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Appendix A

Numerical methods

This appendix describes several numerical techniques that were used throughout

this thesis. The spline method gets special attention.

A.1 Interpolation

Let us �rst look at the problem of approximating a function f on a �nite domain

[a; b] by an interpolating polynomial function. For this purpose we de�ne a grid

on the interval [a; b], i.e., we de�ne a set of knots fk0; : : : ; kng dividing the interval

into n subintervals:

a = k0 < k1 < � � � < kn = b ; (A.1)

and we require the approximating polynomial fn to interpolate f in the knots:

fn(ki) = f(ki) ; i = 0; : : : ; n : (A.2)

For every set of n+ 1 distinct knots there exists exactly one interpolating polyno-

mial of degree n. Such a polynomial is called a polynomial interpolant. To check

our hope that polynomial interpolants can be reasonable approximations of the

original function, we calculate the error

f(x)� fn(x) =
(x� k0) � � � (x� kn)

(n+ 1)!
f (n+1)(�) ; (A.3)

where � 2 [a; b] depends on x, provided f (n+1) exists. For insu�ciently smooth

functions, the error function is not well de�ned, and hence convergence for n!1
cannot be guaranteed. Unfortunately, it is even impossible to guarantee conver-

gence for the class of in�nitely many times di�erentiable functions. The most

famous example, due to Runge, is

f(x) =
1

1 + x2
; �5 � x � 5 : (A.4)
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174 Appendix A Numerical methods

Figure A.1: Runge's example of nonconvergence of the polynomial interpolation.

The polynomial interpolant on a uniform grid, i.e., using evenly spaced knots (i.e.,

ki+1 � ki = (b� a)=n, for all i = 0; : : : ; n� 1) for this function does not converge

to the original function. In fact, it can be shown [Isaacson and Keller, 1966] that

sup
n�k
kf � fnk =1 ; for all k � 0. (A.5)

Figure A.1 illustrates this problem. For this particular function the problem may

be �xed by using a nonuniform distribution of knots, but there is no general

solution.

The failure of polynomials to accurately (i.e., to any desired degree of accu-

racy) approximate even in�nitely many times di�erentiable functions can be cir-

cumvented by enlarging the class of approximating functions. The simplest way to

do this is to replace the polynomial function by a piecewise polynomial: the inter-

polant will be required to be polynomial only on every subinterval [ki; ki+1]. By

using polynomials of a low degree, say m, the smoothness conditions on the func-

tion f can be relaxed to being m+1 times di�erentiable. The simplest continuous

piecewise polynomial interpolant is the piecewise linear interpolant

fn(x) =
f(ki)(ki+1 � x) + f(ki+1)(x� ki)

ki+1 � ki
; x 2 [ki; ki+1] : (A.6)

The interpolation error is given by

f(x)� fn(x) =
(x� ki)(x� ki+1)

2
f (2)(�) ; (A.7)

for some � on [ki; ki+1]. The L1 norm of the error function satis�es the following
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bound:

kf(x)� fn(x)k1 � h2

8
kf (2)k1 ; (A.8)

where h is the length of the longest subinterval:

h = max
i=0;:::;n�1

ki+1 � ki : (A.9)

This indicates that any function which is twice continuously di�erentiable on [a; b]

can be approximated to any desired degree of accuracy, simply by dividing the in-

terval into su�ciently small subintervals. Clearly, the linear interpolant of Runge's

counter example, Eq. (A.4), converges neatly when n!1. (Actually, even when

f is not twice di�erentiable on [a; b], the approximation may still converge to the

actual function. For example, the linear interpolant of the function f(x) =
p
x

(which is not di�erentiable in 0) on [0; 1] will have an error of O(
p
h). Therefore,

the linear interpolant approaches
p
x when h # 0.)

We can try to improve the approximation by using piecewise cubic functions.

Since there are four degrees of freedom, four knots are needed to �x the parameters.

For example, the points ki�1; : : : ; ki+2 might be used to determine the parameters

for the cubic piece on the interval [ki; ki+1]. (Note that the �rst and last interval

need a di�erent treatment.) Such a cubic interpolant will have an error of O(h4),

provided f is four times di�erentiable.

Clearly, piecewise (or local) approximations have a much wider applicability

than global approximations. However, piecewise approximations of the type de-

scribed above (i.e., Lagrange-type interpolants) have the disadvantage of not being

continuously di�erentiable. This is major drawback, since in many applications

derivatives of functions are required (such as in di�erential equations). For such

applications, Hermite interpolation is good alternative. A Hermite interpolant is

just a piecewise polynomial function interpolating not only the function itself, but

also its �rst r derivatives:

f (d)n (ki) = f (d)(ki) ; i = 0; : : : ; n ; and d = 0; : : : ; r : (A.10)

When the condition of interpolating the derivatives is dropped and replaced by

continuity of the derivatives, one speaks of a spline approximant. Such an approx-

imant is very useful when the derivative of the function is unavailable. The next

section discusses spline interpolants.

A.2 Spline interpolation1

Let us start with the cubic spline interpolant. On a grid containing n intervals

there are 4n degrees of freedom, and 2n interpolation and continuity restrictions.

1spline nspl��nn n [origin unknown] (1756) 1: a thin wood or metal strip used in building

construction : : : [Webster's Ninth New Collegiate Dictionary, Merriam{Webster, Spring�eld,

1987.]
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Requiring the �rst and second derivative to be continuous yields 2n�2 additional

conditions. The 4n � 2 conditions must be supplemented by two additional re-

strictions in order �x the 4n degrees of freedom. If the derivative of f is known

at the end points a and b, we could require the �rst derivative to be interpolated

at the end points. If, on the other hand, the derivative is not known at the end

points, the \natural" choice is to put

f 00n (a) = f 00n (b) = 0 : (A.11)

The reason for calling this choice the natural one can be understood by looking

at the following functional problem. Consider all twice continuously di�erentiable

functions g interpolating a function f at the knots ki (i = 0; : : : ; n). The solution

to the following minimalization problem

min
g

Z b

a

dx [g00(x)]2 ; (A.12)

is just the cubic spline interpolant with the natural end-point choice given by

Eq. (A.11). This functional minimalization can also be interpreted as the mini-

malization of the stress energy in a thin beam of exible material (i.e., a spline); g

is the shape such a thin beam takes when it is �xed at a number of n points, since

it will tend to minimize its stress energy [Ahlberg et al., 1967; Seagrave, 1970].

A spline approximant can be written as a sum of basis functions with compact

support. It can be shown that a nontrivial cubic spline function must have a

support of at least four contiguous subintervals. Also, the spline function with a

support of precisely four intervals is unique [Prenter, 1975]. It is the natural spline

approximant of a function f satisfying (on a uniform grid):

f(k0) = f(k4) = 0 ; (A.13a)

f(k1) = f(k3) = 1 ; (A.13b)

f(k2) = 4 : (A.13c)

The resulting approximant is known as a B spline. (Cf. Fig. A.2.)

The B splines are not well suited when solving di�erential equations by col-

location (see Sec. A.3 for a description of collocation methods), due to the slow

convergence. For example: if cubic splines are used to solve a second-order ordi-

nary di�erential equation by requiring the equation to be satis�ed at the knots

only, the approximant has an error of O(h2), which is h�2 times the interpolation

error for a spline approximant of a given function [Prenter, 1975]. In the next sec-

tion, a di�erent set of basis functions will be de�ned, which does lead to optimal

convergence if the collocation points are suitably carefully chosen.

A.3 Orthogonal collocation

An ordinary di�erential equation can be approximated by replacing the (unknown)

function by a spline approximation, and requiring the equation to be satis�ed in
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Figure A.2: A B spline.

a �nite number of so-called collocation points only. Such a method is known as a

collocation method, and it has the advantage of being very simple to implement,

but usually also has the disadvantage of having a low rate of convergence. For

example, using cubic splines and collocating at the knots leads to an error of O(h2),

which compares unfavorably with the error (O(h4)) of variational methods such

as the Galerkin method [Prenter, 1975]. There is, however, no a priori reason for

taking the knots as the collocation points. It turns out that by using a suitable

choice of collocation points, collocation methods can be made to converge as fast

as Galerkin methods.

A.3.1 Collocation points

Optimal convergence can be achieved by using the Gauss points of the subin-

tervals, rather than the end points. This is known as orthogonal collocation.

Orthogonal collocation is based on the same idea as Gauss quadrature, a method

for approximating an integral by a �nite sum:Z b

a

dx f(x) �
mX
i=1

wif(xi) ; (A.14)

where xi are the quadrature points and wi are the associated weights, with the

property that polynomials of degree less than 2m are integrated exactly. It turns

out that this is achieved when the quadrature points are taken to be the zeros of

the mth Legendre polynomial Pm, and the weights are given by

wi =
1

f 0(xi)

Z b

a

dx
Pm(x)

x� xi
: (A.15)
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The error will be O(h2m+1), where h = b� a, provided that f is 2m times contin-

uously di�erentiable. This is also the maximum degree of precision which can be

achieved with an m-point quadrature rule [Isaacson and Keller, 1966].

Orthogonal collocation dates back at least to Lanczos [1938], and has been

used extensively in engineering and chemistry to solve initial- and boundary-value

problems arising in reactor dynamics and other systems. De Boor and Swartz

[1973] �rst proved existence and uniqueness of the solution, and provided error

estimates. They showed that an approximate solution to an mth order di�erential

equation with m boundary conditions can be found by using piecewise polynomial

approximants of degree less than m+ k, possessing m� 1 continuous derivatives,

and collocating in the k-point Gauss points of every subinterval. The global error

of the approximate solution will be O(hm+k) provided the solution has m + 2k

continuous derivatives, and the di�erential equation itself is su�ciently smooth.

(The proof depends upon the existence of a su�ciently smooth Green's function.)

At the end points of each subinterval, the approximation and its �rst m � 1

derivatives are O(h2k) accurate.

A.3.2 Basis functions

The simplest orthogonal collocation method is based on cubic Hermite polynomi-

als and two-point quadrature. It exhibits fourth-order convergence, i.e., the error

is O(h4). Collocation �xes 2n degrees of freedom, and continuity and di�eren-

tiability at the knots �x 2n � 2 degrees of freedom. The two remaining degrees

of freedom are �xed by the two boundary conditions of the di�erential equation.

The piecewise cubic function can be written as a sum of basis functions, each

supported by two consecutive subintervals. The two basis functions with support

[ki�1; ki+1] will be denoted by �i and �i. The basis functions must be continuously

di�erentiable, and therefore satisfy

�i(ki�1) = �0i(ki�1) = 0 ; (A.16a)

�i(ki+1) = �0i(ki+1) = 0 ; (A.16b)

�i(ki+1) = �0i(ki+1) = 0 ; (A.16c)

�i(ki�1) = �0i(ki�1) = 0 : (A.16d)

The two basis functions are completely �xed by specifying the value and derivative

at the central knot ki, which can be done conveniently as follows:

�i(ki) = 1 ; (A.17a)

�0i(ki) = 0 ; (A.17b)

�i(ki) = 0 ; (A.17c)

�0i(ki) = 1 : (A.17d)
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If we take �1, 0, and 1 to be the three relevant knots, the two piecewise cubic

Hermite functions satisfying the conditions (A.16) and (A.17) are:

�(x) = �(1� jxj)(1� jxj)2(1 + 2jxj) ; (A.18a)

�(x) = �(1� jxj)(1� jxj)2x ; (A.18b)

where � is the Heavyside function (�(x) is zero if x < 0 and equal to one if x > 1).

These functions, often denoted by local basis functions, are plotted in Fig. A.3.

The actual or global basis functions si are just

si(x) =

�
�j(x) ; if i = 2j ,

�j(x) ; if i = 2j + 1 .
(A.19)

In Fig. A.4 all the global basis functions are plotted for a speci�c grid. The 2n+ 2

basis functions must reduced to the desired number of 2n, by requiring that all

basis functions satisfy the (homogeneous) boundary conditions at the end points

a and b:

�af(a) + �af
0(a) = 0 ; (A.20a)

�bf(b) + �bf
0(b) = 0 : (A.20b)

The complete set of basis functions ~si satisfying these conditions is de�ned by

~sj = sj ; (A.21a)

for 2 � j � 2n� 1, and

~s1 = �as0 � �as1 ; (A.21b)

~s2n = �bs2n � �bs2n+1 : (A.21c)

The two-point Gauss quadrature points on the interval [0; 1] are 1
2
(1�1=

p
3), with

weights 1
2
. The method of approximation by piecewise cubic Hermite functions

and orthogonal collocation is commonly known as the spline method.

A.3.3 The collocation process

In this subsection I will describe the collocation process in some detail for two

examples. The simplest example is that of �tting a function f . The approximant

can be written as

fn(x) =

2nX
j=1

ajsj(x) ; (A.22)

where aj are expansion coe�cients. Collocation implies that

fn(xi) = f(xi) ; (A.23)
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Figure A.3: Local piecewise cubic Hermite basis functions.

Figure A.4: Globally de�ned basis functions with compact support. (The odd-

numbered basis functions are blown up by a factor 25.)
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0
BBBBBBBBBBBBBB@

� � � 0 0 0 0 0 0 0

� � � 0 0 0 0 0 0 0

0 � � � � 0 0 0 0 0

0 � � � � 0 0 0 0 0

0 0 0 � � � � 0 0 0

0 0 0 � � � � 0 0 0

0 0 0 0 0 � � � � 0

0 0 0 0 0 � � � � 0

0 0 0 0 0 0 0 � � �
0 0 0 0 0 0 0 � � �

1
CCCCCCCCCCCCCCA

Figure A.5: General matrix structure.

must hold at every collocation point xi (i = 1; : : : ; 2n). Substituting the expansion

Eq. (A.22) gives the following set of conditions

2nX
j=1

ajsj(xi) = f(xi) ; (A.24)

which can be written as

Sa = f ; (A.25)

where a is the vector of expansion coe�cients ai, f is the vector of function values

f(xj), and S is a matrix whose elements are

Sij = sj(xi) : (A.26)

This matrix has a banded structure due to the limited support of the basis func-

tions, as is shown in Fig. A.5. Equation (A.25) is a problem of linear algebra,

which can be solved using standard techniques (e.g., Gaussian elimination). This

completes the �rst example.

The next step is to illustrate how to solve an ordinary di�erential equation

using the spline method. Consider, for example, the following linear second-order

di�erential equation:

a(x)f 00(x) + b(x)f 0(x) + c(x)f(x) = g(x) ; (A.27)

subject to given boundary conditions. Substituting the expansion (A.22) satisfying

these boundary conditions, and collocating at the Gauss points, leads to

2nX
j=1

aj[a(xi)s
00
j (xi) + b(xi)s

0
j(xi) + c(xi)sj(xi)] = g(xi) ; (A.28)
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which can be put into matrix form:

Ma = g ; (A.29)

where a is the vector of expansion coe�cients, g the vector of function values of

the inhomogeneous term, and M an 2n� 2n matrix whose elements are

Mij = a(xi)s
00
j (xi) + b(xi)s

0
j(xi) + c(xi)sj(xi) : (A.30)

This matrix again has the banded structure shown in Fig. A.5.

A.3.4 Quadrature

Due to the close relation between orthogonal collocation and Gauss quadrature,

integral operators can be incorporated in the spline method in a very simple man-

ner. Consider, for example, the operation

f(x) =

Z b

a

dx0K(x; x0)g(x0) : (A.31)

This can be approximated using Gauss quadrature:

f(x) =

2nX
j=1

wjK(x; xj)g(xj) + O(h4) ; (A.32)

which, when taken at the collocation points, reduces to

f(xi) =

2nX
j=1

wjK(xi; xj)g(xj) + O(h4) ; (A.33)

or

f � Kg ; (A.34)

where K is the 2n� 2n matrix containing the kernel values K(xi; xj) multiplied

by the integration weights wj . If we assume g(x) to be a piecewise cubic Hermite

function with expansion coe�cients ak, we may write

f = KSa : (A.35)

The error made in the integration is O(h4) (provided the kernel is su�ciently

smooth), which is of the same order as the collocation error. Therefore, integrals

can be performed without loss of accuracy in a very simple manner. The matrix

KS is a product of the kernel matrix and the spline matrix, and will in general
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not have a banded structure, unless the kernel itself has some locality. However,

we will often be dealing with degenerate kernels, i.e., kernels of the form

K(x; x0) = k(x)k(x0) ; (A.36)

in which case Eq. (A.35) can be rewritten into:

f = k~k
T
a ; (A.37)

where k contains the values k(xi), and ~k is the product

~kj =

2nX
i=1

wikiSij : (A.38)

The question of hermiticity and the orthogonality properties for such separable

terms will discussed further on.

In most cases the above procedure is adequate. However, sometimes the inte-

gration limits do not coincide with knots, or more accurate integration is needed.

The matrix elements of P�i�j (cf. Eq. (5.53d)), are an example of the �rst case.

Here one is forced to use a di�erent integration rule (i.e., using points and weights

which are not the two-point Gauss points and weights for the interval). More ac-

curate integration is often needed to distinguish between errors due to the spline

approximation and quadrature errors. A relatively simple approach is to recal-

culate the spline expansion coe�cients on a grid containing more intervals, and

performing two-point Gauss quadrature on this new grid. The new spline expan-

sion coe�cients are simply:

b = S�1Ta ; (A.39)

where S is the spline matrix for the new grid, and T is a rectangular matrix de�ned

by

Tij = sj(xi) ; (A.40)

where sj is a spline function de�ned on the old grid, and xi is a collocation point

on the new grid. Note that this recalculation introduces an additional error of

O(h4), where h is the length of the largest interval of the new grid. For the special

case where the new grid \contains" the old grid, i.e., if every knot of the old grid

is also a knot of the new grid, the new spline approximant will be identical to the

old one.

A.3.5 Spline matrices

It can be very fruitful to think of the matrices which result from applying the spline

method to operators, as representing, or even being the operators themselves, since

many of the properties of the original operator are (approximately) retained.
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Locality

Locality of operators shows up as bandedness in the collocation matrix. The unit

operator is replaced by the banded matrix S and local (di�erential) operators by

matrices having the same banded structure as S, whereas nonlocal operators are

replaced by general (i.e., full) matrices.

Separability

A separable operator such as the degenerate kernel K of Eq. (A.36) is represented

by an outer products of vectors k~k
T

.

Hermiticity

The matrix representation of a Hermitian matrix is certainly not Hermitian. How-

ever, the generalized eigenvalue problem

Ha = �Sa ; (A.41)

appears to have real eigenvalues. This can be shown exactly for the radial Hamil-

tonian on a �nite domain. In that case, the matrix

STWH ; (A.42)

where W is a diagonal matrix containing the Gauss weights on as the diagonal

elements, is symmetric, as can be seen by explicitly constructing the matrix. Also,

the matrix

STWS ; (A.43)

is symmetric and positive, so that the generalized eigenvalue problem can be

rewritten as

STWHa = �STWSa ; (A.44)

which has only real eigenvalues, if both matrices are symmetric and at least one

is positive.

For more complicated Hermitian operators such a simple argument does not

hold. However, remembering the analogy between vectors of expansion coe�cients

and state vectors, and between matrices and operators, the following may be

recognized:

aSTWHb � ha jHbi = hHa j bi � aHTWSb ; (A.45)

suggesting an approximate symmetry of the matrix STWH. It should be noted,

however, that the approximation will only be accurate for smooth states. This
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allows one to show, for example, that the approximate ground-state eigenvalue

will be real. (If an eigenvalue is well separated from the rest of the spectrum, a

small perturbation can shift the eigenvalue, but it must still be real.)

Note that the disappearance of exact hermiticity can lead to problems when the

orthogonality of eigenstates corresponding to di�erent energies is required, such

as for projection operators. Exact orthogonality only holds as the biorthogonality

conditions for left and right eigenvectors:

aTiLajR = �ij ; (A.46)

where aiL and ajR are left and right eigenvectors corresponding to energy eigen-

values Ei and Ej , respectively:

HaiR = EiSaiR ; (A.47)

aTiLH = Eia
T
iLS : (A.48)

A projection on a state j ii can now be written as:

ajRa
T
iL : (A.49)

Note that this expression projects out the expansion coe�cient representation of

state j ii. The corresponding operator working in the space of function values at

collocation points is

SajRa
T
iLS

�1 = (SajR)(S�TaiL)T : (A.50)

A.4 The Lanczos method

The Lanczos method, which was originally only applicable to symmetric matrices,

was modi�ed to deal with nonsymmetric matrices by Saad [1982]. The modi�ed

Lanczos method is an oblique projection method, which means that it generates

a basis which approximately spans an invariant subspace. (The basis consists of

two sets of vectors, one for the left eigenvectors, and one for the right eigenvectors.

The basis vectors satisfy an biorthogonality condition.) I will now describe the

extension to complex matrices.

A complex Lanczos algorithm should at least retain biorthonormality with

respect to the dot product on a complex vector space. For this to be the case, the

following iterative steps must be used:

v̂i+1 = Avi � �ivi � �ivi�1 ; (A.51)

ŵi+1 = AHwi � ��iwi � ��iwi�1 : (A.52)

It is easy to check that these steps do indeed generate a biorthogonal basis. Nor-

malization is obtained using

�i = wH
iAvi ; (A.53)
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�i�i = wH
i vi ; (A.54)

�i =

q
jwH

i vij ; (A.55)

vi = v̂i=�i ; (A.56)

wi = ŵi=�
�
i : (A.57)

The next step is to extract the solution from the data generated by the iterative

process. The vectors vi and wi can be gathered into two (rectangular) matrices

V and W , which have the following property:

WHAV = Tm ; (A.58)

where Tm is the following tridiagonal matrix:

Tm =

0
BBBB@

�1 �2

�2 �2
. . .

. . .
. . . �m
�m �m

1
CCCCA : (A.59)

Now an approximate inverse of the matrix A can be written as

A�1 � V T�1WH : (A.60)

(This equation has to be taken in a very speci�c sense, more on this later.) The

solution to the problem

Ax = b ; (A.61)

can now be written as

x = A�1b � V T�1WHb : (A.62)

If the iteration is started with

v1 = w1 =
r0

kr0k
; (A.63)

where r0 is

r0 = b�Ax0 ; (A.64)

and x0 is an initial guess at the solution, the following formula is obtained:

x = x0 +A�1r0 � x0 + V T�1WHr0 = x0 + V T�1e1kr0k : (A.65)
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The error can easily be calculated from the above equation:

kb� Axk = kr0k kv̂m+1k jT�1m j : (A.66)

Note that Eq. (A.66) allows the error to be calculated very e�ciently, without

forming the entire approximate solution. This equation also expresses the speci�c

sense in which VmT
�1
M WH

m is close to A�1, and therefore how Eq. (A.60) should

be interpreted.

I will not discuss convergence of the Lanczos process, breakdown of the process

by generating two basis vectors which are orthogonal to one another, or the di�-

culties which arise by imperfect biorthogonality of the basis. It is my experience

that provided the problem is not too ill conditioned, these problems hardly ever

become important. (An attempt at dealing with the breakdown is described in

Parlett et al. [1985].)

A.5 Special functions

The accurate numerical evaluation of special functions is a highly nontrivial mat-

ter. In this thesis I have used two classes of functions. The �rst is that of orthog-

onal polynomials and Legendre functions. The second is that of hypergeometric

functions, Coulomb functions, and Bessel functions. The �rst class can usually

be calculated with su�cient accuracy by simple recursion relations, although care

must be taken, since not all recursion relations are inherently stable.

The second class is a set of functions which are related to the hypergeometric

function 2F1(a; b; c; z), and the conuent hypergeometric functions 1F1(a; c; z) and

U(a; c; z). These functions were calculated using combinations of series expansions

and Chebyshev expansions, as described in the excellent book of Luke [1975].
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Example systems

This appendix contains a description of a number of example few-body systems,

which are useful in one way or another. Some are useful because they are exactly

solvable, others are useful because of their widespread use.

B.1 Exactly solvable systems

In this section potentials are de�ned for which exact solutions can be found, some

of which can be used to check the numerical methods used in this thesis. The

potentials will be de�ned with a \normalized" strength parameter V0: the potential

has negative-energy states if, and only if, V0 > 1. (Such a normalization may not

be possible if the potential is not well-behaved, or long ranged.)

B.1.1 Harmonic oscillator

The problem of N identical bodies interacting via harmonic-oscillator pair poten-

tials can be solved exactly. The harmonic oscillator has an in�nite number of

bound states, and it can therefore not be normalized. The potential is de�ned by

V (r) = 1
4
a2r2 ; (B.1)

where a2 is a measure of the strength of the potential, or, equivalently, a�1 is a

measure of the width of the well. In one dimension, the solutions are

 n(r) =
�
2a�1�

1
2n!
�� 1

2 e�ar
2=4 Hen(a

1
2 r) ; (B.2)

where Hen is a Hermite polynomial (cf. Appendix D), for n = 0; 1; 2; : : : . The

corresponding energies are

En = a(n+ 1
2
) : (B.3)

The N-body Hamiltonian can be written as

�
N�1X
i=1

r2

r
fi
gi

+
X
i;j>i

1
4
a2(2�ij)

�1(rij)
2 ; (B.4)
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where I have used the notational conventions for the Jacobi coordinates of Chap-

ter 4. The interaction can be simpli�ed by using the following identity:X
i;j>i

(ri � rj)2 = 1
2
N
X
i

(rfigi)
2 : (B.5)

This leads to

N�1X
i=1

�r2

r
fi
gi

+ 1
8
Na2(rfigi)

2 ; (B.6)

which is just the 3(N � 1)-dimensional harmonic oscillator. The following fully

symmetric N-body states are easily found:

 (rf1g1 ; : : : ; r
fN�1
gN�1

) =
�
2c�1�

1
2n!
�� 3

2
(N�1)

N�1Y
i=1

e�
c
4
(r
fi
gi
)2 Hen(c

1
2 rfigi ) ; (B.7)

with bound-state energy

En = 3c(N � 1)(n+ 1
2
) ; (B.8)

for n even, and with c = a
p
N=2. In the test cases used in Chapters 2, 5, and 7,

a was taken to be two, leading to the following bound-state energies:

En = 3
p

2N (N � 1)(n+ 1
2
) : (B.9)

To avoid the problems associated with the potential going to in�nity for large

distances, a cuto� and a shift are introduced:

~V (r) =

�
a2r2 � b2 ; if ar < b,

0 ; if ar � b. (B.10)

This modi�ed potential has the advantage of being exponentially bounded, at

the expense of having a discontinuity in its �rst derivative at ar = b, and not

being exactly equal to the harmonic oscillator. However, for su�ciently large b,

the lowest lying states will be extremely close to the exact harmonic oscillator

states, and the discontinuity can be expected to have a negligible e�ect on the

convergence of the spline method, since the wave function is extremely small for

ar > b if b is su�ciently large. If b is not taken su�ciently large, a substantial

shift in the energy and a noticeable e�ect on the convergence of the spline method.

In Chapter 2, the cuto� value was b = 2, which leads to a ground-state energy

of approximately 2:908 : : : (instead of 3, for the pure harmonic oscillator), and in

Chapters 5 and 7 the cuto� value was b = 5, which is su�ciently large to have

negligible e�ect on the ground-state energy. The three-body harmonic oscillator

ground state has been studied analytically and graphically by Friar et al. [1980].
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B.1.2 Hulth�en

The Hulth�en potential is another interesting test case, since its two-body s-wave

bound-state and scattering wave functions can be expressed in closed form using

hypergeometric functions [Newton, 1982]. The potential can be seen as a model

for a screened Coulomb potential. It has 1=r behavior near the origin and is

exponentially bounded:

Va(r) =
�a�2V0
er=a � 1

; (B.11)

where a > 0 is a range parameter and the strength V0 is real. The radial equation

with the Hulth�en potential can be transformed into the hypergeometric equation

by substituting F +
0;k (r) = eikrg(k; r) and x = e�r=a. The s-wave Jost solutions

are given by

F
+

0;k (r) = eikr 2F1(A;B;C; e�r=a) ; (B.12)

with

A = � iak + i(a2k2 � V0)
1
2 ; (B.13)

B = � iak � i(a2k2 � V0)
1
2 ; (B.14)

C = 1� 2iak : (B.15)

The Jost function is therefore

f0(k) = 2F1(A;B;C; 1) =
�(1� 2iak)

�(1 + B)�(1 + A)
; (B.16)

which has poles in the lower half of the k plane (i.e., virtual states) at

k = � in

2a
; for n = 1; 2; : : : . (B.17)

Bound states are found if V0 > 1:

kn =
i(V0 � n2)

2an
; for n = 1; 2; : : : < V

1=2
0 . (B.18)

The Lippmann{Schwinger kernel G0V has eigenvalues

�n =
�V0

n(2iak� n)
; for n = 1; 2; : : : , (B.19)

which are all inside the unit circle if

jV0j < (1 + 4a2k2)1=2 ; (B.20)

(for real k), i.e., the necessary and su�cient condition for the Born series to

converge for all energies (for this case), is clearly that the attractive version of the

potential has no bound states.
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B.1.3 Coulomb

The long-ranged behavior of the Coulomb potential has two important conse-

quences: (i) it supports an in�nite number of bound states, and (ii) its scattering

states cannot be considered free at large separation distances. Systems which have

a short-ranged plus Coulomb interaction su�er from this same problem, and its

asymptotic states must be expressed in the Coulomb asymptotic states. In this

subsection the Coulomb scattering states are given, as well as the bound states,

which are useful as tests for numerical accuracy. (The Coulomb potential is apart

from the harmonic oscillator and the r�2 potential one of the few for which an

analytic solution can be given for ` 6= 0.)

Since the Coulomb potential has an in�nite number of bound states, a normal-

ized strength parameter cannot be de�ned. Instead, we will �x the ground-state

energy at �1 for strength s equal to one:

V (r) = �2s

r
=

2k

r
; (B.21)

where Sommerfeld's parameter  = �s=k has been introduced. The radial equa-

tion with the Coulomb interaction reads�
d2

dr2
� `(`+ 1)

r2
� 2k

r
+ k2

�
 `(r) = 0 : (B.22)

The substitution  `(r) � w(�2ikr)r`+1eikr transforms this equation into Kum-

mer's equation (D.23), with a = `+ 1 + i and c = 2`+ 2. The regular solution is

proportional to

 `(r) = r`+1eikr 1F1(`+ 1 + i; 2`+ 2;�2ikr) ; (B.23)

where 1F1 is a conuent hypergeometric function (cf. Appendix D). In order

to obtain a bound state  `(r) must be imposed to go to 0 when r goes to 1.

This condition can only be met when the series terminates, i.e., when �i 2
f`+ 1; `+ 2; : : :g. The bound states are therefore found at energies E = ��2n with

�n =
s

`+ n
; (B.24)

(k = i�) for all n 2 f1; 2; : : :g. The corresponding (unnormalized) wave functions

are

 `(r) = r`+1e��nr
n�1X
p=0

(1� n)p

(2`+ 2)p

(2�nr)
p

pn
: (B.25)

The Coulomb scattering wave functions which are the analogues of the free scat-

tering wave functions |̂` and ĥ+` , are F` and u+` , respectively. These are de�ned

in Appendix D.
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B.1.4 Square well

The square well is of interest because of its discontinuity:

V (r) =

(
�
�
�
2a

�2
V0 ; if 0 � r < a ,

0 ; if a < r .
(B.26)

The (unnormalized) s-wave bound-state solutions are given by

 (r) =

(
sin(�q

2
r
a
) ; if 0 � r < a ,

sin(�
2
q)e��(r�a) ; if a < r ,

(B.27)

with � = +
p
�E and q2 = E + �2V0=(4a

2), where E is the bound-state energy.

Matching the �rst derivative at r = a gives

2a
�
� = � q cot �

2
q : (B.28)

This is a transcendental equation in q since �2 = q2 � �2V0=(4a2) for which we

can construct solutions in closed form by taking special cases. For example, for

V0 = 9=2 (and a = 1), the ground-state solution is

 (r) =

(
sin 3

4
�r ; if 0 � r < 1 ;

1
2

p
2e�

3
4
�(r�1) ; if 1 � r ,

(B.29)

which corresponds to a bound-state energy of � 9
16
�2. This is the test case used

in Chapter 2. In Chapter 5 the critical strength, V0 = 1, was used instead.

B.1.5 Zero-range interaction

The zero-range interaction is peculiar, since it is both local and separable. Its

potential is in one dimension

V (x) = � 2s�(x) ; (B.30)

where s is a real strength parameter. It has a single bound state at E = �s2, for

all s > 0. The corresponding wave function is

 (x) =
�s

2

� 1
2

e�sjxj : (B.31)

The Green's operator for the Hamiltonian

H = � d2

dx2
� 2s�(x) ; (B.32)
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can be written as

G(k2;x; x0) =
1

2ik

�
eikjx�x

0j � s

ik + s
eik(jxj+jx

0j)
�
: (B.33)

A scattering state may be constructed using

 � = i"

Z
dx0G((k + i")2;x; x0)eikx

0

=
"

2k

�
1

"
� 1

2ik � "

��
eikx � se�"jxj

ik + s
eikjxj

�
; (B.34)

and taking the limit " # 0:

 =
1

2k

�
eikx � s

ik + s
eikjxj

�
: (B.35)

This procedure shows the e�ect of the small positive imaginary part +i" on the

scattering wave function: it suppresses the scattered part of the wave function

(i.e., the part proportional to exp(ikjxj)) for very large radii.

The problem of three particles with zero-range interactions in one dimension

can also be solved exactly. (In three dimensions, the three-body system collapses

[Thomas, 1935].) The general scattering wave function is of the form

 i(x; y) =
X
���

a���i �
��
� (x; y) ; (B.36)

where i denotes any of the six regions de�ned in Fig. B.1, � and � are �1, and

� can be thought of as denoting a particle number, which are numbered �1, 0,

and 1 for convenience. The coordinates x and y can be any of the pair of Jacobi

coordinates (x ; y), representing a point in region i. The basis functions are

���� (x; y) = exp

�
(�q; i�k)R�

�
x

y

��
; (B.37)

where

R� =

�
cos� sin�

� sin� cos�

�
: (B.38)

The basis functions have the following transformation property

����+� = ���� R� ; (B.39)

(where �+ � is wrapped around so that �1 � �+ � � 1) and the derivative

@���� (x; y)

@x�
=

�
(�q; i�k)R���

�
1

0

��
���� (x; y) ; (B.40)
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Figure B.1: Regions in con�guration space for a three-body system in one dimen-

sion with zero-range interaction.

where x� is de�ned by

�
x�
y�

�
= R�

�
x

y

�
: (B.41)

This leads to the following matching matrix:

(M��)
��;�0� 0

�;�0 = ��
0

� �
�0�0���0
����� [(1� �c�����)��

0

� + �c������
�0

��] ; (B.42)

where c is de�ned as

c��� =
2q

(�q; i�k)R�

�
1

0

�
� (��q; i�k)R��

�
1

0

� : (B.43)

The sign � is positive if the line x� = 0 is crossed from the positive to the negative

side, and negative if otherwise. The matrix M matches the wave functions on

both sides of the line x� = 0 as follows:

ai = M��ai+1 ; (B.44)

where ai is the vector of expansion coe�cients a���i in region i. The matrix map-

ping the coe�cients for region i to itself (constructed as a product of six matrices

M) turns out to be the unit matrix. Scattering solutions are therefore all bounded
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Table B.1: Expansion coe�cients for a speci�c solution of a system of three identi-

cal particles interacting via a zero-range potential in one dimension. The constants

a and b are �2q(q + i
p

3k)=(3k2 + q2) and 2q(q � i
p

3k)=(3k2 + q2), respectively.

The sign � is taken positive here.

� � 1 2 3 4 5 6

� �1 0 0 b a 0 0

+ �1 0 0 0 0 a 0

� 0 0 0 0 1� a� b 1� a 1

+ 0 1 1� a 1� a� b 0 0 0

� 1 0 a 0 0 0 0

+ 1 0 0 a b 0 0

solutions. As it turns out, if the solution is bounded on one region, it is automat-

ically bounded on all other regions. Obviously, the problem separates in fully

\incoming" (� < 0) and fully \outgoing" (� > 0) parts.

The expansion coe�cients c���i are tabulated in Table B.1, for a speci�c case.

Other cases can be easily derived. There are two remarkable conclusions to be

drawn here. First, there appear to be no breakup solutions. (They are of course

ruled out by assuming the basis functions in the speci�c manner shown here, but

there is no breakup if all possible basis functions are used.) Second, from the

matching conditions, it follows that � is a good quantum number of the system.

The three-body bound state is located at E = �4s2:

	(x�1; x0; x1) = e�s(jx�1j+jx0j+jx1j) : (B.45)

The problem of three-particles on a line with � interactions has been inves-

tigated using various techniques (see, for example, McGuire [1964], Yang [1967,

1968], and Dodd [1970]). Gerjuoy [1987] used it as a test ground for exploring the

mathematical problems with three-body scattering.

B.2 Common examples

Over the years, many models for the nuclear interaction have been used, varying

from simple Gaussian or Yukawa-type potentials to accurate phenomenological

potentials and potentials based on a meson-exchange model. These potentials are

constructed to �t to low-energy scattering data and the deuteron binding energy.

In this section I give the exact de�nition for some of the simpler potentials, since

some of these come in many versions.
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Table B.2: Parameters for the S3 potential. Potential strengths Vsi are in MeV,

range parameters �si are in fm�2.

s Vs1 �s1 Vs2 �s2 Vs3 �s3

0 1000:0 3:00 �326:7 1:05 �43:0 0:60

1 1000:0 3:00 �166:0 0:80 �23:0 0:40

B.2.1 Afnan{Tang

Afnan and Tang [1968] de�ned a set of four simple nucleon{nucleon potentials

(denoted by S1 through S4) which can be written as a sum of three Gaussians, to

investigate the properties of three- and four-nucleon bound systems:

Vs(r) =

3X
i=1

Vsie
��sir2 ; (B.46)

where s is the two-particle spin. In this thesis, the S3 potential, whose parameters

are listed in Table B.2, was used. A spin-averaged potential is de�ned as well:

Vavg(r) = 1
2
(V0(r) + V1(r)) : (B.47)

B.2.2 Maliet{Tjon

Maliet and Tjon [1969] introduced potentials of the following form, as simple test

cases for three-body bound-state calculations:

V (r) = V1
e��1r

r
� V2

e��2r

r
; (B.48)

with �1 = 2�2. There are two spin dependent potentials, one with a repulsive

core (denoted by MT-I/III), and one purely attractive (denoted by MT-II/IV).

For both potentials the �rst potential (i.e., MT-I and MT-II, respectively) is used

for the singlet interaction, and the second for the triplet interaction. The averages

of MT-I and MT-III is denoted by MT-V and the average of MT-II/IV is denoted

by MT-VI.

Unfortunately the authors do not specify their units, and take �1 6= �2, which

has caused a lot of confusion in the literature. The parameters denoted by MT in

Table B.3 were obtained using the conversion constant �hc = 197:3 MeV fm. How-

ever, the MT-III potential does not reproduce the experimental deuteron binding

energy of 2:224 MeV. This is why Payne et al. [1980] scaled the MT-I/III pair and

its average, MT-V, such that the correct deuteron binding energy is reproduced.
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Table B.3: Parameters and two-body bound-state energies E2 for Maliet{Tjon

potentials. The nucleon mass is de�ned by �h2=M = 41:47 MeV fm2. References

are explained in the text.

Potential V1 �1 V2 �2 E2 Ref.

no. (MeV fm) (fm�1) (MeV fm) (fm�1) (MeV)

I 1458:047 3:110 520:872 1:550 MT

Ia 1438:720 3:110 513:968 1:550 PF

Ic 1458:047 3:110 520:872 1:555 NS

III 1458:047 3:110 635:306 1:550 �2:409 MT

IIIa 1438:720 3:110 626:885 1:550 �2:231 PF

IIIc 1458:047 3:110 635:306 1:555 �2:242 NS

V 1458:047 3:110 578:089 1:550 �0:414 MT

Va 1438:4812 3:110 570:316 1:550 �0:350 PF

Vb 1438:4812 3:110 570:3316 1:550 �0:350 PA

Vc 1458:047 3:110 578:089 1:555 �0:351 NS

II 52:4818 0:809 MT

IV 65:1090 0:633 �2:209 MT

VI 58:7954 0:723 �0:343 MT

Note that Table 1 of Payne et al. [1980] contains two mistakes. (The inverse range

of the MT-IV potential is incorrectly listed as 0:663 fm�1 and V2 of the MT-V po-

tential should be 570:3316 MeV fm, as correctly listed by Payne [1987], instead of

570:316 MeV fm.) The parameters from Payne et al. [1980] are denoted by PF, and

the correct parameters for MT-V from Payne [1987] are denoted by PA. Several

other versions of the Maliet{Tjon potentials can be found in the literature, due

to di�erences in the conversion constant used, or di�erences in the nucleon mass.

However, these closely resemble either the original MT potentials or the revised

PF potentials. Finally, I would like to point out that if the relation �1 = �2 is

restored by taking �2 = 1:555 fm�1 instead of 1:55 fm�1 (these parameters are

denoted by NS), the two-body binding energy is very reasonable. The three-body

binding energy is approximately 8:54 MeV for both MT-I/IIIa and MT-I/IIIc.
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Angular momentum

This appendix summarizes the formulas related to angular momentum in few-body

systems. These formulas supplement expressions which can be found mainly in

Chapters 2, 4, and 5, and are needed to implement the few-body problem in a

computer code.

First, I will concentrate on the angular-momentum operator and its eigenfunc-

tions for both a single particle and a composite system. Next, I will look at the

coupling and recoupling of angular momenta.

C.1 Angular momentum of a single particle

The angular momentum of a particle is de�ned by L = r�k. If the particle moves

in a spherically symmetric potential, its equation of motion can be separated into

a radial and an angular part. This section briey discusses the angular motion of

a single particle or, equivalently, the angular motion of two particles interacting

only with each other, in the center-of-mass frame.

The problem is most conveniently expressed in polar coordinates:

r = r

0
@ sin � cos�

sin � sin�

cos �

1
A : (C.1)

The components of the angular-momentum operator expressed in polar coordi-

nates are

Lx = i

�
sin�

@

@�
+ cot � cos�

@

@�

�
; (C.2)

Ly = i

�
� cos�

@

@�
+ cot � sin�

@

@�

�
; (C.3)

Lz = � i
@

@�
: (C.4)
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The square of L can be written as

L
2 = �

�
@2

@�2
+ cot �

@

@�
+ csc2 �

@2

@�2

�
; (C.5)

and the useful raising and lowering operators, L+ and L� are

L� = Lx � iLy = e�i�
�
� @

@�
+ i cot �

@

@�

�
; (C.6)

The simultaneous eigenfunctions of L2 and Lz are the spherical harmonics:

L
2Y`m = `(`+ 1)Y`m ; ` = 0; 1; 2; : : : ; (C.7)

LzY`m = mY`m ; m = �`;�`+ 1; : : : ; `� 1; ` : (C.8)

The spherical harmonics can be given in terms of the associated Legendre functions

Pm
` :

Y`m(�; �) = (�1)m
�

(2`+ 1)(`�m)!

4�(`+m)!

� 1
2

Pm
` (cos �)eim� : (C.9)

The spherical harmonics form a complete basis for functions on a unit sphere.

They satisfy the following orthogonality relation:

Z 2�

0

d�

Z 1

�1
d cos � Y �`m(�; �)Y`0m0(�; �) = �``0�mm0 : (C.10)

The spherical harmonics for negative values of m can be calculated as follows:

Y`�m(�; �) = (�1)mY �`m(�; �) : (C.11)

A �nal useful relation is:

(2`+ 1)P`(x̂ � ŷ) =
X
m

Y`m(x̂)Y �`m(ŷ) ; (C.12)

where P` is a Legendre polynomial.

C.2 Angular momentum of composite systems

The angular-momentum operator for a system of N particles reads:

L =

NX
i=1

ri � ki : (C.13)
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If the particles interact only with each other, the motion of the system may be

separated in the collective angular motion and the internal motion of the particles

with respect to each other. The orientation of a system of three or more particles

cannot be described by two angles, as is the case for two particles. Di�erent

orientations are related by general rotations in three-body space, requiring three

angles. It is convenient to use the Euler parameterization for these rotations.

Such a rotation will be denoted by D(�; �; ), which, when viewed as coordinate

transformation, is de�ned by

D(�; �; )

=

0
@ cos  sin  0

� sin  cos  0

0 0 1

1
A
0
@ cos � 0 � sin �

0 1 0

sin � 0 cos �

1
A
0
@ cos� sin� 0

� sin� cos� 0

0 0 1

1
A : (C.14)

Instead of D(�; �; ), a short-hand notation, D(!), can be used. The operator for

functions in coordinate space will also be denoted by D, and is de�ned as follows:

D(!)f [D(!)r] = f(r) ; (C.15)

for any scalar �eld f . Using this de�nition, the following form for the rotation

operator can be obtained:

D(�; �; ) = eiLzei�Lyei�Lz ; (C.16)

where the Ly and Lz are the y and z components of the total-angular-momentum

operator L, respectively. The components of the angular momentum operator can

be expressed in the Euler angles as follows:

Lx = � i

�
� cos� cot �

@

@�
� sin�

@

@�
+ cos� csc �

@

@

�
; (C.17)

Ly = � i

�
� sin� cot �

@

@�
+ cos�

@

@�
+ sin� csc �

@

@

�
; (C.18)

Lz = � i
@

@�
: (C.19)

Often, it is convenient to work with the raising and lowering operators L+ and

L�, de�ned by

L� = Lx � iLy = e�i�
�

i cot�
@

@�
� @

@�
� i csc �

@

@

�
: (C.20)

Finally, the square of the angular momentum operator can be written as

L2 = � @2

@�2
� cot�

@

@�
� csc2 �

�
@2

@�2
� 2 cos �

@

@�

@

@
+

@2

@2

�
: (C.21)
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It is convenient to introduce the following notation for the matrix elements of

the rotation operators:

h`m0 jD(�; �; ) j `mi = D
(`)
m0m(�; �; ) : (C.22)

These Wigner D functions have the following properties:

L
2
D

(`)
m0m(�; �; ) = `(`+ 1)D

(`)
m0m(�; �; ) ; (C.23)

LzD
(`)
m0m(�; �; ) = m0

D
(`)
m0m(�; �; ) ; (C.24)

�i
@

@
D

(`)
m0m(�; �; ) = mD

(`)
m0m(�; �; ) ; and (C.25)

L�D
(`)
m0m(�; �; ) =

p
(`�m)(`�m+ 1)D

(`)
m0m�1(�; �; ) ; (C.26)

implying that they are the eigenfunctions of L2 and Lz, and also of �i@=@, the

analogue of Lz in the \moving" coordinate system, which commutes with both L2

and Lz. The Wigner D functions can be written as

D
(j)
m0m(�; �; ) = eim

0d
(j)
m0m(�)eim� ; (C.27)

where d
(j)
m0m is related to the Jacobi polynomials as follows:

d
(j)
m0m(�) =

�
(j +m0)!(j �m0)!
(j +m)!(j �m)!

�1=2

�
�

cos
�

2

�m0+m�
sin

�

2

�m0�m
P
(m0�m;m0+m)
j�m0 (cos �) : (C.28)

The value of d
(j)
m0m(�) can be determined by using the following recursion relation:

d
(j)
m0m(�) =

�
j �m0

j �m

�1=2 �
cos

�

2

�
d
(j� 1

2
)

m0+ 1
2
m+ 1

2

(�)

�
�
j +m0

j �m

�1=2 �
sin

�

2

�
d
(j� 1

2
)

m0� 1
2
m+ 1

2

(�) ; (C.29)

for m 6= j, and

d
(j)
m0j(�) = (�1)j�m

0

�
(2j)!

(j +m0)!(j �m0)!

�1=2

�
�

cos
�

2

�j+m0�
sin

�

2

�j�m0
: (C.30)

The Wigner D functions are the generalization of the spherical harmonics. They

form a complete basis on the space of orientations of a composite system.
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C.3 Coupling of angular momenta

The eigenstates of the total angular momentum J = J1 + J2 can be constructed

from eigenstates of the two angular momenta J1 and J2 as follows:

jj1 j2 j mi =
X
m1m2

hj1m1 j2m2jJ Mijj1m1ijj2m2i ; (C.31)

where hj1m1 j2m2jJ Mi are the vector-coupling or Clebsch{Gordan (CG) coef-

�cients. There are many di�erent notations for the CG coe�cients. I use a

short-hand form of the notation used in Edmonds [1960]:

hj1m1 j2m2jj mi = hj1m1 j2m2 j j1 j2 j mi ; (C.32)

since usually there is no need to write the quantum numbers j1 and j2 in the

ket part of the matrix element. (This de�nition implies the Condon{Shortley

convention for the phases of the CG coe�cients.) The CG coe�cients satisfy the

following unitarity relations:X
jm

hj1m1 j2m2jj mihj1m0
1 j2m

0
2jj mi = �m1m

0
1
�m2m

0
2
; (C.33)

X
m1m2

hj1m1 j2m2jj mihj1m1 j2m2jj0m0i = �jj0�mm0 : (C.34)

The CG coe�cients can be given in closed form, using the following formula, due

to Racah:

hj1m1 j2m2jj mi

= �m1+m2;m

�
(2j + 1)(j1 + j2 � j)!(j1 � j2 + j)!(�j1 + j2 + j)!

(j1 + j2 + j + 1)!

� 1
2

�[(j1 +m1)!(j1 �m1)!(j2 +m2)!(j2 �m2)!(j +m)!(j �m)!]
1
2

�
X
z

(�1)z

z!(j1 + j2 � j � z)!(j1 �m1 � z)!

� 1

(j2 +m2 � z)!(j � j2 +m1 + z)!(j � j1 �m2 + z)!
: (C.35)

The Clebsch{Gordan coe�cients are not very symmetrical, as opposed to the

Wigner 3-j symbol:�
j1 j2 j3
m1 m2 m3

�
= (�1)j1�j2�m3(2j3 + 1)�

1
2 hj1m1 j2m2jj3 �m3i : (C.36)

The Wigner 3-j symbol has many simple symmetries. It is invariant under even

permutations of the columns, and changes sign under odd permutations if j1 +
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j2 + j3 is odd. Finally, we have:�
j1 j2 j3
m1 m2 m3

�
= (�1)j1+j2+j3

�
j1 j2 j3
�m1 �m2 �m3

�
: (C.37)

C.4 Recoupling

Matrix elements of noncentral operators have traditionally been calculated using

six-, nine-, twelve-, : : : j symbols. These objects can be seen to be contained in

these formulas, by reducing the explicit sums over magnetic quantum numbers

of products of CG coe�cients to products of recoupling coe�cients (i.e., 3N -j

symbols), using (for example) diagram techniques [Baz and Castel, 1972]. The

reason for doing this is that the explicit evaluation of the sums over the magnetic

quantum numbers of products of CG coe�cients can be a huge task, when done

manually. A reduction to products of 3N -j symbols leads to a simpli�cation, since

these objects can (and have been) tabulated. However, the reduction procedure is

a task that requires insight and experience, and therefore very hard to code into

a computer program. (I have used these techniques to calculate the quadrupole

moment of the 6Li nucleus. The (tedious) calculation can be found in Appendix E.)

Therefore, and also because computers have no trouble calculating and adding up

huge numbers of CG coe�cients, this method can now be regarded as outdated.

It is possible, of course, that the reduction process leads to a smaller numerical

task than the brute-force approach of blindly performing the summations, but

the advantage of being able to write a code that calculates recoupling coe�cients

and noncentral operators in a very general fashion usually overrules this possible

disadvantage.

For this reason, I do not give any formulas of recoupling coe�cients in this

section. The only formulas regarding recoupling are given in Sec. 5.1.4, and are

intended just as an illustration, since I do not use six- or nine-j symbols in my

computer code, but instead I use a code that can recouple any coupling scheme

into any other (for any number of particles). This has the practical advantage that,

provided this code is correct, the possibility of errors introduced by the manual

reduction process, or by convention problems, has been ruled out. I will describe

this aspect in Appendix F.



Appendix D

Special functions

This appendix contains de�nitions and properties of the special functions used

throughout this thesis. Note that there exist several di�erent de�nitions for some

of these special functions. My precise choice as well as the most common di�er-

ences in the literature are pointed out. My main sources of reference were Erd�elyi

[1953], and Magnus et al. [1966]. Other sources were Abramowitz and Stegun

[1965] and Gradshteyn and Ryzhik [1980]. An excellent reference for functions

related to the Coulomb potential is van Haeringen [1985]. These references will

be denoted by EH, MOS, AS, GR, and HA, respectively.

D.1 The Gamma function

The Gamma function can be de�ned by

�(z) = z�1
1Y
n=1

�
1 +

1

n

�z�
1 +

z

n

��1
: (D.1)

It can be regarded as the generalization of the factorial function:

�(1 + z) = z�(z) ; (D.2)

and behaves asymptotically as

�(z) = z�
1
2 ez(log z�1)

p
2�(1 + O(z�1)) ; (D.3)

for jzj ! 1 and j arg zj < �. This equation can be used to calculate the Coulomb

phase shift for low energies. Using

�(`+ 1 + i)

=
p

2�jj`+1
2 e��jj=2

� exp
�
i sgn()

�
�
4

(2`+ 1) + jj(�1 + log jj)
��

(1 + O(�1)) ; (D.4)
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the following expression is found:

�`() = sgn()
�
�
4

(2`+ 1) + jj(�1 + log jj)
�

(1 + O(�1)) : (D.5)

The digamma function,  (z), is de�ned as the logarithmic derivative of the

Gamma function:

 (z) =
�0(z)
�(z)

: (D.6)

It can be written as

 (z) = �  +

1X
n=0

� 1

n+ 1
� 1

z + n

�

= lim
n!1

�
logn�

nX
i=0

1

z + i

�
: (D.7)

In this equation,  is Euler's constant:

 = lim
n!1

�
� logn+

nX
i=1

1

i

�
= 0:577215 : : : : (D.8)

D.2 The hypergeometric function

The hypergeometric function 2F1 is a special case of a class of functions pFq,

de�ned by the generalized hypergeometric series:

pFq(a1; : : : ; ap; b1; : : : ; bq; z) =

1X
n=0

(a1)n � � � (ap)n
(b1)n � � � (bq)n

zn

n!
; (D.9)

where (a)n is the Pochhammer symbol, de�ned by

(a)n = a(a+ 1) � � � (a+ n� 1) =
�(a+ n)

�(a)
: (D.10)

For p = 2 and q = 1 we have

2F1(a; b; c; z) =

1X
n=0

(a)n(b)n

(c)n

zn

n!
: (D.11)

The series converges for jzj < 1 and diverges for jzj > 1. The behavior on the

unit circle depends on the parameters a, b, and c. If either a or b is a negative
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integer, the hypergeometric function reduces to a polynomial. The hypergeometric

function is one solution (for jzj < 1) of the hypergeometric di�erential equation

z(1� z)d2w

dz2
+ [c� (a+ b+ 1)z]

dw

dz
� abw = 0 ; (D.12)

unless c = 1 � n for n = 1; 2; : : : . The second solution can usually be expressed

through hypergeometric functions as well. (However, in some cases, such as c =

1�n, the second solution is logarithmic.) The hypergeometric di�erential equation

has three regular-singular points (z = 0, z = 1, and z = 1), which can be

mapped onto each other using simple transformations. This allows one to extend

the solution to the entire z plane. (Note, however, that since the case c = 1 � n
poses a problem close to the origin, similar problems occur near the other singular

points.)

The hypergeometric function contains a large class of special functions. For

example, the classical orthogonal polynomials are special cases of the hypergeomet-

ric function. The Legendre functions can also be expressed using hypergeometric

functions. Finally, the conuent hypergeometric function, or Kummer's function,

is a limit of the hypergeometric function.

D.3 Coulomb functions

The Coulomb functions are de�ned by

F`(; kr) = C`e
ikr(kr)`+1

1F1(`+ 1 + i; 2`+ 2;�2ikr) ; (D.13)

u+` (; kr) = i(�2kr)`+1eikr+�=2U(`+ 1 + i; 2`+ 2;�2ikr) ; (D.14)

(notation from HA) with

C` =
C0

(2`+ 1)!!

Ỳ
n=1

�
1 +

2

n2

� 1
2

; (D.15)

C0 =
� 2�

e2� � 1

� 1
2

: (D.16)

(For  = 0, we de�ne C0 = 1.) For real  this can also be written as

C` = 2`e��=2
j�(`+ 1 + i)j

(2`+ 1)!
: (D.17)

These functions have the following long-range behavior:

F`(; kr) � sin(kr �  log 2kr � 1
2
`� + �`) ; (D.18)

u�` (; kr) � exp[�i(kr �  log 2kr � 1
2
`�)] ; (D.19)



208 Appendix D Special functions

for r !1.

The functions 1F1 and U (notation from MOS and HA) are the conuent

hypergeometric functions of the �rst and second kind, respectively:

1F1(a; c; z) =

1X
n=0

(a)n

(c)n

zn

n!
=

�(c)

�(a)

1X
n=0

�(a+ n)

�(c+ n)

zn

n!
; (D.20)

(for c 6= 0;�1;�2; : : :), and

U(a; c; z)

=
�

sin(�c)

�
1F1(a; c; z)

�(c)�(1 + a� c) � z
1�c 1F1(a+ 1� c; 2� c; z)

�(a)�(2� c)

�
; (D.21)

(this is a multivalued function; its principal branch is given by �� < arg z � �).

(Note that, although 1F1(a;�m; z) does not exist, the limit of 1F1(a; c; z)=�(c)

for c ! �m does exist.) In the limit that c goes to a positive integer, U can be

expressed as

U(a; n+ 1; z)

=
(n� 1)!

�(a)

n�1X
r=0

(a� n)r

(1� n)r

zr�n

r!

+
(�1)n+1

�(a� n)�(n+ 1)

"
1F1(a;n+ 1; z) log z

+

1X
r=0

(a)r

(n+ 1)r

zr

r!
f (a+ r)�  (1 + r)�  (n+ 1 + r)g

#
: (D.22)

The conuent hypergeometric functions are solutions to Kummer's di�erential

equation

z
d2w

dz2
+ (c� z)dw

dz
� aw = 0 ; (D.23)

which has a regular singularity at z = 0 and an irregular singularity at z = 1.

The irregular singularity is the result of the conuence of the singularity at z = 1

and z = 1 of the hypergeometric equation, which occurs when z is replaced by

z=b, and the limit b!1 is taken. Therefore,

1F1(a; c; z) = lim
b!1 2F1(a; b; c; z=b) : (D.24)

Di�erent notations are in use for the conuent hypergeometric functions. For the

conuent hypergeometric function of the �rst kind the following names are in use:
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1F1(a; c; z) (MOS), �(a; c; z) (EH and GR),M(a; c; z) (AS), and F (ajcjz) [Messiah,

1961]. The conuent hypergeometric function of the second kind, U(a; c; z) (MOS

and AS), is often denoted by 	(a; c; z) (EH and GR), and by W1(ajcjz) [Messiah,

1961].

The conuent hypergeometric functions are related to the Bessel functions.

They are found by switching o� the Coulomb potential, i.e., by putting  = 0:

1F1(� + 1
2
; 2� + 1; 2iz) = �(1 + �)eiz

�z
2

���
J�(z) ; (D.25)

U(� + 1
2
; 2� + 1;�2iz) = � 1

2
i�

1
2 e�i(���z)(2z)��H(1;2)

� (z) : (D.26)

More speci�cally, we �nd

F`(0; kr) = |̂`(kr) ; (D.27)

u+` (0; kr) = ĥ+` (kr) ; (D.28)

where |̂ and ĥ are the Riccati{Bessel functions.

The zero-energy limit, i.e., the limit  ! �1 (k positive) of the Coulomb

functions is:

lim
k#0

�
�2�

C0

�
F`(; kr) = (sgn s)`�

p
2srJ2`+1(

p
8sr) ; (D.29)

lim
k#0

C0e
i�`u+` (; kr) = i(sgn s)`�

p
2srH

(1)
2`+1(

p
8sr) : (D.30)

D.4 Bessel functions

The Bessel functions are solutions of

z2
d2w

dz2
+ z

dw

dz
+ (z2 � �2)w = 0 ; (D.31)

where � and z can be arbitrarily complex. The Bessel functions (of the �rst kind)

are de�ned by

J�(z) =

1X
m=0

(�1)m
�
z
2

��+2m

m!�(� +m+ 1)
=

�
z
2

��
�(� + 1)

0F1(� + 1;�1
4
z2) ; (D.32)

from which the Neumann (Bessel functions of the second kind, denoted by Y� , or

by N� in GR) and Hankel functions (Bessel functions of the third kind, H
(1;2)
� )

can be derived:

Y�(z) = (sin��)�1 [J�(z) cos�� � J��(z)] ; (D.33)

H(1;2)
� (z) = J�(z)� iY�(z) ; (D.34)
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Note that for integer � the above de�nitions are inde�nite. The correct procedure

is then to take the limit for � ! n. The Bessel functions have a cut along the

negative real z axis.

The modi�ed Bessel and Hankel functions can be de�ned by replacing the

argument z of the Bessel and Hankel functions by iz:

I�(z) = e�i��=2Jv
�
zei�=2

�
; (D.35)

K�(z) = 1
2
i�ei��=2H(1)

�

�
zei�=2

�
: (D.36)

For integer order (� = n for n = 0; 1; 2; : : :), the irregular Bessel functions can

be written in such a way that the singularity structure becomes explicit:

Yn(z) = 2
�

[ + log z
2
]Jn(z)� 1

�

n�1X
m=0

( z
2
)2m�n(n�m� 1)!

m!

� 1

�

1X
m=0

(�1)m
( z
2
)n+2m

m!(n+m)!
(hm+n + hm) ; (D.37)

Kn(z) = (�1)n+1[ + log z
2
]In(z) + 1

2

n�1X
m=0

(�1)m
(n�m� 1)!

m!
( z
2
)2m�n

+ 1
2
(�1)n

1X
m=0

( z
2
)n+2m

m!(n+m)!
(hm+n + hm) : (D.38)

(for n = 0 the �nite sum drops out) where hm is de�ned by

hm =

mX
k=1

k�1 ; (D.39)

h0 is zero, and  is Euler's constant.

The Bessel functions of half-odd integer order are elementary functions. One

form is:

Jn+ 1
2
(z) = (�1)n

�
1
2
�z
�� 1

2 zn+1
�1

z

d

dz

�n sin z

z
; (D.40)

Yn+ 1
2
(z) = � (�1)n

�
1
2
�z
�� 1

2 zn+1
�1

z

d

dz

�n cos z

z
; (D.41)

H
(1;2)

n+ 1
2

(z) = � i(�1)n
�
1
2
�z
�� 1

2 zn+1
�1

z

d

dz

�n e�iz

z
; (D.42)

In+ 1
2
(z) =

�
1
2
�z
�� 1

2 zn+1
�1

z

d

dz

�n sinh z

z
; (D.43)

Kn+ 1
2
(z) = (�1)n

� �
2z

� 1
2

zn+1
�1

z

d

dz

�n e�z

z
: (D.44)
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The spherical Bessel functions j and h (often denoted by  m and �m, respectively)

are de�ned by

j`(z) =
� �

2z

� 1
2

J`+ 1
2
(z) ; (D.45)

n`(z) =
� �

2z

� 1
2

Y`+ 1
2
(z) ; (D.46)

h
(1;2)
` (z) =

� �
2z

� 1
2

H
(1;2)

`+ 1
2

(z) ; (D.47)

h�` (z) = � ih
(1;2)
` (z) : (D.48)

Taylor [1972] and Messiah [1961] de�ne a function n` which di�ers from the one

given here by an overall minus sign. The Riccati{Bessel functions are related to

the spherical Bessel functions by

|̂`(z) = zj`(z) ; (D.49)

n̂`(z) = zn`(z) ; (D.50)

ĥ�` (z) = zh�` (z) : (D.51)

The Riccati{Bessel functions satisfy the following Wronskian property:

W (|̂`; n̂`) = |̂`(z)n̂
0
`(z)� n̂`(z)|̂0`(z) = 1 : (D.52)

The zero-energy limit (k # 0) of the Riccati{Bessel functions is

lim
k#0

k�`�1|̂`(kr) =
r`+1

(2`+ 1)!!
; (D.53)

lim
k#0

k`ĥ+` (kr) = (2`� 1)!!r�` : (D.54)

D.5 Orthogonal polynomials

A set of polynomials pn satisfying the orthonormality relation

Z b

a

dxw(x)p�m(x)pn(x) = �mn ; (D.55)

(w(x) is a nonnegative real weight factor) is considered orthonormal. (If the

normalization condition is dropped, the polynomials are considered orthogonal.) If

the index n is equal to the degree of the polynomial pn, this requirement uniquely

speci�es the polynomials, apart from phase factors. Let me summarize a few

properties of orthogonal polynomials:

1. Any polynomial of degree m < n is orthogonal to pn.
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2. The polynomial pn has n di�erent zeros on the open interval (a; b).

3. If pn has zeros fxign1 , pm (m > n) has at least one zero in every interval

(xi; xi + 1), and exactly one zero if m = n+ 1. (Note that we de�ne a = x0,

and b = xn+1.)

4. There is a recursion relation relating three consecutive orthonormal polyno-

mials:

pn+1(x) = (Anx+ Bn)pn(x)� Cnpn�1(x) ; (D.56)

where An, Bn, and Cn depend on n only.

The best-known orthogonal polynomials are the Chebyshev, Gegenbauer, Her-

mite, Jacobi, Laguerre, and Legendre polynomials. These classical orthogonal

polynomials have a few additional properties:

1. fp0n(x)g is a system of orthogonal polynomials.

2. The classical orthogonal polynomials satisfy the following di�erential equa-

tion:

A(x)
d2pn

dx2
+ B(x)

dpn

dx
+ �npn = 0 ; (D.57)

for some functions A(x), B(x) independent of n, and some constant �n,

depending only on n.

3. The polynomials can be expressed using a Rodrigues formula:

pn(x) =
1

Knw(x)

dn

dxn
[w(x)(X(x))n] ; (D.58)

for some polynomial X independent of n, and some constant Kn depending

only on n.

These properties are equivalent, and any system of orthogonal polynomials satis-

fying any of these conditions can be reduced to a system of classical polynomials.

D.5.1 Legendre polynomials

The Legendre polynomials Pn are orthogonal polynomials on (�1; 1) with weight

w(x) = 1. They satisfy the di�erential equation

�
(1� x2) d2

dx2
� 2x

d

dx
+ n(n+ 1)

�
Pn(x) = 0 ; (D.59)
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with the boundary condition that Pn(x) is �nite at �1. They are normalized such

that

Pn(1) = 1 : (D.60)

The corresponding orthonormal system is

(n+ 1
2
)
1
2Pn(x) : (D.61)

The recursion relation is

(n+ 1)Pn+1(x)� (2n+ 1)xPn(x) + nPn�1(x) = 0 ; (D.62)

and the Rodrigues formula reads

Pn(x) =
1

2nn!

dn

dxn
((x2 � 1)n) : (D.63)

The derivative can be expressed as follows:

(1� x2)P 0n(x) = n[Pn�1(x)� xPn(x)] : (D.64)

D.5.2 Hermite polynomials

The Hermite polynomialsHn are orthogonal polynomials on (�1;1) with weight

w(x) = exp(�1
2
x2). They satisfy the di�erential equation�

d2

dx2
� 2x

d

dx
+ 2n

�
Hn(x) = 0 ; (D.65)

with the boundary condition that Hn(x) behaves as a �nite power of x at �1.

The orthonormal system is

(�)�1=4(2nn!)�
1
2Hn(x) : (D.66)

The recursion relation is

Hn+1(x)� 2xHn(x) + 2nHn�1(x) = 0 ; (D.67)

and the Rodrigues formula reads

Hn(x) = (�1)nex
2 dn

dxn
(e�x

2

) : (D.68)

The derivative can be expressed as follows:

H 0
n(x) = 2nHn�1(x) = 2xHn(x)�Hn+1(x) : (D.69)

The orthogonal polynomials associated with the weight exp(�x2=2) are de-

noted by Hen. They are related to Hn as follows:

Hen(x) = 2�
n
2Hn(2�

1
2x) : (D.70)
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D.5.3 Jacobi polynomials

The Jacobi polynomials P
(�;�)
n are orthogonal polynomials on (�1; 1) with weights

w(x) = (1� x)�(1 + x)� . They satisfy the di�erential equation�
(1� x2) d2

dx2
+ [� � �� (�+ � + 2)x]

d

dx
+ n(n+ �+ � + 1)

�
P (�;�)
n (x)

= 0 ; (D.71)

with the boundary condition that P
(�;�)
n (x) is �nite at x = �1. The Jacobi

polynomials are normalized as follows:

P (�;�)
n (1) =

(�+ 1)n

n!
: (D.72)

The orthonormal system is�
n!�(�+ � + n+ 1)(�+ � + 2n+ 1)

2�+�+1�(�+ n+ 1)�(� + n+ 1)

� 1
2

P (�;�)
n (x) : (D.73)

The recursion relation is

2(n+ 1)(�+ � + n+ 1)(�+ � + 2n)P
(�;�)
n+1 (x)

�[(�+ � + 2n)3x+ (�2 � �2)(�+ � + 2n+ 1)]P (�;�)
n (x)

+2(�+ n)(� + n)(�+ � + 2n+ 2)P
(�;�)
n�1 (x) = 0 ; (D.74)

and the Rodrigues formula reads

P (�;�)
n (x) =

(�1)n

n!2n
(1� x)��(1 + x)��

dn

dxn
[(1� x)�+n(1 + x)�+n] : (D.75)

The derivative can be expressed as follows:

d

dx
P (�;�)
n (x) =

�+ � + n+ 1

2
P
(�+1;�+1)
n�1 (x) ; (D.76)

or:

(1� x2)(�+ � + 2n)
d

dx
P (�;�)
n (x)

= n[�� � � (�+ � + 2n)x]P (�;�)
n (x) + 2(�+ n)(� + n)P

(�;�)
n�1 (x) : (D.77)

D.6 Legendre functions

The Legendre functions are solutions of

(1� z2)d2w

dz2
� 2z

dw

dz
+ [�(� + 1)� �2(1� z2)�1]w = 0 : (D.78)
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This equation has three regular-singular points at z = �1, z = +1, and z = 1.

Note that � and � may by any complex number, and that two cases must be

distinguished: (i) z is real and between �1 and +1, and (ii) z is any other

complex number, with the exclusion of the interval (�1;+1]. (The z plane is cut

along the real axis from �1 to +1.) In the �rst case the fundamental system of

solutions is denoted by P�
� (x) and Q�

� (x) (Legendre functions of the �rst kind),

and in the second case they are denoted by B�� (z) and D�� (z) (Legendre functions of

the second kind). The Legendre functions are special cases of the hypergeometric

function 2F1(a; b; c; z):

�(1� �)P�
� (x)

= (1 + x)
1
2
�(1� x)�

1
2
�
2F1(��; 1 + �; 1� �; 1

2
� 1

2
x) ; (D.79)

for �1 < x < 1. This expression is unde�ned when � is a positive integer.

Since we are interested in the Legendre functions for integer values of � and �,

other expressions are needed. Note that if � is a nonnegative integer and � is an

integer satisfying �� � � � �, P�
� is a polynomial of degree � � j�j multiplied by

an elementary function. More speci�cally, the following relation holds:

Pm
� (x) = (�1)m(1� x2) 12m dm

dxm
P�(x) ; (D.80)

P�m� (x) = (�1)m(1� x2)� 1
2
m

Z x

1

dx1 � � �
Z xm�1

1

dxm P�(xm) ; (D.81)

where � is any complex number, m is a positive integer, and P� is the Legendre

function for � = 0, which for integer values of � is just a Legendre polynomial.

For practical calculations, the following relations are su�cient:

P 0
0 (x) = 1 ; (D.82)

P 0
1 (x) = x ; (D.83)

xP�
� (x)� P�

�+1(x) = (� + �)(1� x2) 12P��1
� (x) ; (D.84)

(2� + 1)xP�
� (x) = (� � �+ 1)P

�
�+1(x) + (� + �)P

�
�+1(x) ; (D.85)

where it must be remembered that Pm
` vanishes for m > j`j. Note that the same

relations hold for Q�
� . The �rst of the two recursion relations can be used to

calculate P `
` , for all nonnegative integer values of `. The second recursion relation

can then be used to calculate all other cases with m � 0. Negative values of m

are not needed, since Eq. (C.11) can be used instead.



Appendix E

Formulas

This appendix contains a collection of formulas which I have found during my work

on the three-body problem. Only a few of these formulas have been actually used

in the various calculations. Of these some have become obsolete since alternative

techniques were developed.

E.1 Three-body formulas

The geometry of the three-body problem as formulated in Chapter 6 provides

a number of useful and elegant formulas. They are based on the de�nitions of

the mass-weighted Jacobi coordinates and the polar coordinates. A number of

interesting formulas are listed here. All formulas are valid for any permutation

fijkg of f123g.
I will start with a number of formulas for the quantities �

ij
k and mass ratios.

Note that the masses are expressed as fractions of the total mass. (This is an

unusual choice; the most natural choice for the unit mass would be the mass of

the lightest particle.)

�
ij
k + �

jk
i + �kij = �ijk� ; (E.1)

�4 cos�
ij
k cos�

jk
i cos�kij = 1 + cos 2�

ij
k + cos 2�kij + cos 2�

jk
i ; (E.2)

mi =
cos�

ij
k cos�kij

sin�
ij
k sin�kij

; (E.3)

mj +mk =
cos�

jk
i

sin�
ij
k sin�kij

; (E.4)

mi

mj +mk

=
cos�

ij
k cos�kij

cos�
jk
i

; (E.5)
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mj

mj +mk

=
cos�

ij
k sin�kij

sin�
jk
i

; (E.6)

mimj

mi +mj

=
cos�

ij
k cos�

jk
i cos�kij

sin2 �
ij
k

; (E.7)

mi(mj +mk)

mi +mj +mk

=
cos�

ij
k cos�

jk
i cos�kij

sin2 �
ij
k sin2 �kij

: (E.8)

The following expression relates the polar angles:

sin 2�
ij
k cos 2�k + sin 2�

jk
i cos 2�i + sin 2�kij cos 2�j = 0 : (E.9)

For three particles with identical mass, the following (trivial) identities are ob-

tained:

�
ij
k = �ijk

�
3
; (E.10)

cos 2�i + cos 2�j + cos 2�k = 0 : (E.11)

From Eq. (E.9) the following can be derived:

��i (�k) = ��j (�k) ; (E.12)

In other words, the lower (upper) edge of the domain of valid angles 
ik corre-

sponds to the upper (lower) edge of 
jk. The direction of curves of constant �j in


ik can be determined from:

@�k(�i; �j)

@�i
= � sin 2�

jk
i

sin 2�
ij
k

sin 2�i

sin 2�k(�i; �j)
: (E.13)

@�k(�i; �j)

@�i

����
��i (�j)

= � sin 2�
jk
i

sin 2�
ij
k

sin 2��i (�j)

sin 2��k (�j)
: (E.14)

Finally: the distance of a particle to the center of mass is

ri =

r
mjk

2mimijk

yi =
1

p
mijk

vuut cos�
jk
i

2 cos�
ij
k cos�kij

yi ; (E.15)

Equations (E.9) and (E.15) can be used to �nd the following expression for hr2i
for a system of three identical particles:

hr2i = 1
6m
h�2i ; (E.16)
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Figure E.1: The three-body triangle. See text for details.

where m is the particle mass expressed in the unit mass which was introduced

in Chapter 4. (This unit mass is in the case of identical particles of course most

conveniently chosen to be the particle mass, leading to m = 1.) A useful overview

of the various lengths in the three-body system is given by Fig. E.1. The actual

triangle can be retrieved by scaling this picture with a factor (2Mc1c2c3)
�1=2.

Note that in this �gure, the notation c1 = cos�231 , s1 = sin�231 , et cycl. was used.

E.2 Angular momenta

Matrix elements of operators which have some angular dependence are very com-

mon. Examples can be found in the nuclear interaction, but also in the theory

of (electromagnetic) reactions. For the two-body case these matrix elements can

usually be calculated after some (often tedious) algebra. For the three-body case

the situation is much more di�cult, since the angular-momentum structure of such
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a system is much more di�cult than that of a two-body system. In this section

I will show one nontrivial example of such a calculation, that of the quadrupole

moment, Q. The quadrupole moment is de�ned as follows:

Q =

q
16�
5

X
i

Zihr2i Y20(r̂i)i ; (E.17)

where ri is the distance of particle i to the center of mass and Zi is the charge of

particle i. It is related to the low-momentum limit of the quadrupole form factor.

The multipole form factors are de�ned by Donnelly and Walecka [1975]:

FCl(q) =

p
4�

Z

X
i

Zi

hJ J l 0jJ Ji h	 jYl0(r̂i)jl(qri) j	i ; (E.18)

where Z is the total charge of the system, J is the total angular momentum, and

where the wave function 	 must have a speci�c total magnetic quantum number:

M = J . The low-energy limit of the quadrupole moment, FC2, is
p

4�

Z

X
i

Zi

h1 1 2 0j1 1ih	 jY20(r̂i)j2(qri) j	i �!

p
4�

Z

X
i

Zi
p

10

(2 � 2 + 1)!!
h	 jY20(r̂i)(qr)2 j	i =

1

3Z
p

2
Qq2 ; (E.19)

which follows immediately from Eq. (D.53).

The key ingredient in all these expressions is the matrix element of r2i Ylm(r̂i).

I will now calculate this matrix element. The matrix element can be factorized in

a radial and an angular part. I will only look at the angular part here. In that

case it su�ces to calculate matrix elements h� jYlm(ŷi j �i, where � and � are

angular-momentum eigenstates. I will use a bipolar basis in L{S coupling:

h((`� `0�)L� S�)J�M� jYlm(ŷ) j ((`� `0�)L� S�)J�M�i

=
X

���
0
�����

���
0
�
����

h`� �� `0� �0�jL� ��ih`� �� `0� �0� jL� ��ihL� �� S� ��jJ�M�i

�hL� �� S� �� jJ�M�ih`� �� `0� �0� S� �� jYlm(ŷ) j `� �� `0� �0� S� ��i

=
X

���
0
����

�0
�
��

h`� �� `0� �0�jL� ��ih`� �� `0� �0� jL� ��ihL� �� S� �jJ�M�i

�hL� �� S� �jJ�M�i�`�`��S�S� h`0� �0� jYlm(ŷ) j `0� �0�i : (E.20)

The matrix element h`0� �0� jYlm(ŷ) j `0� �0�i can be easily evaluated:

h`0� �0� jYlm(ŷ) j `0� �0�i = (�1)�
0
�

^̀0
�l̂

^̀0
�p

4�

�
`0� l `0�
0 0 0

��
`0� l `0�
��0� m �0�

�
: (E.21)



E.2 Angular momenta 221

The next step is to replace the sums over products of Clebsch{Gordan coe�-

cients by a diagram following the rules of Baz and Castel [1972], and then applying

simpli�cation techniques, by cutting the diagram into smaller pieces:

h((`� `0�)L� S�)J�M� jYlm(ŷ) j ((`� `0�)L� S�)J�M�i

= �`�`� �S�S� L̂�L̂�Ĵ�Ĵ�(�1)2`��`
0
��`0��2S��J��J�

^̀0
�l̂

^̀0
�p

4�

�
`0� l `0�
0 0 0

�

�
X
�0��

0
�

(�1)��
0
�

�
`0� l `0�
��0� m �0�

�`0� �0�
`0� �

0
�

`�

q� -L�

q
+
-
L�

S�

q+-

q�-

J�M�

J�M�

= �`�`� �S�S� (�1)2`��`
0
��2S��J��J� L̂�L̂� Ĵ�Ĵ�

^̀0
�l̂

^̀0
�p

4�

�
`0� l `0�
0 0 0

�

� l m r
+
�
�
�
��

�
��3
`0�

Q
Q
Q
QQ`0�

`�

r� -L�

r
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-
L�

S�

r+ -

r
�
-

J�M�

J�M�

= �`�`� �S�S� (�1)2`��`
0
��2S��J��J� L̂�L̂� Ĵ�Ĵ�

^̀0
�l̂

^̀0
�p

4�

�
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0 0 0
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@

r+

J�M�

l m

J�M�

= �`�`� �S�S� (�1)J��M�+J�+S�+`�+lL̂�L̂� Ĵ�Ĵ�

^̀0
�l̂

^̀0
�p

4�

�
`0� l `0�
0 0 0

�

�
�
L� l L�
`0� `� `0�

��
J� l J�
L� S� L�

��
J� l J�
�M� m M�

�
: (E.22)

In the �nal step, I replaced the �nal diagrams by the well-known three- and six-j

symbols, again using rules from Baz and Castel [1972].
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Clearly, this is an awkward procedure to follow. For more di�cult operators

(e.g., magnetic moments), this procedure becomes even more complicated. There-

fore, I have followed the \brute force" approach of simply summing up all the

products of Clebsch{Gordan coe�cients, without trying to reduce expressions to

products of known recoupling coe�cients. The only part that has to be done by

hand is then the evaluation of the one-body matrix elements (cf. Eq. (E.21)).
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Software design

The three- and four-body problems lead to complicated mathematical equations.

The implementation of the corresponding numerical equations in a computer code

is a nontrivial matter. This appendix addresses some of the problems that I have

encountered, and their solutions. First, some general remarks on structured pro-

gramming will be given, after which the global structure which was identi�ed

and implemented is described. Next, the problem of administrating permutations

(i.e., coordinate transformations between di�erent Jacobi coordinate systems) is

addressed in some detail. Finally, matters of portability and e�ciency are dis-

cussed, and an outlook is given.

F.1 Structure

Computer programs exceeding a certain size tend to become unmanageable, due

to many interconnections between the di�erent parts. This situation can be im-

proved by structuring the computer program in a collection of well-de�ned and

semi-isolated parts, each dealing with a small part of the full problem. Structuring

exists in both the procedures (subroutines) and the data on which the procedures

operate (data structures). Recently, these two have become more and more in-

tertwined, and the structuring into concepts or objects (known as object-oriented

programming) has become the focus of attention. With the growth of computer

programs, programming languages have evolved. Originally, fortran was the lan-

guage that was considered most suitable for doing numerical calculations. Later

on, structured programming languages such as C appeared. Presently, object-

oriented programming languages such as C++ are being used more and more.

However, even today, fortran is used extensively in scienti�c calculations. The

reason for using this outdated language is sometimes its supposed e�ciency and

standardization, but more often, tradition: both standardization and e�ciency

of C has come to a level at least equal to that of fortran, but there is still a

large amount of (old) fortran software, that is being used regularly, and many

numerical libraries are written in fortran.

223
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Complex numerical problems lead to large computer codes. Clearly, structured

programming is essential for the successful and e�cient solution of these problems.

However, structured programming becomes useful already on a much smaller scale.

I will illustrate this by looking implementation of the spline method for the two-,

three-, and four-body problem.

F.2 Discretization

The numerical few-body problem has a number of di�erent aspects. First, there

is the principal problem of representing the equations in a discretized form. As

we have seen throughout this thesis, there is a simple systematic manner for rep-

resenting the di�erent operators by spline matrices. The spline matrices found in

the two-, three-, and four-body problems have much in common. The spline ma-

trices can be constructed in a systematic manner, once the spline basis is known.

A spline basis consists of a grid, augmented by the basis functions. It is therefore

useful, to design the computer code in this hierarchical fashion.

In the di�erent computer codes (two-, three-, and four-body codes are sepa-

rate programs), there is a large common section, dealing with the de�nition and

construction of grids, spline bases, and spline matrices. Many standard opera-

tors are identical for these four problems, and can also be shared. An important

example is the potential. Since I have allowed very general interactions, this is

quite a complex piece of computer code, which can, however be shared between

the programs. (Also, the general potential routine itself is thoroughly structured

and organized to allow for the most general possible interaction, and still keep

the computer code manageable: structuring occurs at all levels.) The di�erences

between the programs occur at the higher level of combining these matrices into

the full matrix problem.

F.3 Angular momentum

The two-, three-, and four-body problems involve increasingly di�cult angular-

momentum analysis. However, here also, a common factor can be recognized. All

coupling schemes for the general N-body problem can be seen as a tree struc-

ture, very similar to the trees associated with partition chains or Jacobi co-

ordinates. Therefore, it is possible design a data structure which describes an

angular-momentum coupling scheme in a systematic fashion, and also structures

to describe angular-momentum states. A general set of procedures can be de-

�ned to generate coupling structures, angular momentum states, and indeed, full

angular-momentum bases.

Once a systematic description of angular-momentum states is given, it is pos-

sible to calculate matrix elements of operators in a systematic fashion, as well.

This requires only a knowledge of the matrix elements at the lowest level required
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(e.g., the two-body level for the two-body interaction, or the one-body level for

one-body operators). The remaining part of the matrix element can simply be

expressed as sums of products Clebsch{Gordan coe�cients. These products can

be determined easily from the coupling structure, and the quantum numbers of

the particular states.

Of course, this approach may lead to very ine�cient code, since multiple sums

must be evaluated. Therefore, care must be taken to keep the numerical e�ort

at a reasonable level. I have implemented several optimizations and tricks to

achieve this. For example, I have written a subroutine that calculates a general

recoupling coe�cient (i.e., from any coupling scheme to any other, for any number

of particles), exploiting the coupling order, disconnected trees, symmetries, as

much as possible. It turns out to be su�ciently e�cient for all the calculations

that I have done so far.

F.4 Permutation

This section discusses the administration of partition chains and coordinate trans-

formations, or permutations. It contains an attempt at a general scheme for

dealing with the indistinguishability of particles in the N-body problem. The

presence of indistinguishable particles has consequences for the number of inde-

pendent partition chains, and hence Yakubovsky amplitudes. Another e�ect is,

that some of the coordinate transformations coincide with permutation operators.

The following subsections address the administration of independent amplitudes

and the coordinate transformations.

Administration

First, the interdependence of the partition chains must be determined. Suppose

that there are Nf partition channels if all particles are distinguishable. If some

of the particles are identical, this number reduces to a new number N 0
f , because

the partitions chains can be grouped into sets of dependent partitions chains, or

P -sets. Partition chains are labeled by i (or by i0 for P -sets), where i ranges from

1 to Np. The number of elements in P -set i0 is denoted by N i0

p .

I will assume that with every partition chain i an angular-momentum basis

containing N i
c basis functions is associated. I will call the combination of a parti-

tion chain and an angular-momentum basis function a channel. The channels are

labeled by �, and are numbered consecutively. (The channels for partition chain 1

are numbered 1 through N1
c , the channels for partition chain 2 are N1

c +1 through

N1
c + N2

c , and so on.) A similar counting is done for the combination of P -sets

and angular-momentum basis functions. The channels belonging to di�erent P -

sets can be distinguished through a new \quantum number" i(�), describing to

which P -set a particular channel belongs. It is sometimes useful to denote channels

by two labels, such as ji�i, or ji0�0i.
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Permutation

I will now show that it is possible to de�ne Faddeev (or Yakubovsky) amplitudes

�i0�0 corresponding to the P -set i0, such that the Faddeev amplitudes �i� (for all

partitions i that are in set i0) are related to �i0�0 in a very simple manner:

�i�0 =
X
i0

�ii0�0�i0�0 ; (F.1)

where � is the following object:

�ii0�0 = p(�0; i$ i�)�i2i0 : (F.2)

Here p(�0; i$ j) was written to denote the parity of ji�i under the permutation

that changes partition i into j (or its inverse). Note that this has only meaning if

i and j are members of the same P -set. The symbol i� denotes the lowest number

which represents a partition in the set i0. Finally, �i2i0 is equal to one if i 2 i0,
and zero otherwise. The above description may be used to construct the complete

wave function, or to calculate the e�ect of permutation operators.

The e�ect of the permutation operators can be constructed as follows:

(P�)i0�0 =
X
jj0�0

Pi0j�0�0�jj0�0�j0�0 ; (F.3)

where Pi0j�0�0 is a matrix representing a coordinate transformation from the natu-

ral coordinate system corresponding to partition chain i0 to the coordinate system

corresponding to partition chain j. I will now show that the permutation operators

can be reduced to operate on P -sets only. The decomposition is as follows:

Pi0j�0�0 =
X
j0

Pi�j+�0�0�j0j�0��i�j+ ; (F.4)

where � is an object which is very similar to �:

�j0j�0 = p(�0; j $ j+)�j2j0 : (F.5)

Note that it is necessary to use j+ in order to be able to sensibly de�ne permuta-

tions inside an P -set (i.e., the diagonal elements Pi0i0�0�0). The factor ��i�j+ makes

sure that we only consider permutations which di�er from the unit operator, and

the factor p(�0; j $ j+) is present to give the correct sign if j is di�erent from j+.

Now the construction of the total permutation operator can be completed:

(P�)i0�0 =
X

k0jj0�0

��i�k+Pi�k+�0�0p(�
0; j $ k+)�j2k0p(�0; j $ j�)�j2j0�j0�0

=
X
j0�0

��i�j+N
j0

p Pi�j+�0�0p(�
0; j� $ j+)�j0�0 : (F.6)

Note that Pi�j+�0�0 may be separated into orbital, spin, and isospin parts, as

described for the three-body problem in Eq. (5.19).
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F.5 Flexibility, e�ciency, and portability

It is convenient to have a single program that can deal with all possible three-body

problems (two- and four-body problems may share a substantial part of the code,

but can be considered too di�erent from the three-body problem to be treated

within the same program), since that reduces the maintenance e�ort considerably.

Since it is very inconvenient to have to change parameters in the program deter-

mining the grid size and the number of channels, the size of temporary storage,

and so on, the program should be designed such that no assumptions are made on

the grid size and number of channels. This implies that the storage requirements

are unknown at compile time, and therefore, that dynamic storage allocation must

be used. Since fortran does not support dynamic storage allocation, a di�erent

programming language must be chosen.

I have used the language C to write my programs. This language supports

dynamic storage allocation and allows easy structuring of both procedures and

data. There are other languages which have the same facilities, but none are in

as widespread use as C. Since C has been designed to write the operating system

unix, it is a good compromise between structure and e�ciency. Also, it is very

well suited for large computer programs. Its widespread use has led to an excellent

standardization (ansi C), signi�cantly simplifying writing portable programs.

By exploiting the possibilities of C, it is possible to formulate a program for

solving the few-body problem in a systematic, and well-maintainable manner.

Also, through the use of dynamic memory, the memory requirements can be kept

to the exact minimum that is required for a particular problem. Letting the

program performing di�erent tasks in one run is also a simple matter. The program

was designed such that it determines all the necessary sizes and limits. Its input

consists of a few simple text �les, which the user must supply.

To optimize the speed of solving the numerical problem, it is necessary to have

some knowledge of the computer hardware. For example, there is large di�erence

between scalar and vector machines: the former are more e�cient in long loops,

whereas the latter are most e�cient in short loops, which can be reduced to vector

instructions. A substantial amount of system dependence can be removed by using

standard libraries to perform the most expensive operations. I have used linpack

and eispack for the linear algebra and eigenvalue problems. The rest of the code

was written in a form that allows automatic vectorization, but has su�ciently long

loops so that the performance is good on scalar machines perform as well.

F.6 Outlook

In principle, it is possible to summarize the two-, three-, and four-body codes

into one program. This has the advantage that only a single program has to be

maintained. The disadvantage is that the code becomes substantially more com-

plicated. On the other hand, the two-, three-, and four-body programs contain a
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lot of common code, and the code that is speci�c for any of them can be generalized

into a new common general scheme. This would require a way of automatizing gen-

erating partition chains and the coordinate transformations between them. This

is a feasible, but complicated task.

For such a project, one may wonder if C is a su�ciently structured language.

Already in the three-body code that I have written now, many aspects of object-

oriented programming can be found. Therefore, the step to C++ seems a logical

one. Unfortunately, this language is not yet fully developed. Standardization is

not yet complete, and libraries must still be developed. Also, reliable and e�cient

compilers are hard to �nd.


