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Abstract--A general applicable model has been developed which can predict mass and heat transfer fluxes 
through a vapour/gas-liquid interface in case a reversible chemical reaction with associated heat effect takes 
place in the liquid phase. In this model the Maxwell-Stefan theory has been used to describe the transport 
of mass and heat. The description of the transfer rates has been based on the film model in which 
a well-mixed bulk and a stagnant zone are thought to exist. In this paper results obtained from the 
Maxwell-Stefan theory have been compared with the results obtained from the classical theory due to Fick. 
This has been done for isothermal absorption of a pure gas A in a solvent containing a reactive component 
B. Component A is allowed to react by a unimolecular chemical reaction or by a bimolecular chemical 
reaction with B to produce component C. Since the Maxwell-Stefan theory leads to implicit expressions for 
the absorption rates, approximate explicit expressions have been derived. In case of absorption with 
chemical reaction it turned out that the mass transfer rate could be formulated as the product of the mass 
flux for physical absorption and an enhancement factor. This enhancement factor possesses the same 
functional dependency in case Fick's law is used to describe the mass transfer process. The model which has 
been developed in this work is quite general and can be used for a rather general class of gas-liquid and 
vapour-liquid transfer processes. In this paper (Part I) only isothermal simulations will be reported to show 
the important features of the model for describing mass transfer with chemical reaction. In many processes 
such as distillation, reactive distillation and some absorption processes, heat effects may play an important 
additional role. In Part II non-isothermal processes will be studied to investigate the influence of heat effects 
on mass transfer rates. 

1. INTRODUCTION 
Many industrial processes involve mass transfer pro- 
cesses between a gas/vapour and a liquid. Usually, 
these transfer processes are described on the basis of 
Fick's law, but the Maxwell-Stefan theory finds in- 
creasing application. Especially for reactive distilla- 
tion it can be anticipated that the Maxwell-Stefan 
theory should be used for describing the mass transfer 
processes. Moreover ,  with reactive distillation there is 
a need to take heat transfer and chemical reaction into 
account. The model developed in this study will be 
formulated on a generalized basis and as a conse- 
quence it can be used for many other gas-l iquid and 
vapour- l iquid  transfer processes. However, reactive 
distillation has recently received considerable atten- 
tion in literature. With reactive distillation reaction 
and separation are carried out simultaneously in one 
apparatus, usually a distillation column. This kind of 
processing can be advantageous for equilibrium reac- 
tions. By removing one of the products from the 
reactive zone by evaporation,  the equilibrium is shift- 
ed to the product side and consequently higher con- 
versions can be obtained. Commercial  applications of 
reactive distillation are the production of methyl- 
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acetate and the production of MTBE (Mikitenko, 
1986; Agreda et al., 1990; Cieutat, 1989). A second 
reaction type of interest for reactive distillation is the 
consecutive reaction. By removing the desired prod- 
uct from the reactive zone, the undesired consecutive 
reaction can be suppressed resulting in improved 
process selectivity. However, little information is 
available in literature with respect to applications 
involving reactive distillation in case of consecutive 
reactions (Carr/t et al., 1979; Corrigan and Miller, 
1968). 

Modell ing of reactive distillation is usually based 
on the equilibrium stage-approach (Baratella et al., 
1974; Nelson, 1971; Venkataraman et al., 1990). Sim- 
ilar to modelling of ordinary distillation processes, 
this approach will produce the required number of 
theoretical plates. For  calculating the actual number 
of separation stages, stage efficiencies or HETPs  are 
used in case of, respectively, a tray and a packed 
column. For  binary distillation this method will give 
reliable results since both components possess the 
same efficiency which does not depend on the position 
in the column with values ranging from 0 to 1. In case 
of mult icomponent  distillation each component  will 
possess its own efficiency, which is a function of the 
position in the column with values which can range 
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from -oo  to +oo.  If chemical reaction occurs in 
addition a so-called reaction efficiency has to be intro- 
duced. It is clear that the equilibrium stage-concept 
will give rise to significant problems which necessi- 
tates another approach. 

The variation of efficiencies is due to interaction 
phenomena caused by the simultaneous diffusional 
transport of several componehts. From a fundamental 
point of view one should therefore take these interac- 
tion phenomena explicitly into account in the descrip- 
tion of the elementary processes (i.e. mass and heat 
transfer with chemical reaction). In literature this ap- 
proach has been used within the non-equilibrium 
stage model (Sivasubramanian and Boston, 1990). 
Sawistowski (1983) and Sawistowski and Pilavakis 
(1979) have developed a model describing reactive 
distillation in a packed column. Their model incor- 
porates a simple representation of the prevailing mass 
and heat transfer processes supplemented with a rate 
equation for chemical reaction, allowing chemical en- 
hancement of mass transfer. They assumed elemen- 
tary reaction kinetics, equal binary diffusion coeffi- 
cients and equal molar latent heat of evaporation for 
each component. 

In this paper a transfer model will be presented, 
which can predict mass and energy transport through 
a gas/vapour-liquid interface where a chemical reac- 
tion occurs simultaneously in the liquid phase. In this 
model the Maxwell-Stefan theory has been used to 
describe the transport of mass and heat. On the basis 
of this model a numerical study will be made to 
investigate the consequences of using the Maxwell- 
Stefan equation for describing mass transfer in case of 
physical absorption and in case of absorption with 
chemical reaction. Despite the fact that the Maxwell- 
Stefan theory has received significant attention, the 
incorporation of chemical reactions with associated 

heat effects has not yet been studied in great detail. 
Vanni and Baldi (1991) described mass transfer and 
chemical reaction using the aforementioned theory, 
but they did not take heat transport into account. 
Besides, they made specific assumptions with respect 
to the volatility of components and reaction 
stoichiometry and kinetics. Additional work is avail- 
able in literature (Mann and Moyes, 1977; Chatterjee 
and Altwicker, 1987; AI-Ubaidi et al., 1990; Bhat- 
tacharya et al., 1987) dealing with mass and heat 
transfer processes with simultaneous chemical conver- 
sion; however, the theory ofmulticomponent diffusion 
has not been used in these studies. 

2. THEORY 
The mass and heat transport model should be able 

to predict mass and energy fluxes through a gas/va- 
pour-liquid interface in case a chemical reaction oc- 
curs in the liquid phase. In this study the film model 
will be adopted which postulates the existence of 
a well-mixed bulk and a stagnant transfer zone near 
the interface (see Fig. 1). The equations describing the 
mass and heat fluxes play an important role in our 
model and will be presented subsequently. 

Since interaction phenomena due to simultaneous 
diffusion of several components play an important 
role, the Maxwell-Stefan theory has been selected to 
describe the mass transfer processes. The general form 
of the flux expressions can be represented by (Taylor 
and Krishna, 1993) 

r i  = di (1) 

where the driving forces dl acting on a component 
i are set equal to the resistance forces ri experienced by 
the same component. From irreversible thermo- 
dynamics the following expressions for the forces are 

\ 
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Fig. 1. Schematic representation of the region near the gas/vapour-liquid interface in terms of the film 
model. 



obtained: 

Modelling of simultaneous mass 

ri = ~ xixj(ui -- uj) ~ V T  -- xixj~is - -~  (2) 
s ~  Di s s:, 

cr  Rlas Tdl = ci(Vlti)e,r + (¢ki -- ¢ol)Vp 

- - ( c i F i - r - o i j ~ = l C j F j ) .  (3) 

The first resistance term is due to binary diffusional 
interactions and the second term accounts for the 
Soret effect. The first term on the right-hand side of 
eq. (3) represents the gradient of the chemical poten- 
tial of component i at constant temperature and pres- 
sure. The second term is due to the pressure gradient, 
which only plays a role, when the weight fraction and 
volume fraction differ. The last term represents a gen- 
eral expression for a driving force and can be used, for 
example, to represent body forces and forces due to 
imposed electric fields. In our model it has been as- 
sumed that the driving force is completely determined 
by the gradient of the chemical potential and addi- 
tionally that the Soret effect is of no importance. 
Assuming a thermodynamic ideal system, the follow- 
ing dimensionless representation of the Maxwell 
-Stefan flux equations can be obtained: 

dx__ 2 = J ~  xi N j  - x j N i  

drl , ~ cTKis (4) 

where ~/ represents a dimensionless coordinate, Kij 
a binary mass transfer coefficient, cr  the total molar 
concentration and N s the molar flux of component 
j with respect to a stationary reference frame. 

The energy flux consists of a conductive and a con- 
vective contribution. The general expression for the 
conductive flux is given by 

q = - 2 V T +  ½ c r R g . , r  F. x~xs~is(u~ - us). (5) 

The first term on the right-hand side of eq. (5) de- 
scribes the heat conduction and the second term 
accounts for the Dufour effect. The convective contri- 
bution of the energy flux is given by 

i=n 

E . . . . .  = ~, N i H ,  (6) 
i=1  

where the partial molar enthalpy H~ is expressed by 
a caloric equation of state with constant Cp~: 

Hi = Hi.r.,. + Cv i (T - -  Tref.). (7) 

The heat of vaporization or the heat of dissolution has 
been incorporated in the term Hi.r,.,.. Neglecting the 
Dufour effect, the total energy flux E is given by 

i=. dT 
E = ~ N i H i  -- hLe '  - -  (8) 

i= 1 d~l 

where h represents a heat transfer coefficient, ~/a di- 
mensionless distance and Le'  a modified Lewis num- 
ber defined as 6d~..  As stated earlier the film model 
has been adopted in the present study which requires 
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specification of the film thickness for both the mass 
and heat transfer film. In the gas/vapour phase it has 
been assumed that the thickness of both films is the 
same which is justified since the Lewis number ap- 
proximately equals one in this case. In the liquid 
phase, however, the thickness of the heat transfer film 
can exceed the thickness of the mass transfer film 
considerably. This has been taken into account in our 
model. Consequently, beyond the mass transfer 
boundary it has been assumed that the convective and 
the conductive contribution of the energy transport 
are decoupled since two different transport mecha- 
nisms are involved (respectively, mixing and conduc- 
tion). The convective contribution will directly enter 
the liquid bulk, whereas the conductive contribution 
Ec has to obey eq. (9) from z = ~.,,~ to z = 6h.z before it 
reaches the liquid bulk: 

dT 
Ec = - hLe'  - - .  (9) 

d~/ 

In addition to the expression for the mass and energy 
fluxes, conservation equations for mass and energy 
are required to enable the calculation of concentra- 
tion and temperature profiles. From these profiles 
the mass and heat transfer rates through the va- 
pour/gas-liquid interface can subsequently be ob- 
tained. The species conservation equations for the 
liquid and the vapour/gas phase are respectively given 
by 

dNi 
- -  - v i R 6 ,  = 0 (10) 
dn 

and 

dNi 
- - = 0 .  (11) 
dr/ 

Note that the mass flux of component i in the liquid 
phase changes due to chemical conversion, whereas 
this flux remains constant in the vapour/gas phase 
since it has been assumed that no reaction occurs in 
the vapour/gas phase. For  both phases the conserva- 
tion for thermal energy equation is given by 

dE 
- -  = 0 .  ( 1 2 )  
d~? 

Since partial molar enthalpies are used in the energy 
flux description (6), no source term appears in eq. (12). 

The following chemical reaction is assumed to take 
place in the liquid: 

voA + VbB~--,vcC + vdD (13) 

where the reaction rate is expressed by the following 
power law formulation in which the temperature de- 
pendency of the kinetic constants is represented by an 
Arrhenius-type expression: 

R = kot exp - R~,T]XAXB__ 

( Eo2 '~ ~c x~. (14) ko2 e x p  

k R~,TI 

C[$ 50-[O-d 
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TO obtain an unique solution of the differential equa- 
tions boundary conditions are required. The follow- 
ing boundary conditions have been used in this study 
(see Fig. 1): 

- - a t  gas/vapour bulk-film interface (z = 6,..g/~ 
= 6h./v): 

(15a) Yi = Yl,b 

and 

T = Tg/v,b 

- - a t  gas/vapour-liquid interface (z = 0): 

pg/v.i(T) 
Yi = - -  xi (15c) 

P 

- - a t  liquid bulk-mass transfer film interface 
(z = 6,..,): 

xi = xl,b (15d) 

and 

M. J. W. FRANK et al. 

used for gas-liquid mixtures. Condition (15e) states 
that the conductive contribution of the energy flux 
which reaches the boundary of the liquid mass trans- 
fer film is passed through to the heat transfer film 
obeying eq. (9). The convective contribution of the 
energy transport enters the liquid bulk independently. 

In the gas/vapour phase the dimensionless distance 
~/ranges from 0 to 1, where r /=  1 corresponds to the 
position of the interface. In the liquid phase this para- 
meter ranges from 0 to 1 for the mass transfer film and 

(15b) from 0 to Le' for the heat transfer film. Hence, r /=  0 
corresponds to the position of the interface and q = 1 
and q = Le' correspond, respectively, to the bound- 
aries of the mass and heat transfer film. The mass and 
energy fluxes can now be calculated by solving the 
differential equations (4) and (8)-(12) subject to the 
boundary conditions (15). Due to the non-linearities 
a numerical solution procedure has been used which 
will be discussed subsequently. 

- - a t  liquid 
(z = aha): 

Ec = q . . . .  transfer film (15e) 

bulk-heat transfer film interface 

T =  Tl.b. (15t") 

Conditions (15a), (15b), (15d) and (15f) result from the 
imposed bulk conditions. Condition (15c) describes 
the gas/vapour-liquid equilibrium at the gas/va- 
pour-liquid interface where the gas/vapour pressure 
can be represented by 

( A 2 T )  (16a) Pg/v.i = exp A1 Aa + 

o r  

= - -  _ - w - -  - . (16b) Pg/v,i 
mi 

The Antoine equation (16a) is normally used for a va- 
pour-liquid mixture, whereas eq. (16b) is normally 

3. NUMERICAL SOLUTION METHOD 

The differential equations were solved numerically 
by a finite-difference method. The resulting system of 
non-linear equations were solved with the multi- 
dimensional Newton-Raphson method. Figure 2 
schematically shows the finite-difference representa- 
tion of the computational domain. On both sides of 
the gas/vapour-liquid interface the dimensionless dis- 
tance q has been subdivided into segments of equal 
length resulting in an equidistant distribution of the 
grid points. No grid points were distributed beyond 
the boundary of the mass and heat transfer film (i.e. 
for k > K1 + K2) since in this part of the domain 
differential equation (9) with boundary condition (15f) 
can be solved analytically. This yields a new boundary 
condition which has to be satisfied at the boundary of 
the mass and heat transfer film: 

T,=, = Tl,b +-;-- 1 (17) 

gas/vapour gas/vapour- 
bulk liquid interface 

gas/vapour 

k ~ )  

11--0 

liquid 

rl > 

discretisation point 

k=K1 

rl=l  

11--0 

boundary between liquid 
mass and heat transfer bulk 
film 

k=KI+K2 

m 

m 

r I > 1]=1 

definition point of principal variables 

rl=Le' 

Fig. 2. Schematic representation of the computational domain employed in the finite-difference technique. 
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where Ec represents the energy flux prevailing in the 
heat transfer film, which has to obey boundary condi- 
tion (15e). 

The discretization points and the variables have 
been defined at, respectively, the centre of the segment 
and the boundary between two neighbour segments. 
Standard second-order finite difference approxima- 
tions were used to discretize the spatial derivatives: 

k-l~2 A + O (A  2) (18a) 

in which Y represents a principal variable. Simple 
linear interpolations were used whenever variables 
were required at other positions than defined accord- 
ing to Fig. 2: 

Yk + Yk-1 
Yk 1 / 2 -  2 (18b) 

To enable solution of the set of equations, the number 
of unknown variables and the number of (non-linear) 
equations should be equal. The variables are xi(yi) ,  

Ni, Tand E, so in case ofn components and K~ + K 2 
discretization points we have (K1 + K2 + 1) (2n + 2) 
unknowns. At each discretization point, eq. (4) has 
been used for components I to n -  l, whereas for 
component n this equation has been replaced by 

i-n 
xi = 1. (19) 

i - I  

Discretization of eqs (10) and (11) for, respectively, the 
liquid phase and the gas/vapour phase together with 
the discretization of the conservation equation for 
thermal energy (12) and the energy flux equation (8) 
leads to a total of(K1 + K2) (2n + 2) non-linear equa- 
tions. Boundary conditions (15a), (15b), (15d) and (17) 
provide the remaining (2n + 2) relations. 

The system of non-linear equations has been solved 
by the multidimensional Newton-Raphson technique 
which involves the successive solution of a linear 
system of equations: 

A J')7 j+~ =/~J ( j = 0 , 1  . . . .  ) (20) 

where A i represents the Jacobi matrix, 37 i+ t the vector 
of all unknown variables and g j the residue vector. 
The linearized set of equations has been solved using 
a LU-decomposition technique. All calculations re- 
ported in this paper were performed on a personal 
computer. 

4. ISOTHERMAL RESULTS 

The model described in the previous sections is very 
complicated and therefore in Part I only isothermal 
studies will be reported. This limiting situation can be 
obtained by putting Hi = 0 (i = 1,..., n) and setting 
the bulk temperatures equal to To in eq. (16b). In this 
paper the influence of multicomponent transport phe- 
nomena on the mass transfer rate between 
a gas/vapour and a liquid will be studied in detail for 
both non-reactive and reactive conditions. It should 
be stressed that the validity of the model developed in 
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this study is not limited to the low concentration 
domain. Subsequently, a number of isothermal mass 
transfer calculations will be reported with increasing 
degree of complexity. 

4.1. Mass  transfer without chemical reaction 

In this case it is assumed that a pure gas A is being 
absorbed in a solvent containing a chemically inert 
component B. Both the solvent and B are not volatile 
and the fraction of A in the liquid bulk equals zero. 
The binary mass transfer coefficient K o between 
A and the solvent in eq. (4) is given a typical value of 
1 x 10 -4 m/s, whereas the total concentration of the 
liquid cr is set to 1 x l04 mol/m 3, also a typical value. 
Parameters to be chosen are" the solubility of A, XAi, 

the fraction of B in the solvent XBb, the mass transfer 
coefficient between A and B, KAn and the mass trans- 
fer coefficient between B and the solvent, KBs. The 
results of the calculations are presented in Table 1. 
Since both the solvent and component B possess 
a zero flux, KB, has no influence on the mass transfer 
process and has therefore been omitted. The com- 
puted absorption rate has been compared with the 
absorption rate obtained from analytical solutions for 
the following cases. 

(I) Mass transfer is described by Fick's law with 
superimposed drift: 

nA = -- ln(1 -- XAi). (21) 

(II) Mass transfer is described by the 
Maxwell-Stefan theory (the algebraic derivation is 
given in Appendix A): 

1 - (1 - XAi) exp (na) 

+ XBb {exp [ha(1 -- dan)] -- 1} = 0 (22) 

where das denotes the ratio of the diffusion coefficient 
of A in the solvent and the diffusion coefficient of A in 
B (dab = DA~/DaB). 

(III) Mass transfer is described by a modified Max- 
wetl-Stefan theory by assuming n A << 1 and daBnA<< 1 

(the absorption flux is sufficiently small). In this case 
eq. (22) can be reduced to the following explicit ex- 
pression for the dimensionless absorption flux by lin- 
earization of the exponential terms (see Appendix A): 

XAi 
= . (23) 

nA 1 + XBb(daa -- 1) -- XAi 

(IV) Mass transfer is described by a modified Max- 
well-Stefan theory where expression (23) is modified 
in such a way that it reduces to eq. (21) in case 
dAB = 1: 

- l n ( 1  - -  X a i )  

na = 1 + Xnb(dAB -- 1) " (24) 

In all cases nA represents a dimensionless absorption 
flux (hA = NA/KA~cr) .  The explicit expression for nA 
given in case (III) is the same as eq. (24) from Vanni 
and Baldi (1991) by taking, following their nomencla- 
ture, Ha = 0, x3 = 0, x4 = 1 --x2~ and Xlo<<l. The 
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Table 1. Dimensionless mass flux nA for mass transfer without chemical reaction. [The results 
obtained from eqs (21), (23) and (24) are compared with the results obtained from the numerical 
model] 

Run XAi XBb dan nA Relative deviation (%) 

model eq. (21) eq. (23) eq. (24) 

1 0.001 0.001 1 0.0010 0 0.1 0 
2 0.001 0.5 1 0.0010 0 0.1 0 
3 0.1 0.001 1 0.1054 0 5 0 
4 0.1 0.5 1 0.1054 0 5 0 
5 0.5 0.001 1 0.6929 0 44 0 
6 0.5 0.5 1 0.6929 0 44 0 
7 0.001 0.001 2 0.0010 0.1 0.1 0 
8 0.001 0.5 2 0.0007 50 0 0 
9 0.1 0.00l 2 0.1053 0.1 5 0 

10 0.1 0.5 2 0.0707 49 1 -- 0.6 
11 0.5 0,001 2 0.6924 0.1 44 0 
12 0.5 0.5 2 0.4810 44 4 -- 4 
13 0.001 0.001 0.5 0.0010 -- 0.1 0.1 0 
14 0.001 0.5 0.5 0.0013 -- 25 0.t 0 
15 0.1 0.001 0.5 0.1054 -- 0.1 5 0 
16 0.1 0.5 0.5 0.1413 -- 25 9 -- 0.6 
17 0.5 0.001 0.5 0.6933 -- 0.1 44 0 
18 0.5 0.5 0.5 0.9619 -- 28 108 -- 4 

difference between the numerical results and the re- 
sults obtained from analytical solution (22) is always 
smaller than 0.04% indicating the accuracy of the 
numerical calculations. According to Table 1 in case 
of equal diffusivities, eq. (21) can be used to estimate 
the mass flux of A, regardless the value of the solubil- 
ity. In systems where the diffusivities differ and where 
small fractions of B in the solvent prevail, the error is 
typically smaller than 0.1%. For  large values of xnb, 
eq. (21) cannot be used anymore. The explicit expres- 
sion (23) can be used if the solubility of A in the 
solvent is sufficiently low where the error does not 
depend much on the fraction of B. The modified 
explicit expression (24) produces the smallest errors 
and can be used over a very wide range of solubility of 
A, bulk fraction of B and ratio of diffusion coefficients 
of A and B in the solvent. The maximum error pro- 
duced by eq. (24) as shown in Table 1 is approximately 
40/0. 

Figures 3(a) and 3(b) show the computed fraction 
profiles of component  A and B in the liquid film 
corresponding to, respectively, run 1 and run 6 from 
Table 1. Figure 3(a) shows that low fractions of A and 
B produce straight profiles, whereas high fractions of 
A and B result in curved profiles [see Fig. 3(b)]. The 
latter is due to the fact that the mass fluxes consist of 
a diffusive part as well as a convective (i.e. drift) part. 
This is also the reason why the fraction of B possesses 
a gradient, although the flux of component  B equals 
zero. 

4.2. Mass transfer with instantaneous chemical 
reaction 

In this case a pure gas A is assumed to absorb in 
a solvent containing a reactive component  B where 
the following chemical reaction takes place in the 

0 . 0 0 1 2  

0 . 0 0 1  

0 . 0 0 0 0  

0 . 0 0 0 6  

0 . 0 0 0 4  

T 
0 . 0 0 0 2  

0 I I I I 

a 0 0 . 2  0 . 4  0 . 6  0 . 8  1 

0 . 6  ~ ~ ~ 

x I 0 . 5  

T 0 . 4  

0.3 

0 . 2  

0.1 

0 
b 0 0 . 2  0 . 4  0 , 6  0 . 8  1 

Fig. 3. Computed fraction profiles of components A and 
B in the liquid film corresponding to (a) run 1 and (b) run 
6 from Table 1 for mass transfer without chemical reaction. 

solvent: 

A + B - ~ C .  

For  this situation an irreversible chemical reaction 
with first-order kinetics with respect to A and B has 
been used, where a very high value of the  reaction rate 
constant has been taken to simulate an instantaneous 
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reaction. The solvent,  c o m p o n e n t  B and  product  t ion is given in Appendix  B): 
C are no t  volatile and  the fractions of A and  C in the 
liquid bulk  equal  zero. The mass transfer coefficient 
Ki~ between A and  the solvent in eq. (4) is given 
a typical value of 1 x 10 -4  m/s, whereas the total  
concen t ra t ion  of the liquid c r  is set to 1 x 104 mo l /m  3, 
also a typical value. Paramete r s  to be chosen are: the 
solubility of A, XA, the fraction of B in the solvent XBb 
and  the mass  transfer  coefficients Kn~, Kcs, KAn, 
KAC and KBc. The results of the model calculat ions 
are given in Table  2. Figures 4(a) and  4(b) show the 
computed  fract ion profiles of componen t  A, B and  
C in the l iquid film cor responding  to, respectively, run  
1 and  run  2 f rom Table  2. Figure 4(a) shows that  low 
fract ions of A and  B produce  straight  profiles, whereas 
high fract ions of  A and  B result in slightly curved 
profiles and  a max i m um  in the fraction profile of 
c o m p o n e n t  C [see Fig. 4(b)]. This p h e n o m e n o n  is due 
to the fact tha t  the fluxes consist  of a diffusive par t  as 
well as a convective part.  This leads to a gradient  in 
the fract ion of C at the left side of the react ion plane, 
a l though the flux of c o m p o n e n t  C equals zero in this 
par t  of the film. The  computed  absorp t ion  rate has 
been compared  with the absorp t ion  rates obta ined  
from analyt ical  solutions for a n u m b e r  of l imiting 
cases which will be discussed subsequently.  

(I) Mass  transfer  is described by Fick's law: 

x.b 
h a =  l + - - I X a i  (25) 

d~, XAd 
where dB, represents the rat io  of the binary diffusion 
coefficients: dn, = Da,/Dns. 

(II) Mass  transfer  is described by the 
Maxwei l -S tefan  theory [eq. (4)]. In this case the di- 
mensionless absorp t ion  rate na and  the dimensionless 
coordina te  of the react ion plane f a r e  given implicitly 
by the following two equat ions  (an algebraic deriva- 

(XAi -- 1) exp (n A f )  + exp [(1 -- dAc)na f-] 

-- (1 -- XBb) {exp I-(1 - dac)naf]  -- 1} 

x exp [(dss - dc~)nA(1 - - f ) ]  = 0 

ds, - 
Xab -- dacnA (1 - - f )  -~ da~ -~ (1 -- XBb) 
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(26a) 

x {1 - exp [(dns - dc~)na(1 - f ) ] }  = 0 (26b) 

where dac, dnc and dc, represent,  respectively, the 
following ratios of the b inary  diffusion coefficients 

Oa~/Dac, DAs/DBc and OAs/Dcs. 
(III) Mass transfer is described by the Max-  

well-Stefan theory. In addit ion,  the following as- 
sumpt ions  have been made  which allow a drastic 
simplification of the implicit expressions (26a) and  
(26b). 

(a) 1 - dAc = 0 and  dB~ -- dc, = 0: In this case the 
diffusion coefficients of A in the solvent and  A in C are 
equal  and  in addi t ion the diffusion coefficients of 
B and  C in the solvent are equal. Subst i tu t ion  of 
1 - dac = 0 and  dn, - dc, = 0 in eq. (26) leads to 

XBb 
na = ln(1 --Xai)- (27) 

(dnc -- dB,)xnb +dns 

(b) 1 - dAc = 0 and  dBs -- dc, ~ 0: In this case the 
diffusion coefficients of A in the solvent and  A in C are 
equal; however,  the diffusion coefficients of B and  C in 
the solvent differ. With  the addi t ional  assumpt ion  
[(dn, - d c s )  (1 - f )  na [ << 1, which allows l inearizat ion 
of the remaining exponential  terms (see Appendix A), 
this will also lead to eq. (27). 

(c) 1 - dac # 0 and dB~ -- dc~ = 0: In this case the 
diffusion coefficients of A in the solvent and  A in 
C differ; however, the diffusion coefficients of B and  

Table 2. Dimensionless mass flux nA for mass transfer with instantaneous chemical reaction. [The results 
obtained from the numerical model and eqs (25) and (30) are compared with the results obtained from the 
analytical solution, eq. (26)] 

Run XAi XBb Change with respect na Relative deviation (%) 
to the eq. (26) 

standard case Model eq. (25) eq. (30) 

1 0.001 0.002 - -  0.003 0 0 0 
2 0.3 0.6 0.957 - 0.4 - 6 0 
3 0.001 0.002 dn~ = 2 0.002 0 0 0 
4 0.3 0.6 dB~ = 2 0.759 -- 0.3 -- 21 3.6 
5 0.001 0.002 dcs = 2 0.003 0 0 0 
6 0.3 0.6 dcs = 2 0.957 - 0.4 - 6 0 
7 0.3 0.6 day = 2 0.957 - 0.9 - 6 0 
8 0.3 0.6 dAc = 2 0.827 0.1 9 -- 0.5 
9 0.3 0.6 dnc = 2 0.732 - 0.4 23 0 

10 0.3 0.6 dn~ = 0.5 1.078 - 0.3 39 2.7 
11 0.3 0.6 dc~ = 0.5 0.957 - 0.4 - 6 0 
12 0.3 0.6 dan = 0.5 0.957 0.2 -- 6 0 
13 0.3 0.6 dAc = 0.5 1.121 -- 1.6 -- 20 -- 1 
14 0.3 0.6 dBc = 0.5 1.214 -- 0.2 -- 26 0 

Standard case: KA~ = 1 x 10 -4 m/s; dan = dAc = dBc =dB, =dcs = 1 
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Fig. 4. Computed fraction profiles of components A, B and 
C in the liquid film corresponding to (a) run 1 and (b) run 
2 from Table 2 for mass transfer with instantaneous bi- 

molecular chemical reaction. 

C in the solvent are equal. With the addit ional  as- 
sumptionsfnA<< 1 and dAcfnA<< 1, eq. (26) reduces to 

XBb XAi  

nA = (dnc -- ds~) xnb + dBs + (dac - -  1) Xnb + 1 -- XAi " 

(28) 

(d) 1 - dAc # 0 and dB~ -- dc~ # 0: In this case the 
diffusion coefficients of A in the solvent and A in 
C differ and in addit ion the diffusion coefficients of 
B and C in the solvent are different. With the addi- 
tional assumptions fnA << 1, dAc fnA << 1 and 
](d~ - dc,) (1 - f )  hal<< 1 the resulting expression is 
given by 

XBb 

nA = ( d v c  -- dn~)xn~ + dn~ 

X A i  + 
dcs + (d,c - dc,)xnb 

(dxc -- 1)xnb + 1 -- xai 
dns + (dsc - dn,)xnb 

(29) 

On the basis of inspection of eqs (27)-(29) and combi- 
nation of the results for cases (a)-(d) the following 
general approximate  explicit expression for the di- 
mensionless absorpt ion flux can be formulated: 

XBb 
1"1 A = 

(dnc - da,)xn~ + dn, 

In(1 - xai) 
• (30) 

dc, + (dBc -- dc~) xnb 
( d a c -  l)xm, + 1 

dBs+ (dsc -- d~)Xsb 

M. J. W. FRANK et al. 

Equation (30) reduces to eq. (27) in case dAc = 1, to 
eq. (28) in case dns = dcs and small XAi and to eq. (29) 
in case of small Xai. Equation (30) has been derived 

a , - "  from eq. (26) by making a first-order expansion of the 
exponential terms. Higher-order  expansions are of 
course possible and will be more accurate, but will 
also lead to more complex explicit functions• The 
explicit expression for nA given in case (IIIc) is the 
same as eq. (57) from Vanni and Baldi (1991) by 
taking, following their nomenclature, v2 = v3 = 1, 
x3 = 0, x ,  = 1 - x2o and Xlo<< 1. According to Table 
2 the difference between the numerical results and the 
results obtained from analytical solution (26) is always 
smaller than 1.6%. This remaining difference is prob-  
ably due to the value of the reaction rate constant 
which might have been chosen too low to simulate an 
instantaneous reaction perfectly. Due to anticipated 
problems with numerical stability it was not attem- 
pted to use higher values of the reaction rate constant. 
As shown in Table 2, Fick's  law, eq. (25), produces 
errors up to 4 0 o  and can therefore only be used when 
the fractions of A and B are very small. The explicit 
expression (30) has also been compared with the re- 
suits obtained from eq. (26) and it was found that the 
maximum difference amounted to 3.6%. 

Equations (25) and (30) have also been tested under 
more severe conditions. The numerical data  used in 
the simulations are shown in Table 3. Figure 5(a) 
shows the results obtained from eq. (25) vs the results 
obtained from the exact analytical solution [eq. (26)]. 
Figure 5(b) shows the results obtained from eq. (30) vs 
the results obtained from the exact analytical solution 
[eq. (26)]. F rom Fig. 5(a) it can be seen that the mass 
fluxes cannot be predicted on the basis of Fick's law. 
It turned out that  eq. (30) could predict the mass flux 
in 75% of the situations resulting in an error typically 
less than 5%. By examining other situations and mak- 
ing addit ional  calculations it turned out that errors 
exceeding 5% occurred in the following cases: 

- -dac ,~ dBs<<dc~(Dac ~ D~s>>Dc~) and dac<< 
dc,(Dac>>Dc,) and Xai /> 0.05 and XBb ~> 0.05 except 
for dAc = 1 (DA~ = DAC); 

- -dnc  ,~ dcs>>dn,(Dnc ,~ Dc~<<Dn~) for all xA~ and 
Xsb; 

- -dnc  ~- dcs<<dv,(Dnc ~ Dc~>> Dn~) and xai<<xnb; 
--XA~ /> 0.5 and Xnb I> 0.5 and dac, dnc, dw, dc~ 

(Dac, Dnc, Dns, Dcs) deviating significantly from 
1 (OAs). 

Table 3. Parameter values used to calculate the data points 
shown in Fig. 5 for mass transfer with instantaneous chem- 
ical reaction 

XAi ~ {0.00l, 0.1, 0.5} 
X,~ e {0.00l, 0.1, 0.5} 

dAc~ {0.2, 5} 
dac ~ {0.2, 5} 
d,s ~ {0.2, 5} 
dc. ~ {0.2. 5} 
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approximate explicit expression, eq. (30), with the results 
from the analytical solution, eq. (26). Parameter values are 

given in Table 3. 

4.3. Mass transfer with first-order chemical reaction 
In this case a pure gas is assumed to absorb in 

a solvent containing a chemically inert component B, 
where the following chemical reaction takes place in 
the solvent: 

A- - ,C  

which is assumed to obey first-order kinetics. The 
solvent, component B and product C are not volatile 
and the fractions of A and C in the liquid bulk equal 
zero. In the previous section an approximate explicit 
expression [eq. (24)] has been derived for physical 
absorption of A in the solvent co_ntaining a chemically 
inert component B. Subsequently, the development of 
an expression for the absorption flux of A will be 
considered in case the aforementioned chemical reac- 
tion takes place. In this development the classical 
theory, based on Fick's law [see e.g. Westerterp et al., 
(1990)], of chemically enhanced absorption will serve 
as the starting point. The results of the numerical 
calculations will be compared with the results ob- 
tained on basis of this theory. 

In case of mass transfer accompanied by chemical 
reactions in gas-liquid systems the mass flux of the 
absorbed component is usually formulated as the 
product of an enhancement factor EA and the mass 
flux corresponding to physical absorption at the same 
bulk concentration: 

h A ,  wi th  . . . .  tion = EA ha. without  . . . . .  ion (31) 
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in which the enhancement factor EA is expressed by 

Ha 
EA = - -  (32) 

tanh(Ha) 

where Ha is the Hatta number: 

Ha = / k16m 
~/cr"K a--~ff (33) 

and KA elf the effective mass transfer coefficient of A in 
the liquid mixture: 

1 xsb 1 -- XBb 
t- - -  ( 3 4 )  

KAeff KAB KA~ 

The expression for the enhancement factor EA, eq. 
(32), is strictly valid in case Fick's law is used for the 
description of the mass transfer process. In this study 
it will be investigated whether the same equation can 
be applied in case the Maxwell-Stefan theory is used 
to describe the mass transfer process. To evaluate the 
Hatta number, an effective mass transfer coefficient of 
A in the liquid mixture is required. Expression (34) has 
been derived from eqs (21) and (24) (see Appendix C). 
The dimensionless mass transfer flux nA in the absence 
of chemical reaction is given by eq. (24). Figure 6(a) 
shows a comparison between the numerically com- 
puted absorption flux and the absorption flux ob- 
tained from expression (31), using eqs (24) and 
(32)-(34) in case of equal mass transfer coefficients (see 
Table 4). From this figure it can be concluded that 
absorption without reaction can be described well 
with eq. (24). In addition, it can be concluded that the 
classical expressions for the enhancement factor [eq. 
(32)] can also be used in case the Maxwell-Stefan 
equations are used to describe the mass transfer pro- 
cess. Figures 6(b) and 6(c) show a comparison between 
the numerically computed absorption flux and the 
absorption flux obtained form expression (31), using 
eqs (24) and (32)-(34) in case the mass transfer coeffi- 
cients differ (see Table 4). From these figures it can be 
concluded that for systems with different binary mass 
transfer coefficients, absorption without reaction can 
be described well with eq. (24). Furthermore, it can be 
concluded that eq. (32) can be used to estimate the 
enhancement factor and additionally that the use of 
Kaeff in the Hatta number appears to produce satis- 
factory results. The large error (65%) in Fig. 6(c) for 
a reaction rate constant of I x 10 7 mol/m a s is due to 
the fact that the film composition differs significantly 
from the bulk composition. In this case a substantial 
amount of C has been produced in the film. Due to the 
fact that KAc is comparatively low, the effective trans- 
port coefficient of A in the liquid film is also low. 
Equation (34) does not account for this phenomenon 
as it is based on bulk composition. The approximate 
analytical expression will predict wrong values for the 
mass transfer flux in case of high reaction rate con- 
stants and KAc values which differ significantly from 
KAB and KAy. 
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, solvent: 

[] A + B--*C 

which is assumed to obey (1,1)-order kinetics. The 
solvent, component  B and product C are not volatile 
and the fractions of A and C in the liquid bulk equal 
zero. In a previous section an approximate explicit 
expression [eq. (24)] has been derived for physical 
absorption of A in a solvent containing a chemically 
inert component  B. In addition, an approximate ex- 
plicit expression [eq. (30)] has been derived in case an 
instantaneous bimolecular chemical reaction takes 
place in the liquid phase. Subsequently, an expression 
for the absorption flux of A will be developed in case 
the chemical reaction proceeds at finite rate. Similar 
to the first-order chemical reaction, eq. (31) is valid 
where the expression for the enhancement factor is 
now given by 

m 

1 ~  10T 3 "109 
Ol |reel.m" . s ' ' |  

I i I i 

5~ [ ]  

I I I I I 

1o j W ,~o 7, 
kOl [mo l . r a ' ' . s " ]  

Fig. 6. Comparison of the computed numerical results 02) 
with the results obtained from the approximate analytical 
expression (-), given by eqs (24) and (31)-(34) for mass 
transfer with first-order chemical reaction, vs reaction rate 

constant. Parameter values are given in Table 4. 

4.4. Mass transfer with (1,1)-order chemical 
reaction-intermediate reaction rates 

In this case a pure gas is assumed to absorb in 
a solvent containing a reactive component  B where 
the following chemical reaction takes place in the 

Ha E~__~_-_E_ a 

EA = X| Eao~-  I 

tanh(Hax/~-~-a~o ~_ EA" ) 

where the Hatta  number  Ha is given by 

Ma=  
~/ £T K Aeff 

(35) 

(36) 

and the maximum enhancement factor Eao~ is given 
by 

Eaoo = r/A, w i t h  i n s t a n t  . . . . . . . . . .  t i o n  (37) 
Y/A, without reaction 

The expression for the enhancement factor Ea, eq. 
(35), has first been derived by van Krevelen and Hof- 
tijzer in 1948. These authors used Fick's law for the 
description of the mass transfer process and approx- 
imated the concentration profile of component  B by 
a constant xBi over the entire reaction zone. It seems 
worthwhile to investigate whether the same equation 
can be applied in case the Maxwell-Stefan theory is 
used to describe the mass transfer process. To evalu- 
ate the Hatta number, again an effective mass transfer 
coefficient KAeff, given by eq. (34), is required. The 
dimensionless mass transfer flux nA in absence of 
chemical reaction and in case of an instantaneous 
reaction are given by, respectively, eqs (24) and (30). 

Table 4. Parameter values used to calculate the data points shown 
in Figs 6 and 7 for mass transfer with, respectively, first-order 
chemical reaction and (1,1)-order chemical reaction 

3M = 1 x 10-s m 
Cr = 1 x 104 mol/m 3 

Hoj = 0 J/mol 
Cj,~ = 0 J/tool K 

Eot = 0 J / m o l  

Equal binary mass transfer coefficients 
K[j = I x 10 -4 m/s, i = A,B,C,s, 

j = A,B,C,s 
Different binary mass transfer coefficients 
K~B = 3 x 10-" m/s, K~c = 3 x 10 -5 m/s, 

K~s = 1 x 10-* m/s 
K~c = 4 x 10-4 m/s, Kk, = 5x 10-s m/s, 

K~, = 2 x 10-" m/s 
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Figures 7(a)--(c), show a comparison between the nu- 
merically computed absorption flux and the absorp- 
tion flux obtained from expression (31), using eqs (24), 
(30) and (34)-(37). From these figures it can be con- 
cluded that for both equal and different binary mass 
transfer coefficients absorption without reaction can 
be described well with eq. (24), whereas absorption 
with instantaneous reaction can be described well 
with eq. (30). If the Maxweil-Stefan theory is used to 
describe the mass transfer process, the enhancement 
factor obeys the same expression as the one obtained 
on the basis of Fick's law [eq. (35)]. Finally, from Figs 
7(b) and 7(c) it appears that the use of an effective 
mass transfer coefficient KAaf in the Hatta number 
again produces satisfactory results. 
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4.5, Mass transfer with (1,1)-order chemical 
reaction--special case 

A closer examination of the results obtained for run 
12 from Table 2 (KAn = 2 x 10 -4 m/s) revealed that 
an increasing reaction rate constant produced a de- 
creasing dimensionless mass flux hA. This surprising 
effect has been studied in more detail by calculating nA 
as a function of the reaction rate constant where KAB 
has been taken equal to 1 × 10-3m/s in order to 
enlarge the computed effects. The results of the calcu- 
lations are shown in Fig. 8. In this figure three lines 
are shown which correspond to the following reaction 
kinetics: 

R = ko.0 (38a) 

R = kl,oXA (38b) 

R = k1.1 XAXs. (38C) 

From this figure it can be seen that the dimensionless 
mass flux passes through a minimum and maximum 
with increasing value of the reaction rate constant 
where the loci of these minima and maxima depend 
on the reaction kinetics. The shape of the curve can be 
explained as follows: in case of an increasing chemical 
reaction rate the average fraction of B in the mass 
transfer film will decrease. This will lead to a lower 
effective diffusion coefficient of A in the mixture, as 
Kas is smaller than KAn, and as a consequence the flux 
of A will decrease. By increasing the rate constant 
further, the increase due to higher reaction rates will 
exceed the decrease due to a smaller effective diffusion 
coefficient and the flux will increase correspondingly. 
At very high reaction rates the effect of the lower 
effective diffusion coefficient of A in the mixture is 
more important than the effect of increased reaction 
rate constant and the flux decreases to the limit cor- 
responding to an instantaneous reaction. The min- 
imum and maximum are thus explained by the change 
of the effective mass transfer coefficients of compo- 
nents A and B with increasing k ... .  which is only 
possible with a set of different binary mass transfer 
coefficients. It should be noted that the effects shown 
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Fig. 7. Comparison of the computed numerical results ([~) 
with the results obtained from the approximate analytical 
expression (-), given by eqs (24), (30), (31) and (34)-(37) for 
mass transfer with (I, 1)-order chemical reaction, vs reaction 

rate constant. Parameter values are given in Table 4. 
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in Fig. 8 could be demonstrated due to the fact that 
the maximum enhancement factor was very close to 
one and therefore will be of no importance for most 
gas-liquid absorption systems. 

4.6. M a s s  transfer  wi th  reversible chemical  react ion 

In this case a vapour-l iquid system, where high 
concentrations occur and all components are volatile, 
will be considered. The liquid and vapour bulk are not 
in physical equilibrium. In the liquid phase the follow- 
ing reversible chemical reaction occurs: 

A + B,--,C + D (39) 

where the reaction kinetics is given by 

R = k01XAXa --  ko2XcXo.  (40) 

The liquid bulk is assumed to be at chemical equilib- 
rium. Contrary to gas-liquid systems, for 
vapour-l iquid systems it is not possible to derive 
explicit analytical expressions for the mass fluxes 
which is due to the fact that two or more physical 
equilibrium constants mi have to be dealt with. This 
will lead to coupling of all the mass fluxes at the 
vapour - liquid interface since eqs (15c) and (19) have 
to be satisfied. For  the system described above several 
simulations have been performed in which the chem- 
ical equilibrium constant K = kol/ko2 and the reac- 
tion rate constant kol have been varied. Parameter 
values used in the simulations are given in Table 5. 
The results are presented in Figs 9 and 10. 

Due to chemical conversion in the liquid-phase 
mass transfer film the mass flux of A at the va- 
pour- l iquid interface and the mass flux of A at the 
boundary between this film and the liquid bulk will 
differ. Figures 9(a) and (b) show the values of these 
fluxes as a function of the reaction rate constant kol 
for equilibrium constants K = 1 and K = 100. The 
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difference between inlet (i.e. at the vapour-l iquid in- 
terface) and outlet (i.e. at the boundary between mass 
transfer film and liquid bulk) flux in the liquid film can 
be related to the amount  that has been converted or 
produced chemically per unit time. This latter quanti- 
ty is shown in Figs 10(a) and (b) as a function of the 
chemical reaction rate constant k01. In case of equal 
binary mass transfer coefficients no maxima occur 
and the curves behave as we expect them to behave: 
an increase in equilibrium constant results in an in- 
crease in chemical conversion rate [see Fig. 10(a)]. 
Figure 10(b) shows that in case of different binary 
mass transfer coefficients this is not valid anymore. 
This is possibly due to variations in interaction forces 
as these are now dependent on component concentra- 
tions and therefore on chemical conversion. 

5. DISCUSSION AND CONCLUSIONS 

In this study a general applicable model has been 
developed which can predict mass and heat transfer 
fluxes through a vapour/gas-liquid interface in case 
a chemical reaction occurs in the liquid phase. In this 
model the Maxwell-Stefan theory has been used to 
describe the transport of mass and heat. A film model 
has been adopted which postulates the existence of 
a well-mixed bulk and stagnant zones where the prin- 
cipal mass and heat transfer resistances are situated. 
Due to the mathematical complexity the equations 
have been solved numerically by a finite-difference 
technique. In this paper (Part I) the Maxwell-Stefan 
theory has been compared with the classical theory 
due to Fick for isothermal absorption of a pure gas 
A in a solvent containing component B. Component  
A is allowed to react by a unimolecular chemical 
reaction or by a bimolecular chemical reaction with 

Table 5. Parameter values used to calculate the profiles depicted in Figs 9 and 10 for a vapour-liquid 
system with reversible chemical reaction 

6,. = 1 x 10-Sm mA = 0. l Ylb = 0.25 
Cr = 1 X 104 mo1/m 3 ms = 0.9 XAb = 0.1 
Hoi = 0 J/tool mc = 0.25 XBb = 4/(8 + 2K) 
Cpi = 0 J/tool K m o = 10 Xcb = K/(8 + 2K) 
Eox = 0 J/tool xob = 0.4 
Ea2 = 0 J/tool 

ko2 = kol/K 

Equal binary mass transfer coefficients 
Kfj v= 0.1 m/s i =  1 . . .4,j  = 1.-.4 
K~= l x l 0 - * m / s  i = 1..4, j - 1  . . . .  4 

Different binary mass transfer coefficients 

I 0.4 0.01 0.0.13 ] 0.4 - -  1 0.2 
K~'J*'= 0.01 1 

kO.1 0.2 0.03 

1 5x10-5 
Ki./= x 10-'* 

L1 x 10 -5 

5xlO -5 4xlO -4 

- -  2x 10-* 

2 x 10 -4 

l x 1 0  -4  6 x l O - *  

1 x 10-51  

I x 10-*  / 6?_0-.] 
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Fig. 9. The molar flux of component A at the vapour-liquid 
interface (o) and at the boundary between mass transfer film 
and liquid bulk (&) as function of reaction rate constant in 
case (a) the mass transfer coefficients are equal and (b) the 

mass transfer coefficients are different. 

1657 

[tool.m" 2.s  "1 ] 
I 0.$ 

0 

- 0 . 5  

-1 
10 o 

a 

0.1 

ANA 0 

[ m o l . m "  2. s" 1] 
-0.1 

.0.2 

-0.3 

- 0 . 4  

-0.$ 
1 0  0 

b 

I 

t0 ~ 
l l l 1 l 1 1 

10 s ~ I10 I° 104 1~01 t,*o,.m" . ,  ! 

r i ~ i i i i i i i i 

i I I i L t I I I I I 

i 0 2  l 0 4  1 0 6  s 1 0  12  I 0  I 0  3 1 0 1  
ko I {mol.m" . s" ] 

Fig. 10. The amount of component A which is converted 
(positive) or produced (negative) chemically in the liquid film 
as function of the reaction rate constant in case (a) the mass 
transfer coefficients are equal and (b) the mass transfer coeffi- 

cients are different. 

component  B to produce component  C. When all 
binary diffusion coefficients are equal, mass transfer 
can be described by Fick's law with superimposed 
drift, but  when the binary diffusion coefficients differ 
significantly, the MaxwelI-Stefan flux equation 
should be used to account properly for all binary 
interactions. As the Maxwell-Stefan equation results 
in implicit expressions for the absorption fluxes, in 
case of both absorption without chemical reaction 
and absorption with an instantaneous bimolecular 
chemical reaction, approximate explicit expressions 
have been derived, which appear to be very succesful; 
respectively, eqs (24) and (30). In case of absorption 
with chemical reaction it turned out that the mass 
transfer rate could be described by the mass transfer 
rate without chemical reaction and an enhancement 
factor [eq. (31)]. This enhancement factor possesses 
the same functional dependency with respect to the 
Hatta  number  as is the case when Fick's law is used 
to describe the diffusional transport. For  a 
vapour-l iquid system, where high concentrations oc- 
cur and all components are volatile, one should al- 
ways use the Maxwell-Stefan theory. As all flux equa- 
tions are coupled due to vapour-l iquid equilibrium 
conditions no explicit analytical expressions can be 
derived. In this case numerical solution procedures 
are required. 

The model which has been developed in this paper 
is very general and can be used in many gas-liquid 

and vapour-l iquid transfer processes. Especially in 
case of reactive distillation, where mass transfer, heat 
transfer and chemical reaction are coupled and where 
high component  fractions occur, the developed flux 
model will be very useful. 

In this paper only isothermal simulations have been 
conducted to show the important  features of the 
model to describe mass transfer with chemical reac- 
tion. In many industrial processes, distillation, react- 
ive distillation and some absorption processes, heat 
effects play an important  role and therefore cannot be 
neglected. These effects will be discussed in Part  II. 
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Ci 

CT 
Cpi 
dij 
Dij 
E 
EA 
Eal 
E~2 
Ec 

NOTATION 
concentration of component  i, mol/m 3 
total concentration, mol/m a 
heat capacity of component  i, J/tool K 
( = o a s / o , j )  
binary diffusion coefficient, m2/s 
energy flux, j /m2s  
enhancement factor 
activation energy forward reaction, J/tool 
activation energy backward reaction, J/tool 
conductive energy flux in heat transfer film 
from v/= I to v/= Le' 
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f 

h 

Hi 

H a  

kol 

ko2 
Kij 

K 
Le' 
mi 

nA 

Ni 

P 
Pg/v.i 
q 

Rgas 
R 
T 
Ui 

Xi 

Xii 

Xib 

Yi 

M. J. W. FRANK et al. 

relative position of reaction plane in mass 
transfer film according to Fig. BI 
heat transfer coefficient ( = 2/3h), J/K s 
partial molar enthalpy of component  i, 
J/mol 
Hatta  number  
forward reaction rate constant, mol/m3 s 
backward reaction rate constant, mol/m3 s 
binary mass transfer coefficient ( = Di/6m), 

m/s 
chemical equilibrium constant 
modified Lewis number  ( = (~h,i/~m,l) 

solubility of component  i ( = xJyi)  

( = Na/KAsCT) 
molar flux of component  i, mol/m 2 s 
pressure, N/m 2 
gas-vapour pressure of component  i, N/m 2 
conductive heat flux, j /m2s  
gas constant, J/mol K 
reaction rate, mol/m3 s 
temperature, K 
velocity of component  i, m/s 
molar fraction (in liquid phase) of compon- 
ent i 
molar fraction (in liquid phase) of compon- 
ent i at interface 
molar fraction (in liquid phase) of compon- 
ent i in bulk 
molar fraction of component  i in gas-  
vapour phase 
distance in film, m 

Greek letters 
binary thermal diffusion factor 
thickness of heat transfer film, m 
thickness of mass transfer film, m 
distance in film ( = z/3,.) 
conductivity, J/m K s 
volume fraction of component  i 
chemical potential of component  i, J/mol 
stoichiometric coefficient of component  
i (reactant negative, product positive) 
weight fraction of component  i 

6h 
tim 
t/ 
2 
¢, 
#i 

Vi 

OJ i 

Subscripts 
A component  A 
b bulk 
B component  B 
C component C 
O/v gas-vapour phase 
i interface 
i component  i 
l liquid phase 
s solvent 
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APPENDIX A: MASS TRANSFER WITHOUT CHEMICAL 
REACTION 

A.1. Algebraic derivation o f  eq. (22) 
For the Maxweli-Stefan theory the following set of differ- 

ential equations with associated boundary conditions have 
to be solved: 

dxA x,~Ns -- xBN,t x,4N, -- x ,N a 
- + ( A t )  

dr/ Cr KAB CT KA~ 

dxB xsNa - xAN8 xvNs - xsNB 
- + (A2) 

d~l Cr K4 a c T Ka~ 

r/= 0, x,4 = xAi (A3) 

~/= 1 x a = 0 a n d x  s=xm,.  (A4) 

Solution of eq. (A2) with Ns = N, = 0, as both components 
are non-volatile, and constant Na, as no chemical reaction 
occurs, with boundary condition (A4) gives 

xB = xsbexp[ NA (r/-- 1)1. (A5) 
Lcr KA. 3 
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Integration of eq. (A1) with N n = Ns = 0, x~ = 1 - x,l - xn xi = 1 
after substitution of eq. (A5) for xn yields the following 
general solution for the molar fraction of component A: 

xA = 1 + f l exp(nAq)  - xnb exp[nadas(~l  -- 1)] (A6) 

with fl an integration constant which can be obtained from 
boundary condition (A3). Substitution of the resulting ex- 
pression for fl in eq. (A6) yields after application of boundary 
condition (A4) the final eq. (22). 

A.2. Derivation o f  eq. (23) 
Assuming n a << 1 and dAnn/i << 1 (thus also x i = 0 

Ina(l -- daB)l<< 1), the terms exp(nA) and exp [na(1 - daB)] 
may be approximated by the following first-order lineariz- 
ation: 

f ( a  + b) =f(a )  + by'  (a). (A7) 

Taking a = 0 and b, respectively, na and na(1 - daB) results 
in the following expressions: 

exp(nA) = 1 + na (A8) 

exp [ha(1 - daB)] = 1 + ha(1 -- daB). (A9) 

Substitution of eqs (A8) and (A9) in the exact implicit expres- 
sion (22) and rearranging the resulting equation gives the 
approximate explicit expression (23). 

APPENDIX ik MASS TRANSFER WITH INSTANTANEOUS 
CHEMICAL REACTION 

B.1. Algebraic derivation o f  eq. (26) 
For mass transfer with instantaneous chemical reaction 

the concentration profiles as schematically represented in 
Fig. B1 are assumed where the chemical reaction only takes 
place at plane f. Mass transfer is described by eq. (4) with 
i = A, B, C and s. At the left side of planer,  Nn = xa = 0 (no 
B can pass plane f )  and N c  = N~ = 0 (product and solvent 
are non-volatile). This results in the following differential 
equations and associated boundary conditions: 

dxa Xc Na x~ NA 
(B1) 

drl ¢TKAc Cr Ka~ 

dxc  Xc Na  
(B2) 

drl C T K ac 

r 1 = 0  x a = x a l  (B3) 

q = f  X A = 0  and X c = X c y .  (B4) 

At the right side of p lane r  Na = Xa = 0 (no A can pass plane 
f )  and N~ = 0 (solvent is non-volatile). This results in the 
following differential equations and associated boundary 
conditions: 

dxB xa N c  - Xc NB xs Nn  
- -  = ( B 5 )  
dq c r K n c  cr  K m  

dxc  x c N n -  x n N c  x ~ N c  
(86) 

dtt CTKnc er Kc~ 

r / = f  x n = 0  and X c = X c l  (87) 

q =  1, x n = x n b  and x c = O .  (B8) 

Integration of eq. (B2) with boundary condition (B4) gives 

Xc = Xcf  exp [na d ac(tl - f ) ]  (89) 

Integration ofeq. (B1) after substitution of  xs  = 1 - xa  - Xc 
and eq. (B9) and application of boundary conditions (83) 
and (B4) gives 

0 = Xcl  {exp [ - n a f ( d z c  -- 1)] -- 1} 

+ 1 -- (1 -- xal) exp(naf) .  (B10) 
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Fig. BI. Schematic representation of the fraction profiles in 
the liquid film in case of an instantaneous reaction 

A + B ~ C .  

By adding eqs (B5) and (B6) and substituting NB = -- Na 
and N c  = Na (stoichiometrics) yields after application of 
boundary condition (B7): 

xs  + xc  = l - ( 1 - X c l  ) 

x e x p [ n a ( f -  q)(dss - dc~)]. (B11) 

Applying boundary condition (B8) to eq. (B11) yields 

xnb = 1 - (1 - Xcf)  exp[nA(f--  l)(dB~ -- dc~)]. 

(B12) 

Now eq. (B6) can be integrated after substitution of eq. (B 1 l) 
for xR and after application of boundary condition (B7) one 
obtains 

dsc - dc~ 
0 = - nadBc(1 - f )  - (1 - Xcl)  - -  

dB~ -- dc~ 

x {exp[nA(dss -- dcs) ( f -  1)] - 1} + Xcl .  (B13) 

Equation (812) gives an expression for (1 - Xcf)  which can 
be substituted in eqs (BI0) and (B13) which upon rearranging 
give, respectively, eqs (26a) and (26b). 

APPENDIX C: EFFECTIVE MASS TRANSFER COEFFICIENT 

C.1. Derivation o f  eq. (34) 
Writing eq. (21) in parameters with dimensions gives 

N A = -- K A,crln(1 - xai). (C1) 

Equation (24) can be rearranged to 

CT 
Na In (1 -- XAi). (C2) 

1 - XVb XSb F ' - -  
Kas KAs  

From comparison of eqs (C1) and (C2) it can be concluded 
that a better expression is obtained if Ka, is replaced by an 
"effective" mass transfer coefficient which takes into account 
the difference in binary mass transfer coefficients: eq. (34). 
The more general expression for the effective mass transfer 
coefficient of component i is given by 

1 -- x~ ~ XJb (C3) 
Ki. elf. Kij  


