevonden, nl. de 

verschoven en de niet-verschoven toestand. In het eerste geval zijn de interne A en B 

lagen in de opeenvolgende AB lagen over een afstand van een halve periode verschoven. 

Fasediagrammen in het (χABN,χBCN)-vlak worden gepresenteerd voor  en 

BCACAB  ,,

ACBC  22.00 

ACAB NN   1.6AB ACN N 

2AB ACN N 

BCACAB  ,,

2AB ACN N 
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deze blijken goed overeen te komen met de DPD simulaties. Voor kleine χBCN waarden 

blijken de B blokken voor de parallelle laag-in-laag structuur in het AC grensvlak te 

penetreren om zo de grensvlakspanning te reduceren. Voor nog lagere waarden van χBCN 

werkt ook de nieuwe oplossingsmethodiek niet meer. Om daar toch iets over te kunnen 

zeggen moeten we een beroep op de DPD simulaties doen. 

In Hoofdstuk 4 beschouwen de zelf-assemblage van op diblokcopolymeren 

gebaseerde kamcopolymeren met chemisch identieke zijketens:  

(A-comb-C)-b-(B-comb-C). Eerst beschouwen we de situatie waarin de repulsieve 

interactie tussen de zijketens C en beide hoofdketens A en B relatief gering is en die 

tussen de beide hoofdketens A en B groot. De C ketens mengen met de A en B ketens die 

onderling microfasescheiden. Het fasegedrag is vergelijkbaar met dat van simpele 

diblokcopolymeren, maar met een gerenormaliseerde Flory-Huggins interactieparameter. 

In het omgekeerde geval zijn de gemengde A en B blokken fasegescheiden van de C 

zijketens. Ten gevolge van de vertakte moleculaire architectuur verschuift de lamellaire 

structuur, in vergelijking met het diblokcopolymeer fasediagram, naar volumefracties 

. Voor een symmetrische hoofdketen met 20 zijketens blijkt de hexagonale 

structuur met cilinders gevormd door de A en B ketens zelfs niet langer stabiel te zijn. 

Daarnaast neemt het stabiliteitsgebied van de BCC structuur met bollen gevormd door de 

C zijketens aanzienlijk toe vergeleken met simpele diblokken. Deze vindingen komen 

goed overeen met de theoretische voorspellingen van Milner over het effect van de 

ketenarchitectuur op het copolymeer fasediagram. Tenslotte beschouwen we in detail de 

meest interessante situatie waarbij alle drie de componenten onderling fasescheiden 

waardoor er hiërarchische structuurvorming optreedt. We nemen voor het gemak aan dat 

de volumefractie C voldoet aan , zodat alleen de gelaagde structuur, met de 

opeenvolgende lagen gevormd door de C ketens en de AB ketens, stabiel is. De 

hiërarchische structuurvorming treedt op door de verdere fasescheiding in de AB lagen. 

Loodrechte en parallelle laag-in-laag structuren en schijf-in-laag structuren worden 

gevonden. Voor de laag-in-laag structuur blijkt de loodrechte versie veelal de meest 

stabiele te zijn. Alleen als de vertakkingsgraad klein is, wordt de parallelle toestand ook 

mogelijk. 

Hoofdstuk 5, behandelt een enigszins ander vraagstuk. Bekeken wordt hoe  

DNA-b-poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) diblokcopolymeren zich binden aan 

enkelwandige koolstofbuisjes (SWNT) in een water oplossing. Omdat alleen het PFO 

blok van het PFO-b-DNA diblokcopolymeer zich aan de SWNT blijkt te binden wordt 

het mogelijk om op deze wijze SWNT’s met gewenste diameter uit een oplossing te 

selecteren. De lengte van de alkiel zijketens van het PFO blok bepaalt hoeveel diblokken 

zich aan één SWNT binden. SWNT’s met een verschillende diameter binden zich met 

een verschillend aantal diblokken. Dit maakt het mogelijk om SWNT’s met een gewenste 

diameter te extraheren. 

0.6 0.8C 

0.6 0.8C 
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Chapter 7.  

Appendix 

 

7.1 Dissipative Particle Dynamics 

 

Dissipative particle dynamics (DPD) is a stochastic simulation technique for simulating 

the dynamic and rheological properties of simple and complex fluids. DPD was originally 

proposed by Hoogerbrugge and Koelman [1, 2] to avoid the lattice artifacts of the so-

called lattice gas automata and to increase hydrodynamic time and space scales compare 

to those available with molecular dynamics (MD). Later it was reformulated and slightly 

modified by Español [3, 4] to ensure the proper thermal equilibrium state. Mapping onto 

the Flory-Huggins theory was done by Groot and Warren [4]. 

DPD is an off-lattice mesoscopic simulation technique which involves a set of particles 

moving in continuous space and discrete time. DPD particles represent whole molecules 

or part of macromolecule or fluid regions. Atomistic details are not considered. The 

particles internal degrees of freedom are integrated out and replaced by simplified 

pairwise dissipative and random forces, so as to conserve momentum locally and ensure 

correct hydrodynamic behavior. The main advantage of this method is that it gives access 

to longer time and length scales than are possible using traditional MD simulations. 

Simulations of polymeric fluids in volumes up to 100 nm in linear dimension for tens of 

microseconds are now feasible. 

 

7.2 Implementation 

 

The time evolution for a set of interacting particles is found by solving Newton’s 

equations of motion.  

, i
i i i

i

f
r v v

m
 


   

                                                          (A0) 

 

The force acting on the i-th particle if


 due to particle j is the sum of a conservative 

force 
C

ijF


 , a dissipative force
D

ijF


, and a random force 
R

ijF

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where the sum is over all other particles within a certain cut-off radius Cr . Since Cr  is the 

only length scale it is used as the unit of length and thus set equal to 1. The conservative 

force 
C

ijF


 is a soft repulsive force given by  
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where aij is the repulsive interaction parameter between particles i and j, jiij rrr


 , 
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
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 . The dissipative force 

D

ijF


 is a hydrodynamic drag force and is defined by  
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where γ is a friction parameter, ω
D
 is a r-dependent weight function. The random force 

D

ijF


 describes thermal noise  
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where σ is the noise amplitude, ω
R
 is a weight function, and θij is a random variable with 

normal distribution, ∆t is a time step. The dissipative force slows down the particles by 

removing the kinetic energy from them and this effect is balanced by the random force 

due to thermal fluctuations. Friction   and noise  are related by [3]:  
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TkB 22                                                       (A5) 

 

The associated weight functions satisfy the fluctuation-dissipation theorem if the 

following relation is satisfied [5] 

 

 2)(rRD                                                       
 
(A6)  

 

The standard choice for D  is 
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The spring force 
S

iF  that acts on bead i due to its connection with beads j satisfies 

 


j

ij

S
i rCF


                                                      (A8) 

where C is a harmonic type spring constant, which is chosen to be equal to 4 (in terms of 

kBT) [5]. 

A modified version of the velocity-Verlet algorithm is used to solve Newton’s 

equations of motion [5]  
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Groot and Warren [7] presented a detailed investigation of the effect of   on the steady 

state temperature and showed that for a particle density ρ=3 and noise σ =3, the optimum 

value is given by λ =0.65 for which the temperature control can be maintained even at 

large time-steps of ∆t =0.06. For our calculations we took accordingly λ = 0.65, ∆t = 

0.06, ρ = 3 and σ = 3.  

Following the work of Groot and Warren [7], the repulsive parameters between the 

same types of particles is taken as 25iia . For different types of particles aij can be 

chosen from the relation between the energy parameter aij and the Flory–Huggins 

interaction parameter χij 

 

ijiiij aa 497.3                                                                          (A10) 

 

Model Parameters 

m 

rc 

γ 

σ 

L 

        N 

mass of DPD particles  

range of DPD interactions (cutoff radius) 

friction coefficient 

noise amplitude 

size of simulation box V = Ld 

number of particles 

Derived Parameters 

T0 

n 

nc 

tc 

ω0 

t0 

l0 

equilibrium temperature T0 = mv0
2
= mσ

2
/2γ 

number density n = N/Ld 

number of particles in interaction sphere nc = n(σdrc
d
 ) 

traversal time of interaction sphere tc = rc/v0 

collision frequency  0

1
cn w n

d
     

collision time t0 = 1/ω0 

dynamic distance (mean free path) l0 = v0t0 
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tγ 

                       lγ 

friction time tγ = 1/n[w]γ = t0/d 

dynamic friction distance lγ = v0tγ = l0/d 

Dimensionless Parameters (n[w] = 1) 

Ω0 

Ωγ 

ΩL 

 

dynamic overlapping Ω0 = rc/l0 

dynamic friction overlapping Ωγ = drc/lγ = d/ncΩ0 

dimensionless box length ΩL = rc/L 

 

Table. 1 The model parameters of dissipative particle dynamics [20, 21]. 
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