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11  
 When nature does the same, she 

generally uses cellular materials; wood, bone, coral. There must be 

                                                                                          M .F. Ashby 

Introduction 
When modern man builds large load-bearing structures, he uses 
dense solids; steel, concrete, glass.

good reasons for it. 
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1.1 Cellular solids 

Natural materials, such as wood, cork and cancellous bone, and man-made materials 
such as metal honeycombs and foams, are well-known examples of cellular solids. 
Common to all of them is a microstructure consisting of an interconnected network of 
struts (open cells) or plates (closed cells). Figure 1.1.a-c show three examples of 
cellular solids, namely, a hexagonal honeycomb, an open and a closed cell foam, 
respectively. 
 
 
 
 
 
 
 
                                  
                                   (a)                                                            (b) 
 

 
 
 
 
 
 
                                                                     
                                                       (c)                                                                                              

 
Figure 1.1: Examples of cellular solids: (a) Aluminium honeycomb. (b) Open cell polyurethane 
foam. (c) Closed cell polyethylene foam. (Reproduced, with permission, from Gibson and Ashby 
[1997]).                                                                               
                                             

Theoretical attempts to understand the geometry and the fundamental 
principles of the mechanics of cellular solids dates back to the celebrated 
geometrician Leonard Euler (see De Boor [1998]).  Since then, a large literature 
developed on the geometric, mechanical, thermal and electrical characteristics of 
these solids. An extensive record on the structure and the properties of cellular solids 
is given by Gibson and Ashby [1997]. In this thesis, we focus on the mechanics of 
metal honeycombs and foams, yet, most of our conclusions are applicable to other 
cellular solids as well. 
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 The high specific bending stiffness is an important structural property, which, 
among others, has made metal foams a competitive engineering material in the last 
decades. They are often used in sandwich panels, where they are laminated between 
two dense solids to increase the moment of inertia, owing to their low density and 
good shear and fracture strength. Their damping capacity is up to 10 times that of the 
solid metals, and they have exceptional ability to absorb energy at almost constant 
strain, which makes them attractive for impact absorption systems. Open cell foams, 
with a large accessible surface area, have a very good heat transfer ability. A more 
extensive list of multifunctional features and application areas for a number of 
commercially available metal foams are given by Ashby et al. [2000]. Metal foams 
have already a profitable market, which is growing rapidly due to the improvements 
in the production technology and engineering design. 

1.2 Objective 

The mechanical properties of metal foams (and other cellular solids) depend on the 
properties of the metal that they are made from, on their relative density, and on the 
cell topology (i.e., cell size, cell shape, open or closed cell morphology, etc.). The cell 
size of commercially available metal foams is about 1 to 10 mm.  This is on the order 
of the smallest structural length of specimens in many applications. In such cases, the 
individual response to a load differs significantly from one cell to another, and the 
fundamental assumption of the classical continuum theory that the (physical, 
chemical, mechanical, etc.) properties of a material are uniformly distributed 
throughout its volume fails. Another situation where the classical continuum theory 
loses its accuracy is when the characteristic wavelength of loading is comparable to 
the cell size. An important technological consequence of this is the occurrence of size 
effects. The term "size effect" designates the effect of the macroscopic (sample) size, 
relative to the cell size, on the mechanical behaviour. In the last decade evidence of 
this appeared in a number of experimental studies (see section 1.4). To theoretically 
account for size effects, one may take the cellular morphology into account by 
discretely modelling each cell wall and/or cell face. This allows for an accurate 
representation of the microstructural deformation mechanisms, the bending and 
stretching of cell walls and faces. Such a microstructural model can predict how the 
overall (macroscopic) response is related to the microstructural parameters. In view of 
size effects, the most important feature is that it incorporates, in a physically sound 
manner, the material length scale in the problem, i.e. the cell size. However, such a 
discrete model can become computationally expensive for complex (random) 
microstructures, especially in three dimensions. Another approach is to use a 
generalized continuum theory in which many microstructural details are averaged out, 
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but in which a "characteristic" length scale is retained. The goal of this thesis is 
twofold:  
1) To explore the microstructural mechanisms that are responsible for the size-
dependent elastic behaviour of cellular solids by using a discrete microstructural 
model. 
2) To assess the capability of generalized continuum theories to capture size effects 
through a careful comparison with the discrete simulations. 

In section 1.3, we give a historical overview of generalized continuum 
theories. We discuss two of them in more detail, Eringen’s micropolar theory and 
Toupin-Mindlin’s strain gradient elasticity. In section 1.4, we summarize the 
experimental work performed to detect the size effects in the mechanics of cellular 
solids. Finally, in section 1.5, we outline the contents of this thesis.  

1.3 Generalized continuum theories: a historical overview  

A natural generalization of the classical continuum theory is to model the interaction 
between two material points, not only via a force vector, but also via a couple vector. 
The origin of this evolution can be traced back to the early Euler-Bernoulli beam 
theory, where the displacement and the rotation vectors are independent kinematic 
quantities, and the usual force tractions and couples are independent internal loads. 
The idea of having independent couple-stresses in an elastic continuum is further 
explored by several scientists in the 18’th century (MacCullagh (1839), Lord Kelvin 
(1882, 1884, 1890), Voigt (1887))1. In 1909, E. and F. Cosserat (the Cosserat 
brothers) developed a (non-linear) theory of elasticity for bars, surfaces and bodies; 
they introduced a “rigid triad” at every material point of the continuum, which can 
rotate independently from the local rotation of the medium in the course of 
deformation (Cosserat and Cosserat [1909]). By this way, a “Cosserat continuum” 
fully accounts for the effects of couple stresses in the deformation of an elastic 
continuum. In their work, however, the Cosserat brothers did not give any specific 
constitutive relations.  

The work of the Cosserat brothers did not get the attention it deserved for a 
long time. In the early 1960s, the subject of the theory of elasticity with couple 
stresses is reopened and Cosserat-type theories are discussed independently by several 
authors. Among them, Grioli [1960], Rajagopal [1960], Truesdell and Toupin [1960], 
Aero and Kuvshinskii [1961], Eringen [1962], Mindlin and Tiersten [1962] and 
Koiter [1964] investigated a special case of the Cosserat continuum theory where the 
rotation of the rigid Cosserat triad is not an independent kinematic variable but is 
defined in the usual sense as given in classical elasticity and fluid dynamics. In the 

 
1 See Cosserat and Cosserat [1909] and the references therein. 
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literature, this theory is referred to with a variety of names, such as, “Cosserat theory 
with constrained rotation” (e.g. Toupin [1964]), “Couple stress theory” (e.g. Koiter 
[1964]), “Indeterminate couple stress theory” (e.g. Eringen [1968]), “Cosserat 
pseudo-continuum” (e.g. Nowacki [1986]), or simply as “Cosserat theory” (e.g. Mora 
and Waas [2000]). In the following, we will refer to it as the couple stress theory (see 
Table 1.1). In the couple stress theory, only the gradient of the rotation vector enters 
into the strain energy density function, that is, eight of the eighteen components of the 
first gradient of strain. Subsequently, all the components of the first gradient of the 
strain were introduced into the strain energy density function, in a non-linear form, by 
Toupin [1962, 1964]). This theory is referred to as the “strain gradient theory” in the 
literature. The linear version of the strain gradient theory was given by Mindlin 
[1964]. Green and Rivlin [1964] established the basis of a very general case including 
all higher-order gradients of the strain, referred to as the “multipolar” theory. Mindlin 
[1965] derived a theory where both the first and the second gradient of the strain are 
taken into account, termed the second strain gradient theory, which is a special case of 
the multipolar theory. All these theories, associating energy to the spatial gradients of 
strain, are referred to in the literature as “higher grade theories” (see Table 1.1).  

Another way of extending classical elasticity to include the effects of the 
deformations of the underlying microstructure is by inserting new degrees of freedom 
into the continuum. These degrees of freedom are specified to be independent from 
the usual displacement degrees of freedom. These kinds of theories can be referred to 
as “higher order theories” (see Table 1.1). The (non-linear) micromorphic theory, 
introduced by Eringen and Şuhubi [1964], and the (linear) micro-structure theory of 
Mindlin [1964] fall into this category. The linear form of the micromorphic theory 
(see Eringen [1999]) coincides with the micro-structure theory of Mindlin. In the 
micromorphic theory, a material point possesses three deformable directors that 
introduce nine additional degrees of freedom, ψ ij, which are strain-like dimensionless 
quantities. This corresponds to a “micro-element” embedded in the continuum that 
can rotate and deform independently from the local deformation of the “macro-
element” (material particle), in the language of Mindlin. Two special cases of the 
micromorphic theory are the microstretch (Eringen [1971, 1990]) and the micropolar 
(Eringen [1965, 1966]) theories. In the microstretch continuum, there are four 
additional degrees of freedom: three for the rotation (φ i) and one for the stretch (χ ) of 
the directors. In the case of the micropolar continuum, the directors are rigid and there 
are only three rotational degrees of freedom (φ i) in addition to the three classical 
displacement degrees of freedom. If the directors are taken to be fully coupled to the 
material point, the rotational degrees of freedom of the micropolar theory become 
equal to the classical rotations, φ k =∈ ijk u j,i/2, and the micropolar theory reduces to 
the couple stress theory. As can be observed from Table 1.1, the couple stress theory 
is a special case of strain gradient theory as well. Another connection between the 
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higher order and higher grade theories is that the micromorphic theory reduces to the 
strain gradient theory if ψ ij are defined to be equal to the gradient of displacement u i,j, 
for which case the micro-medium merges with the macro-medium.   

In the last few decades, a huge literature has been built up on the topic of 
generalized media, including elasto-plastic higher order/grade continuum theories (see 
e.g., Aifantis [1987], Fleck and Hutchinson [1993, 1997, 2001], Forest and Sievert 
[2006], etc.). The references listed here are by no means complete, but they point out 
the main directions followed in the field of generalized continuum theories. Table 1.1 
summarizes (some of) the higher order/grade continuum theories and the contacts 
among them. Starting point for the higher order and the higher grade theories in this 
thesis are Eringen’s micropolar theory and Toupin-Mindlin’s strain gradient elasticity. 
Therefore, we will briefly state the fundamentals of these theories in the following 
subsections. 

1.3.1 Theory of micropolar elasticity 
In this section we will review the fundamental equations of the linear micropolar 
continuum. For a more general account of the theory, the reader is referred to Eringen 
[1999]. Note that the names micropolar theory and Cosserat theory are used 
interchangeably by many authors in the literature.  

The kinematic description of the micropolar theory includes the microrotations 
φ i as independent degrees of freedom in addition to the usual displacements u i (see 
Table 1.1). Consequently, the transfer of loading between neighbouring material 
points is achieved both through the couple stresses m ij and the classical Cauchy 
stresses σ ij. In the absence of body forces and body couples, the equilibrium equations 
of the micropolar theory are given as 

 

 ,

,

0,

0,
ji j

ji j ijk jkm

σ

σ

=

+∈ =
 (1.1) 

 
where ∈ ijk is the antisymmetric Levi-Civita permutation tensor. Equation (1.1) 
implies that the Cauchy stress tensor σ ij is not necessarily symmetric and its 
antisymmetric part is determined by the divergence of the couple stress tensor m ij. 
The principal of virtual work reads 
 
  (1.2) ( ) d (  ij ij ij ij i i i i

V S

m k V t u Q Sσ δγ δ δ δφ+ = +∫ ∫ ) d ,

 
where t i  is the surface traction, and Q i is the surface couple. The boundary conditions 
to be specified on the bounding surface S of a micropolar solid are 
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Table 1.1 
Higher order/grade continuum theories and the contacts among them.  
                                                                 

 

Micromorphic (Micro-structure) Theory
DOF: u i, ψ ij      
DM:  γ ij = u j,i −ψ ji, 2e ij = ψ ij +ψ ji, 
        η ijk = ψ ij,k  

Microstretch Theory 
DOF: u i, φ i, χ     
DM:  γ ij = u j,i −∈ kij φ k, k ij = φ j,i 

        β i = 3χ ,i , κ = 3χ  

Micropolar Theory 
DOF: u i, φ i

DM:  γ ij = u j,i −∈ kij φ k, k ij = φ j,i 

Multipolar Theory 
DOF: u i      
DM:  2ε ij = u j,i + u i,j, η ijk = ε jk,i, 

              η ijkl = ε kl,ij, η ijklm = ε lm,ijk … 
          (all the gradients of strain)

Second Strain Gradient Theory 
DOF: u i      
DM:  2ε ij = u j,i + u i,j, η ijk = ε jk,i, 

              η ijkl = ε kl,ij

Strain Gradient Theory 
DOF: u i      
DM:  2ε ij = u j,i + u i,j, η ijk = ε jk,i

Couple Stress Theory 
DOF: u i      
DM: 2ε ij = u j,i + u i,j, 2k ij = ∈ klj u l,ki   
(note that k ii = 0)

Classical Continuum Theory 
DOF: u i      
DM:  2ε ij = u j,i + u i,j

Higher order theories        Higher grade theories       

ψ ij = u j,

φ k =∈ijk uj,i/2 

DOF: degree of freedom, DM: deformation measure, 
ψ ij: degree of freedom tensor for the deformable triad (micro-element), 
u i: displacement vector, φ i:  rotation vector for the rigid triad 
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n t u u

n m Q

σ

φ φ

=

=
 (1.3) 

 
here n j is the unit outward normal to the surface S, and * denotes a prescribed 

 

w
quantity on the surface. The (small) strain tensor γ ij and the curvature tensor k ij are 
defined as  
 

,

,

,

.
ij j i kij k

ij j i

u

k

γ φ

φ

= −∈

=
 (1.4) 

 
e can decompose the Cauchy stresses and strains into their symmetric and W

antisymmetric parts 
 
 and ,ij ij ij ij ij ijsσ τ γ ε β= + = +  (1.5) 

here 
  
w
 

, ,
1 1 1( ) ( ) and ( ) (  
2 2 2ij ij ji j i i j ij ij ji ijk k ku uε γ γ β γ γ ω φ= + = + = − =∈ − ).  (1.6) 

 
ote that the antisymmetric part of the strain β ij is related to the difference between 

ergy density 
functio

 

N
the classical macrorotations ω k = (∈ ijk u j,i)/2 and the microrotations φ k. 

For a linear elastic, anisotropic micropolar solid, a strain en
n (i.e. including only the quadratic terms in the kinematic variables) can be 

given as 
 

1 1( , )
2 2ij ij ijkl ij kl ijkl ij kl ijkl ij klw k C B k D k kγ γ γ γ= + + .  (1.7) 

 
n (1.7) the linear terms in γ ij and k ij are omitted to have zero stress in the undeformed I

state. Note that k ij is a pseudo-tensor (i.e., a tensor whose components reverse sign 
under an inversion of the coordinate system); to be able to have an objective strain 
energy density w, the tensor B ijkl must be a pseudo-tensor as well. The independence 
of the stiffness coefficients of a medium with respect to an inversion of the coordinate 
system is called central symmetry, in which case B ijkl vanish and the constitutive 
equations read  
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,ij ijkl kl
ij

w Cσ γ
γ
∂

= =
∂

 

 ,ij ijkl kl
ij

wm D
k

k∂
= =
∂

 (1.8) 

 
where the fourth order stiffness tensors C ijkl and D ijkl  possess the symmetries  
 
  and  .ijkl klij ijkl klijC C D D= =  (1.9) 

 
For the case of an isotropic material, C ijkl and D ijkl are isotropic tensors, and the 
constitutive equations read (see e.g. Nowacki [1986])  
 

 

( ) ( )

( ) ( ) ,

ij ij ji kk ij
ij

ij ij ji kk ij
ij

w

wm k k
k

,

k

σ µ α γ µ α γ λγ δ
γ

ξ υ ξ υ ρ δ

∂
= = + + − +
∂

∂
= = + + − +
∂

 (1.10) 

 
where δ ij is the Kronecker-delta. Equation (1.10) shows that the micropolar theory has 
four new constants, α, ξ, υ, and ρ in addition to the classical Lamé constants, λ and µ. 
The requirement of positive definiteness of the strain energy density places some 
restrictions on the micropolar constants: 
 

 
0,   3 2 0,   0,    3 2 0,

0,   0,   0,   0. 
µ λ µ ξ ρ ξ
µ α ξ υ α υ
> + > > + >
+ > + > > >

 (1.11) 

 
If the microrotations φ i are constrained to be equal to the macrorotations ω i, the 
micropolar theory reduces to the couple stress theory. This corresponds to the case 
α→∞, for which the antisymmetric part of the strain tensor, β ij, and the spherical part 
of the curvature tensor, k ii, go to zero. Consequently, the antisymmetric part of the 
Cauchy stress, τ ij, and the first invariant of the couple stress, m kk, disappear from the 
virtual work principle, as well as from the constitutive equations:  
 

  (1.12) 
2 ,

( ) ( )
ij kk ij ij

ij ij ji

s

m k

λε δ µε

ξ υ ξ υ

= +

= + + − .k

 
The first invariant of the couple stress, m kk, remains indeterminate in the theory, and it 
is taken to be equal to zero (see Koiter [1964]). The antisymmetric part of the Cauchy 
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stress, τ ij, can still be obtained from the equilibrium equations (see Eq. 1.1).  For a 
discussion of the couple stress theory, the reader is referred to Koiter [1964].      

1.3.2 Strain gradient elasticity 
In this section we will review the fundamental equations of the strain gradient 
elasticity. For a more general account of the theory, the reader is referred to Mindlin 
[1964]. 

The kinematic variables in the strain gradient elasticity theory are given as  
 

 , ,

,

1 ( ) strain tensor,
2

strain gradient tensor.

ij j i i j

ijk jk i ikj

u uε

η ε η

= + =

= = =
 (1.13) 

 
The strain energy density function, for a linear elastic, isotropic strain gradient 
material with central symmetry can be written as 
 

 1 2

3 4 5

( , )
2

                  .

ij ijk ii jj ij ij iik kjj ijj ikk

iik jjk ijk ijk ijk kji

w a

a a a

λ aε η ε ε µε ε η η η

η η η η η η

= + + +

+ + +

η
 (1.14) 

 
Note that the eighteen additional kinematic variables in the strain energy density 
function, η ijk, can be defined in three different forms: I, the eighteen components of 
the second gradient of displacement; II, the eighteen components of the first gradient 
of strain; III, the eight components of the first gradient of the rotation and the ten 
components of the fully symmetric part of the second gradient of the displacement (or 
of the gradient of the strain) as shown by Mindlin [1964]. The one that we show here 
corresponds to the second form.  

The constitutive equations (for the second form) are given as  
 

 1 2

3 4 5

2 ,

1 ( 2 ) 2
2

     ( ) 2 ( ).

ij kk ij ij
ij

ijk ij kpp jk ppi ki jpp jk ipp
ijk

ij ppk ik ppj ijk kij jki

w

w a a

a a a

σ λε δ µε
ε

τ δ η δ η δ η δ η
η

δ η δ η η η η

∂
= = +
∂

∂
= = + + +
∂

+ + + + +

 (1.15) 

 
In (1.15) the constants a 1 to a 5 are new material parameters with dimensions of force, 
σ ij are the classical Cauchy stresses and τ ijk are the so-called double stresses, with 
dimensions force per unit length. The positive definiteness of the strain energy density 
requires (see Mindlin and Eshel [1968])  
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 1 2 1 2
2

1 2 1 2 1 2

0,   3 2 0,   ,    0,

 5 2 0,   5 6( )(5 2 ),

d d d a

a a f d d a a

µ λ µ> + > − < < >

+ > < − +
 (1.16) 

 
where 
 

 
1 1 2 3 4 5

2 1 2 3 1 1 2 3

2 4 5 1 2 3

18 2 4 6 3 ,

18 2 4 ,   3 2( ),

,   3 4 2 .

d a a a a a

d a a a a a a a

a a a f a a a

= − + + + −

= − − = + +

= + = + −

 (1.17) 

 
The principal of virtual work for a volume V bounded by a smooth surface S, in the 
absence of body forces, reads 
 
  (1.18) ( ) d (  ij ij ijk ijk j j j j

V S

V t u r Du dσ δε τ δη δ δ+ = +∫ ∫ ) S,

 
where t j  and r j are the surface traction and the surface double traction, respectively, 
on the surface S. The equilibrium equations and the boundary conditions are 
 
 , , 0,jk j ijk ijσ τ− =  (1.19) 

 
and 
 

  (1.20) 
* *

,

* *

( ) ( ) ( )   or  = ,

  or  = ,
j jk ijk i j i ijk l l i j ijk k k k

i j ijk k k k

n D n D n n n t u

n n r Du Du

σ τ τ τ

τ

− − + =

=

u

 
where n j is the unit outward normal to the surface S. For a certain combination of the 
higher grade material constants, the strain gradient theory reduces to the couple stress 
theory: 
 

 1 2 3

4 5

,   ,   ,
2

,   .

a a a

a a
2

ξ υ ξξ υ

ξ ξ

υ− −
→ − → − → −

→ →−
 (1.21) 

1.4 A brief summary of experiments on size effects 

A considerable amount of experiments have been performed to capture the size effects 
in the mechanical behaviour of cellular solids. In this section, we will visit some of 
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these studies, which establish the experimental basis and an important motivation for 
this thesis. 

The first experiments associated with size effects, to the knowledge of the 
author, were performed in the mid 1960s to obtain the couple stress constants of 
conventional engineering dense solids, such as aluminium and steel. Schijve [1966] 
measured the bending rigidity of aluminium sheets, but could not observe any size 
effects, as opposed to the couple stress theory which predicts an enhanced bending 
rigidity with decreasing plate thickness. Similarly, Ellis and Smith [1967] conducted 
bending tests on aluminium and low-carbon steel sheets, and they did not reveal any 
couple stress effects. They concluded that couple stress effects would be active only 
for much smaller sample sizes, where the plate thickness is approximately equal to the 
grain size. Then, experiments on micro-featured materials (such as reinforced 
composites) were conducted, which are expected to show higher-order effects for 
larger samples due to the larger microstructural length scales. Gauthier and Jahsman 
[1975] developed a novel composite material to measure its micropolar elastic 
constants. The composite consisted of an epoxy matrix reinforced by uniformly 
distributed aluminium shots, with a Young’s modulus 20 times that of the matrix. The 
much stiffer aluminium shots represented rigid microelements embedded in a 
deformable medium (i.e. the epoxy matrix). They performed torsion tests on circular 
cylindrical samples, but the samples behaved according to the classical theory. They 
concluded: “Possible micropolar behaviour is masked by material property variations 
(from one sample to another with a different size) due to inhomogeneity”. Gauthier 
[1982], however, was able to fit the wave propagation experiments on the same 
reinforced composite by using micropolar theory, with a characteristic length very 
close to the radius of the aluminium shots, 0.7 mm. Lakes and co-authors performed 
several experiments on different micro-featured solids, such as human bones. Yang 
and Lakes [1981], conducted quasi-static torsion tests on circular cylindrical compact 
bones, and showed that the couple stress theory can capture the enhancement in 
torsional rigidity with decreasing sample radius. They found the couple stress 
characteristic length to be around 0.15-0.25 mm, which is comparable to the diameter 
of the major structural element in compact bones, the osteon.  

The early experiments on cellular solids to observe the dependence of the 
macroscopic material properties on the specimen size dates back to the 1980’s. Lakes 
[1983, 1986] measured the bending and torsional rigidities of two polymeric foams 
and a syntactic foam, as a function of diameter. He concluded that the micropolar 
elasticity is a suitable model to pick-up the enhanced bending and torsional rigidities 
with decreasing diameter of the polymeric foams, whereas the syntactic foam behaves 
as a classical solid. Opposed to these results, however, some others indicated a 
decreasing bending and torsional stiffness/strength with decreasing sample size. For 
example, Brezny and Green [1990] measured the Young’s modulus and the bending 
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strength (by three-point bending experiments) of a reticulated vitreous carbon foam 
consisting of relatively isotropic open cells, and found that both the modulus and the 
strength of this material decrease dramatically with decreasing specimen size. The 
weakening effects in both bending and torsion were detected for closed cell 
polymethacrylimide foam and open cell copper foam as well (Anderson et al. [1994], 
Anderson and Lakes [1994]).  

Size effects in foams under uniaxial compression are also experimentally 
investigated. Bastawros et al. [1999] measured the Young’s modulus and the 
compressive strength of closed cell Alporas aluminium foam, by changing the area 
under compression while keeping the length of the samples in the compression 
direction constant. Andrews et al. [2001], on the other hand, conducted uniaxial 
compression tests on square prisms of both closed cell Alporas and open cell Duocel 
foams, where the samples had identical geometry but different absolute size. Both sets 
of experiments, similar to the observations of Brezny and Green, showed that the 
Young’s modulus and the compressive strength of the samples decrease dramatically 
with decreasing specimen size. The common conclusion to all of these studies 
showing a weakening in the (bending, torsional or compressive) stiffness and strength 
was that these size effects are actually “edge effects”. The edge effects were related to 
an incomplete cell layer located at the surface of the specimens, which is included in 
the total specimen volume but contribute very little to the mechanical properties. 
Surface damage introduced by cutting or machining of specimens enhances these 
edge effects. Anderson and Lakes [1994] argued that the edge effects and the 
micropolar effects are usually both present and it is possible to observe weakening or 
strengthening behaviour depending on which one is more dominant. 

Shear experiments on metal foams were also reported. These studies indicated 
an enhanced shear strength with decreasing sample thickness (e.g. Andrews et al. 
[2001], Chen et al. [2002]). In these experiments, the shear load is applied through 
face sheets that are perfectly bonded to the metal foam. As a result, the surface cells 
that are perfectly bonded to the top and the bottom face sheets are much more 
constrained compared to those located in the bulk. This gives rise to a gradient in 
deformation, so that “strong” boundary layers are formed adjacent to the face sheets; 
the volume fraction of these boundary layers increase with decreasing thickness and it 
leads to a higher shear strength. Kesler and Gibson [2002], conducted three point 
bending experiments on sandwich panels with an Alporas foam core, of varying size,  
with the panels designed to fail by core shear. By accounting for the size effects in the 
foam core shear strength, they were able to give a good estimate of the failure load of 
the panels. 

Stress/strain concentrations due to notches, holes and inclusions in cellular 
solids are other topics of essential interest for experimental investigation. The effect 
of the notch size (relative to the cell size), is examined on aluminium closed cell 
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foams (Antoniou et al. [2004]). They observed that under uniaxial compression, the 
net section strength of double-edge-notched specimens is larger when the net section 
width is smaller, whereas it is insensitive to the net section width in the case of single-
edge-notched specimens. Mora and Waas [2000] performed uniaxial compression 
tests on a plate of polycarbonate honeycomb with circular cells, containing a 
cylindrical hole and a rigid inclusion, respectively. They could not detect any size 
effects in the case of the hole, but were able to fit the strain fields near the circular 
inclusion with the couple stress theory, for a variety of inclusion sizes. 

1.5 Outline of this thesis 

The aim of this thesis is to explore the microstructural origin of the size effects in the 
mechanical behaviour of cellular solids, in particular of metallic foams, and to 
investigate/propose generalized continuum theories that can capture these size effects. 

In chapter 2, we use two-dimensional beam networks to mimic real (three-
dimensional) foams, which allow us to account for the discreteness of their 
microstructure. We perform simple shear, uniaxial compression, and pure bending 
tests on a large variety of samples, and calculate the change in the macroscopic 
mechanical properties corresponding to a change in size. We close the chapter with a 
summary of the size effects that we observed in our calculations and discuss the 
possible mechanisms behind these size effects. 

Chapter 3 uses the micropolar theory to capture the size effects observed in 
chapter 2. We fit the elastic constants of the micropolar continuum theory by 
comparing the analytical solution of the simple shear problem with the discrete 
analyses, in terms of the best agreement in the macroscopic shear stiffness of the 
samples. We develop a strain mapping procedure and evaluate the performance of the 
fitted micropolar constants in predicting the local deformation fields, the 
microrotations and shear strains. Finally, we solve the pure bending problem 
analytically for the micropolar theory and close the chapter with a discussion on the 
limitations of the Cosserat-type theories. 

In chapter 4, we propose a generalized continuum theory (strain divergence 
theory), which associates energy to the divergence of strain. We derive the 
equilibrium equations and the boundary conditions for the strain divergence 
continuum, and develop a finite element implementation of the theory. We solve the 
simple shear and the pure bending problems analytically and compare the solutions 
with the discrete calculations, as well as with the analytical solutions for the couple 
stress theory. 

Chapter 5 explores the strain concentration problem around a cylindrical hole 
in a field of uniaxial tension. First, we perform discrete calculations on samples with 
different hole sizes and show the effect of the hole size on the strain distribution near 
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the hole. Then we compare the discrete analyses with the analytical solutions for the 
classical, couple stress and strain divergence theories.  

Finally, in Chapter 6, we summarize the size effects that we observed in the 
mechanical behaviour of the two dimensional cellular solids, and we compare the 
different generalized continuum theories with respect to their ability in capturing size 
effects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 




