

 University of Groningen

Design of a parallel hybrid direct/iterative solver for CFD problems
Thies, Jonas; Wubs, Fred

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Thies, J., & Wubs, F. (2011). Design of a parallel hybrid direct/iterative solver for CFD problems. In
EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer
Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-06-2022

https://research.rug.nl/en/publications/944c1a3f-5b67-4a42-9d31-a2c49a66257b

Design of a parallel hybrid direct/iterative solver for
CFD problems

Jonas Thies
Centre for Interdisciplinary Mathematics

Uppsala University
Sweden

Email: jonas@math.uu.se

Fred Wubs
Johann Bernoulli Institute for

Mathematics and Computing Science
University of Groningen

The Netherlands
Email: f.w.wubs@rug.nl

Abstract—We discuss the parallel implementation of a hybrid
direct/iterative solver for a special class of saddle point matri-
ces arising from the discretization of the steady Navier-Stokes
equations on an Arakawa C-grid, the F -matrices.

The two-level method described here has the following prop-
erties: (i) it is very robust, even hat comparatively high Reynolds
Numbers; (ii) a single parameter controls fill and convergence,
making the method straightforward to use; (iii) the convergence
rate is independent of the number of unknowns; (iv) it can be
implemented on distributed memory machines in a natural way;
(v) the matrix on the second level has the same structure and
numerical properties as the original problem, so the method
can be applied recursively. The implementation focusses on
generality, modularity, code reuse and recursiveness. The solver
is implemented using building blocks of the Trilinos libraries.
We show its performance on a parallel computer for the Navier-
Stokes equations.

I. INTRODUCTION

Presently, a typical computational fluid dynamics (CFD)
problem may involve millions of unknowns, representing
velocities and pressures on a grid, which have to be determined
by linearizing the discrete equations and solving a large sparse
linear system of equations. Robust numerical methods are
needed to achieve high fidelity. Therefore one often resorts to
direct (sparse) solvers. In general such a method does not fail
as long as the used precision is enough to handle the posedness
of the problem. However, there are several disadvantages to
direct methods. Both the amount of memory and computing
time increase quickly as the problems become larger. Direct
methods are also inherently difficult to parallelize, as com-
pared to iterative approaches.

The computational cost of direct methods for 3D partial
differential equations (PDEs) grows with the square of the
number of unknowns. Iterative methods are therefore preferred
for very large applications. They perform a finite number
of iterations to yield an approximate solution; in theory the
accuracy achieved increases with the number of iterations
performed. However, iterative methods are often not robust
for difficult problems arising from the discretization of mixed
parabolic/hyperbolic PDEs. The iteration process may stall
or diverge, and the final approximation may be inaccurate.
Furthermore they often require custom numerics such as
preconditioning techniques to be efficient.

The hybrid direct/iterative approach presented here seeks
to combine the robustness of direct solvers with the memory
and computational efficiency of iterative methods. We perform
a non-overlapping domain decomposition of the grid, and
eliminate the interior velocities using a direct method. For the
remaining variables a Schur complement problem has to be
solved, which we do by a Krylov subspace method precondi-
tioned by a novel incomplete factorization preconditioner.

We give a brief overview of the algorithm in Section II.
Section III contains a description of the parallel implemen-
tation. At the end of the paper, we present numerical exper-
iments concerning the convergence of the new method. As
the implementation presented here is parallel and orders of
magnitude faster than the MATLAB code used in [1], we can
now study the method in much more detail (cf. Section IV-A).
We also investigate the parallel performance and indicate
the bottlenecks of the present implementation (Sections IV-C
and IV-D). In Section V we compare the results to those found
in literature for other methods applied to similar problems, and
we conclude by proposing some improvements in Section VI.

II. ALGORITHM

We consider the problem of solving the equations

Kx = b, (1)

where K ∈ R(n+m)×(n+m) (n≥m) is a saddle point matrix that
has the form

K =

[
A B
BT 0

]
, (2)

with A ∈ Rn×n, B ∈ Rn×m. For the Stokes problem discretized
on a C-grid (Fig. 1), K is a so-called F -matrix (A is symmetric
positive definite and B has row sum 0 and at most two entries
per row [2]). Recently, a direct method for the solution of F -
matrices was proposed [3]. It reduces fill and computation
time while preserving the structure of the equations during
the elimination. A hybrid direct/iterative method based on
this approach was presented in [4], [1]. It has the advantage
that the ordering it defines for the matrix exposes parallelism
on each level: all the subdomain matrices can be factored
independently using sequential sparse direct solvers, and the
Schur complement can be constructed with a minimal amount
of communication in an assembly process. The difficult task

2011 Seventh IEEE International Conference on eScience

978-0-7695-4597-4/11 $26.00 © 2011 IEEE

DOI 10.1109/eScience.2011.60

387

�

�

�

�u u

v

v

�

p

Figure 1. Positioning of velocity (u,v) and pressure (p) in the C-grid.

of parallel preconditioning is aided by the algorithm, which
yields a block-diagonal preconditioner with dense blocks and
a significantly reduced sparse linear system. In this paper we
focus on the aspect of parallelism and present an implementa-
tion of the solver intended for distributed memory machines.
A number of design choices is made, and we illuminate some
of the issues that arise using a structured C-grid Navier-Stokes
code as an example.

The ingredients of the algorithm are the following

1) Perform a non-overlapping domain decomposition
2) Detect the velocity separators
3) Pick for every subdomain a P node to be kept in the

Schur complement
4) Eliminate all interior variables of the subdomains and

construct the Schur complement for the velocity sepa-
rators and the selected pressures.

5) Perform a Householder transformation on each separator.
This decouples most of the V -nodes from pressure nodes.

6) Identify VΣ nodes (separator velocities that still connect
to two pressures).

7) Drop all connections between non-VΣ nodes and VΣ nodes,
and between non-VΣ nodes in different separator groups.
The resulting matrix is block-diagonal with the ‘reduced
Schur complement’ defined by the VΣ and P-nodes.

8) Iterate on the Schur complement using the matrix of the
previous step as preconditioner. This preconditioner is
easily applied using LU decompositions of all non-VΣ
blocks and the reduced system.

A. Computational complexity

We assume that a direct method with optimal complexity
is used for the solution of the relevant linear systems, so in
3D if the number of unknowns is O(N), the work is O(N2),
as with Nested Dissection. We have N = O(n3) unknowns,
where n is the number of grid cells in one direction. We
keep the subdomain size constant and denote the number of
unknowns per subdomain by S = s3 (s is the separator length),
so separator groups have O(s2) velocities. Per subdomain there
will therefore be O(s2) non-VΣ- and O(1) VΣ nodes. The
amount of work required per subdomain is as follows:

1) O(S2) for the subdomain elimination;
2) transformation on faces with H: O(s4);
3) factorization of non-VΣ nodes: O((s2)3) = O(S2).

The total over all domains is O(N/S)O(S2) = O(NS), so in
this part the number of operations increases linearly with S

(e.g. by a factor 8 if s is doubled).
The solution of the reduced problem (VΣ nodes) requires

O((N/S)2) operations. Here doubling s will decrease the work
by a factor 64. So in total the work per iteration is

O(NS)+O((N/S)2).

The number of iterations is independent of N for constant S,
and proportional to log(1+S) for constant N. So if we double
s, a fixed number of iterations is added.

If we can solve the reduced problem iteratively by applying
our method recursively until the problem has a fixed grid-
independent size, the cost per iteration becomes O(NS log(1+
S)) and thus linear in the number of unknowns N, but we focus
on the two-level case up to now.

III. PARALLEL IMPLEMENTATION

A. Basic design of the solver

The Trilinos package Ifpack suggests subdividing the
process of solving a linear system of equations into three
distinct phases: Initialization, Computation and Solution. The
initialization step can be done as soon as the sparsity pattern
of the matrix is known, it may involve memory allocation
or computing a suitable ordering for a factorization. The
compute phase is executed once the numerical values of
the matrix entries are known and typically consists of an
(incomplete) factorization of the matrix. The solve phase is
executed whenever a right-hand side is provided and returns
the solution vector. We will adopt this structure as it can be
exploited during a simulation. For the two-level hybrid solver
we identify these phases as:

1) Initialization phase: compute the ordering.
• Partition the variables into subdomains,
• detect and group separator variables,
• initialize the direct solvers for interior variables (sub-

domain solvers).
2) Compute phase.

• Compute subdomain solvers,
• construct the Schur complement S on the separators,
• construct a preconditioner for S.

3) Solve phase.
• Solve for the interior variables using the subdomain

solvers,
• solve for the separator variables using a precondi-

tioned Krylov subspace method.
Apart from the decision to divide the program into three

stages, we have the following requirements on the implemen-
tation:
• generality - the code should be usable for a range of

problems such as the Poisson equation, Darcy’s law or
(Navier-)Stokes, and possibly other applications such as
the ocean equations studied in [5]. To achieve this we
implement a number of standard approaches for different
variable types, as discussed in Section III-B.

• Modularity - parts of the algorithm (e.g. the partitioning
method or the direct solver) should be easy to replace.

388

• Code reuse - we want to make use of existing code
as much as possible. The Trilinos libraries offer many
versatile classes that we exploit in our implementation.
That way, parts of the code that are not too specialized are
‘outsourced’ to a software library that is well-maintained
and documented.

• Recursiveness - once a multi-level algorithm has been
designed it should be easy to extend the existing imple-
mentation.

It goes without saying that efficiency and parallel performance
are also among our primary concerns. We will now proceed
to look at the input data and the three phases of solving a
linear system using our algorithm and discuss the important
implementation issues.

B. Input format and variable types

The implementation should be as generally applicable as
possible, so we do not decide on a specific CFD code,
discretization or even PDE a priori. Instead we want to write
a solver that takes a matrix and some information on the
structure of the problem and returns a solution whenever we
pass in a right-hand side vector. We will only assume that the
problem is defined on some kind of grid, and that each grid-
cell has the same number of unknowns. The unknowns are
ordered per grid-cell, e.g. for a 2D Stokes problem we may
have an ordering (u1,v1, p1,u2,v2, p2, ...), where the subscript
is the cell index. Such a data layout can be obtained from an
existing code by introducing ‘dummy equations’ at boundaries
(to make sure that every grid cell has the same number of
variables) and reordering the matrix. This initial ordering
assigns a unique global index (GID) to each variable, and we
will make sure that the GID is preserved everywhere in the
code so that it can be used to identify a variable’s type or the
subdomain to which it belongs. We also require information
about the variable types in the problem, e.g. variable 3 in
each grid cell is a pressure here. This information is used to
define the ordering during the initialization phase. Presently
we support three types of variables:

• “Laplace” - the variable connects to variables of the
same type in neighboring grid cells and a partitioner
will be used to define the subdomains. Separators for
this variable type will be identified and retained in the
next Schur complement. We assume that at least one of
the variables in the problem is of this type so that we
can base the partitioning on this variable. For the Navier-
Stokes equations, the velocities u and v are “Laplace”
variables.

• “Uncoupled” - the variable is partitioned along with the
other variables, but no separators are needed. These vari-
ables are all eliminated as subdomain interior variables.

• “Retain X” - these variables are basically uncoupled, yet
one has to retain at least X of them in the interior of
each subdomain. For our prototype problem, the pressure
has type “Retain 1” so that the subdomain matrices stay
non-singular.

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[0–3]

[4–7]

[8–11]

[12–15]

Figure 2. Simple cartesian partitioning of a Laplace problem
on a structured 16×16 grid. There are four partitions and 16
subdomains, four per partition.

Using this input format it is very easy to adapt the solver to
different equations, for instance one may add a tracer equation
to the Navier-Stokes equations by increasing the number of
degrees of freedom (dof) per cell by 1 and setting the variable
type for the tracer to “Laplace”. Obviously, the CFD code used
must be adjusted to provide the correct Jacobian and residual
function.

C. Initialization phase

In this phase we need to partition the variables into subdo-
mains and define an ordering such that we can consistently
access different classes of variables (i.e. interior variables,
separator variables). Finally we can construct and initialize
objects to hold the LU-decomposition of the interior variables.
This is done in three phases to ensure modularity.

1) Partitioning: We first perform a coarse-grained parti-
tioning for parallelism, giving np partitions, where np is the
number of tasks in a parallel computation. Each task can then
partition its owned variables into a number of subdomains,
such that each variable in the global matrix belongs to exactly
one subdomain on one partition (i.e. in the memory of one
task).

Both the coarse-grained partitioning and the local decompo-
sition into subdomains can be done either based on the graph
of the matrix (using graph partitioning algorithms like the ones
implemented in METIS [6]), or geometrically. In this paper we
focus on structured grid problems and geometric partitioning
into rectangular subdomains (cartesian partitioning).

For a scalar 2D problem (like the Laplace equation dis-
cretized using a 5-point stencil), the initial partitioning may
look like the one shown in Figure 2, with partitions divided
by thick lines and subdomains by thin or thick lines. Each
number indicates the GID of the variable at that position in
the grid.

We provide a virtual interface class BasePartitioner that
can be used to obtain a unique subdomain ID for each
global variable index (GID). A concrete implementation is

389

I8 I8 I8 8S9 I9 I9 I9 9S10 I10 I10 I10 I10

I8 I8 I8 8S9 I9 I9 I9 9S10 I10 I10 I10 I10

I8 I8 I8 8S9 I9 I9 I9 9S10 I10 I10 I10 I10

I8 I8 I8 8S9 I9 I9 I9 9S10 I10 I10 I10 I10

8
4S 8

4S 8
4S 8

4S9
5

9
5S 9

5S 9
5S 9

5S10
6

10
6 S 10

6 S 10
6 S 10

6 S

I4 I4 I4 4S5 I5 I5 I5 5S6 I6 I6 I6 I6

I4 I4 I4 4S5 I5 I5 I5 5S6 I6 I6 I6 I6

I4 I4 I4 4S5 I5 I5 I5 5S6 I6 I6 I6 I6

4
0S 4

0S 4
0S 4

0S5
1

5
1S 5

1S 5
1S 5

1S6
2

6
2S 6

2S 6
2S 6

2S

I0 I0 I0 0S1 I1 I1 I1 1S2 I2 I2 I2 I2

I0 I0 I0 0S1 I1 I1 I1 1S2 I2 I2 I2 I2

I0 I0 I0 0S1 I1 I1 I1 1S2 I2 I2 I2 I2

Figure 3. Interior nodes (I) and separators (S) for the 2D
example problem. Nodes with the same indices belong to a
group.

the CartesianPartitioner that only considers information
on the problem (such as grid-size, dimension, dof/cell) and
provides the partitioning shown in Fig. 2. For problems with
several dof per cell, the same partition number is assigned to
each variable in a grid cell.

For ease of notation, let us introduce a number of short-
hands. If subdomain s belongs to partition p, we write s ∈
p. Likewise, we write i ∈ s if variable i has been assigned
to subdomain s. Both partitions and subdomains have unique
non-negative integer ID’s, so that relational operators like s< t
are meaningful if s and t are subdomain ID’s. If matrix row i
has a nonzero entry in column j, we say that variable i couples
to variable j.

2) Detecting and grouping separators: A variable i ∈ s
is called interior if it couples only to variables j ∈ t where
t <= s. Any interior variable is associated with exactly one
subdomain s. A variable i is a separator variable of s if it
couples to variables in s and at least one subdomain t > s.
This includes variables i /∈ s, so that separator variables are
associated with two or more subdomains. Separator variables
are grouped according to variable (u, v etc.) and the subdo-
mains they connect to.

Caveat: In the case of a 5-point stencil in 2D (7-point
in 3D), the variables in the corners of a subdomain are
not identified as separator nodes of the diagonally displaced
subdomain. In our example, node 27 becomes a separator of
subdomain 5 because it connects to nodes 28 and 39, which are
separator nodes in the first place. To avoid this complication,
we perform the detection of separators for using an auxiliary
graph (a 9- (27-)point stencil in 2D (3D)). . An alternative that
works for more general problems is the hierarchical interface
decomposition used in [7], [8] for scalar problems.

Figure 3 shows how variables are grouped into interior
and separator groups. Each separator group is shared by
two or more subdomains. The detection and grouping of
separators can be based on any non-overlapping partitioning
provided by a BasePartitioner object. To aid the imple-

Figure 4. The marked cell
where the four separators
meet is called a full con-
servation cell: all its ve-
locities are part of sepa-
rators, so the pressure has
to be retained in the Schur
complement to avoid a
singular matrix for the in-
terior of subdomain 1.

subdomain 1 subdomain 2

subdomain 3 subdomain 4

mentation of the solver, we introduce another base class here,
the BaseOverlappingPartitioner, that allows accessing all
variables of a given local subdomain group-wise, i.e. all
interior variables or all variables forming a separator of that
subdomain. By ‘accessing’ we mean retrieving the GID of
a variable, which can then be used to find the entry in a
matrix or vector object. Our concrete implementation uses
the detection and grouping algorithm described above, with
a minimal overlap between partitions so that it can work in
parallel.

3) Domain decomposition for Stokes problems: For the
Stokes problem on a C-grid, each cell has two (three) velocity
components in 2D (3D), located at the cell edges (faces), and a
pressure (located in the cell center). Here A in (2) is a Laplace
operator for each velocity component. As we do not make
approximations in the B-part, grid-independent convergence is
achieved if we use the scalar partitioning discussed above for
each of the velocity components. The grouping of variables
only has to make sure that each separator group has variables
of only one type (e.g. u-velocities or v-velocities). This holds
even if there are couplings due to convection in the Navier-
Stokes Jacobian matrix.

All pressures will be put in the ‘interior’ group of their
subdomain except for one in each subdomain, which forms
its own group (we arbitrarily choose the first in each subdo-
main). Next, we identify any interior pressures that do not
connect to any interior velocity by searching the original
graph of the problem. Such a pressure belongs to a so-called
full conservation cell (cf. Figure 4) and leads to a singular
subdomain matrix unless we move it into a group of its own.
Any velocities it connects to are also moved to groups of their
own. This makes sure that the reduced Schur complement has
the desired form of two dense pressure-columns with opposite
sign per group. To keep this step independent of the type of
problem solved, we introduce a tag “Retain Isolated”, which
we use to identify the variables for which this special treatment
is required. The grouping of separator variables is done per
variable type. For the 2D Stokes-equations on the 16×16 grid,
for example, the first separator with grid cells [4,16,28] leads
to two separator groups, one for u and one for v in those cells.

D. Compute phase

Once these data structures are available, we can proceed to
eliminate the interior variables. Each interior variable belongs

390

to exactly one subdomain and each subdomain to one task in a
parallel computation. We can therefore use a sequential sparse
direct solver for this task. Any of the sparse solvers interfaced
by the Amesos package can be used for this purpose, which
ensures modularity in this part. We note, however, that the
choice is not critical as the subdomain matrices are typically
small.

1) Constructing the Schur complement: We now have a
partial LU-decomposition of our global matrix K: all internal
subdomain variables have been eliminated. The remaining
unknowns are the separators and - for Stokes problems -
retained pressures. The Schur complement defined by this set
of unknowns is given by the expression

Si j = Ki j−∑
k

Kik(Kk)
−1Kk j , (3)

where i and j indicate the sets of separator groups , and
k indicates the sets of interior variables (Kk denoting the
diagonal block associated with the interior variables of sub-
domain k). The sum is sparse because each separator has
contributions from at most eight subdomains (in 3D). The
sum is implemented in a blocked fashion: We loop over all
overlapping subdomains (k-index) and perform an LU-solve
Bk j = K−1

k Kk j) and a matrix/matrix product, S′i j = KikBk j. The
resulting matrices S′ are subtracted from Ki j to form the Schur
complement.

When using S in a Krylov sequence we do not have to
construct it explicitly but could use the defining equation 3,
i.e. matrix-vector products with Ki j, Kik and Kk j and a sparse
matrix solve with Kk whenever applying S to a vector. This
makes the method somewhat cheaper during setup and both
more expensive and more scalable during the solve phase. In
our experiments constructing S was the better option, but a
break-even point may be reached when using many proces-
sors, where inter-processor communication is the bottleneck
rather than the floating-point operations. Both approaches are
implemented.

2) Construction of the preconditioner : The preconditioner
is constructed by applying an orthogonal transformation from
the left and right to each separator group in the Schur
complement, and then applying a dropping strategy where
all connections between VΣ and non-VΣ nodes and between
non-VΣ nodes in different separator groups are dropped (the
first element in each separator group is a VΣ-node). Our
program automatically treats pressure variables for Stokes-type
problems correctly as each pressure is in a separator group of
size 1 so that the corresponding orthogonal transformation is
the identity operator. The present implementation is as follows,
assuming that the Schur complement has been completely
constructed:

• the orthogonal transformation is explicitly constructed
as a block-diagonal sparse matrix representing the vec-
tor w = v/

√
vT v in the Householder transformation

I− 2vvT/vT v,
• the transformation is applied using a series of

sparse matrix-matrix products and additions to compute

(I− 2wT w)A(I− 2wT w),
• the dropping strategy is implemented by extracting the re-

maining blocks from the transformed matrix. The blocks
corresponding to non-VΣ nodes within a group are small
and dense and solved using LAPACK. The block corre-
sponding to VΣ nodes (the reduced Schur complement)
is sparse and distributed among all tasks. It can either
be solved sequentially or in parallel using a sparse direct
solver from the Amesos library.

This implementation is simple and performs fairly well in
practice, although improvements can certainly be made.

E. Solve phase
We now formally have a partial LDU-decomposition of the

system matrix K:[
KII KIS
KSI KSS

]
=

[
II 0

KSIK−1
II I

][
KII 0
0 S

][
II K−1

II KIS
0 IS

]
(4)

where an index I denotes interior variables and S the remain-
ing separator variables. From the block diagonal matrix KII we
construct an LU factorization LIUI where also LI and UI are
block diagonal triangular matrices so that linear systems with
KII are easily solved in parallel. We use the LDU- rather than
an LU formulation because it doesn’t require access to the
individual factors LI and UI . That way the implementation is
independent of the actual solver used for the interior variables,
which may not even involve a factorization. A complete solve
of Ax = b is performed in the following steps:

• solve y(1)I = (LIUI)
−1bI ,

• compute yS = bS−KSIy
(1)
I ,

• solve xS = S−1yS iteratively,
• compute zI = KISxS,
• solve y(2)I = (LIUI)

−1zI ,
• compute xI = y(1)I − y(2)I .

In contrast to an LU-formulation, this requires two linear
systems with the interior variables to be solved. This is
acceptable since this step is fast compared to the solution of
the Schur complement and is trivially parallel.

Application of the preconditioner: During the Krylov sub-
space method for the Schur complement S, we have to apply
the inverse of the preconditioning matrix, xS = P−1yS. As
P is actually an approximation of the transformed matrix
HT SH, we also have to apply the orthogonal transforms to
the vectors before and after the preconditioner. The inverse
preconditioner is applied by solving a series of dense linear
systems for the non-VΣ nodes (using previously computed LU-
factorizations) and a distributed sparse linear system for the
VΣ nodes. The transformations and dense solves can all be
executed in parallel.

IV. NUMERICAL EXPERIMENTS

In [4], [1] we have already demonstrated robustness of the
new method for the driven cavity test problem at Reynolds
Numbers up to 8 000 and a grid size of 512× 512. In this
section we will first investigate the convergence behavior of
the GMRES method and then compute steady states at even

391

0 200 400 600 800 1000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GMRES iteration

re
si

du
al

2×2
4×4
8×8
16×16

Figure 5. Convergence behavior depending on the subdomain
size (driven cavity problem, 512× 512 grid, Re = 2 000).

higher Reynolds numbers. We then investigate the parallel
performance for a 3D problem.

All experiments were performed on the Huygens machine at
the computing center SARA in Amsterdam. (104 nodes with
16 dual core IBM Power6 processors running at 4.7 GHz, 128
GByte of shared main memory per node). We use MPI for
all communication purposes, even inside a node where shared
memory techniques could be used.

A. Convergence behavior

In [4], [1] we showed that the number of GMRES iterations
is independent of the grid-size for the driven cavity test prob-
lem (in fact it decreases because the diffusion term becomes
more dominant when the grid is refined). We now solve the
same problem using our new implementation. We choose a
fixed grid-size of 512× 512 and start from the solution at
Re= 1 000. To compute the solution at Re = 2 000 to an accu-
racy of 10−10, 4 Newton steps are performed. The convergence
tolerance of the GMRES solver for the Schur complement is
set to 10−12 and we allow a maximum of 1 000 iterations. The
implicit residual norm ||P−1r||2/||P−1r0||2 (P denoting the
preconditioner) of the classical right-preconditioned GMRES
method is shown in Figure 5 for the first Newton step. The
convergence is very smooth in the beginning but at some
point the residual norm starts forming ‘plateaus’. For larger
subdomain sizes, these plateaus occur earlier and are longer.
This is another argument for not using too large subdomains
- we already saw in the complexity analysis in Section II-A
that for the hypothetical multi-level method the subdomain size
should be chosen as small as possible. Problems may occur if
we want to use a restarted GMRES method (i.e. GMRES(m)).
In contrast to GMRES, global convergence of GMRES(m) is
not ensured: we observed stagnation if m is chosen smaller
than the length of the longest plateau that is encountered. For
most experiments in this paper, we consider comparatively
low Reynolds Numbers so that an accuracy of 10−6−10−8 is
sufficient to resolve the steady state.

0 50 100 150 200 250 300 350 400

100
250
500

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000

60
63
69

80
99

107
113
117

125
133

145
144
150

157
162

338
358

365

GMRES iterations

R
ey

no
ld

s
N

um
be

r

Figure 6. Number of classical GMRES iterations at high
Reynolds Numbers (subdomain size 4× 4, convergence tol-
erance 10−8)

B. Robustness at high Reynolds Numbers

When increasing the Reynolds Number Re in the driven cav-
ity problem, the solution becomes more and more convection
dominated and the Jacobian more and more ill-conditioned.
At Re≈ 8000, eigenvalues start crossing the imaginary axis so
that the solution becomes unstable and the Jacobian indefinite.
In Figure 6 we show the number of GMRES iterations on
the Schur complement in the first Newton step, depending on
Re. In the last few steps the number of iterations increases
sharply because the method encounters a plateau. Neverthe-
less, convergence is achieved within a relatively small number
of iterations and does not stagnate. The simulation takes about
ten minutes using 16 cores of a Huygens node.

C. Computational cost of the three phases

In order to identify the parts of the program where most
time is spent, we will solve the 3D driven cavity prob-
lem, a straight-forward generalization of the problem inves-
tigated above where no-slip boundary conditions are applied
at five walls of a cube of edge length 1, and a Dirichlet-
condition u = 1,v = w = 0 at the top. We use a stretched
32× 32× 32 grid and a subdomain size of 4× 4× 4. We
compute steady states at increasing Reynolds Numbers of
Re = 50,100,167,258,380,545, and 767. At this parameter
value, the steady state is already highly unstable in the three-
dimensional case. A total of eight linear systems has to be
solved. The resulting profile of the code on up to 32 cores
is shown in Figure 7. Here KLU is used for the subdomain
factorizations, and MUMPS [9] (version 4.9.2) for the reduced
system. PT-SCOTCH [10] is used to compute a fill-reducing
ordering for the reduced problem. In all cases at least 96% of
the total runtime is spent on solving the linear systems with
the Jacobian (the remaining tasks are collectively denoted by
‘Other’ here). This justifies neglecting the continuation and
Newton process from now on (the relative increase of this
portion as the number of cores increases is explained by the

392

fact that the model itself is not parallelized, i.e. the entire
Jacobian and right-hand side are computed on each process).
The initialization phase is cheap and seems to scale reasonably
well, and as it has to be performed only once per simulation,
we do not further consider it.

The compute phase clearly dominates, but its portion de-
creases as the number of cores is increased. This indicates high
computational costs in this phase but also reasonably good
scalability. On the other hand, the solve phase becomes more
dominant as the number of cores is increased: This indicates
a lack of scalability. We will look at the compute and solve
phases in more detail in the next section to identify the weak
spots of the code.

D. Parallel performance

We use the 3D test problem described above and investigate
the performance for subdomain size 8 on a 64× 64× 64
grid. Unfortunately we can not go beyond this problem size
because of memory limitations: the CFD code that provides
the Jacobian is not parallelized.

Table I contains the data for the ‘compute’ phase and the
‘solve’ phase. For each phase it shows the total time in the first
row. The remaining rows are the subroutines that contribute
significantly to that phase. The figures in these columns do
not necessarily add up to 100 because the timing results are
averaged over several instances of the phase. For a varying
number of cores we show the wall-clock time and the parallel
speed-up as compared to the first column. Note that we start off
with 8 cores. Running with one core was simply not possible.

1) Compute Phase: The subdomain factorization yields
super-linear speed-up in most cases (Table Ia). For the con-
struction of the Schur complement S this is only achieved for
small subdomains: larger subdomains mean that larger dense
blocks have to be summed into the sparse matrix, which leads
to increased communication. The compute phase is dominated
by initialization and computation of the preconditioner for S.

1%

81%

18%
< 1% 3%

73%

23%

1%

3%

69%

26%

2% 3%

65%

28%

4%

1 core 8 cores

16 cores 32 cores

Initialize
Compute
Solve
Other

Figure 7. Profiling of a continuation run on up to 32 cores.
We distinguish the three phases of the linear solver and show
the percentage of the total runtime spent in each phase.

The initialization phase is not critical as it could be moved
into the global initialization phase (and thus be performed only
once).

The computation of the preconditioner is detailed in the
indented part of Table Ia. The dominant subroutine here is
the application (from the left and right) of the Householder
transform to the matrix S. A better implementation of this
operation could be thought of, but it seems to scale reasonably
well as it is. Once the transformed matrix is constructed, the
factorization of the non-VΣ blocks scales linearly in most cases.
The factorization of the reduced (VΣ-) matrix is relatively fast
but scales poorly.

2) Solve Phase: The results for the solution phase in
Table Ib are analogous to those for the compute phase: the
subdomain solve scales super-linearly in most cases, and most
time is spent in applying the preconditioner. The entry ‘Other’
comprises the Krylov method, matrix-vector products and
other basic linear algebra operations. These parts of the solver
seem to scale fairly well. When applying the preconditioner,
the orthogonal transformation of the vectors and the solution
of the dense sub-blocks scale well whereas the solution of
the reduced problem does not. Several factors cause this poor
performance of the parallel direct solver: The reduced problem
may be too small to be handled efficiently by a large number
of cores. Similar to common practice in multigrid methods
one might use a subset of the processors here. Furthermore,
the fill-reducing ordering is computed based on the graph of
the complete matrix. This is likely to lead to pivoting as the
p-nodes are encountered. The ordering proposed in [3] may
help to overcome this issue.

Table I. 3D Driven cavity - grid size 64, subdomain size 8.

(a) Compute phase

time [sec] speed-up
cores 8 16 32 64 8 16 32 64

compute 301 161 95 50 1 1.9 3.2 6.1
subd. fact. 30 13 7.1 3.5 1 2.4 4.3 8.6
construct S 77 47 23 13 1 1.7 3.4 6.1
init. prec 102 53 37 15 1 1.9 2.8 6.6
comp. prec 91 49 28 18 1 1.9 3.2 5.1

block fact. 12 6.2 3.8 1.6 1 1.9 3 7
transform S 81 42 25 12 1 1.9 3.2 6.7
coarse fact. 7.1 6.4 6.2 6.2 1 1.1 1.2 1.2

(b) Solve Phase

time [sec] speed-up
cores 8 16 32 64 8 16 32 64

solve phase 92 46 25 42 1 2 3.7 2.2
subd. solve 32 14 6.8 3.9 1 2.2 4.7 8.4
apply prec 6.6 4.8 3.8 30 1 1.4 1.7 .22

apply trans 1.4 .92 .48 .24 1 1.5 2.9 5.6
solve blocks 1.1 .64 .33 .18 1 1.7 3.3 6.1
solve coarse 3.7 3.2 2.9 30 1 1.1 1.3 .12

other 53 27 15 7.7 1 1.9 3.6 6.9

393

V. COMPARISON WITH RESULTS IN LITERATURE

In the previous section we showed results concerning the
robustness and performance of the solver developed in [4], [1]
and its implementation presented here. A legitimate question
is how our method compares to other approaches.

In [11] a number of segregated preconditioning techniques
(PCD, SIMPLE and LSC) are compared using Trilinos imple-
mentations. A finite element discretization with full Newton
linearization of the driven cavity problem is used, both in
2D and 3D. Therefore, this study lends itself for a direct
comparison. Results are shown for Reynolds Numbers up to
1 000 (in 2D); the convergence tolerance of 10−5 for the
linear solves is slightly larger than the 10−6 used for our 3D
experiments. At Re = 10 (i.e. for the Stokes problem with a
mild nonsymmetric perturbation) the PCD method achieves a
grid independent convergence rate. Their fastest method (PCD)
requires about 40 minutes to compute the steady state solution
at Re = 1 000 on a 5122 mesh using 64 Intel CPUs running
at 3.6 GHz. The machine we use is faster (4.7 GHz/core)
and has more RAM, but the fact that we could compute an
unstable steady state at Re = 15 000 on 16 CPUs in about
10 minutes shows that our algorithm is more robust and
our implementation is competitive in 2D. In 3D their PCD
method requires about 28 minutes to compute a steady state
at Re= 100 on a 643 grid using 8 CPUs. Using our method on
8 Huygens cores, the steady state can be computed in less than
10 minutes, but in terms of memory efficiency and scalability
our implementation is currently not competitive in 3D. When
the bottlenecks identified earlier on are removed, it should be
significantly faster and applicable to larger problems (1283 as
in [11] and beyond).

The segregated approach has the advantage that it can
readily be applied to unstructured grid problems because
AMG preconditioners are used for the two inner solves.
In [12] aggregation-based AMG methods are investigated for
nonsymmetric fluid dynamics problems, where the importance
of the choice of transfer operators is emphasized. Multigrid
methods can typically not be applied to the complete linear
system, though, making the use of segregated preconditioners
necessary. While we have not investigated the issue theoret-
ically, the fact that we can compute steady states at much
higher Reynolds Numbers (where the systems are highly
indefinite and non-normal) is strong numerical evidence of
the importance of a fully coupled approach.

VI. DISCUSSION

We have presented a parallel implementation of the robust
hybrid solver from [4], [1] based on Trilinos. By using object-
oriented programming techniques, the code is kept flexible and
extensible. The availability of a fast parallel implementation
allowed us to perform more detailed experiments than before,
revealing that the convergence curves of the preconditioned
GMRES method are uniform at the beginning, followed by a
series of plateaus as the residual norm becomes small, leading
to possible stagnation of the restarted GMRES method. A
Krylov method based on Householder transforms may help

to overcome this issue [13]. Together with the results on the
complexity of the method from Section II-A we conclude that
the subdomain size should be chosen as small as possible.

On the other hand, the solution of the reduced problem is
the main parallelization pitfall in the present implementation.
Improved fill-reducing orderings may help in this case, in
particular using an ordering based on the ‘compressed graph’
F(A) + F(BBT). For large problems, recursive application
of the method becomes essential to sufficiently reduce the
problem size before applying a direct solver. This would allow
choosing short separators on every level until the reduced
problem can be solved efficiently by a sequential method. The
program structure is such that this can be implemented easily
once the algorithm is fully understood.

Besides investigating the performance of the implementa-
tion we have also demonstrated that the solver is robust and
efficient at Reynolds Numbers up to 15 000 for the Jacobian of
the 2D driven cavity problem. To our best knowledge, results
for these highly indefinite and non-normal matrices were not
reported in literature before.

ACKNOWLEDGMENT

This research was supported by the Netherlands Organisa-
tion for Scientific Research (NWO).

REFERENCES

[1] F. W. Wubs and J. Thies, “A robust two-level incomplete factorization
for (Navier-)Stokes saddle point matrices,” SIAM J. Matrix Anal. Appl.,
in press.

[2] M. Tůma, “A note on the LDL decomposition of matrices from saddle-
point problems,” SIAM J. Matrix Anal. Appl., vol. 23, 2002.

[3] A. C. de Niet and F. W. Wubs, “Numerically stable LDLT-
factorization of F-type saddle point matrices,” IMA Journal of
Numerical Analysis, vol. 29, no. 1, pp. 208–234, 2009. [Online].
Available: http://dx.doi.org/10.1093/imanum/drn005

[4] J. Thies and F. W. Wubs, “A robust parallel ILU solver with grid-
independent convergence for the coupled steady incompressible Navier-
Stokes equations,” in Proc. ECCOMAS CFD 2010, J. C. F. Peireira and
A. Sequeira, Eds., 2010, CDROM paper 1421.

[5] J. Thies, F. W. Wubs, and H. A. Dijkstra, “Bifurcation analysis of
3D ocean flows using a parallel fully implicit ocean model,” Ocean
Modelling, vol. 40, pp. 287–297, 2009.

[6] G. Karypis and V. Kumar, “Parallel multilevel k-way partitioning scheme
for irregular graphs,” SIAM Rev., vol. 41, no. 2, pp. 278–300, 1999.

[7] J. Gaidamour and P. Hénon, “A parallel direct/iterative solver based on a
Schur complement approach,” Computational Science and Engineering,
IEEE International Conference on, vol. 0, pp. 98–105, 2008.

[8] P. Hénon and Y. Saad, “A parallel multistage ILU factorization based
on a hierarchical graph decomposition,” SIAM J. Matrix Anal. Appl.,
vol. 28, pp. 2266–2293, 2006.

[9] P. R. Amestoy, I. S. Duff, J. Koster, and J. Y. L’Excellent, “MUMPS:
A multifrontal massively parallel solver,” ERCIM News, vol. 50, pp.
14–15, jul 2002, european Research Consortium for Informatics and
Mathematics (ERCIM), http://www.ercim.org.

[10] C. Chevalier and F. Pellegrini, “PT-SCOTCH: a tool for efficient parallel
graph ordering,” Parallel Computing, vol. 34, pp. 318–331, 2008.

[11] H. C. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. S.
Tuminaro, “A taxonomy and comparison of parallel block multi-
level preconditioners for the incompressible Navier-Stokes equations,”
J. Comp. Phys., vol. 227, no. 3, pp. 1790–1808, 2008.

[12] M. Sala and R. S. Tuminaro, “A new Petrov-Galerkin smoothed aggrega-
tion preconditioner for nonsymmetric linear systems,” SIAM J. Scientific
Computing, vol. 31, no. 1, pp. 143–166, 2008.

[13] M. Sosonkina, L. T. Watson, and R. K. Kapania, “A new adaptive
GMRES algorithm for achieving high accuracy,” Numer. Linear Algebra
Appl, vol. 5, pp. 275–297, 1998.

394

