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Chapter 2

The short-term evolution of
initially nearby orbits

Abstract*

We study the initial behaviour of nearby trajectories in the phase-space of inte-
grable potentials. We perform a suite of frozen N -body simulations of Plum-

mer spheres and develop a simple analytical model to describe the behaviour of
orbits on short timescales. We show that nearby orbits may at first diverge very
fast while at late times they do so linearly with time. The initial transient behaviour
is commonly present in N -body systems, and has been attributed in the past to
short-term (microscopic) N -body chaos driven by close encounters. However our
analytic model shows that another interpretation is possible. We find that the initial
divergence depends on the rapid changes of the coordinates and momenta along
an orbit when projected onto the time-domain. We explicitly demonstrate this for
the isochrone potential, in which case the separation of nearby orbits grows in pro-
portion to

√
t for t → 0, explaining the steepness of the initial rate of divergence.

Our results support previous suspicions that this phenomenon is transient and not
necessarily related to an instability in the sense of non-integrable behaviour in the
early stages of the dynamics of N -body systems.

Key words: stellar dynamics – methods: analytical – methods: N -body simulations
– galaxies: kinematics and dynamics

* Based on Helmi & Gómez, 2010, submitted to A&A
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2.1 Introduction

The problem of how exactly galaxies reach their final equilibrium configuration is
still open. It is clear that in contrast to gases, two-body collisions between stars in
galaxies are unlikely to be the driving mechanism to reach a relaxed state, since
the associated timescales are exceedingly large (Binney & Tremaine, 2008). In
an attempt to explain the road to equilibrium from a statistical mechanics point
of view, Lynden-Bell (1967) introduced the concept of “violent relaxation”. In this
context, the relaxation is reached through the effects of a “violently changing”
gravitational field. The detailed mechanics of this process remain to be understood
(Arad & Lynden-Bell, 2005; Valluri et al., 2007; Vass et al., 2009).

Besides the statistical mechanics approach, it is also possible to study the prob-
lem of “relaxation” at the orbital level. It is then useful to introduce the concept
of mixing, by which we mean how quickly nearby particle trajectories diverge in
(phase) space as a function of time. In the case of time-independent gravitational
potentials it is customary to classify mixing into two types. If the particles move in
an integrable potential, their orbits will diverge in space as a power-law in time,
e.g. Helmi & White (1999); Vogelsberger et al. (2008). This process is known
as phase-mixing (Binney & Tremaine, 2008). However, when the potential admits
a certain amount of chaos, there exist regions of phase-space where nearby orbits
diverge exponentially, evidencing an extreme sensitivity to small changes in the ini-
tial conditions (Lichtenberg & Lieberman, 1983). This is known as chaotic-mixing
(Kandrup, 1998; Kandrup & Sideris, 2003).

Since the 1970s N -body simulations have become the standard tool for studies
of the dynamics of structures in the Universe. One of the first to focus on how
N -body systems evolve was Miller (1964), who simulated a self-consistent system
in virial equilibrium of 8 up to 32 particles distributed randomly in a cubic volume.
Miller found that the trajectories of neighbouring particles diverged exponentially
right from the start, a process now known as “Miller’s instability”.

The initial transient originally identified by Miller (1964) has been confirmed
using numerical experiments with a significantly larger number of particles (Lecar,
1968; Kandrup & Mahon, 1994; Valluri & Merritt, 2000; Hemsendorf & Merritt,
2002; Valluri et al., 2007), as well as with various degrees of numerical softening
(Kandrup & Sideris, 2001) both for integrable and chaotic potentials. Furthermore,
there is evidence that the rate of divergence associated to this phase increases
in proportion to the number of particles used (Goodman, Heggie & Hut, 1993;
Hemsendorf & Merritt, 2002). However, because this instability only lasts for a
very short timescale it has been argued that it does not necessarily imply that the
system is (macroscopically) chaotic (Valluri & Merritt, 2000; El-Zant, 2002).

Given the discrete nature ofN -body simulations, it is not surprising that chaotic-
ity should be present in these systems. This is why efforts have been made to es-
tablish the extent up to which an N -body simulation may be considered a faithful
representation of a dynamical system (e.g. Diemand et al., 2004; Binney, 2004).
General agreement now exists that when a system is represented by a sufficiently
large number of particles, its behaviour tends to that expected from the collision-
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less Boltzmann equation, at least in a statistical sense (Kandrup & Smith, 1991;
Quinlan & Tremaine, 1992; El-Zant, 2002; Hayes, 2003; Sideris, 2004).

So, while the existence of a continuum limit in N -body systems appears to be
more or less established for long timescales, on short timescales the initial tran-
sient behaviour is more difficult to understand. Goodman, Heggie & Hut (1993);
Hut & Heggie (2001) presented a model to estimate the Lyapunov timescale in the
absence of softening in a system of N -bodies of the same mass. They find that
encounters between particles with impact parameter p ∼ R/

√
N occur sufficiently

frequently (once per crossing time) to lead to the exponential growth of infinitesi-
mal perturbations on a timescale proportional to the crossing time (here R denotes
the size of the system and N the number of particles used to represent it). They es-
timate ∆r ∼ ∆r0et/tcr , which thus implies that in a crossing-time tcr the separation
between particles has increased by an e-fold, i.e. a factor ∼ 2.7 (see also Binney &
Tremaine, 2008).

In this paper, we revisit the problem of the initial divergence of nearby orbits.
We first explore the behaviour in frozen N -body Plummer spheres and the depen-
dence on the numerical parameters used (number of particles and softening) as
in previous works. We then develop an analytic model that describes the initial
behaviour of nearby orbits in the corresponding integrable smooth Plummer po-
tential. Perhaps surprisingly, we find that, under certain initial conditions, nearby
orbits in the smooth potential depict an extremely rapid divergence on timescales
comparable to a crossing time just like in the N -body case.

The structure of this paper is the following. In Section 2.2 we introduce our N -
body simulations and compute the rate of divergence of nearby orbits for different
choices of the numerical parameters. In Section 2.3 we present our analytic model
and in Section 2.4 we compare it to the behaviour found in the N -body simulations.
Finally, Section 2.5 presents our conclusions.

2.2 The initial evolution in N-body frozen Plummer
spheres

For simplicity, we study the behaviour of nearby orbits in an N -body realisation
of the Plummer sphere, i.e. a fully integrable (spherical) system. The associated
density and potential satisfy

ρ(r) =
3M

4πb3

(
1 +

r2

b2

)−5/2

and φ(r) = − GM√
r2 + b2

. (2.1)

We choose units such that G = M = b = 1 and the internal energy of the system
is E = −3π/64. We define the crossing time of the system tcr = R/V where R =

−GM2/2E and V 2 = −2E/M .
N -body simulations are often used to model the dynamical evolution of galaxies

and galaxy systems, even though the number of particles that present day comput-
ers can handle is smaller, often by several orders of magnitude, than the number of
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stars present in a galaxy. This implies that the particles do not represent individ-
ual stars, but should be considered as Monte Carlo realisations of the distribution
function of a galaxy.

To represent a dynamical system with a limited number of particles such as
our N -body realisations of the Plummer sphere, and to avoid spurious 2-body relax-
ation, the gravitational force between particles is generally softened. The softening
parameter ε ensures that when two particles come very close together, they still will
experience a finite acceleration. Several studies have looked at the optimal com-
bination of numerical parameters for a given problem (e.g. Merritt, 1996; Dehnen,
2001; Springel, Yoshida & White, 2001). Athanassoula et al. (2000) in particular,
discuss the optimal combination of softening and number of particles for the spe-
cific case of the Plummer sphere. In this work, the optimal softening is defined as
that which minimises the integrated weighted difference between the true force
field and the force computed in the N -body simulation. Therefore, the optimal soft-
ening is that which gives the best representation of the force for a given N , and
was found to be εopt = 0.84N−0.25 by Athanassoula et al. (2000).

Here we adopt this same scaling, and moreover for a given experiment with N

particles, we explore three possibilities for the softening. We take a slightly smaller
value for the optimal softening, namely εopt = 0.66N−0.25 for all our experiments ex-
cept for that with N = 128, 000 for which we use εopt = 0.53N−0.25. We also consider
two additional cases: ε′ = 0.1εopt and ε′′ = 0.01εopt. In all our experiments, the nu-
merical values of the softening εopt and ε′ are smaller than the average inter-particle
separation R/N1/3, while ε′ and ε′′ are both smaller than the impact parameter of
dominant encounters R/

√
N as estimated by Goodman, Heggie & Hut (1993); Bin-

ney & Tremaine (2008). Therefore, we expect the effect of close encounters to be
apparent in the rate of divergence of nearby orbits especially in these two latter
cases.

We generate N -body realisations of the Plummer sphere with N = 1, 000 up
to 128, 000 particles in increasing powers of 2. As Kandrup & Sideris (2001) we
follow the evolution of 100 nearby orbits in these frozen (in time and space) N -body
systems. We use a Runge-Kutta-Fehlberg algorithm of order 4–5 for the orbital
integration, with a variable timestep (the maximum tolerance is 10−8). Our 100
orbits are distributed according to a multivariate Gaussian in phase-space with
initial dispersion σx,0 = 10−5 and σv,0 = 10−3 around an orbit with pericentre 0.37,
apocentre 1.64 and radial period 1.17 tcr.

Figure 2.1 shows the evolution of the average separation 〈∆r〉 of the ensemble of
the above-mentioned 100 orbits for different values of N , where we have used the
εopt value for the softening. This Figure shows that in all cases, an initial transient
occurs, in which the orbits diverge very rapidly, increasing their separation by a
factor e6 ∼ 400 on a timescale of one crossing time. Afterwards, the growth rate
saturates and a new regime appears in which the growth is approximately linear in
time. The separation reached after the initial transient is smaller than the impact
parameter of dominant encounters for all N , and is roughly 1% of the scale of the
system. It only becomes comparable to this impact parameters’ scale after 5tcr, but



2.2. THE INITIAL EVOLUTION IN N -BODY FROZEN PLUMMER SPHERES 27

Figure 2.1: Evolution of the average separation of nearby orbits in frozen N -body
simulations of a Plummer sphere with varying number of particles (from 1,000 up
to 128,000). The force computations have used the optimal softening for each N

(see text for details).

is still significantly smaller than the extent of the system.
Therefore, Figure 2.1 shows that over the timescales considered here, the be-

haviour is quite similar for all N , which testifies to the good choice of the softening
proposed by Athanassoula et al. (2000).

In Figure 2.2 we explore the divergence in the frozen N -body simulations for
different values of the softening. In all cases, we have used softenings which are
smaller by a factor 10 (dark grey) and 100 (light grey) from the optimal values
(in black). This Figure shows that a dependence of the rate of divergence on the
softening exists, in the sense that the smaller ε the faster the divergence. However,
this is only noticeable after 1-2 tcr and even later for the larger N experiments. The
amplitude of the initial transient (t < tcr), which dominates the growth over the
period considered in this Figure, does not depend on the particular value of N or ε.

These experiments suggest that the initial transient is a generic feature of the
system, independent of the specific choice of numerical parameters. It occurs on a
timescale comparable to a crossing time, but does not appear to be driven by single
encounters, since systems with very small (or no) softening do not experience a
stronger initial divergence.

Note as well, that the initial divergence has a much larger amplitude that es-
timated by the model of Goodman, Heggie & Hut (1993), suggesting that 2-body
encounters of the type described in their work are not the driver of the initial very
rapid divergence observed in our N -body systems. It is possible, nonetheless that
this class of encounters are relevant at later times (between 1 and 5 tcr, which is
the point when the impact parameter is comparable to the separation) but only for
the experiments with the smallest softenings.

The results of our experiments are in very good agreement with previous reports
on the same problem. For example Kandrup & Sideris (2001) have run a similar
set of experiments (their Figure 2) and found essentially the same initial growth as
that shown in Figure 1. Valluri & Merritt (2000) also find for their triaxial ellipsoid
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Figure 2.2: Evolution of the average separation of nearby orbits in N -body simu-
lations of a Plummer sphere using different numbers of particles N and softening
values for the force. The black curves correspond to εopt while dark and light grey
to 10% and 1% of εopt respectively.
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experiments that the divergence is initially very fast, after which and for large
N , it saturates when it is of order 1% of the system size. Our experiments are
also consistent with the results of Hemsendorf & Merritt (2002) on a timescale
comparable to a crossing time. However we do not find the reported very large
increase by factors e120 for longer timescales (up to 7 crossing times). There are
three possible causes for the difference: i) the effect of round-off errors, which
will be larger in their case because of the initial orbit separation 10−30, well below
the value we have considered and what is possible to follow with double precision;
ii) they integrate the “variational equations” without softening; iii) our systems,
unlike theirs, are frozen N -body experiments, which implies that we are probably
underestimating the effect of the propagation of “errors” triggered by encounters.

2.3 Analytic description of the evolution in phase-
space of nearby orbits

Helmi & White (1999) developed a formalism to follow the evolution in time and
in phase-space of a distribution function representing an initial cluster of particles
orbiting an external gravitational field.

The basic idea behind their approach consists mapping the initial system (a
cluster of stars or a satellite galaxy) onto action-angle space, then follow the much
simpler evolution in this space, and finally transform back locally onto observable
coordinates (all these being linear transformations; for a sketch see Figure 2.3).
This method, which uses action-angle variables, is very general and can be applied
to any potential that admits regular orbits (Goldstein, 1959; Binney & Tremaine,
2008). If the potential is separable such as in the case of the Plummer sphere, the
implementation is simpler while still being generic.

2.3.1 The distribution function

Therefore, instead of following the evolution of pairs of nearby orbits as we have
done in Section 2.2, we here follow the evolution of a distribution function in phase-
space. In particular, and for simplicity, we assume that the initial distribution func-
tion of the system is a multivariate Gaussian in $ = (x,v) coordinates centred on
〈$0〉 (a given particle or orbit):

f($, t0) = f0 exp

[
−1

2
∆†$,0σ$,0∆$,0

]
(2.2)

where ∆$,0 = $ − 〈$0〉, and σ$,0 is the variance matrix (the inverse of the covari-
ance matrix) at the initial time:

σ$,0 =

[
Sx,0 Cxv,0

Cxv,0 σv,0

]
. (2.3)

For example, if the variance matrix is diagonal, then Sx = [1/σ2
xiδij ] and σv =

[1/σ2
viδij ], and Cxv = 0.
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Figure 2.3: Flow chart showing the basic steps of our analytic formalism to mea-
sure the evolution of a system in phase-space.

To transform from configuration and velocity space to action-angle space we will
use a mapping T : $ → w = (φ,J). This mapping will be linear provided the extent
of the system in phase-space is small. Its elements are Tij = ∂$i/∂wj evaluated at
〈$〉. Such a mapping will preserve the form of the distribution function, which will
now be a Gaussian in action-angle space, with variance matrix σw,0 = T†0σ$,0T0.

The dynamical evolution of the system in action-angle coordinates is given by
φ = φ0 + Ω(J) t, and J = cst. Since we may express

∆w = Θ(t)∆w,0 with Θ(t) =

[
I3 −Ω′t

0 I3

]
,

where I3 is the identity matrix in 3-D, and Ω′ represents a 3 × 3 matrix whose
elements are ∂Ωi/∂Jj , the distribution function at time t becomes

f(w, t) = f0 exp

[
−1

2
∆w

†σw∆w

]
, with σw = Θ(t)

†
σw,0Θ(t). (2.4)

From this last Equation we may finally derive the distribution function in configu-
ration and velocity space at time t. To this end, we perform a local transformation
using the matrix T. Since this is done locally, our distribution function is still a
multivariate Gaussian. The variance matrix at time t is

σ$(t) = (T0Θ(t)T−1)†σ$,0(T0Θ(t)T−1). (2.5)

This variance matrix contains all the information about the dynamical properties of
the particles on initially nearby orbits. For example, the evolution of the velocity
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Figure 2.4: Time evolution of the velocity dispersions (top three panels on the
left), spatial density (bottom left panel) and dispersions in configuration space (top
three panels on the right), for a system moving in a Plummer potential on the orbit
explored in Sec.2.2. The periodicity observed is related to the radial (and angular)
orbital oscillations, as shown in the bottom panel on the right, where we have
plotted the logarithm of r(t) (solid) and

√
rpr(t) (dashed).

ellipsoid may be derived from the velocity submatrix: σv. This submatrix describes
the velocity distribution of nearby particles at time t. The spatial density at a partic-
ular location x at time t (which is related to the spatial separation of those particles)
is obtained by integrating the distribution function with respect to all velocities:

ρ(x, t) = (2π)3f0σv1σv2σv3 × exp

[
−1

2
∆x
†σx∆x

]
(2.6)

where σvi=1,2,3 are the velocity dispersions along the principal components of the
velocity ellipsoid. The matrix σx is 3×3, and contains all the information concerning
the evolution of the particle distribution in configuration space, including their
separation, which is ultimately, the quantity that we want to measure.

2.3.2 Application to the Plummer potential

As in Section 2.2 we assume that the initial variance matrix of the particle distribu-
tion σ$,0 is diagonal (see Eq. 2.3), with Sx,0 = [1/σ2

x,0δij ] and σv,0 = [1/σ2
v,0δij ], and

where σx,0 = 10−5 and σv,0 = 10−3. We centre this distribution on the orbit used in
the N -body simulations of Sec. 2.2.

In Figure 2.4 we plot the evolution of the velocity dispersions, the spatial density
and the dispersions in configuration space. These quantities have been computed
using the procedure outlined above. This Figure shows that in the case of spherical
potentials, only two of the velocity dispersions decrease in time, while the third one
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remains on average constant (it corresponds to the direction perpendicular to the
plane of motion). These results imply that the configuration-space dispersions will
increase in time, as a consequence of Liouville’s theorem (i.e. the conservation of
phase-space density). This can also be seen from dM ∼ ρ× σx1

σx2
σx3

= cst.
The explicit form of the dispersions in velocity and in configuration space has

been derived in the Appendix. There we work in a reference frame that coincides
with the plane of motion (this is of course possible for a spherical potential). In
this new frame only two coordinates and two velocities are required to specify
completely the state of system. In this case, the spatial density

ρ ∝ σv1σv2 = (λv1λv2)−1/2, (2.7)

where λv denotes the eigenvalues of the velocity submatrix σv, and for which the
following relation holds

λv1λv2 =
r2p2

r

Ω2
r

(
α4t

4 + α3t
3 + α2t

2 + α1t+ α0

)
. (2.8)

The coefficients αi depend both on location along the orbit as well as on the initial
extent of the system in phase-space (see Eq. 2.18). The decrease in the spatial
density of the system observed in Fig. 2.4 can thus be understood from Eqs. (2.7)
and (2.8). The strong enhancements in the density seen in Fig. 2.4 take place at
the orbital turning points: when pr = 0 then λv1 × λv2 → 0 and hence ρ→∞.

In the Appendix we show that the configuration-space dispersions satisfy σx1
σx2

=√
λv1λv2
detσ0

w
(see Eq. 2.24). Close inspection of Eqs. (2.8) and (2.18), allows us to reach

the following conclusions:

• For very short timescales, the term with α0 dominates. In this case the sepa-
ration of nearby orbits as measured by σxi purely reflects the rapid changes
in the coordinates and momenta along the orbit when projected onto the time-
domain (i.e. this term is heavily weighted by r2p2

r).

• The terms with α2 and α4 are always positive, implying that these will induce
a rapid increase in the λv, and hence of the dispersions in configuration space
on intermediate timescales.

• The terms with α1 and α3 can either be positive or negative, depending on
location along the orbit. This (partly) explains the strong oscillatory behaviour
observed in Fig. 2.4.

• On longer timescales, only the term with α4t
4 is important. This gives rise to

the secular behaviour of density which decreases as 1/t2 (as found by Helmi
& White, 1999), and for the dispersions in configuration-space to increase in
linear proportion to t.

The behaviour just described applies to orbits in any spherical potential. In
general the exact time-variation of the various coefficients in Eq. (2.8) is rather
complex. However, in the case of the isochrone potential, it is possible to find the
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relation between the action-angle variables and the coordinates in configuration
and velocity space exactly (Binney & Tremaine, 2008). This allows the derivation
of the explicit functional form of each of the terms in Eq. (2.8).

Particularly relevant in the context of this Paper, is the behaviour of the term
α0×r2p2

r since this will set the short-term (rate of) divergence of nearby orbits. For
the isochrone potential

r2p2
r = C sin2 Ψ, (2.9)

where C is a constant dependent on the energy and angular momentum of the orbit
and on the scale and mass of the system (McGill & Binney, 1990; Gerhard & Saha,
1991). Ψ is related to the radial angle φr

φr = φ0,r + Ωrt = Ψ− C ′ sin Ψ. (2.10)

In the case of the Kepler potential (which is a limiting case of the isochrone poten-
tial), Ψ is the mean anomaly. Note that for small t, and assuming φ0,r = 0 (i.e. the
integration starts at a radial turning point) then Ψ ∝ t. If we further assume that
α0 is constant (a condition satisfied if σx,0 � σv,0) then

λv1λv2 ∝ r2p2
r ∝ sin2 Ψ ∝ t2. (2.11)

This implies for example that the density will initially decrease as ρ ∝ 1/t, i.e. its
rate of decline diverges as t → 0. Even though we have derived this dependence
explicitly only for the isochrone potential, we expect this result to be valid more
generally. The bottom left panel of Figure 2.4, which depicts the evolution of the
density for the Plummer potential shows that this indeed appears to be the case.

2.3.3 Separation in configuration space and dependence on
initial conditions

To establish the relation between the dispersions in configuration space (i.e. the
inverse of the eigenvalues of the matrix σx) and the separation between nearby
orbits we proceed as follows.

We integrate 1,000 orbits with initial conditions following the same 6D Gaus-
sian used in the previous section (i.e configuration space dispersion σx,0 = 10−5

and velocity dispersion σv,0 = 10−3 centred also around the same orbit). We then
measure the separation ∆smooth

r,i = |ri − r0| between this orbit and the 1,000 neigh-
bouring trajectories, and derive the average 〈∆smooth

r 〉. We compare this separation
to three different averages of the configuration-space dispersions obtained from
our analytic model:

1. the geometric mean: ∆g = (σx1σx2σx3)1/3,

2. the arithmetic mean: ∆a = (σx1 + σx2 + σx3)/3,

3. the modulus: ∆m =
√
σ2
x1

+ σ2
x2

+ σ2
x3
/3.
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Figure 2.5: Time evolution of three possible averages of the dispersions in
configuration-space obtained through our formalism. The black dashed curve in
each panel represents the average separation 〈∆r〉 of 1,000 nearby orbits. Note
the excellent agreement between 〈∆r〉 and ∆m as shown in the middle panel. In
this panel, the grey long-dashed curve is proportional to

√
t and follows well the

very steep initial growth of 〈∆r〉. On the other hand, at late times the separations
increase linearly as shown by the short-dashed grey curve.

The various panels in Figure 2.5 show the behaviour of these means compared to
the average obtained directly from the integrations of the 1,000 nearby trajectories
(dashed curve). As can be seen from this Figure the three averages perform equally
well for short timescales. On the other hand, for longer timescales it is the modulus
∆m of the configuration-space dispersions which provides the best match to the
separation between nearby orbits 〈∆smooth

r 〉.
Figure 2.5 shows that the separation of nearby orbits in smooth integrable po-

tentials exhibits a rapid initial divergence, which is followed by a secular increase
which is linear in time. The initial transient occurs in a completely integrable sys-
tem. It reflects the way the phase-space curves around an orbit with time, as
shown in the Appendix. In the case of the isochrone potential, the explicit time-
dependence of the initial transient can be derived analytically. As discussed above,



2.4. COMPARISON TO N -BODY SIMULATIONS 35

Figure 2.6: Time evolution of the separation of nearby orbits as measured by ∆m

for two different orbits: the black curve is for an inner orbit, while grey corresponds
to an orbit with a large apocentre.

∆g ∝
√
σx1
× σx2

∝ (λv1λv2)1/4 ∝
√
t from Eq. (2.11). This shows that the sepa-

ration of nearby orbits as measured by the geometric mean ∆g has a very steep
rate of increase with time, since d∆g/dt ∝ 1/

√
t → ∞ as t → 0. The grey curve in

the middle panel of Figure 2.5 shows that this functional form describes well the
behaviour also in the case of an orbit in a Plummer sphere.

Thus far we have only explored one initial configuration for the orbit and for the
variance matrix. We now focus on how the separation of nearby orbits depends on
their location in phase-space. The black curve in Figure 2.6 shows ∆m for an orbit
constrained to move in the inner regions of the system (pericentre rp = 0.12 and
apocentre ra = 0.84), while the grey curve has a much larger apocentre ra = 2.87

(rp = 0.21). Clearly the amplitude of the initial transient depends on the regions
of phase-space the orbits probe. We also find a slight dependence on the initial lo-
cation along the orbit, namely that the initial divergence has the largest amplitude
(and it lasts longer) when the integration is started near an orbital turning point.

However, the largest influence on the initial rate of divergence comes from the
form of the initial variance matrix. The examples discussed thus far consider σx,0 =

10−5 and σv,0 = 10−3. We have found that by decreasing σx,0/σv,0, the amplitude of
the divergence can be made exceedingly large. However, as we will show below it
can also be made negligibly small if σx,0 � σv,0.

2.4 Comparison to N-body simulations

The behaviour visible in Figure 2.5 is strikingly similar to that observed in the N -
body simulations discussed in Sec. 2.2. This is explicitly demonstrated in the top
panel of Fig. 2.7, where we compare our analytic estimates (∆m, dashed) to the
average separation of 100 orbits integrated in the N -body representation of the
system (〈∆r〉, solid curve), with N = 128k for the optimal softening case and for
σv,0 � σx,0.

This Figure suggests that the initial divergence previously reported to be present
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"
x,0
>>"

v,0

"
x,0
<<"

v,0

Figure 2.7: Time evolution of the average separation 〈∆r〉 of 100 nearby orbits
integrated in a frozen N -body realisation of the Plummer sphere with N = 128, 000

and εopt (solid curve). The error bars denote the error on this average. The dashed
curve represents the separation of nearby orbits as measured by ∆m using our
analytic prescription. The different panels show the dependence of the rate of
divergence on the initial configuration of the set of nearby orbits, where top (bot-
tom) corresponds to more (less) strongly clustered in configuration than in velocity
space.

in N -body simulations, and shown in Figures 2 and 3 of this paper, is intrinsic to
gravitational systems. As shown in Section 2.3.2, it results from the distortion of
the phase-space neighbourhood of an orbit when studied in the time domain. The
rate of divergence is very large as it evolves as 1/

√
t near t→ 0.

The near saturation of the rate of divergence after roughly one orbital period,
indicates that this transient behaviour cannot be related to dynamical chaos. For
example, for a chaotic orbit in a non-integrable potential this saturation is never
reached as shown by Vogelsberger et al. (2008) (see their Fig. 6).

The bottom panel of Figure 2.7 shows that the initial transient may disappear
completely both in the analytic model as in the N -body simulations when the ini-
tial system is more strongly clustered in velocity than in configuration space. Here
we have used σv,0 = 10−5 and σx,0 = 10−3. We have noticed that the orbital in-
tegrations in the N -body experiments reported in the literature often start from a
configuration such as that depicted in the top panel. In such cases, nearby orbits
are drawn within a specific (small) region of configuration space, but are free to
have any range of initial velocities (e.g. Kandrup & Sideris, 2001).

In light of the discussion above, we may reach the following conclusions. In N -
body systems with the appropriate (optimal) value of the softening, the initial rate
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of divergence is reproduced very well by our model, and has a “geometric” origin.
However, in N -body simulations with a very small or no softening, such as those
discussed by Goodman, Heggie & Hut (1993); Hut & Heggie (2001) and Valluri &
Merritt (2000) we expect a steep initial divergence as in our model only for orbits
initially (much) more strongly clustered in space than in velocity. Under a differ-
ent initial configuration, nearby orbits may diverge due to 2-body encounters but
this divergence should typically have a lower amplitude. For all initial configura-
tions, and after a crossing time, such encounters are likely important in driving the
evolution of the separation of nearby orbits.

2.5 Discussion and Conclusions

We have studied the initial divergence of nearby orbits in frozenN -body simulations
of a Plummer sphere, and have explored the dependencies of this divergence on
numerical parameters, in particular softening and number of particles. In very
good agreement with previous work, we have found that the rate of divergence is
initially very fast, and that roughly after one crossing time, it saturates. At this
point in time the separation is much smaller than the scale of the system.

We then developed an analytic model to follow the separation of nearby orbits
in a smooth Plummer potential. This model shows that nearby orbits will diverge
very fast initially even for fully integrable smooth potentials, provided they are
strongly clustered in space and less in velocity. This divergence is driven by the
time-evolution of the distortion of the phase-space around an orbit and is a generic
feature of dynamical systems. We have been able to show explicitly that nearby
orbits in the isochrone potential diverge initially in proportion to

√
t, i.e. as t → 0

the rate of separation effectively diverges.
Therefore, the initial extremely rapid divergence of nearby orbits previously re-

ported in N -body systems does not inevitably imply a manifestation of microscopic
chaos on a crossing timescale. This transient phenomenon is not necessarily re-
lated to an instability in the sense of non-integrable behaviour in the short-term
dynamics of N -body systems.
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Appendix 2.A Matrices in a spherical potential

For spherical potentials Φ(r), we may choose a system of coordinates that coincides
with the plane of motion of the system. In this plane the position of a particle is
specified by its angular (ψ) and radial (r) coordinates. The actions of an orbit in
this case are:

L = Jψ = pψ, Jr =
1

π

∫ r2

r1

dr
1

r

√
2[E − Φ(r)]r2 − L2, (2.12)

where L is the total angular momentum of the particle, E is its energy, and r1 and
r2 the orbital turning points.

In order to track the evolution of the dispersions of our initial distribution func-
tion, f($, t0), we perform the following sequence of operations. Firstly, we trans-
form from Cartesian coordinates $ = (x,v) to action angle variables w = (θ,J).
The distribution function is then evolved in this space, after which, we transform
back to Cartesian coordinates (see Figure 2.3).

For the sake of simplicity, here we begin with a distribution function already
expressed in terms of the action-angle variables and we also assume that, initially,
the variance matrix is diagonal, i.e., σw,0 = [σiiδij ]. With the time evolution op-
erator, Θ(t), known, we can compute the variance matrix at any given time t as
σw(t) = Θ(t)

†
σw,0Θ(t). Equation (2.4) shows Θ(t) for the 3-D case, but we reduce

the equation for our purposes to the 2-D case.

After evolving the system in the action-angle space we need to transform back
locally to configuration and momenta space ω̂ = (x,p) using the transformation
matrix T−1. The elements of this matrix are related to the second derivatives of
the characteristic function W (q,J). In our case

T−1 =


1 t12 t13 t14

0 t22 t23 t24

0 0 1 0

0 t42 t43 t44

 , (2.13)

with

t12 = −h(r)
Ωr

W34 + κ
pr
, t13 = W33 +W34t43, t14 = W34t44,

t22 = −h(r)
Ωr

W44 + Ωr
pr
, t23 = W34 +W44t43, t24 = W44t44,

t42 = −h(r)
Ωr

, t43 = − κ
Ωr
, t44 = pr

Ωr
,

where

h(r) = −Φ′(r) + L2

r3 , pr =
√

2[E − Φ(r)]− L2

r2 , κ = Ωψ − L
r2 ,

and
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W33 =
∂2W

∂L2
=

∫ r

r1

dr

pr

(
∂Ωψ
∂Jψ

− 1

r2
− κ2

p2
r

)
,

W44 =
∂2W

∂Jr
2 =

∫ r

r1

dr

pr

(
∂Ωr
∂Jr

− Ω2
r

p2
r

)
,

W34 =
∂2W

∂L∂Jr
=

∫ r

r1

dr

pr

(
∂Ωψ
∂Jr

− κ

p2
r

Ωr

)
.

Subindices 1 and 3 in the expressions above refer to directions associated with
ψ, such as, φψ and Jψ whereas 2 and 4 are related to r. For more details about this
procedure we refer the reader to Helmi & White (1999).

Given T−1, the variance matrix at time t is expressed as:

σω̂(t) = (Θ(t)T−1)†σw,0(Θ(t)T−1). (2.14)

where the elements tij are evaluated at 〈x(t)〉. Substituting T−1, Θ(t) and σw,0 in
the above expression, then

σω̂(t) =


σ11 σ11A σ11B

{1, 2} σ11A
2 + σ22D

2 + σ44t
2
42 σ11AB + σ22DE + σ44t42t43

{1, 3} {2, 3} σ11B
2 + σ22E

2 + σ33 + σ44t
2
43

{1, 4} {2, 4} {3, 4}
σ11C

σ11AC + σ22DF + σ44t42t44

σ11BC + σ22EF + σ44t43t44

σ11C
2 + σ22F

2 + σ44t
2
44

 , (2.15)

where

A = t12 − Ω′34t42t, B = t13 − (Ω′33 − Ω′34t43)t, C = t14 − Ω′34t44t,
D = t22 − Ω′44t42t, E = t23 − (Ω′34 − Ω′44t43)t, F = t24 − Ω′44t44t.

In general, one is more interested in the properties of the debris in velocity
space, rather than in momenta space. Therefore we transform the variance matrix
according to σ$(t) = T†p→vσω̂(t)Tp→v, with

Tp→v =


1 0 0 0

0 1 0 0

0 vψ r 0

0 0 0 1

 .
To obtain an expression for the time evolution of the velocity dispersions we fo-

cus our attention on what happens around a particular point 〈x(t)〉 in configuration



40 CHAPTER 2. THE SHORT-TERM EVOLUTION OF INITIALLY NEARBY ORBITS

space located on the mean orbit of the system. This is equivalent to studying the
velocity submatrix of the variance matrix σ$(t), that is

σv =

[
r2(σ11B

2 + σ22E
2 + σ33 + σ44t

2
43) r(σ11BC + σ22EF + σ44t43)

{1, 2} σ11C
2 + σ22F

2 + σ44t
2
44

]
. (2.16)

By diagonalising the matrix σv we obtain the principal axes of the velocity el-
lipsoid at the point 〈x(t)〉, and the associated dispersions. The eigenvalues of
σv are the roots of the characteristic equation: det[σv − λI] = 0. An interesting
quantity is for example, λv1λv2 because it is inversely proportional to the density:
ρ ∝ σv1σv2 = (λv1λv2)−1/2. In our case:

λv1λv2 =
r2p2

r

Ω2
r

(
α4t

4 + α3t
3 + α2t

2 + α1t+ α0

)
, (2.17)

where

α4 = σ11σ22(det Ω′)2,

α3 = 2σ11σ22 det Ω′ (2W34Ω′34 −W33Ω′44 −W44Ω′33),

α2 = σ11σ22

(
2 det Ω′ det W + (Ω′44W33 + Ω′33W44)2+

4W34(Ω′
2
34W34 − Ω′33Ω′34W44 − Ω′34Ω′44W33)

)
+

(σ11σ33 + σ22σ44) Ω′
2
34 + σ11σ44Ω′

2
33 + σ22σ33Ω′

2
44,

α1 = 2
(
σ11σ22 det W (2Ω′34W34 − Ω′44W33 − Ω′33W44)−

Ω′34W34 (σ11σ33 + σ22σ44)− σ11σ44Ω′33W33−
σ22σ33Ω′44W44

)
,

α0 = (σ11σ22)(det W)2 +W 2
34 (σ11σ33 + σ22σ44) +

σ11σ44W
2
33 + σ22σ33W

2
44 + σ33σ44, (2.18)

with

det W = W33W44 −W 2
34.

These equations explicitly show the behaviour of principal axes velocity disper-
sions:

• For very short timescales, the term with α0 dominates. In this case the be-
haviour purely reflects the geometry of the orbit in phase space (being heavily
weighted by r2p2

r).

• The terms with α2 and α4 are always positive, implying that these will induce
a rapid increase in the λv, or a rapid decrease of the velocity dispersions on
intermediate timescales.

• The terms with α1 and α3 can either be positive or negative, depending on lo-
cation along the orbit (i.e. the Wij vary in magnitude and sign). This explains
the strong oscillatory behaviour observed in Fig. 2.4.
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• On longer timescales, only the term α4t
4 is important. This gives rise to the

secular behaviour of density which decreases as 1/t2, and the velocity disper-
sions to behave as 1/t for long timescales.

To obtain the expression for the time evolution of the dispersions in configura-
tion space we integrate the distribution function with respect to all velocities (see
Eq. 2.6). In practice, we first transform σ$(t) from polar to Cartesian coordinates,
σ′$(t) = (T′)†σ$(t)T′, where

T′ =


− sin(ψ)

r

cos(ψ)

r
0 0

cos(ψ) sin(ψ) 0 0
sin(ψ)pr

r
−cos(ψ)pr

r
− sin(ψ) cos(ψ)

− sin(ψ)vψ
r

cos(ψ)vψ
r

cos(ψ) sin(ψ)

 . (2.19)

We express σ′$ as

σ′$ =

(
A B

B† C

)
,

where the 2x2 matrices A, C and B represent the position submatrix, the velocity
submatrix, and the cross correlation between positions and velocities, respectively
(as in Eq. 2.3). Then, the matrix σx is obtained from the integration of the distribu-
tion function over the velocities:

σx =

(
s11 s12

s12 s22

)
,

where the elements sij are related to the dispersions in configuration space. These
elements can be expressed as:

sij =
det Γij
det C

, (2.20)

with

Γij =

 aij bi1 bi2
bj1 c11 c12

bj2 c12 c22

 ,

where aij , bij and cij are elements of the matrices A, B and C respectively. The
diagonalisation of the matrix σx yields the values of the dispersions along the prin-
cipal axes of the system in configuration space since σxi = 1/

√
λri , where λri are

the eigenvalues of σx.
Solving the characteristic equation for σx we finally obtain:

λri = (2λv1λv2)−1
[
β2t

2 + β1t+ β0±√
(β2t2 + β1t+ β0)2 − 4λv1λv2 detσ0

w

]
, (2.21)
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where

β2 = σ11σ22r
2
[
(σ44Ω′

2
34 + σ33Ω′

2
44)(p2

r + r2κ2)− (2.22)

2Ω′34(σ44Ω′33 + σ33Ω′44)r2κΩr + (σ44Ω′
2
33 + σ33Ω′

2
34)r2Ω2

r

]
,

β1 = −2σ11σ22r
2
[
(σ44W34Ω′34 + σ33W44Ω′44)(p2

r + r2κ2)+(
(σ33W44 + σ44W33)Ω′34 +W34(σ44Ω′33 + σ33Ω′44)

)
r2κΩr−

(σ44W33Ω′33 + σ33W34Ω′34)r2Ω2
r

]
,

β0 = r2
[
σ11

(
σ22σ33W

2
44 + σ44(σ22W

2
34 + σ33)

)
(p2
r + r2κ2)−

2σ11σ22W34(σ33W44 + σ44W33)r2κΩr+

σ22

(
σ11σ33W

2
34 + σ44(σ11W

2
33 + σ33)

)
r2Ω2

r

]
. (2.23)

Finally, multiplying both eigenvalues:

λr1λr2 =
detσ0

w

λv1λv2
. (2.24)
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