
 

 

 University of Groningen

An internal model principle for observers
Trumpf, Jochen; Trentelman, Harry L.; Willems, Jan C.

Published in:
Proceedings of the 50th IEEE Conference on Decision and Control

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Trumpf, J., Trentelman, H. L., & Willems, J. C. (2011). An internal model principle for observers. In
Proceedings of the 50th IEEE Conference on Decision and Control University of Groningen, Johann
Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-06-2022

https://research.rug.nl/en/publications/6ded222f-7e98-40d6-9532-155c28e64a2f


An internal model principle for observers

Jochen Trumpf, Member, IEEE, Harry L. Trentelman, Senior Member, IEEE,
and Jan C. Willems, Life Fellow, IEEE

Abstract— This paper deals with the observer problem for
dynamical systems in a behavioral context. We are given a
dynamical system together with a partition of the system
variables into a set of known or measured variables and
a set of unknown, to be estimated variables. The observer
problem is to find a system that produces an estimate of the
unknown variables on the basis of the known or measured
variables. For a given plant and partition, we establish a
characterization of all error behaviors that can be achieved
by interconnecting the plant with some observer. The main
result of this paper is a very general, behavioral formulation
of an internal model principle for observers. We will show that
a nonintrusive observer achieves a stable error behavior if and
only if, in addition to a detectability condition on the observer,
the observer behavior contains the controllable part and the
antistable part of some autonomous part of the plant behavior.

I. INTRODUCTION

Dynamical systems are mathematical models that describe
the evolution in time of a set of variables. Often some of
these system variables are known, or accesible for measure-
ment, while others are unknown and to be estimated. Natural
questions are then whether these unknown variables can be
reconstructed or estimated on the basis of the known or
measured variables, and how to produce these reconstructed
variables or estimates. This general problem has been studied
extensively in the systems and control literature, and is
often referred to as the observer problem. A major part of
the literature on observer design is concerned with finite-
dimensional, linear, time-invariant, input-output systems in
state space form. In general the problem here is to reconstruct
or estimate a specific (unknown) set of output variables, e.g.
a particular linear function of the state, using the values of a
different set of additional system variables, like the (known)
input trajectories and/or the values of a measured output.
This problem dates back to Luenberger [1].

More recently, the observer problem has been studied
in the context of the behavioral approach to systems and
control. A distinguishing feature of the behavioral approach
is that it uses dynamical systems in which the system
variables are not explicitely labeled as inputs or outputs.
In principle, all variables are treated on an equal footing.
Also, the models do not need to be described in state space
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form. Rather, in the behavioral approach a dynamical system
is defined by the whole set of system trajectories that are
allowed by the laws of the system. This set of trajectories is
called the behavior of the system, and is considered to be the
core of the dynamical system. In this context, the observer
problem becomes how to reconstruct/estimate from a given
set of known or observed components of the system variable
a complementary set of unknown components of that system
variable.

A concise introduction to the observer problem using the
behavioral approach has been given in [2]. There, the concept
of observer was defined, and conditions were derived for
their existence. Also, the results obtained were applied to the
state space context. In [3], additional results were obtained
in the context of discrete-time behaviors, specifically on the
existence of deadbeat observers.

In the present paper, we will introduce the notion of
achievability in the context of observer design. Given a
plant behavior, we will explicitly characterize all error be-
haviors that can be achieved by interconnecting the plant
with some observer. The notion of achievability has been
used extensively in the context of control by behavioral
interconnection, see [4], [5], where both the terminology
’achievability’ and ’implementability’ was used. Necessary
and sufficient conditions for the existence of tracking, asymp-
totic, and exact observers (cf. [2]) will follow readily from
our characterization, providing an alternative way to derive
these conditions.

The main contribution of this paper is a behavioral formu-
lation of a so-called internal model principle for observers.
It will be shown that a nonintrusive observer can only lead
to a reasonable error behavior if it contains a relevant part
of the plant behavior. More precisely, we will show that
a nonintrusive observer achieves a stable error behavior if
and only if, in addition to a detectability condition on the
observer, the observer behavior contains the controllable
part and the antistable part of some autonomous part of
the plant behavior. We also formulate refinements of this
internal model principle for tracking observers and for exact
observers.

We will briefly sketch how to use the internal model prin-
ciple to obtain parametrizations of all nonintrusive tracking
(stable, exact) observers for a given plant. Because of space
limitations, this parametrization will only be sketched for
tracking observers. We will conclude this paper with an
application of the behavioral results to the case of strictly
proper input-output systems represented in state space form.

To conclude this section, some words on notation and
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nomenclature used. We use the standard symbols for the
fields of real and complex numbers R and C. We use
Rn, Rn×m, etc. for the real linear spaces of vectors and
matrices with components in R. Often, the notation Rw,
Rw1 , ... is used if w, w1, ... denote typical elements of that
vector space, or typical functions taking their values in that
vector space. C∞(R,Rw) will denote the set of infinitely
often differentiable functions from R to Rw. R[ξ] denotes
the ring of polynomials in the indeterminate ξ with real
coefficients. We use Rn×m[ξ] for the space of matrices with
components in R[ξ]. Elements of Rn×m[ξ] are called real
polynomial matrices.

II. PRELIMINARIES

In the behavioral approach a dynamical system is given
by a triple Σ = (T,W,B), where T is the time axis, W is
the signal space, and the behavior B is a subset of WT , the
set of all functions from T to W .

The basic idea of interconnection in this framework is very
simple. If Σ1 = (T,W,B1) and Σ2 = (T,W,B2) are two
dynamical systems with the same time axis and the same
signal space, then the full interconnection Σ1 ∧ Σ2 of Σ1

and Σ2 is defined as the dynamical system (T,W,B1∩B2),
i.e. the system whose behavior is equal to the set-theoretic
intersection of the behaviors B1 and B2. We speak of full
interconnection since the entire variable w of B1 is shared
with B2 in the interconnection.

In the present paper, interconnections will in general
take place through pre-specified components of the manifest
variable. In that case, we speak of partial interconnection.
Let Σ1 = (T,W1 × C,B1) and Σ2 = (T,W2 × C,B2) be
two dynamical systems with the same time axis. We assume
that the signal spaces W1 × C and W2 × C of Σ1 and
Σ2, respectively, are product spaces, with the factor C in
common. Correspondingly, trajectories of B1 are denoted
by (w1, c) and trajectories of B2 by (w2, c). We define the
interconnection of Σ1 and Σ2 through c as the dynamical
system

Σ1 ∧c Σ2 := (T,W1 ×W2 × C,B)

with interconnected behavior

B = {(w1, w2, c) | (w1, c) ∈ B1 and (w2, c) ∈ B2}.

The behaviors B1 and B2 in this case only share the variable
c, which is called the interconnection variable. In this paper,
we denote the interconnected behavior B by B1 ∧c B2.

In this paper we will restrict ourselves to linear time-
invariant differential systems. A linear time-invariant differ-
ential system is a dynamical system with time axis T = R,
and whose signal space W is a finite dimensional Euclidean
space, say, Rw; correspondingly, the manifest variable is then
given as w = col(w1, w2, . . . , ww); the behavior B is a linear
subspace of C∞(R,Rw) consisting of all solutions of a set
of higher order, linear, constant-coefficient differential equa-
tions, i.e., there exists a positive integer g and a polynomial
matrix R ∈ Rg×w[ξ] such that

B = {w ∈ C∞(R,Rw) | R( d
dt )w = 0}.

The set of linear time-invariant differential systems with
manifest variable w taking its value in Rw is denoted by
Lw.

We have defined a linear time-invariant differential system
as the subspace consisting of all solutions of a set of linear
differential equations. In general there are many sets of
differential equations leading to one and the same behavior.
Any such set of equations is called a representation of the
behavior. Let R ∈ Rg×w[ξ] be a polynomial matrix. If the
behavior B is represented by R( d

dt )w = 0 then we call this
a kernel representation of B and we write B = ker(R( d

dt )).
A kernel representation is said to be minimal if every other
kernel representation of B has at least g rows. A given kernel
representation, R( d

dt )w = 0, is minimal if and only if the
polynomial matrix R has full row rank.

Let B ∈ Lw and let R( d
dt )w = 0 be a kernel representation

of B. Assume rank(R) < w (which also means that the sys-
tem is under-determined: the number of variables is strictly
larger than the number of equations). Then, obviously, some
components of w = col(w1, w2, . . . , ww) are unconstrained
by the requirement w ∈ B. These components are said to
be free in B. The maximum number of such components is
called the input cardinality of B (denoted as m(B)). Once
m(B) free components are chosen, the remaining w− m(B)
components are determined up to a finite-dimensional affine
subspace of C∞(R,Rw−m(B)). These are called outputs, and
the number of outputs is denoted by p(B), called the output
cardinality of B. Thus, possibly after a permutation of
components, w ∈ B can be partitioned as w = (u, y),
with the m(B) components of u as inputs, and the p(B)
components of y as outputs. We say that (u, y) is an
input/output partition, in short i/o partition, of w ∈ B, with
input u and output y.

The input/output structure of B ∈ Lw is reflected in its
kernel representations as follows. Suppose R( d

dt )w = 0 is a
minimal kernel representation of B. Partition R = (Q P ),
and accordingly w = (w1, w2). Then w = (w1, w2) is an i/o
partition (with input w1 and output w2) if and only if P is
square and nonsingular.

We now review the concept of controllability.
Definition 2.1: A system B ∈ Lw is controllable if for all

w1, w2 ∈ B, there exists a T ≥ 0 and a w ∈ B such that
w(t) = w1(t) for t < 0 and w(t+ T ) = w2(t) for t ≥ 0.
It was shown in [6] that controllable behaviors are exactly
those that admit an image representation. To be precise, B
is controllable if and only if there exists a w× l polynomial
matrix M such that

B = {M( d
dt )` | ` ∈ C∞(R,Rl)}.

This representation of B is called an image representation,
and we write B = im(M( d

dt )).
A system is called autonomous if for any trajectory its

future is completely determined by its past:
Definition 2.2: A system B ∈ Lw is called autonomous if

for every w ∈ B we have that w(t) = 0 for all t ≤ 0 implies
w = 0.
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Definition 2.3: A system B ∈ Lw is called stable if
for every w ∈ B we have limt→∞ w(t) = 0, i.e. if all
trajectories in the behavior tend to zero as time tends to
infinity.
It was shown in [6] that if B = ker(R( d

dt )), then B is
autonomous if and only if R has full column rank and is
stable if and only if R(λ) has full column rank for all
λ ∈ C+, where C+ = {λ |Re(λ) ≥ 0}. Note that a stable
behavior is necessarily autonomous. A behavior B ∈ Lw

is called trivial if B = {0}. The trivial behavior is the
only behavior that is both controllable and autonomous. An
autonomous behavior B ∈ Lw is called anti-stable if
for all nonzero w ∈ B we have either limt→∞ w(t) 6= 0
or limt→∞ w(t) does not exist. It can be shown that if
B is autonomous and B = ker(R( d

dt )), then B is anti-
stable if and only if R(λ) has full column rank for all
λ ∈ C− = {λ |Re(λ) < 0} . The next proposition states
that every autonomous behavior can be written in a unique
way as a direct sum of a stable and an anti-stable behavior:

Proposition 2.4: Let B ∈ Lw be autonomous. Then there
exists a unique autonomous stable Bstab ∈ Lw, and a
unique autonomous anti-stable Bantistab ∈ Lw such that
B = Bstab ⊕Bantistab.
The behaviors Bstab and Bantistab are called the stable part
and the anti-stable part of B, respectively. It follows from
Theorem 3.2.16 in [6] that all trajectories in Bstab are stable
Bohl functions and all nonzero trajectories in Bantistab are
anti-stable Bohl functions.

Often, we encounter behaviors B ∈ Lw that are neither
autonomous nor controllable. The controllable part of a
behavior B is defined as the largest controllable subbehavior
of B. This is denoted by Bcont. A given B ∈ Lw can always
be decomposed as B = Bcont ⊕Baut, where Bcont is the
(unique) controllable part of B, and Baut is a (nonunique)
autonomous subbehavior of B. For details we refer to [6].

To conclude this section, we review some facts on elim-
ination of variables. Let B ∈ Lw1+w2 with system variable
w = (w1, w2). Let Pw1

denote the projection onto the w1-
component. Then the set Pw1

B, consisting of all w1 for
which there exists w2 such that (w1, w2) ∈ B, is again a
linear time-invariant differential system. We denote Pw1B
by Bw1

, and call it the behavior obtained by eliminating w2

from B, or the projection of B onto w1.
If B = ker

(
R1( d

dt ) R2( d
dt )
)

then a representation for
Bw1

is obtained as follows: choose a unimodular matrix U
such that

UR2 =

(
R12

0

)
,

with R12 full row rank, and conformably partition

UR1 =

(
R11

R21

)
.

Then Bw1 = ker(R21( d
dt )) (see [6], Section 6.2.2).

For linear time-invariant differential systems it can be
shown that the two operations of taking the controllable part
and projecting onto a variable commute, i.e. (Bcont)w1 =

(Bw1
)cont for all B ∈ Lw1+w2 (see e.g. Lemma 2.10.4 in

[7]).
An important role is also played by the behavior obtained

from B ∈ Lw1+w2 by requiring w2 = 0. This behavior is
denoted by Nw1

(B), and is defined as

Nw1
(B) = {w1 | (w1, 0) ∈ B},

called the hidden behavior of w1 in B.

III. ACHIEVABILITY

Definition 3.1: Given a linear time-invariant differential
system (R,Rw1+w2 ,P), the plant, and another linear time-
invariant differential system (R,Rw1+w2 ,O), we call the
partial interconnection P ∧w1

O of P and O through w1

an observer interconnection, and O an observer for w2 from
w1 (in P).

To avoid confusion we usually label the second set of
variables in P by w2 while we label the second set of
variables in O by ŵ2. The first set of variables in both P
and O is labelled by w1 since it is shared in the observer
interconnection. Given an observer interconnection, ŵ2 is
interpreted as an estimate for w2. This makes sense since
they are both of dimension w2. Note, though, that the
arrangement in an observer interconnection is completely
symmetric, and hence we could equally well think of P as
an “observer” for ŵ2 from w1 (in O). Choosing to call P
the plant and O the observer merely indicates our preferred
interpretation.

Fig. 1. An observer interconnection gives rise to an error behavior through
interconnection with the “differencing system” D.

Definition 3.2: [2] Given an observer interconnection, the
associated error behavior E(P,O) is defined as

E(P,O) =
(
(P ∧w1

O) ∧(w2,ŵ2) D
)
e

= {e= ŵ2 − w2 | ∃w1
(w1, w2) ∈ P, (w1, ŵ2) ∈ O}

where D = {(w2, ŵ2, e) | e = ŵ2 − w2} defines the error
variable e. The dynamical system (R,Rw2 , E(P,O)) is then
also called the associated error system.

The total interconnection giving rise to the error behavior
is depicted in Figure 1. The error behavior is the projection
of this total interconnection onto the variable e. Note that
this notion is still perfectly symmetric with respect to inter-
changing the roles of the plant P and the observer O, except
for the sign of the variable e.
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Definition 3.3: Given a plant P ∈ Lw1+w2 , a behavior E ∈
Lw2 is an achievable error behavior (for P) if there exists an
observer O for w2 from w1 (in P) such that E(P,O) = E .

We can characterize all achievable error behaviors for a
given plant P in terms of the hidden behavior Nw2

(P) of
w2 in P . This is the content of Proposition 3.5 below. Its
proof uses the following lemma.

Lemma 3.4: Given an observer interconnection, let P =
ker
(
R1( d

dt ) R2( d
dt )
)

be a minimal kernel representation
and let O = ker

(
S( d

dt )R1( d
dt ) S( d

dt )R2( d
dt )
)
, where S is

a polynomial matrix. Then E(P,O) = ker(S( d
dt )R2( d

dt )).
Proof: (P ∧w1

O) ∧(w2,ŵ2) D is given by the equation R1( d
dt ) R2( d

dt ) 0
0 I −I

S( d
dt )R1( d

dt ) 0 S( d
dt )R2( d

dt )

w1

w2

ŵ2

 =

0
I
0

 e.

Using unimodular row transformations this can be equiva-
lently expressed asR1( d

dt ) R2( d
dt ) 0

0 I −I
0 0 0

w1

w2

ŵ2

 =

 0
I

S( d
dt )R2( d

dt )

 e,

where in the matrix on the left the submatrix consist-
ing of the first two block rows has full row rank. But
then a kernel representation for the projected behavior(
(P ∧w1

O) ∧(w2,ŵ2) D
)
e

is given by the third block row
on the right, i.e. E(P,O) = ker(S( d

dt )R2( d
dt )).

Proposition 3.5: Let P ∈ Lw1+w2 and let E ∈ Lw2 . Then
E is an achievable error behavior (for P) if and only if
Nw2

(P) ⊂ E , i.e. if and only if it contains the hidden
behavior of w2 in P .

Proof: Assume that E is achieved by O then E(P,O) =
E . Let w2 ∈ Nw2

(P) be arbitrary. Define w1 = 0 then
(w1, w2) ∈ P . Define ŵ2 = 0 then (w1, ŵ2) = (0, 0) ∈ O
and hence (w1, w2, ŵ2,−w2) ∈ (P ∧w1

O)∧(w2,ŵ2)D where
e = ŵ2−w2 = −w2. It follows that w2 ∈ E(P,O) = E and
hence Nw2(P) ⊂ E .

Conversely, assume that Nw2(P) ⊂ E . Let P =
ker
(
R1( d

dt ) R2( d
dt )
)

be a minimal kernel representation
then Nw2

(P) = ker(R2( d
dt )). Let E = ker(E( d

dt ))
then there exists a polynomial matrix S such that E =
SR2. Define O = ker

(
S( d

dt )R1( d
dt ) S( d

dt )R2( d
dt )
)
. By

Lemma 3.4 E(P,O) = ker(S( d
dt )R2( d

dt )) = ker(E( d
dt )) =

E , and hence O achieves E .
Note that the second part of the above proof is con-

structive. Given any achievable error behavior E , it uses
kernel representations to explicitely construct an observer
that achieves E . By construction, this observer contains the
plant behavior, P ⊂ O. In previous work [3], such observers
have been called consistent.

Remark 3.6: Owing to the symmetry between the plant
and the observer in an observer interconnection, the associ-
ated error behavior will always contain the hidden behavior
Nŵ2

(O) of ŵ2 in O.
Remark 3.7: The whole theory presented in this paper

could easily be extended to include a third subset of ir-
relevant variables w3 in the plant, cf. [2]. All our results

immediately generalize by applying them to the projected
plant behavior after elimination of w3. See Section VI for
an example application of this technique.

IV. EXISTENCE

Given a plant, existence results for observers are typically
associated with particular, desirable properties of the ob-
server and/or the resulting error system. For example, one
could ask whether there exists an observer with a stable
associated error behavior.

It is clear that Proposition 3.5 immediately translates
into general existence results regarding properties of the
error behavior that are hereditary with repect to behavior
inclusion. For example, any subbehavior of an autonomous
(stable, trivial) behavior is also autonomous (stable, trivial),
and hence the existence of observers with an autonomous
(stable, trivial) associated error behavior depends solely on
the respective properties of the hidden behavior Nw2(P),
i.e. on an associated property of the observed plant. We first
recall the definitions of these plant properties, cf. [2], [8].

Definition 4.1: Given a linear time-invariant differential
system (R,Rw1+w2 ,P), the variable w2 is
(1) observable from w1 (in P) if for all (w1, w2) ∈ P ,

w1 = 0 implies w2 = 0, i.e. if Nw2(P) = {0}.
(2) detectable from w1 (in P) if for all (w1, w2) ∈ P , w1 =

0 implies limt→∞ w2(t) = 0, i.e. if Nw2
(P) is stable.

(3) trackable from w1 (in P) if for all (w1, w2) ∈ P , w1 =
0 and w2(t) = 0 for all t ≤ 0 implies w2 = 0, i.e. if
Nw2

(P) is autonomous.
Clearly, observable implies detectable which in turn im-

plies trackable. Usually, the dynamic properties of an er-
ror behavior associated with a plant and an observer are
attributed to the observer since the plant is thought of as
given. We recall some of these properties, cf. [2], [8].

Definition 4.2: Given an observer interconnection, the ob-
server is
(1) exact if E(P,O) = {0}, i.e. if e = 0.
(2) asymptotic if E(P,O) is stable, i.e. if limt→∞ e(t) = 0.
(3) tracking if E(P,O) is autonomous, i.e. if e(t) = 0 for

all t ≤ 0 implies e = 0.
The following existence results (cf. [2], [8]) are now

immediate consequences of these definitions and Proposi-
tion 3.5.

Proposition 4.3: Let P ∈ Lw1+w2 be given.
(1) There exists an exact observer for w2 from w1 (in P)

if and only if w2 is observable from w1 (in P).
(2) There exists an asymptotic observer for w2 from w1 (in
P) if and only if w2 is detectable from w1 (in P).

(3) There exists a tracking observer for w2 from w1 (in P)
if and only if w2 is trackable from w1 (in P).

We will dwell a little bit on just how general our notion
of an observer is, e.g. compared to the notion of an observer
as defined in [2]. In an observer interconnection as defined
above, the observer can impose restrictions on the variable
w1 that are not already present in the plant. For example, the
observer can impose the equation w1 = 0. It is a matter of
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taste whether one wishes to call such a system an “observer”,
since it “interferes” with the operation of the plant. We opt
to use the term observer in the broad sense and introduce
the following observer property to distinguish observers that
do not interfere with the operation of the plant in this way.

Definition 4.4: Given an observer interconnection, the ob-
server is nonintrusive if (P ∧w1

O)(w1,w2)
= P , i.e. if the

plant behavior is not changed by the observer interconnec-
tion.

Clearly, an observer interconnection is nonintrusive if
and only if for all (w1, w2) ∈ P there exists a ŵ2 such
that (w1, w2, ŵ2) ∈ P ∧w1 O or, equivalently, such that
(w1, ŵ2) ∈ O. In previous work, a nonintrusive observer
has also been called an “acceptor” [2]. This notion is slightly
weaker than the requirement that the variable w1 be free in
O, or even that w1 be an input in O (with ŵ2 the associated
output). The latter type of observers are commmonly called
i/o-observers and have been studied comprehensively in [9],
[10]. For i/o-observers the question of properness of the
observer (i.e. of its associated transfer function) arises, and
connections to the classical state observer theory can be
drawn.

It is a curious consequence of Proposition 3.5 that an
achievable autonomous error behavior is always also achiev-
able with an i/o-observer. In this case, the i/o-structure of the
observer can be assumed without loss of generality. More
precisely, we have the following result.

Proposition 4.5: Given a plant P ∈ Lw1+w2 and an achiev-
able autonomous error behavior E , then there exists an i/o-
observer O for w2 from w1 (in P) such that E(P,O) = E .

Proof: Let P = ker
(
R1( d

dt ) R2( d
dt )
)

be a minimal
kernel representation then Nw2

(P) = ker(R2( d
dt )). By

Proposition 3.5 there exists a polynomial matrix S such that
E = ker(S( d

dt )R2( d
dt )). Since E is autonomous, SR2 has

full column rank and hence there exists a unimodular matrix
U such that

USR2 =

(
R̄
0

)
, (1)

where R̄ is square and nonsingular. It follows that E =
ker(R̄( d

dt )). Define (
S1

S2

)
= US,

where the splitting is as in (1), then S1R2 = R̄. Define
O = ker

(
S1( d

dt )R1( d
dt ) S1( d

dt )R2( d
dt )
)
. By Lemma 3.4,

E(P,O) = ker(S1( d
dt )R2( d

dt )) = ker(R̄( d
dt )) = E .

The previous proposition implies that we can augment any
of the statements in Proposition 4.3 to require the existence
of an i/o-observer. Note that this does not necessarily imply
the existence of a proper i/o-observer, making the result
maybe a little bit less surprising.

Remark 4.6: A further consequence of the symmetry be-
tween the plant and the observer in an observer interconnec-
tion is that the variable ŵ2 in an exact (stable, tracking) ob-
server will necessarily be observable (detectable, trackable)
from w1.

In the next section we will derive a fundamental structure
theorem for nonintrusive observers.

V. AN INTERNAL MODEL PRINCIPLE

In this section we will show that every nonintrusive
observer giving rise to a “reasonable” error behavior must
contain a sizeable part of the plant behavior, i.e. an internal
model of (part of) the plant dynamics. We begin with two
technical lemmas.

Lemma 5.1: Let B1 ∈ Lw1 be an autonomous behavior
and let B2 ∈ Lw1+w2 be such that w2 is trackable from w1

(in B2). Then (B1 ∧w1
B2)w2

is autonomous.
Proof: Since B1 is autonomous, it admits a kernel

representation B1 = ker(R( d
dt )) where R has full column

rank. w2 being trackable from w1 (in B2) implies that
Nw2

(P) is autonomous and hence that B2 admits a kernel
representation B2 = ker

(
R1( d

dt ) R2( d
dt )
)

where R2 has
full column rank. But then

B1 ∧w1
B2 = ker

(
R( d

dt ) 0
R1( d

dt ) R2( d
dt )

)
and the matrix on the right has full column rank. Hence
B1 ∧w1 B2 is autonomous and so is its projection.

Lemma 5.2: Consider an observer interconnection where
the observer is nonintrusive. Let

Pcont = im

(
M1( d

dt )
M2( d

dt )

)
and Ocont = im

(
L1( d

dt )
L2( d

dt )

)
be image representations of the controllable parts of the plant
behavior and of the observer behavior, respectively. Then
there exists a rational matrix S such that M1 = L1S.

Proof: By definition of nonintrusiveness, for every
(w1, w2) ∈ P there exists ŵ2 such that (w1, ŵ2) ∈ O.
This is equivalent to the inclusion of projected behaviors
Pw1 ⊂ Ow1 . But then also (Pw1)cont ⊂ (Ow1)cont and hence
im(M1( d

dt )) = (Pcont)w1
= (Pw1

)cont ⊂ (Ow1
)cont =

(Ocont)w1
= im(L1( d

dt )). The statement now follows as in
the proof of Theorem 7.3 in [11].

For the special case of i/o-observers, the following theo-
rem was previously announced in [12].

Theorem 5.3: Given an observer interconnection where
the observer is nonintrusive, then E(P,O) is autonomous if
and only if ŵ2 is trackable from w1 (in O) and the observer
behavior contains the controllable part of the plant behavior,
Pcont ⊂ O.

Proof: Assume that ŵ2 is trackable from w1 (in O)
and that Pcont ⊂ O. Consider the behavior (Paut)w1

∧w1

O, where (Paut)w1
is the projection of some autonomous

part Paut of P onto the variable w1. By Lemma 5.1, the
projection ((Paut)w1 ∧w1 O)ŵ2

is autonomous. We will now
prove that

E(P,O) ⊂ ((Paut)w1 ∧w1 O)ŵ2
+ (Paut)w2 ,

which implies that E(P,O) is autonomous since the right
hand side is an autonomous behavior. Indeed, let e ∈
E(P,O) and e = ŵ2 − w2. Then there exists w1 such that
(w1, w2) ∈ P and (w1, ŵ2) ∈ O. Decompose (w1, w2) =
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(wc
1, w

c
2)+(wa

1, w
a
2), where (wc

1, w
c
2) ∈ Pcont and (wa

1, w
a
2) ∈

Paut. Since Pcont ⊂ O we have (w1, ŵ2) − (wc
1, w

c
2) ∈ O.

The latter equals (wa
1, ŵ2−w2 +wa

2) = (wa
1, e+wa

2). Since
this is in O, we have e + wa

2 ∈ ((Paut)w1 ∧w1 O)ŵ2
and

e ∈ ((Paut)w1 ∧w1 O)ŵ2
+ (Paut)w2 as claimed.

Conversely, assume that E(P,O) is autonomous. Then ŵ2

is trackable from w1 (in O), cf. Remark 4.6. Let

Pcont = im

(
M1( d

dt )
M2( d

dt )

)
and Ocont = im

(
L1( d

dt )
L2( d

dt )

)
be minimal image representations of the controllable parts of
the plant behavior and of the observer behavior, respectively.
Then the restricted error behavior E(Pcont,Ocont) is given
by the latent variable representation(

0
I

)
e =

(
M1( d

dt ) −L1( d
dt )

M2( d
dt ) −L2( d

dt )

)(
l
l′

)
.

Since Pcont ⊂ P and Ocont ⊂ O, it follows that (Pcont ∧w1

Ocont) ∧(w2,ŵ2) D ⊂ (P ∧w1 O) ∧(w2,ŵ2) D and hence that
E(Pcont,Ocont) ⊂ E(P,O). But then E(Pcont,Ocont) is
autonomous and has output cardinality w2. Hence

rank

(
0 M1 −L1

−I M2 −L2

)
− rank

(
M1 −L1

M2 −L2

)
= w2. (2)

By Lemma 5.2 there exists a rational matrix S such that
M1 = L1S. But then

rank

(
0 M1 −L1

−I M2 −L2

)
= rank

(
0 L1S −L1

−I M2 −L2

)
= rank

(
0 0 −L1

−I M2 − L2S −L2

)
= rank

(
0 0 −L1

−I 0 −L2

)
= w2 + rank

(
−L1

−L2

)
,

where the last equality follows since our image representa-
tion has full column rank. Combining this with (2) yields

rank

(
M1 −L1

M2 −L2

)
= rank

(
−L1

−L2

)
and hence there exists a rational matrix T such that(

M1

M2

)
=

(
L1

L2

)
T.

Factorize T = PQ−1 with P and Q polynomial. Obviously,
the differential operator Q( d

dt ) is surjective. This implies that

Pcont = im

(
M1( d

dt )
M2( d

dt )

)
Q( d

dt )

= im

(
L1( d

dt )
L2( d

dt )

)
P ( d

dt ) ⊂ Ocont ⊂ O.

In analogy to similar results in geometric control, we refer
to the previous result as an internal model principle for
observers. Note that the condition in the theorem is necessary
and sufficient and that we have not used nonintrusiveness in
the proof of sufficiency. In the following we derive more

refined versions of this principle for the cases of stable and
trivial error behaviors, respectively.

We begin by refining Lemma 5.1.
Lemma 5.4: Let B1 ∈ Lw1 be a stable behavior and let

B2 ∈ Lw1+w2 be such that w2 is detectable from w1 (in B2).
Then (B1 ∧w1

B2)w2
is stable.

Proof: Since B1 is stable, it admits a kernel representa-
tion B1 = ker(R( d

dt )) where R(λ) has full column rank for
all λ ∈ C+. w2 being detectable from w1 (in B2) implies
that Nw2(P) is stable and hence that B2 admits a kernel
representation B2 = ker

(
R1( d

dt ) R2( d
dt )
)

where R2(λ)
has full column rank for all λ ∈ C+. But then

B1 ∧w1
B2 = ker

(
R( d

dt ) 0
R1( d

dt ) R2( d
dt )

)
and the matrix (

R(λ) 0
R1(λ) R2(λ)

)
has full column rank for all λ ∈ C+. Hence B1 ∧w1

B2 is
stable and so is its projection.

Next, we have a closer look at the special case of an anti-
stable plant.

Proposition 5.5: Consider an observer interconnection
where the plant is anti-stable and the observer is nonintrusive.
If E(P,O) is stable then P ⊂ O.

Proof: Let E(P,O) be stable and let (w1, w2) ∈ P . We
need to prove that (w1, w2) ∈ O. Since O is nonintrusive
there exists ŵ2 such that (w1, ŵ2) ∈ O. It follows that e =
ŵ2 − w2 is a stable Bohl function. Since P is anti-stable
its nonzero trajectories are anti-stable Bohl functions. Hence
either w2 = 0 or w2 is an anti-stable Bohl function and
similarly for w1.

Assume w2 = 0, then ŵ2 = e is a stable Bohl function.
Let O = ker

(
R̂1( d

dt ) R̂2( d
dt )
)

be a kernel representation.
Then R̂1( d

dt )w1 = −R̂2( d
dt )ŵ2 where the left hand side

is either equal to zero or an anti-stable Bohl function and
the right hand side is a stable Bohl function. It follows that
R̂1( d

dt )w1 = 0 and hence that (w1, w2) = (w1, 0) ∈ O in
this case (w2 = 0).

We just proved that Nw1
(P) ⊂ Nw1

(O). Let P =
ker
(
R1( d

dt ) R2( d
dt )
)

be a kernel representation, then there
exists a polynomial matrix S such that R̂1 = SR1.

Assume now that w2 is an anti-stable Bohl function (the
alternative case). Using the above kernel representations
it follows that R̂2( d

dt )e = R̂2( d
dt )ŵ2 − R̂2( d

dt )w2 =

−S( d
dt )R1( d

dt )w1 − R̂2( d
dt )w2 = (S( d

dt )R2( d
dt ) −

R̂2( d
dt ))w2 where the left hand side is a stable Bohl function

and the right hand side is either equal to zero or an anti-
stable Bohl function. It follows that R̂2( d

dt )(ŵ2 − w2) = 0
and hence that (0, ŵ2 − w2) ∈ O. But this implies that
(w1, w2) = (w1, ŵ2) − (0, ŵ2 − w2) ∈ O. This concludes
the proof.

Theorem 5.6: Given an observer interconnection where
the observer is nonintrusive, a controllable/autonomous de-
composition P = Pcont ⊕ Paut and the associated anti-
stable/stable decomposition Paut = Pantistab ⊕ Pstab, cf.
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Proposition 2.4, then E(P,O) is stable if and only if ŵ2 is
detectable from w1 (in O) and the observer behavior contains
the controllable part of the plant behavior plus the anti-stable
part of the autonomous part, Pcont ⊕ Pantistab ⊂ O.

Proof: Assume that ŵ2 is detectable from w1 (in
O) and that Pcont ⊕ Pantistab ⊂ O. Consider the be-
havior (Pstab)w1

∧w1
O. By Lemma 5.4, the projection

((Pstab)w1 ∧w1 O)ŵ2
is stable. We will now prove that

E(P,O) ⊂ ((Pstab)w1 ∧w1 O)ŵ2
+ (Pstab)w2 ,

which implies that E(P,O) is stable since the right hand
side is a stable behavior. Indeed, let e ∈ E(P,O) and e =
ŵ2 − w2. Then there exists w1 such that (w1, w2) ∈ P and
(w1, ŵ2) ∈ O. Decompose (w1, w2) = (w′1, w

′
2) + (w′′1 , w

′′
2 )

where (w′1, w
′
2) ∈ Pcont ⊕ Pantistab and (w′′1 , w

′′
2 ) ∈ Pstab.

Since Pcont⊕Pantistab ⊂ O we have (w1, ŵ2)− (w′1, w
′
2) ∈

O. The latter equals (w′′1 , ŵ2 − w2 + w′′2 ) = (w′′1 , e + w′′2 ).
Since this is in O, we have e+ w′′2 ∈ ((Pstab)w1 ∧w1 O)ŵ2

and e ∈ ((Pstab)w1
∧w1
O)ŵ2

+ (Pstab)w2
as claimed.

Conversely, assume that E(P,O) is stable. Then ŵ2 is de-
tectable from w1 (inO), cf. Remark 4.6. Since E(P,O) is au-
tonomous it follows from Theorem 5.3 that Pcont ⊂ O. Since
Pantistab ⊂ P , E(P,O) stable implies that E(Pantistab,O)
is stable. Moreover, O is clearly also nonintrusive with
respect to Pantistab. It follows from Proposition 5.5 that
Pantistab ⊂ O and hence that Pcont ⊕ Pantistab ⊂ O.

Again, we have not used nonintrusiveness in the proof of
sufficiency. We finally turn to the case of exact observers
where we obtain the following “full” internal model princi-
ple.

Theorem 5.7: Given an observer interconnection where
the observer is nonintrusive, then E(P,O) = {0} if and
only if ŵ2 is observable from w1 (in O) and the observer
behavior contains the plant behavior, P ⊂ O.

Proof: Assume that ŵ2 is observable from w1 (inO) and
that P ⊂ O. Let P = ker

(
R1( d

dt ) R2( d
dt )
)

be a minimal
kernel representation and let O = ker

(
R̂1( d

dt ) R̂2( d
dt )
)

be
any kernel representation. Then there exists a polynomial ma-
trix S such that

(
R̂1 R̂2

)
=
(
SR1 SR2

)
. Furthermore,

Nŵ2
(O) = {0} implies that S(λ)R2(λ) has full column rank

for all λ ∈ C. By Lemma 3.4, E(P,O) = ker(S( d
dt )R2( d

dt ))
and hence E(P,O) = {0}.

Conversely, assume that E(P,O) = {0}. Then ŵ2 is
observable from w1 (in O), cf. Remark 4.6. Let (w1, w2) ∈
P then there exists ŵ2 such that (w1, ŵ2) ∈ O. But then
ŵ2 − w2 = e ∈ E(P,O) = {0} and hence ŵ2 = w2.
It follows that (w1, w2) = (w1, ŵ2) ∈ O and hence that
P ⊂ O.

Note that the last theorem implies that exact observers are
necessarily consistent, an observation already made in [3].
The common theme of the previous three theorems could be
summed up as follows. Given an observer interconnection
where the observer is nonintrusive, the observer behavior
must necessarily contain that part of the plant behavior that
we do not want to be present in the associated error behavior.

Remark 5.8: The internal model principle can be used to
derive parametrizations of all nonintrusive tracking (stable,

exact) observers for a given plant, cf. also [2], [8]. Because
of space constraints we only sketch the general idea, and
only for the tracking case. Consider a kernel representation
P = ker

(
R( d

dt )
)

and the Smith form R = U
(
D 0

)
V

where U and V are unimodular and D is a diagonal poly-
nomial matrix. Then the controllable subbehavior is given
by Pcont = ker

((
I 0

)
V ( d

dt )−1
)
. By Theorem 5.3, all

nonintrusive tracking observers are of the form

O = ker
(
S
(
I 0

)
V ( d

dt )−1
)
,

where S is a polynomial matrix such that ŵ2 is trackable
from w1 (in O). The latter condition can be formulated
in terms of a column rank condition, although the details
require some cumbersome notation. This is because the
block decomposition of the observer variables need not be
compatible with the block decomposition in the Smith form
above.

VI. THE STATE SPACE CASE

In this section we provide a link from our results to
classical results from state observer theory.

Consider a plant whose full behavior Pfull with variables
(u, x, y, z) is given by

ẋ = Ax+Bu,

y = Cx,

z = V x.

(3)

Here, the various matrices are constant matrices. We de-
note the projection onto the variables (u, y, z) by P =
(Pfull)(u,y,z). Consider candidate observers for z from (u, y)
whose full behavior Ofull with variables (u, y, v, ẑ) is given
by

v̇ = Kv + Ly +Mu,

ẑ = Pv.
(4)

Again, the various matrices are all constant and we assume
that the matrix pair (P,K) is observable. We denote the
projection onto the variables (u, y, ẑ) by O = (Ofull)(u,y,ẑ).

Proposition 6.1: P = (P)(u,y,z) ⊂ (O)(u,y,ẑ) = O if and
only if there exists a (constant) matrix U such that

UA−KU = LC,

M = UB,

V = PU.

(5)

In this case, the error dynamics are given by

ḋ = Kd,

e = Pd,
(6)

where d = v − Ux and e = ẑ − z.
Proof: In [8] it was shown that given equation (5) the

map

i : Pfull −→ Ofull,


x
u
y
z

 7→

v
u
y
ẑ

 =


Ux
u
y
z


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is a (continuous) behavior homomorphism. This map restricts
to the inclusion P ⊂ O. Conversely, P ⊂ O implies
Equation (5) by Theorem 3.9 in [13]. Equation (6) follows
from a simple direct calculation using (3), (4) and (5).

In the context of observers for single linear functionals
of the state, the Sylvester-type Equation (5) can already be
found in Luenbergers original paper [1]. In the terminology
of geometric control, it implies that ker(U) is a conditioned
invariant subspace contained in ker(V ) and with outer spec-
trum equal to the spectrum of K (cf. e.g. [14]).

We can now apply our internal model principle to obtain
the following characterization of asymptotic observers.

Theorem 6.2: Let all uncontrollable modes in (3) be un-
stable and let (P,K) in (4) be observable. Then (4) is an
asymptotic observer for z from (u, y) if and only if K is
Hurwitz and there exists a (constant) matrix U such that (5)
holds.

Proof: The observer O = (Ofull)(u,y,ẑ) is an i/o-
observer and hence nonintrusive. Since all uncontrollable
modes in (3) are unstable, any autonomous complement of
the controllable part of P = (Pfull)(u,y,z) is automatically
anti-stable. Since (P,K) is observable, ẑ is detectable from
(u, y) (inO = (Ofull)(u,y,ẑ)) if and only if K is Hurwitz. The
result now follows from Theorem 5.6 and Proposition 6.1.

Theorem 6.2 provides a generalization of a similar result
for controllable plants that is considered classical, although
the first full proof of the necessity part the authors know of
is relatively recent [15]. See also Remark 3.59 and Remark
3.72 in [14] for a short discussion of the classical literature
on this topic.

VII. CONCLUSIONS

In this paper we have studied the observer problem in
a behavioral framework. For a given plant behavior, with
a partition of the system variable into a set of measured
components and a set of to be estimated components, we
have characterized all error behaviors that can be achieved in
an observer interconnection. Using this characterization we
have re-established the necessary and sufficient conditions
for the existence of tracking, stable and exact observers. As
main results of this paper, we have established behavioral
formulations of an internal model principle for observers. For
nonintrusive observers we have shown that the error behavior
is autonomous if and only if in the observer the estimator
variable is trackable from the measured one, and the observer
behavior contains the controllable part of the plant. An
observer is asymptotic if and only the estimator variable is
detectable from the measured one, and the observer contains
both the controllable part of the plant and the antistable part
of an autonomous part of the plant. Finally, the observer is
exact if and only if the estimator variable is observable from
the measured one, and the observer contains the entire plant
behavior. We have applied our results to the case where the
plant is strictly proper and represented in input-state-output
form.
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