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This is an approximate reconstruction of the panel discussion on chiral extrapolation of physical observables. 
The session consisted of brief presentations from panelists, followed by responses from the panel, and concluded 
with questions and comments from the floor with answers from panelists. In the following, the panelists have 
summarized their statements, and the ensuing discussion has been approximately reconstructed from notes. 

1. Introduction 

Sharpe: It has become apparent from many 

3. 

talks at this conference that chiral extrapolation 
is an issue of great practical importance. Differ- 
ent approaches are being tried, and it is certainly 
timely to have a general discussion of the issue. 
In order to focus the discussion, I sent the pan- 
elists a draft list of key questions to focus their 
thoughts as they were preparing their remarks. 
These questions have evolved as a result of feed- 
back, and my present version (in no particular 
order) is as follows. 

4. 

5. 

6. 

7. 

1. How small does the quark mass need to be 
to use chiral perturbation theory (xPT)? 

8. 

2. Do we need to use fermions with exact chiral 
symmetry to reach the region where xPT 
applies? 

What fit forms should we use outside the 
chiral region? 

Is the strange quark light enough to be in 
the chiral regime? 

Is it necessary to include O(a, a”) effects in 
the chiral Lagrangian? 

Can we use (present or future) partially 
quenched simulations to obtain quantitative 
results for physical parameters? 

Can we use quenched simulations to give 
quantitative results for physical parame- 
ters? 

Is it possible and/or desirable to work at 
m,=O? 

*Edited by S. Sharpe, with particular thanks to J. Chris- 
tensen for his detailed notes, which were essential for the 
reconstruction of the responses and general discussion. 
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2. Presentations 

Bernard: At this conference, and in the re- 
cent literature, several groups have emphasized a 
key point about chiral extrapolations: Over the 
typical current range of lattice values for the light 
quark masses, the data for many physical quan- 
tities is quite linear. Yet linear extrapolations 
will miss the chiral logarithms that we know are 
present and therefore may introduce large system- 
atic errors into the results. JLQCD [l], Kronfeld 
and Ryan [Z], and Yamada’s review talk here [3] 
have stressed the relevance of this point for heavy- 
light decay constants; while the Adelaide group 
[4-81 has brought out the same point in the con- 
text of baryon physics. All these groups deserve 
a lot of credit for bringing this important issue to 
the fore. 

Now the question is: “What are we going to do 
about it?” Attempts to extract the logarithms 
directly in the current typical mass range are in 
my opinion doomed to failure: The extreme lin- 
earity of the data indicates, at best, that higher 
order terms must be contributing in addition to 
the logarithms, or, at worst, that we are out of 
the chiral regime altogether. The only real solu- 
tion is to go to lower quark masses. We need to 
be well into the chiral regime, to see the logs and 
make controlled fits including this known chiral 
physics. My rough guess in the heavy-light de- 
cay constant case is that we need mx/mp FZ 0.3, 
or at best m,/m,~0.4. The latter range may 
be reachable, with significant work, with Wilson- 
type fermions; while the former may require, at 
least in the near term, staggered fermions. The 
use of staggered light valence quarks in heavy- 
light simulations, as was suggested by Wingate 
at Lattice 2001 [9], should make the chiral regime 
for that problem accessible very soon. 

A different approach has been advocated by the 
Adelaide group. They say we can take into ac- 
count the chiral logarithms in the current range 
of masses by modeling the turn-off of chiral loga- 
rithms with a quantity-dependent cutoff that rep- 
resents the “core” of the object under study. I 
have nothing against modeling per se; I think it 
can be an excellent tool to gain qualitative insight 
into the physics. What I think is wrong, or at 

least wrong-headed, about the Adelaide approach 
is the suggestion that one can use it to extract re- 
liable quantitative answers with controlled errors. 
Extraction of such answers is after all why we are 
doing lattice physics in the first place. 

The Adelaide model introduces a single param- 
eter, the core size, to describe the very compli- 
cated real physics involving couplings to all kinds 
of particles - p’s, D’S, etc. - as one moves out 
of the chiral regime. The change in their results 
when they change the parameter by some amount 
or vary the functional form at the cutoff is simply 
not a reliable, systematically improvable error. In 
other words, their model is an uncontrolled ap- 
proximation. 

Suppose, however, one phrases the question in 
the following way: “Given some lattice data in 
the linear regime, are you likely to get closer to 
the right answer with a linear fit, or with an Ade- 
laide form that interpolates between linear behav- 
ior and the known chiral behavior at low mass?” 
Phrased that way, my answer would be, “t,he Ade- 
laide form.” But the problem is that, while you 
are most likely closer to the right answer, you 
do not know the size of the errors -~ unless you 
know the right answer to begin with! In my opin- 
ion, the linear fit is a “straw man” alternative. 
The real alternative is to go to lighter masses and 
fit to the known chiral form. This approach, and 
this approach only, will produce controlled, sys- 
tematically improvable errors: To improve, just 
go to higher order in the chiral expansion or to 
still lighter masses. 

Now if we want to go to lighter masses, I 
would argue that the easiest way to do so is by 
using staggered fermions. Dynamical staggered 
fermions are very fast, and they have an exact 
lattice chiral symmetry. However, as you know, 
many of the other staggered symmetries are bro- 
ken at finite lattice spacing. 

First of all, let me talk about nomenclature. I 
would like to advocate here the use of the word 
“taste” to describe the 4 internal fermion types 
inherent in a single staggered field. Taste sym- 
metry is violated on the lattice at O(a2) but be- 
comes exact in the continuum limit. I reserve the 
word “flavor” for different staggered fields, which 
have an exact lattice symmetry (in the equal mass 
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case) that mixes them. For example, MILC is do- 
ing simulations with 3 flavors (u, d, and s) with 
m, = md # m,. Normally each flavor would 
have 4 tastes, but we do the usual trick of tak- 
ing the fourth root of the determinant to get a 
single taste per flavor. Of course this is ugly and 
non-local, and one must test that there are no 
problems introduced in the continuum limit. 

I find it useful to think about the effects of taste 
symmetry breaking as just a more complicated 
version of “partial quenching” [lo]. Sharpe and 
Shoresh [l l] have taught us that, as long as a 
theory has the right number of sea quarks (3), the 
chiral parameters are physical even if the masses 
of the quarks are not physical, and even if the 
valence and sea quark masses are different (i.e., 
even if the theory is partially quenched). With 
three staggered flavors and m’s, the theory is, 
I believe, still in the right sector and has physical 
chiral parameters. But it is like a theory with 12 
sea quarks, each with l/4 weight, rather than 3 
normal flavors. 

In order to extract the physical chiral parame- 
ters from an ordinary 3-flavor partially quenched 
theory, we need the correct functional forms cal- 
culated in partially quenched chiral perturbation 
theory. Similarly, in order to extract the physi- 
cal chiral parameters from a theory of 3 staggered 
flavors with $6%‘s, we need the functional forms 
calculated in a staggered chiral perturbation the- 
ory (SxPT). This includes the effect of the 13(a2) 
taste violations. 

The starting point of SxPT is the chiral La- 
grangian of Lee and Sharpe [12], which is the low 

energy effective theory for a single staggered field, 
correct to O(a2). To apply it to the case of inter- 
est, one must generalize to 3 flavors (which turns 
out to be non-trivial), calculate relevant quan- 
tities at l-loop, and the adjust for the effect of 
taking $i%‘s. Student Chris Aubin and I have 
done this for mz/(27iz) and m$/(7iz + m,) [13]. 
(7jz is the average U, d quark mass.) One can fit 
the MILC data very well with our results. We are 
in the process of extending this work to fn, fK 
and heavy-light decay constants, as well as allow- 
ing for different valence and sea quark masses. 

Hashimoto: Since the computational cost 

required to simulate dynamical quarks grows 
very rapidly as the sea quark mass is decreased, 
controlled chiral extrapolation is crucial to ob- 
tain reliable predictions for physical quantities. 
Through this short presentation I would like 
to share our experience with chiral extrapola- 
tions obtained from the unquenched simulation 
being performed by the JLQCD collaboration 
using nonperturbatively O(a)-improved Wilson 
fermions on a relatively fine lattice, a N 0.1 fm. 
Further details are presented in a parallel talk 
1141. 

The strategy we have in mind when we do the 
chiral extrapolation is to use chiral perturbation 
theory (xPT) as a theoretical guide to control 
the quark mass dependence of physical quanti- 
ties. For this strategy to work one has to push 
the sea quark mass as light as possible and test 
whether the lattice data are described by the one- 
loop xPT formula. (The lowest order xPT pre- 
diction usually does not have quark mass depen- 
dence.) If so, chiral extrapolation down to the 
physical pion mass is justified. 

In full QCD xPT predicts the chiral logarithm 
with a definite coefficient depending only on the 
number of active flavors, which gives a non-trivial 
test of the unquenched lattice simulations. For 
example the PCAC relation M& c 2Boms is 
given as 

es -1,L -- 
2Bom.s 

Nf YSS ln YSS 

+YSS[(~QS - ~5) + +@a6 - ~4)] (1) 

for Nf flavors of degenerate quarks with a mass 
ms and yss = 2Boms/(4rf)2. Similar expres- 
sion for the pseudoscalar meson decay constant 
is 

fss Nf - = 1 - 251~s In yss + ?[a5 + Nfcy4]. 
f 

(2) 

The coefficient of the chiral log term is fixed, while 
the low energy constants cri are unknown. Fig- 
ure 1 shows the comparison of lattice data with 
(l), and it is unfortunately clear that the lattice 
result does not reproduce the characteristic cur- 
vature of the chiral logarithm. The same is true 
for the pseudoscalar meson decay constant, and 
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chiral log (f= 93 MeV; X’/dof = 5.8) 

0.0 2.0 4.0 6.0 8.0 

tromps)L 
Figure 1. Test of the one-loop xPT formula from Figure 2. Uncertainty in the chiral extrapolation 
the JLQCD collaboration. of pion decay constant. 

the ratio test using partially quenched xPT leads 
to the same conclusion [14]. 

The most likely reason is that the dynamical 
quarks in our simulations are still too heavy. In 
fact, the corresponding pseudoscalar meson mass 
ranges from 550 to 1,000 MeV, for which we do 
not naively expect that xPT works, especially 
at the high end. Our analysis of the partially 
quenched data suggests that a meson mass as low 
as 300 MeV is necessary to be consistent with one- 
loop xPT. 

Let us now discuss the systematic uncertainty 
in the chiral extrapolation. Since we know that 
the xPT is valid for small enough quark masses, 
the chiral extrapolation has to be consistent with 
the one-loop xPT formula at least in the chiral 
limit. If we assume that the chiral logarithm dom- 
inates only below a scale /.L, a possible model is to 
take the one-loop xPT formula below p while us- 
ing a conventional polynomial fitting elsewhere. 
Both functions may be connected so that their 
value and first derivative match at the scale p. 
The scale ,LL is unknown, though we naively ex- 
pect that p is around 300-500 MeV. Therefore, we 
should consider the dependence on p in a wider 
range, say O-1,000 MeV, as an indication of the 
systematic error in the chiral extrapolation. A 
plot showing these fitting curves is presented in 
P41. 

Another possible functional form is that sug- 

r 
0.0 

I 
2.0 4.0 6.0 

(romps)’ 

gested by the Adelaide-MIT group [15]. They 
propose using the one-loop xPT formula cal- 
culated with a hard momentum cutoff h, 
which amounts to replacing the chiral log term 
rnz ln(mz/p2) by rnz ln(m~/(m~ f ~1~)). It is a 
model in the sense that we use it above t,he cut- 
off scale p. Fits to the pion decay constant are 
shown in Figure 2. The fit curves represent the 
model with p = 0, 300, 500, and cc MeV. Since 
we do not have a solid theory to choose the cutoff 
scale p, the variation of the chiral limit should be 
taken as the systematic uncertainty, whose size is 
of order of *lo%. 

The large uncertainty associated with the chi- 
ral extrapolation as discussed above has not at- 
tracted much attention, partly because most sim- 
ulations have been done in the quenched approx- 
imation, for which the chiral behavior of physi- 
cal quantities is quite different. In contrast, in 
unquenched &CD, confirming the predictions of 
xPT gives a non-trivial test of the low energy 
behavior obtained from lattice calculations. For 
pion or kaon physics it is essential to perform the 
lattice simulation in a region where xPT is ap- 
plicable, since the physics analysis often relies on 
xPT. 

State-of-the-art unquenched lattice simulations 
using Wilson-type fermions are still restricted to 
the large sea quark mass region 1 ms/2, for which 
we do not find an indication of the one-loop chi- 
ral logarithm. This means that, there could be 
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a sizable systematic uncertainty in the chiral ex- 
trapolation. I have discussed the example of the 
pion decay constant; a similar analysis is under- 
way for the heavy-light decay constants and light 
quark masses. 

Pallante: Chiral extrapolation of weak ma- 
trix elements and in particular kaon matrix ele- 
ments (i.e. BK, K + 27r decays, semileptonic 
kaon decays) is a very delicate issue. One of the 
most difficult tasks still remains the calculation of 
(~~(0r.v IK) matrix elements, where 0~ is a weak 
four-quark effective operator at scales p < Mw, 
typically p - m,. 

Since elastic (soft) final state interactions (FSI) 
of the two pions are large especially in the total 
isospin zero channel (see [16] and refs. therein), it 
is mandatory to overcome the Maiani- Testa no-go 
theorem [17] and to include the bulk of FSI effects 
directly in the lattice measurement of kaon ma- 
trix elements, while keeping under control resid- 
ual corrections through the use of Chiral Pertur- 
bation Theory (xPT). 

A considerable step forward in this respect has 
been made in refs. [18,19], where it has been 
shown that the physical matrix element can be 
extracted from the measurement of an Euclidean 
correlation function at finite volume. The finite 
volume matrix element is converted to the infinite 
volume one via a multiplicative universal factor 
[18] (denoted as LL factor in the following), i.e. 
only depending on the quantum numbers of the 
7r7r final state. 

There are three main reasons why xPT is 
needed, at least up to next-to-leading order 
(NLO), in extracting the physical (n7rlOr.v IK) 
matrix element from a lattice Euclidean correla- 
tion function: 1) Lattice simulations are presently 
performed at unphysical values of light quark 
masses, so that xPT is needed to parameterize 
mass dependences and perform the extrapolation 
to their physical value, provided it is applicable 
at the values of quark masses used on the lattice. 
2) Lattice simulations may be done with unphys- 
ical choices of the kinematics, simpler than the 
physical one, and again xPT is needed for the 
extrapolation. 3) xPT is an appropriate tool to 
monitor in a perturbative manner the size of SYS- 

tematic errors due to a) (partial) quenching, b) 
finite volume and c) non-zero lattice spacing [20]. 

It is also important to note that the possi- 
bility of computing lattice matrix elements with 
choices of momenta and masses different from the 
physical ones is a very powerful method, once 
we want to determine the low-energy constants 
(LEC) which appear in the chiral expansion of 
observables at NLO. By varying momenta, and 
masses, we can increase the number of linear com- 
binations of LEC that can be extracted from a 
lattice computation. 

A possible strategy for the direct measurement 
of (nn Jowl K) matrix elements has been for- 
mulated in ref. [21], specifically for the AI = 
3/2 case (see also ref. [22] at this conference). 
This strategy is general, and can be applied 
also to the AI = l/2 case. It is as fol- 
lows: 1) evaluate the Euclidean correlation func- 
tion C~,R = (0 )q (tl)~a(t2)0w(O)Kgt(tK)I 0) 
at fixed physics, i.e. at fixed two-pion total en- 
ergy at finite volume; 2) divide by the appro- 
priate source (sink) correlation functions at fi- 
nite volume. This step produces the finite vol- 
ume matrix element ] v (n7r 10~ (0) 1 K) v 1, and 3) 
multiply it by the universal LL factor to get the 
infinite volume amplitude: I(rrr~ ]Ow(O)] K)j2 = 
LL x Iv(mr lOw(O)( K)v12. 4) If not able to ap- 
ply the procedure 1) to 3) directly for the physical 
kinematics, then apply the procedure for an alter- 
native choice of the kinematics that is sufficient to 
fully determine the physical amplitude at NLO in 
xPT. Two such choices for the AI = 312 case are 
the SPQR kinematics [23], where one of the two 
pions carries a non-zero three-momentum, and 
the strategy proposed in ref. [24], using the com- 
bined measurements of K + mr at mK = 2m, 
and mK = mnr K + ?r at non-zero momentum, 
K + 0 and K” - I?’ transition amplitudes. The 
second strategy is also sufficient for the AI = l/2 
case, while the SPQR kinematics for AI = l/2 
is under investigation. Also, the LL factor de- 
rived in [18] is only applicable to the center-of- 
mass frame, while its generalization to a moving 
frame has not yet been derived (see ref. [21] for a 
discussion). 

Unfortunately, most realistic lattice simula- 
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tions are still performed in the quenched approx- 
imation or, at best, in the partially quenched ap- 
proximation with two or three dynamical (sea) 
flavors. The loss of unitarity due to (partial) 
quenching of SU(3)r. x sU(3)R chiral group has 
dramatic consequences in the I = 0 channel 
of K -+ XT amplitudes [25,26]. Loss of uni- 
tarity implies the failure of Watson’s theorem 
and Liischer’s quantization condition. As a 
consequence, the FSI phase extracted from the 
quenched weak amplitude is no longer universal 
(i.e. it may also depend on the weak operator 
Our) and finite volume corrections of quenched 
weak matrix elements among physical states are 
not universal (i.e. the universality of the LL fac- 
tor does not work as in the full theory) [26]. 

The reason why the I = 0 case is a peculiar 
one is that the rescattering diagram of the two 
final state pions (the one producing the phase of 
the amplitude) is modified by (partial) quenching 
already at one loop in xPT. This is not the case 
for I = 2 however, where the rescattering diagram 
is unaffected by quenching at least to one loop 
in xPT. This guarantees the applicability of the 
direct strategy to the I = 2 channel also in the 
quenched approximation, at least up to one loop 
in the chiral expansion. 

Another consequence of (partial) quenching is 
the contamination of QCD-LR penguin opera- 
tors, like &s, by new non-singlet operators [27] 
which appear at leading order in the chiral ex- 
pansion (i.e. order p”, even enhanced respect to 
the order p2 singlet operator). This contamina- 
tion does not affect AI = 3)2 transitions, being 
pure AI = l/2. 

Given the above picture, a few conclusions can 
be drawn. At present, xPT plays a crucial role 
in the extrapolation of lattice weak matrix ele- 
ments to their physical value, or to the chiral 
limit. However, the applicability of xPT at the 
lowest orders (typically up to NLO) in the ex- 
trapolation procedure is guaranteed only for suf- 
ficiently light values of lattice meson masses, This 
means that one should work in a region of quark 
masses sufficiently far below the first relevant res- 
onance. The situation can be further compli- 
cated by the presence of FSI effects, especially 
in the I = 0 channel. These effects can be either 

analytically resummed [16] or the bulk of them 
be directly included into the finite volume lat- 
tice matrix element. Most critical appears the 
situation in the presence of quenching, due to 
the lack of unitarity. For AI = 3/2 mat,rix el- 
ements, strategies proposed for a direct measure- 
ment with unquenched simulations can still be 
used in a quenched simulation at least up to NLO 
in the chiral expansion. This is no longer true for 
AI = l/2 matrix elements. In this case, quench- 
ing and partial quenching affect universal propcr- 
ties of the weak amplitude already at one loop in 
xPT, and in addition produce a severe contam- 
ination of QCD-LR penguin operators with new 
non-singlet operators. However, those problems 
disappear in the partially quenched case with 
N - Nvalence and msen = 7r1,a~ence. where par- sea - 
tially quenched correlation functions reproduce 
those of full QCD[lO,ll]. 

Leinweber: Until recently, it was difficult 
to establish the range of quark masses that 
can be studied using chiral perturbat,ion the- 
ory (xPT) P31. N ow, with t>he advent of lat- 
tice QCD simulation results approaching the 
light quark mass regime, considerable light has 
been shed on this important question [29,7,15,30- 
32,4]. It is now apparent that current leading- 
edge dynamical-fermion lattice-QCD simulation 
results lie well outside the applicable range of tra- 
ditional dimensionally-regulated (dim-reg) xPT 
in the baryon sector. 

The approach of the Adelaide group is to in- 
corporate the known or observed heavy quark 
behavior of the observable in question and the 
known nonanalytic behavior provided by xPT 
within a single functional form which interpo- 
lates between these two regimes. The introduc- 
tion of a finite-range regulator designed to de- 
scribe the finite size of the source of the meson 
cloud of hadrons achieves this result. The proper- 
ties of the meson-cloud source are parameterized 
and the values of the parameters are constrained 
by lattice QCD simulation results. Without such 
techniques, one cannot connect experiment and 
current dynamical-fermion lattice-QCD simula- 
tion results for baryonic observables. 

The use of a finit.e-range regulat,or might be 
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confused with modeling. However, it is already 
established that xPT can be formulated model 
independently using finite-range regulators such 
as a dipole [33]. The coefficients of leading- 
nonanalytic (LNA) terms are model independent 
and unaffected by the choice of regulation scheme. 
The explicit dependence on the finite-range reg- 
ulation parameter is absorbed into renormalized 
coefficients of the chiral Lagrangian. 

The shape of the regulator is irrelevant to the 
formulation of xPT. However, current lattice sim- 
ulation results encourage us to look for an effi- 
cient formulation which maximizes the applicable 
pion-mass range accessed via one- or two-loop or- 
der. An optimal regulator (perhaps motivated by 
phenomenology) will effectively re-sum the chiral 
expansion encapsulating the physics in the first 
few terms of the expansion. The approach is sys- 
tematically improved by simply going to higher 
order in the chiral expansion. Our experience 
with dipole and monopole vertex regulators in- 
dicates that the shape of the regulator has little 
effect on the extrapolated results, provided lattice 
QCD simulation results are used to constrain the 
optimal regulator parameter on an observable-by- 
observable basis [8]. 

In order to correctly describe &CD, the coeffi- 
cients of nonanalytic terms must be fixed to their 
known model-independent values. This practice 
differs from current common practice within our 
field where these coefficients are demoted to fit 
parameters and optimized using lattice simula- 
tion results which lie well beyond the applicable 
range of traditional dim-reg xPT. The failure of 
the approach is reflected in fit parameters which 
differ from the established values of xPT by an 
order of magnitude [7] spoiling associated predic- 
tions (8,341. 

I will focus on the extrapolation of the nucleon 
mass as it encompasses the important features 
which led to subsequent developments [29,15,30- 
32] required to extrapolate today’s lattice QCD 
results. Figure 3 displays the results of a finite- 
range chiral expansion [35] of the nucleon mass 
(solid curve) constrained by dynamical-fermion 
simulation results from UKQCD [36] (open sym- 
bols) and CP-PACS [37] (closed symbols). The 

1.6 

5: 1.4 
s 

gz 1.2 

1.0 

0.6 ’ 
I \ I I \ I 

.O .2 
rnz &eV’) 

.6 .6 

Figure 3. The finite-range regulated expansion 
of the nucleon mass (solid curve) and its pertur- 
bative chiral (curves (i) through (iv) and heavy- 
quark (curves (v) through (vii)) expansions [35]. 
Details of each curve may be found in the text. 

expression for the nucleon mass 

arises from the one-loop pion-nucleon self-energy 
of the nucleon, with the momentum integral reg- 
ulated by a sharp cutoff. The lattice simulation 
results constrain the optimal regulator parame- 
ter, A, to 620 MeV. Of course it is desirable to 
use more realistic regulators such as a dipole form 
when keeping only one-loop terms of the chiral 
expansion. 

For small mK the standard LNA behavior of 
xPT is obtained with the correct coefficient. For 
large m,, the arctangent tends to zero and sup- 
presses the nonanalytic behavior in accord with 
the large quark masses involved. The scale of the 
regulator A has a natural explanation as the scale 
at which the pion Compton wave length emerges 
from the hadronic interior. It is the scale below 
which the neglected extended structure of the ef- 
fective fields becomes benign. 

The valid regime of the truncated expansion of 
xPT is the regime in which the choice of reg- 
ulator has no significant impact. To gain fur- 
ther insight into the validity of the truncated ex- 
pansion of traditional dim-reg xPT, one can per- 
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form a power series expansion of the arctangent 
in terms of m,/A and keep terms only to a given 
power [35]. The dim-reg expansion of (3) for small 
mK/A is provided by curves (i) through (iv) in 
Fig. 3. Curve (i) contains terms to order mz, and 
(ii) to order rnz. This is the correct implementa- 
tion of the LNA behavior of xPT. The behavior 
dramatically contrasts the common but erroneous 
approach discussed above. The applicable range 
of traditional dim-reg xPT to LNA order for the 
nucleon mass is merely mrr < 200 MeV. Incorpo- 
ration of the next analytic rn: term extends this 
range to 400 MeV. Curve (iv) illustrates the effect 
of including the m6, term of the expansion. 

Within the range rni < 0.15 GeV”, dim-reg 
xPT requires three analytic-term coefficients, co, 
cz and c4 (the coefficient of rni), to be constrained 
by lattice QCD simulation results. The Adelaide 
approach optimizes CO, cp and A in place of cq. 
Tuning the regulator parameter is not modeling. 
Instead, optimization of the regulator provides 
the promise of suppressing c4 and higher-order 
terms. One can understand how this approach 
works through the consideration of how the regu- 
lator models the physics behind the effective field- 
theory, but such descriptions do not undermine 
the rigorous nature of the effective field theory. 

While the Adelaide approach of (3) is xPT, it 
is the current state of lattice QCD simulation re- 
sults that demand the parameters of the chiral 
expansion be determined in other ways. The ex- 
tension to generalized Pad6 approximates [29-321, 
modifications of log arguments [15] and meson- 
source parameterizations [7,8,34,5] are methods 
to constrain the chiral parameters with today’s 
existing lattice QCD simulation results. 

Traditional dim-reg xPT to one loop knows 
nothing about the extended nature of the me- 
son cloud source. As there is no other mecha- 
nism to incorporate this physics, the expansion 
fails catastrophically if it is used beyond the ap- 
plicable range. Moreover, convergence of the dim- 
reg expansion is slow as large errors associated 
with short-distance physics in loop integrals (not 
suppressed in dim-reg xPT) must be removed by 
equally large analytic terms. These points are 
made obvious by examining the predictions of the 
power series expansions (curves (i) through (iv)) 

of Fig. 3 at rn= 2 = 0.3 GeV”. Curve (ii) incorpo- 
rating terms to m3, is particularly amusing. 

In contrast, the optimal finite-range regulation 
of the Adelaide Group provides an additional 
mechanism for incorporating finite-size meson- 
cloud effects beyond that contained explicitly in 
the leading order terms of the dim-reg expansion. 
The finite-size regulator effectively re-sums the 
chiral expansion, suppressing higher-order terms 
and providing improved convergence. The net ef- 
fect is that a catastrophic failure of the chiral ex- 
pansion is circumvented and a smooth transition 
to the established heavy quark behavior is made. 

It is time for those advocating standard chi- 
ral expansions to use them with the established 
model-independent coefficients and in a regime 
void of catastrophic failures; a regime that can 
be extended using finite-size regulators. The ap- 
proach of the Adelaide Group provides a mecha- 
nism for confidently achieving these goals with 
the cautious conservatism vital for the future 
credibility of our field. 

Lepage: This is a remarkable time in the his- 
tory of lattice &CD. For the first time we appear 
to have an affordable procedure for almost realis- 
tic unquenching. Improved staggered quarks are 
so efficient that the MILC collaboration has al- 
ready produced thousands of configurations with 
small lattice spacings and three flavors of light 
quark: one at the strange quark mass, and the 
other two at masses of order l/5 or l/7 or less 
of the strange quark mass. For the first time 
we can envisage a broad range of phenomenologi- 
tally relevant lattice Calculations, in such areas as 
B physics and hadronic structure, that, are pre- 
cise to within a few percent and that must agree 
with experiment. 

Chiral extrapolations are likely to be one of the 
largest sources of systematic error in such high- 
precision work. The MILC collaboration is al- 
ready working at much smaller light-quark masses 
than have been typical in the field; there is lit- 
tle doubt that these masses are small enough for 
a viable chiral perturbation theory. And partial 
quenching provides a powerful tool for determin- 
ing the needed chiral parameters. Such a system- 
atic approach is essential for high precision. 



178 C. Bernard et al. /Nuclear Physics B (Proc. SuppI.) 119 (2003) 170-184 

As discussed by Claude Bernard, the most 
significant complication in the chiral properties 
of improved staggered quarks comes from their 
“taste-changing” interactions. Crudely speaking 
these generate a non-zero effective quark mass, 
proportional to a2, even for zero bare quark mass. 
This effect is perturbative in &CD, and can be re- 
moved by modifying the quark action. It can also 
be measured directly in simulations; we should 
know shortly how significant it is for typical lat- 
tice spacings. 

An important aspect of high-precision lattice 
QCD is choosing appropriate targets. High- 
precision work in the near future will focus on 
stable or nearly stable hadrons. It will be much 
harder to achieve errors smaller than lo-20% 
for processes that involve unstable hadrons such 
as the p or K”. One might try to extrapolate 
through the decay threshold, but thresholds are 
intrinsically nonanalytic and so extrapolation is 
very unreliable. Hadrons very near to thresholds, 
such as the 4 or the T+!J,‘, may be more accessible, 
but even these will be unusually sensitive to the 
light-quark mass since this affects the location of 
the threshold. 

Such considerations will dictate which simula- 
tions we do and how we do them. Consider, for 
example, how we set the physics parameters in 
a simulation. The 1s - 1P splittings in the II, 
or Y’ systems are ideal for determining the lat- 
tice spacing. The hadrons involved are well be- 
low the D-n and B-B thresholds. They have no 
valence u and d quarks, and couple 100 or 1000 
times more weakly to TITS than ordinary mesons. 
This means these splittings are almost completely 
insensitive to light-quark masses (once these are 
small enough). Finally, and somewhat surpris- 
ingly, the splittings are almost completely insen- 
sitive the c and b quark masses as well. To a 
pretty good approximation, the only thing these 
splittings depend upon is a-l. Bad choices for 
setting a-l would be the p mass or even the $J’+ 
splitting, since the $’ is only 40 MeV away from 
a threshold. 

Another example concerns setting the strange 
quark mass. Obvious choices for this are the 
splittings 2M(B,) -M(T) and 2M(D,) -Al($). 
These involve no valence u and d quarks, and so 

require much less chiral extrapolation than say 
M(K). Also they are, by design, approximately 
independent of the heavy quark masses as well. 
And each of the hadrons is far from thresholds. 
To a pretty good approximation, these splittings 
depend only upon m,. 

The CLEO-c experiment presents a particu- 
larly exciting opportunity for lattice &CD, as dis- 
cussed by Rich Galik at this meeting. Within 
about 18 months CLEO-c will start to release few 
percent accurate results for fD, D + nlv, fD, . . . . 
A challenge for lattice QCD is to predict these re- 
sults with comparable precision. This would pro- 
vide much needed credibility for high-precision 
lattice &CD, substantially increasing its impact 
on heavy-quark physics generally. It would also 
be a most fitting way to celebrate lattice QCD’s 
30th anniversary. 

Wittig: Further to the issues discussed in my 
plenary talk [38], I would like to focus on two 
questions, namely 

l How can we gain information on physical 
quantities in the most reliable way? 

l How can we check the validity of xPT? 

As an example let me come back to the masses 
of the light quarks. Their absolute values are 
not accessible in xPT, but quark mass ratios 
have been determined at NLO, using values for 
the low-energy constants (LEC’s) that were esti- 
mated from phenomenology in conjunction with 
theoretical assumptions [39]. The results are 

mu - = 0.553 f 0.043, 3 = 18.9 f 0.8 
md md 

m, 
-;T- = 24.4 f 1.4, iit = !j(m, + md). (4) m 

Individual values can thus be obtained if one suc- 
ceeds in computing the absolute normalization in 
a lattice simulation. The most easily accessible 
quark mass on the lattice is surely m,, for which 
an extrapolation to the chiral regime is not re- 
quired [40]. The combination of the lattice esti- 
mate for m, with the ratios in eq. (4) then yields 
the values of m,, md without chiral extrapola- 
tions of lattice data. 
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This is a reliable procedure, provided that the 
theoretical assumptions, which are used to deter- 
mine some of the LEC’s that are needed for the 
results in (4), are justified. Whether this is the 
case can be studied in lattice &CD, either by com- 
puting ratios like msJfi3 or ms/md directly on the 
lattice, or by determining the LEC’s themselves 
in a simulation. The apparent advantage of the 
latter is that only moderately light quark masses 
are required. Furthermore, it is difficult-though 
not impossible-to distinguish between m, and 
md in lattice simulations. 

Can we trust the current lattice estimates for 
the low-energy constants? ALPHA and UKQCD 
[41,42] have extracted them by studying the 
quark mass behaviour in the range 

m,/2~m~m, (5) 

In order to check whether lattice estimates for 
the low-energy constants make sense phenomeno- 
logically, we can use the results for (~5 to predict 
the ratio of decay constants FKJF~, whose exper- 
imental value is 1.22 f 0.01. 

UKQCD have simulated nr = 2 flavours of dy- 
namical quarks. For the sake of argument, let 
us assume that the quark mass dependence is 
not significantly different in the physical 3-flavour 
case. The data can then be fitted using the ex- 
pressions in partially quenched xPT for nr = 3. 
In this way one obtains 

“a!) ” = 0.98 f 0.09 f- 0.25, (6) 
where the first error is statistical, the second is 
systematic, and the inverted commas remind us 
that this is not really the 3-flavour case. Af- 
ter inserting this estimate into the expression for 
FK/F, in “full” QCD 1431 one obtains 

FK/F, = 1.247 f 0.011 i 0.020, (7) 
which is consistent with the experimental result. 
This is an indication that the quark mass de- 
pendence of pseudoscalar decay constants in the 
physical 3-flavour case is not substantially differ- 
ent from the simulated 2-flavour theory. 

It is interesting to note that the estimate in 
eq. (7) decreases by 15% if the chiral logs are ne- 
glected in the expression for FKJF,, i.e. 

FK/F~ = 1.080 * 0.007 f. 0.021. (8) 

This example then demonstrates that the inclu- 
sion of chiral logarithms can significantly alter 
predictions for SU(3)-flavour breaking ratios such 
as FK JF,. This observation was also made re- 
cently by Kronfeld & Ryan in t,he context of the 
corresponding ratio for B-meson decay constants, 
i.e. FB, JFB~ [2]. Unlike the situation for FK JF,, 
however, there is no experimental value to com- 
pare with. 

To summarize: these examples serve to show 
that estimates for light quark masses can be ob- 
tained in a reliable way by combining lattice sim- 
ulations with xPT, whose strengths and weak- 
nesses are largely complementary. In order to ar- 
rive at mass values for the up- and down quarks, 
the “indirect” approach via the determination of 
low-energy constants offers clear advantages over 
attempts to compute these masses directly in sim- 
ulations. 

3. Responses 

Bernard: The aim of Lattice QCD (LQCD) 
is to predict numbers in a controlled way. The 
problem introduced by the Adelaide approach is 
that nearly any functional form will fit across the 
linear portion of the data but model-dependent 
constants are being introduced that can change 
the extrapolated answer by an unknown amount. 
Although changes in the chiral regulator are or- 
dinarily thought of as harmless, since they can be 
absorbed into changes in the analytic terms, that 
is not true when theory is used to fit data in the 
regime above the cutoff, in the linear regime. The 
detailed form of the cutoff is then important, and 
there is no universality. 

We need to fit the chiral logs in a controlled 
manner. Indeed, we can now do this with the 
improved staggered fermion data, which extends 
down to mn/mp M 0.35, as long as WV use the 
appropriate chiral Lagrangian. 

Another approach that should be pursued is 
using chirally improved or fixed-point fermions 
for valence quarks on dynamical configurations 
generated with improved staggered quarks, This 
would provide important test,s of staggered re- 
sults. 

Hashimoto: First, I agree with Claude 
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Bernard about the importance of distinguish- 
ing rigorous lattice calculations from those with 
model dependence. Nevertheless, I think that 
models are a useful way of estimating systematic 
uncertainties. 

My second remark concerns the extraction of 
low energy constants (LEC) in the chiral La- 
grangian from fits to lattice data. To do this, we 
must first check that xPT fits the lattice data. 
When the sea quark mass is too large, the xPT 
formulae will not work. We find that they do not, 
work for JLQCD’s data, and thus do not quote 
results for LEC. The situation might, however, be 
better with the staggered fermion data. 

Third, staggered fermions have the advantage 
of allowing one to push sea-quark masses closer 
to the chiral limit, but Wilson fermions are useful 
for their simplicity and should be used as a cross- 
check. 

Pallante: Present chiral extrapolations for 
weak matrix element calculations use rn= > 
400 MeV, and this is too high to trust xPT. We 
need to bring the mass down to 300 MeV. It may 
be that to work reliably in this regime requires 
chirally symmetric fermions. In this regard, the 
approach mentioned by Giusti [44] is very inter- 
esting: matching results for correlation functions 
in small volumes to the predictions of chiral per- 
turbation theory in order to calculate LECs. The 
use of small volumes may allow one to work with 
dynamical chirally symmetric fermions. At the 
very least, this should be pursued as a comple- 
mentary approach to allow comparisons. 

I also agree with Claude Bernard about the 
dangers of modeling. I think we have enough the- 
oretical tools given the lightness of light quarks 
and the heavy quark expansion that we can con- 
trol systematic errors, which we cannot do in a 
model. 

Leinweber: We in Adelaide are not interested 
in modeling, either. If we were modeling, we 
would fix the value of the regulator parameter 
A from phenomenology. Instead, we determine 
it, quantity by quantity, by fitting lattice data in 
the region where the regulator sets in. Our aim 
is to provide a simple analytic parameterization, 
incorporating known physics. Systematic errors 

can be estimated by varying the parameteriza- 
tion. For example, our studies of the p meson 
indicate a systematic error after chiral extrapola- 
tion of about 50 MeV. 

The lattice community needs to do better than 
making linear fits just because the data looks lin- 
ear. We know that there is nonanalytic behavior 
at small m,. Ideally we should calculate at much 
smaller mp where we can use any regulator in- 
cluding dimensionally regulated xPT, but until 
we can do this we need alternative parameteriza- 
tions which extend to higher rnq. 

Finally, I would like to advocate setting the 
scale using the static quark potential and not mp. 
The former is insensitive to light quark masses, 
whereas the latter clearly is. 

Lepage: First, let me note that if we use the 
potential to set the scale, then we should use 
r0 x 0.45 fm and not 0.5 fm as is usually done. 
The traditional value for rg comes from models, 
not from rigorous calculations. We can, however, 
infer the correct value from other determinations 
of the lattice spacing. 

Second, let me address the issue of modeling 
versus using xPT. Much of what the Adelaide 
group does can be interpreted as an implemen- 
tation of xPT that uses a momentum cut-off, 
rather than dimensional regularization, to control 
ultraviolet divergences. Momentum cutoffs, with 
A N 500 MeV, have been quite useful in applica- 
tions of xPT to low-energy nuclear physics. Typ- 
ically such cutoffs make it easier to guess the ap- 
proximate sizes of coupling constants that haven’t 
been determined yet. It would be quite interest- 
ing for the Adelaide group or someone else to ex- 
plore whether momentum cutoffs lead to benefits 
in non-nuclear problems. The use of a momen- 
tum cut-off does not, however, extend the reach of 
chiral perturbation theory to higher energies; ul- 
timately the physics is the same, no matter what 
the UV regulator. I see no problem with the Ade- 
laide approach in so far as it is equivalent to xPT 
with a momentum cutoff, but this entails a more 
systematic approach to the enumeration and set- 
ting of parameters. 

Finally, I would like to reemphasize the impor- 
tance of using small quark masses, and the sig- 
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nificance of the fact that MILC simulations are 
entering this regime. This is a new world-one in 
which we can control all systematic errors. 

Wittig: Let me first comment on the “catas- 
trophic failure” of xPT when extended too far 
observed by JLQCD. UKQCD does not see such 
a failure, and it is important that the two groups 
discuss this point and attempt common methods 
of analysis. 

Concerning models, let me reiterate that I 
think modeling is a dangerous path to follow. 
Models are usually based on one particular mech- 
anism. It is then unclear to what extent they are 
able to capture this aspect at the quantitative 
level, and whether they are general enough to de- 
scribe other related phenomena correctly. One 
particular concern is whether a given model can 
be falsified. Is it possible to choose the parame- 
ters to make the results come out correct for some 
quantities, but wrong for others? 

4. General Discussion 

Stamatescu: I have heard advocates of differ- 
ent fermion actions: staggered, Wilson and oth- 
ers. I was hoping to hear more than simple ad- 
vocacy, and think it would be useful to have a 
comparison of the uses of each type of fermion. 

Shoresh: Concerning the need to take the 
fourth-root of the determinant when using stag- 
gered fermions it has been stated that there is 
no evidence that it is wrong, but that there is no 
proof that it is correct. This seems to come under 
the heading of uncontrolled errors. Are any of the 
panelists uncomfortable with staggered fermions? 

Pursuing this point, let me note that chirally 
symmetric fermions can be simulated for lower 
quark masses and this has been done in quenched 
simulations. What is the feasibility of doing dy- 
namical simulations with, say, overlap fermions? 

Lepage: The reason I am pushing staggered 
fermions is that these are the only calculations 
that have a chance to be ready within 18 months. 
The others don’t have that chance. 

Bernard: The issue of taking roots of the de- 
terminant is certainly an important concern for 
those of us using staggered fermions. One way to 

study this issue is to compare results from sim- 
ulations to the theoretical predictions of chiral 
perturbation theory including 0(a2) “taste” vi- 
olations. If successful, this will show not only 
that staggered fermions have the correct chiral 
behavior in the continuum limit but also that we 
understand and can control the approach to that 
limit. That should go a long way towards reassur- 
ing those who are skeptical of staggered quarks. 

Lepage: Precision calculations can also pro- 
vide an important check. Once we have half- 
dozen quantities calculated at the few % level and 
agreeing with experiment, it will increase our con- 
fidence. 

Golterman: I would like to emphasize the im- 
portance of the issue of whether the strange quark 
is light enough to be in the chiral regime. This 
is very important for present calculations of kaon 
weak matrix elements, which all rely on xPT, and 
actually extract LECs, rather than physical decay 
amplitudes. 

I am supportive of the use of improved stag- 
gered fermions. We need unquenched results for 
phenomenological applications. I am concerned 
that the numbers coming out of the Lattice Data 
Group working groups will be coming primarily 
from quenched simulations. 

Rajagopal: It is possible to generalize the first 
of the questions posed by Steve Sharpe about how 
small is small enough. In thermodynamics with 
2 quarks there is a second-order phase transition 
as the mass goes to zero. When m, is small but 
non-zero there is a well-defined scaling function 
that can be used to gauge how small an m, is 
small enough. In this context, as in the context 
of Sharpe’s question as posed, it may turn out 
that small enough means pion masses of order or 
smaller than in nature. Can these t,wo ways of 
gauging what is small enough be related? 

I would also like to hear the reaction to my 
take on the Adelaide approach. If a calculation 
of an observable is linearly extrapolated and it 
misses, what can I learn from this? I think that, a 
model can make plausible that QCD is not wrong. 
I hear Derek Leinweber fighting the urge to use 
linear fits where we know that the data should 
not be linear. But, in order to calculate an ob- 
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servable quantitatively from &CD, say at the few 
percent level with controlled errors, we must have 
lattice data, not a model. The value of models is 
that they can yield qualitative understanding, for 
example of what physics is being missed by linear 
extrapolation. 

Leinweber: I agree that to get an answer at 
the 1% level, we need new lattice results at light 
quark masses. But we shouldn’t throw out the 
parameterization of the regulator. I encourage 
everyone here to do the extrapolations with a va- 
riety of regulator parameterizations and verify the 
uncertainties for themselves. We do need more 
light-quark lattice results, but I think that we can 
use the Adelaide approach now to obtain results 
at the 5% systematic uncertainty level. 

Giusti: With regard to Lepage’s comments on 
competing with CLEO, let me make the follow- 
ing comments. First, simulations with overlap 
fermions have developed very quickly, and are be- 
coming competitive, and we should not stop these 
and start up with improved staggered fermions. 

Second, in the last 15-20 years the errors on fD 
and fB have approximately halved. How can you 
expect the errors to go down by a factor of five 
in one year, which is what is needed to attain the 
l-2% errors you are aiming for? 

Lepage: The errors on fD,B would have been 
reduced by far more than half had it not been 
for the N 20% uncontrolled systematic error due 
to quenching. The quenching errors dominated 
all others because decay constants are very sen- 
sitive to unquenching. Given realistic unquench- 
ing, with improved staggered quarks, the domi- 
nant errors now are in the perturbative matching 
to the continuum, and we know how to remove 
them (and are doing it). Again, we are in a new 
world. 

As to your first question, I am not saying that 
you should stop what you are doing. I am telling 
you what I am doing! 

Mawhinney: Let me note that dynamical 
simulations with 2 flavors of domain-wall fermions 
using an exact algorithm are already underway. 
The parameters are l/a x 2 GeV, mp M ms/2, 
and a fifth dimension of L, = 12. The residual 
mass is mres M m,/20 - m,/lO. Thus, although 

domain-wall fermions are certainly numerically 
more intensive than staggered, Wilson, etc., they 
are not so far from simulating &CD. 

Wosiek: Is the cut-off A universal? 
Leinweber: No. We fit it separately to each 

quantity to optimize the regulator of the trun- 
cated chiral expansion. 

Neuberger: Staggered fermions on a CP-2 
manifold have a continuum limit, but there is 
no spin connection on this manifold. Does that 
worry you? 

Bernard: What really worries me is that I 
didn’t understand anything you just said. 

[More serious response, added after Maarten 
Golterman and Michael Ogilvie explained the 
question and the answer to me: On CP-2, the 
connection between staggered fermions and naive 
fermions is lost, so that, although the staggered 
theory does exist, it has no relation to a theory 
of particles of spin l/2. Equivalently, momentum 
space on CP-2 is different from what we are used 
to, so one cannot make the usual construction a 
continuum spin l/2 field out of the staggered field 
at the corners of the Brillouin zone.] 

Soni: I want to stress two related points. First, 
that we don’t necessarily need experimental data 
to test our methods-we can compare results us- 
ing different discretizations and methods. BK is 
a good example of such cross-checking-the com- 
parison of results obtained using staggered and 
chirally symmetric fermions will provide a de- 
tailed test of our methodology. 

Second, regarding CLEO-c, I am worried about 
trying to guide experimental efforts, which are 
enormously costly, toward the fantasies of theo- 
rists. I am worried about telling them what to 
measure based on what quantities we are able to 
calculate. If you think that staggered fermions 
can calculate quantities so precisely, then why not 
go to the Particle Data Book. There are quite a 
lot of quantities that have already been measured 
very precisely, such as the 0: - Ds mass differ- 
ence (known to 0.3%). 

Lepage: Even without the lattice, experi- 
mentalists should be measuring these quantities. 
They are important to test heavy quark effective 
theory, and as inputs into studies of B-physics. 
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The CLEO-c measurements are important to lat- 
tice QCD because they test the right things, not 
just the spectrum. We use a large, complex col- 
lection of techniques; we need a large number 
and variety of tests in order to calibrate all of 
our methods to the level of a few %. CLEO-c 
is uniquely useful for such tests because it will 
accurately measure the D analogues of precisely 
the quantities most important to high-precision 
B physics. 

VVe have promised the government that we can 
do calculations well, and it is about time that we 
came through. If we can’t calculate f~ to better 
than 15Y0, then why are they paying for us to have 
computer time? Maybe we will be humiliated by 
CLEO if our predictions fail, but since when is 
that a reason not to try? 

Creutz: While we can’t calculate at, the physi- 
cal mass, I have always thought it was fun to play 
and change the mass. In particular, I am fasci- 
nated by the prediction that if one has odd num- 
ber of negative mass fermions then CP is spon- 
taneously violated. I think it would be cool if 
we could simulate such a theory on the lattice. 
But staggered fermions always generate fermions 
in pairs. Do you have any ideas or comments 
about this? (This is a subtle criticism of stag- 
gered fermions.) 

Lepage: Yes. Somehow whenever I am talk- 
ing to somebody about staggered fermions, they 
always manage to bring up the one situation that 
we are absolutely sure that we cannot solve with 
staggered fermions. 

Brower: Back to that fourth root of the deter- 
minant. How does this work if, before one takes 
the root, there is a different mass for each taste. 
Surely, one wants the chiral logs to characterize 
the splitting as it occurs on the lattice. 

Bernard: This can be done by using chi- 
ral perturbation theory including 0(a2) taste- 
violating terms and making the connection be- 
tween xPT diagrams and “quark-flow diagrams” 
[13]. One can determine which of the meson 
diagrams correspond to 0, 1,2,. virtual quark 
loops, and then multiply each diagram by the cor- 
rect power of l/4. Essentially, one is putting in 
the fourth root by hand. 

Savage: xPT already has a length scale A, = 
4nf, built into it. I do not see how we are gaining 
anything by introducing the form-factor cut-off A. 

Leinweber For baryons with a sharp cutoff, 
A = h,/2, and this factor of two is very impor- 
tant in practice. In the meson sector there is some 
question as to whether one needs to introduce a 
finite-range form-fact>or style regulator. 

It is important to remember that this second 
scale, 4~jrf~, is not a regulator scale in traditional 
xPT. With dimensional regulation, the pion mass 
sets the scale of physics associated with loop in- 
tegrals. As the pion mass becomes large, short- 
distance physics dominates and the effective field 
theory undergoes a catastrophic failure. 

There was an earlier comment suggesting that 
the parameterization of the regulat,or introduces 
model-dependent constants that don’t go away. 
These constants do go away as they may be ab- 
sorbed into a renormalization of the chiral La- 
grangian coefficients. 
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