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8 Ecological Panel Inference from Repeated Cross Sections∗

Ben Pelzer, Rob Eisinga, and Philip Hans Franses

ABSTRACT

This chapter presents a Markov chain model for the estimation of individual-level binary transitions
from a time series of independent repeated cross-sectional (RCS) samples. Although RCS samples
lack direct information on individual turnover, it is demonstrated here that it is possible with these
data to draw meaningful conclusions on individual state-to-state transitions. We discuss estimation
and inference using maximum likelihood, parametric bootstrap, and Markov chain Monte Carlo
approaches. The model is illustrated by an application to the rise in ownership of computers in Dutch
households since 1986, using a 13-wave annual panel data set. These data encompass more information
than we need to estimate the model, and this additional information allows us to assess the validity
of the parameter estimates. We examine the determinants of the transitions from have-not to have
(and back again) using well-known socioeconomic and demographic covariates of the digital divide.
Parametric bootstrap and Bayesian simulation are used to evaluate the accuracy and the precision of
the ML estimates, and the results are also compared with those of a first-order dynamic panel model.
To mimic genuine repeated cross-sectional data, we additionally analyze samples of independent
observations randomly drawn from the panel. Software implementing the model is available.

8.1 INTRODUCTION

It has sometimes been argued that King’s ecological inference model can be adapted and
fruitfully applied to independent repeated cross-sectional (RCS) samples (see, e.g., Penubarti
and Schuessler, 1998; King, Rosen, and Tanner 1999). To date, however, surprisingly little
research has been devoted to the development of cross-level inference models that draw
panel conclusions from nonpanel data.1 Moreover, the existing approaches to ecological
panel inference are implicitly or explicitly grouping methods, which suffer from small-
sample-size restrictions. The individual observations are typically grouped into a limited
number of observed covariate patterns, based on time-invariant characteristics (e.g., sex,
race). For each covariate pattern, the margins of a transition table are obtained by aggregating

∗ The data for the Socio-Economic Panel used in this paper were collected by Statistics Netherlands and were
made available by the Scientific Statistical Agency of the Netherlands Organization for Scientific Research. Our
program CrossMark implements all the simulations and estimations reported here. It is programmed in Delphi
but distributed as a standalone program running under Windows. The program (including documentation) is
free software and available from the first author 〈b.pelzer@maw.kun.nl〉.

1 Studies that are related to this topic include Franklin (1989), Moffitt (1990, 1993), Sigelman (1991), Mebane
and Wand (1997), Penubarti and Schuessler (1998). The model presented by Quinn in Chapter 9 of this volume
is also of relevance. The framework discussed here has, in its basic form, been proposed by Moffitt (1990, 1993).
Pelzer, Eisinga, and Franses (2002) discuss the (dis)similarities between this model and the ecological panel
inference (EPI) method of Penubarti and Schuessler (1998) and the two-stage auxiliary instrumental variables
(2SAIV) approach of Franklin (1989).
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within the groupings, and this aggregate information is subsequently used to track changes
in the dependent variable of interest. Obviously, such grouping methods are likely to face
difficulties (such as sparse-data problems) if the number of covariates and/or the number
of repeated cross sections become large.

In this chapter we consider a transition inference model for RCS data with a more dynamic
and more flexible structure. In the model proposed here, the micro observations need not
be divided into (fixed) groups to obtain sample aggregates. In fact, the variation in the
individual covariates is utilized as part of the estimation procedure. The model therefore
takes full advantage of the individual survey data and provides full information on the effects
of covariates entering the model.

There are several reasons for investigating dynamic models for RCS data. One is the
lack of genuine panel data. Panel designs are, rightfully, highly regarded for the oppor-
tunity they offer to measure transitions of state or value from repeated observations on
the same sample units. For many research issues, however, adequate panel data are rather
hard to come by or simply unavailable. Another major difficulty is that panel data are po-
tentially subject to nonsampling biases. An important such bias is sample attrition that
results from the progressive loss of (often selective groups of) respondents willing to par-
ticipate in the data collection. While nonresponse is also a limitation for cross-sectional
surveys, it is a more serious problem for panel data because nonresponse often accumu-
lates over time. A related limitation is that it is often difficult to ensure that changes in
the target population are reflected in the panel. While panels are typically designed to be
representative of the population at the beginning of the study, the panel ages over time, and
few panels are, in addition to providing longitudinal data, also designed to permanently
provide fully representative information of the population by continuous renewal of the
sample.

A large number of cross-sectional surveys conducted by public and private organizations
are repeated at regular time intervals. These repeated cross-sectional surveys do not suffer
from panel mortality and reflect changes in the universe that cannot be taken into account
by a panel study. Estimating individual transitions from such data has an air of performing
an impossible task, of obtaining information from nowhere. Indeed, it is often argued that
panel data are absolutely needed to study individual-level change (e.g., Kish, 1987: 167).
While individual change is obviously only visible in panel data, we will show that this
argument is not correct and that data from successive, separately drawn samples can be used
to validly estimate transitions using a model that is no more magical than the use of “plug-in”
estimates and bridging assumptions in other areas of statistical modeling.

The outline of this chapter is as follows. Section 8.2 presents a Markov transition model
for repeated cross sections designed to deal specifically with binary responses. The model
has its origins in the work of Moffitt (1990, 1993). We briefly review its main features and
discuss maximum likelihood (ML), parametric bootstrap, and Markov chain Monte Carlo
(MCMC) approaches to estimation and inference. Section 8.3 considers an application of
the model to the rise in computer penetration rates in Dutch households from 1986 to
1998, using annual panel data from the Socio-Economic Panel (SEP) survey of Statistics
Netherlands. We examine the determinants of the transitions from “have-not” to “have”
(and back again) using well-known socioeconomic and demographic covariates of the digital
divide. Parametric bootstrap and Bayesian simulation are used to evaluate the accuracy and
the precision of the RCS Markov ML estimates, and the results are also compared with those
of a first-order dynamic panel model. To mimic genuine RCS data, we additionally analyze
samples of independent observations randomly drawn from the panel. The summary in
Section 8.4 concludes the chapter.
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8.2 ESTIMATING TRANSITIONS FROM RCS DATA

8.2.1 Binary Transition Model

Obviously, the estimation of dynamic models with repeated cross-sectional data is hampered
by the lack of information about lagged variables. Let yit denote the observed response for
the binary random variable y of unit i at time period t. The crucial characteristic of RCS data
is that yit is observed, but yi t−1 is not. Consequently, no estimate of the serial covariance
of successive yit is available in RCS data. This does not imply that dynamic models cannot
be estimated with repeated cross sections. However, it does imply that estimation of the
unobserved transitions is possible only by putting certain constraints on the transitions for
unit i and/or time period t.

Consider a 2×2 transition table in which the internal cell values sum to unity across
rows. If we define pit = P (yit = 1), µi t = P (yit = 1 | yi t−1 = 0), and λi t = P (yit = 0 |
yi t−1 = 1), then we have the well-known accounting equation

E (yit ) = pit = µi t (1 − pi t−1) + (1 − λi t )pi t−1, (8.1)

which is recognized as the equivalent of Equation 0.4 presented in the Inroduction to this
book. This identity is the critical equation that needs to be solved in estimating dynamic
models with repeated cross sections, as it relates the marginal probabilities ( pit and pi t−1)
to the entry (µi t ) and exit (λi t ) transition probabilities. A more concise form for the same
equation is pit = µi t + ηi t pi t−1, so that ηi t = 1 − λi t − µi t . It is also sometimes conve-
nient to define κi t = 1 − λi t = P (yit = 1 | yi t−1 = 1). If we recursively substitute for pit

in Equation 8.1 and derive its reduced form in terms of past µi t and λi t , then we get

pit = µi t +
t−1∑
τ=1

[
µiτ

t∏
s=τ+1

ηi s

]
+ pi0

t∏
τ=1

ηiτ . (8.2)

This is the model equation that will be used in this chapter. It is obviously not uniquely
solvable with RCS data without identifying constraints. Several types of restrictions may be
used in this context.

One is to impose some direct restraint on the patterns of the unobserved µi t and λi t . For
example, the parameters in Equation 8.2 are clearly identifiable with RCS data if we take the
transition probabilities to be homogeneous with respect to both units i and time periods t.
With the assumption that µi t = µ and λi t = λ for all i and t, the long-run value of pit in
Equation 8.2 reduces to pit = µ/(µ + λ) (see, e.g., Ross, 1993: 152–153). Models with this
type of homogeneity have been studied extensively in the statistical literature, and they have
been applied in various economic, social, and political science studies (see Pelzer, Eisinga,
and Franses, 2002, for additional references).

The model proposed here uses a different type of restriction. This restriction may be
imposed if the cross-sectional data include covariates xi t that are measurable in the past
(by “backcasting”), and if the current and the lagged xi t affect µi t and λi t . In that case, the
covariates xi t , xi t−1, . . . , xi1 can be employed to obtain current and backward predictions
of the entry (µi t , µi t−1, . . . , µi1) and exit ( λi t , λi t−1, . . . , λi2) transition probabilities, by
specifying

µi t = F (xi tβ) and λ i t = 1 − F (xi tβ
∗). (8.3)
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In these equations β and β∗ are two different sets of k-dimensional parameters associated
with two potentially different sets of (time-invariant or time-varying) k-dimensional co-
variates xi t , and F is the – in this paper logistic – link function. Estimates of the model
parameters are obtained by substituting Equation 8.3 into 8.2.

The critical identifying restriction used here is that the regression parameters are taken
to be constant over time, but this constancy assumption may easily be relaxed if we have a
sufficient number of repeated cross sections. We may use a semiparametric approach that
assumes the parameters to be constant within but different across discrete time periods,
or we can model the parameters as a function of time using polynomials or splines. For
example, in our empirical illustration below, we introduce time variation into the model
by allowing the baseline entry rates (i.e., the constant parameter) to become a first-degree
polynomial in time. This is accomplished simply by including the variable time in the model.
It is important to note that the underlying Markov chain is not assumed to be homogeneous
in the model proposed here, implying that the entry and exit transition probabilities may
vary across both units i and time periods t. Also note that to obtain pit , we actually integrate
(sum) over all possible unobserved state-to-state transition paths for each individual unit i ,
starting at t = 1 and ending at the cross-sectional observation period t. This implies that the
probabilities are estimated as a function of all the available cross-sectional samples, rather
than simply the observations from the current time period.

Other, perhaps more implicit assumptions underlying the application of the model are
that pi0 = 0, that all the covariates xi t included in the model should have known values
in the past, and that the estimation of the entry and exit transitions depend exclusively
on variations in the covariates observed. With respect to the first assumption, it should
be noted that pi1 is the first observed outcome and pi0 the value of the state prior to the
first outcome. It is generally difficult to incorporate the prior state into the model, and we
could invoke the restriction that pi1 = 0, the consequence of which would be that pi1 = µi1.
However, because in many applications the latter assumption is untenable, we prefer to use
a separate logistic function for the cross section at t = 1, i.e., P (yi1 = 1) = F (xi tδ). The
δ-parameters are estimated simultaneously with the entry and exit parameters of interest at
t = 2, . . . , T , and they are estimated as a function of all cross-sectional data, rather than
simply the observations at t = 1.

If some of the covariates are “nonbackcastable” (i.e., if their past history is unknown),
the model may be modified by estimating two different sets of parameters for both µi t

and λi t : one for the current transition probability estimates and a separate one for the
preceding estimates. If we denote the time-dependent covariate with unknown past history
by vi t and the associated parameter vector representing the effect on µi t by ζ , then we have
logit(µi t ) = xi tβ

∗∗ + vi tζ for cross section t, and logit(µi t ) = xi tβ for the cross sections
1, . . . , t − 1. This specification allows one to express the current transition probability
estimates as a logistic function of both backcastable and nonbackcastable variables. A similar
model may be specified for λi t . It should be noted here that in our application below we
assume that β∗∗ = β.

If the assumption that all relevant variables are included in the model is not a realistic
one, it may be useful to include an individual-specific random error term εi in the linear
predictor of the transition probabilities to allow for omitted variables, at least insofar as these
variables are time-invariant for each individual. In this logistic–normal mixture model
we have logit(µi t ) = xi tβ + γ0εi and logit(1 − λi t ) = xi tβ

∗ + γ1εi , where γ0 and γ1 are
coefficients of the random variable εi having zero mean and unit variance. To estimate the
parameters, the (marginal) likelihood of this model may be integrated with respect to the
distribution of εi using the Gauss–Hermite quadrature approximation. While likelihood
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inference about the parameters is possible, it is worth noting that accurate estimation of γ0

and γ1 from the data themselves is difficult, unless the number of observations is large. As
unobserved heterogeneity is not examined in the empirical application below, we will not
elaborate on this topic here. Pelzer, Eisinga, and Franses (2002) provide further details.

Finally, it may be useful to outline the commonalities and differences between the eco-
logical analysis of aggregate data and the Markov model for repeated cross-sectional data
proposed here. As noted by Sigelman (1991) and Penubarti and Schuessler (1998), drawing
panel inferences at the micro level from repeated cross sections constitutes an ecological
inference problem. To demonstrate this point, consider the following partially observed
transition table for a population in which there is an absence of both recruitment (immi-
gration or birth) and losses (emigration or death):

Yt = 0 Yt = 1
Yt−1 = 0 N0

t−1

Yt−1 = 1 N1
t−1

N0
t N1

t N

In this closed population the marginal distributions are known and fixed, and the ecological
inference problem arises because the aggregate measures of change are observed, but the
interior cells are not. The two margins provide (at least some) information on the cells,
and the accounting identity ensures that the Duncan and Davis (1953) bounds (also termed
Fréchet bounds in the statistical literature) will obtain. If we have available a sufficiently
large number of transition tables for consecutive time points, an ecological inference model
such as that presented by Quinn in Chapter 9 of this volume may be applied to the data.

The situation is somewhat different if the data are drawn from a time series of independent
samples of the population of interest. In that case, the marginal values are estimates of the
true population parameters and thus themselves subject to error (Tam Cho, 1998). And this
implies that the bounds too will be known only up to sampling error. If the sample sizes are
large, one may be willing to take the margins as fixed and error-free and use the samples to
obtain the marginal proportions of the transition table, as presented in the left panel below:

Yt = 0 Yt = 1 Yt = 0 Yt = 1
Yt−1 = 0 p0

t−1 Yt−1 = 0

Yt−1 = 1 p1
t−1 Yt−1 = 1

p0
t p1

t 1 p0
i t p1

i t 1

If the data are limited to yit , we could apply the inference model proposed here, using a
Markov model with constant terms only. If we additionally observe covariates, we could also
aggregate the micro data into covariate patterns, as in Penubarti and Schuessler (1998), to
obtain the marginal distributions of the transition table for each pattern and thus ranges of
feasible entries that are consistent with the margins. King’s EI could then be used to exploit
the information provided by the bounds (using covariate patterns as equivalents to precincts
in the analysis of voting). The number of patterns obviously should not be too large relative
to the sample size, to obtain reasonably reliable aggregates. Hence the method is likely to
suffer from small-sample-size restrictions.

Also note that in using this grouping method, inferences are at the level of individuals
sharing the same values of the observed covariates, that is, at the level of the covariate
patterns, rather than at the level of individuals. This allows one to trace fixed groups over
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time rather than individuals, whose covariate values might change. Thus, the method is
applicable only if we have a sufficient number of observations for every covariate value
and if, in addition, the covariates are time-invariant (so that the sample population can be
divided into groups with fixed membership). It faces difficulties in cases of time-varying or
nonbackcastable covariates, and these difficulties increase if the number of repeated cross
sections becomes large.

The empirical application discussed in Section 8.3 may be used to illustrate the issue. The
covariates used in that example include education, age, number of household members,
income, and time. The number of covariate patterns observed is 10,510, and the average
number of observations per pattern is 2.5. Even if we were to categorize the variable age
into three different age categories, as is done in the estimation procedure, the number of
covariate patterns would still be large (1,053) and, accordingly, the number of observations
per group low (about 25 on average). That is, the group sizes in this example are simply too
small for us to ignore the presence of sampling error. And this implies that the data at hand
cannot be used to fruitfully compare the performance of our model with the EI grouping
method. That is a very interesting and important topic, but one left for future research with
other data.

As indicated, what is special for the current model is that the information available in the
repeated cross sections is fully exploited. In the model proposed here, there is no grouping of
the data, and in the extreme case each individual unit may have its own covariate pattern. This
means, as illustrated in the right panel above, that in our procedure only one of the margins
(yit ) is available for inference, and the other one (yi t−1) is not. And this in turn implies
that in our model the repeated cross sections themselves cannot provide any deterministic,
informative restrictions on the entries. Consequently, the inference problem in the model
proposed here is greater (in the sense of having a larger number of unknowns) than in the
applications where the margins are (assumed to be) known. The approach proposed here
is to completely express the marginal probabilities pit in terms of µi t and κi t , recursively,
so that estimating the latter automatically renders the former. Also, equation 8.1 may be
rearranged into µi t = pit/(1 − pi t−1) − pi t−1/(1 − pi t−1)κi t , where κi t = 1 − λi t . This
expression resembles the equation that King (1997) termed the “tomography line” (i.e.,
Equation 0.5 in the Introduction to this book). Since the estimated marginal probabilities
pit and pi t−1 are guaranteed to lie in the (0, 1) range, bounds are enforced on the maximum
likelihood estimators of µi t and κi t . These upper and lower limits are not informative as in
the Duncan and Davis (1953) methods of bounds, however, but rather logical limits implied
by the model.

8.2.2 Estimation and Simulation

8.2.2.1 Maximum Likelihood Estimation

The method of maximum likelihood may be used to estimate the parameters in Equa-
tion 8.3 – plugged into 8.2 – along with their (co)variances. For a sample of n statistically
independent observations – where each observation is treated as a single draw from a
Bernoulli distribution – with success probability pit , the model 8.2 has the log likelihood
function

�� =
T∑

t=1

nt∑
i=1

��i t =
T∑

t=1

nt∑
i=1

[yit log( pit ) + (1 − yit ) log(1 − pit )],
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where T is the number of cross sections and nt the number of units of the cross-sectional
sample at time period t. Maximization of this function has to be performed iteratively and
requires the derivatives of the log likelihood with respect to the (vector of) parameters, θ ,
say. If we suppress subscript i to ease notation, the first derivatives with respect to θ are

∂��t

∂θ
= yt − pt

pt (1 − pt )
· ∂pt

∂θ
,

where

∂pt

∂θ
= ∂µt

∂θ
+ ∂pt−1

∂θ
ηt + pt−1

∂ηt

∂θ
.

If θ is used to estimate µt , then ∂µt/∂θ = xtµt (1 − µt ) and ∂ηt/∂θ = −∂µt/∂θ . If it
is used for λt , then ∂µt/∂θ = 0 and ∂ηt/∂θ = xtλt (1 − λt ). The values for ∂pt/∂θ can
be obtained by recursive substitution, setting p0 = 0 and ∂p0/∂θ = 0, and starting from
∂p1/∂θ = ∂µ1/∂θ = x1µ1(1 − µ1). The second derivatives are

∂2��t

∂θ ∂θ ′ = − (yt − pt )2

p2
t (1 − pt )2

· ∂pt

∂θ
· ∂pt

∂θ ′ + yt − pt

pt (1 − pt )
· ∂2 pt

∂θ ∂θ ′ ,

where

∂2 pt

∂θ ∂θ ′ = ∂2 pt−1

∂θ ∂θ ′ · ηt + ∂pt−1

∂θ ′ · ∂ηt

∂θ
+ ∂2µt

∂θ ∂θ ′ · (1 − pt−1) − ∂µt

∂θ ′ · ∂pt−1

∂θ
,

with ∂2µt/∂θ ∂θ ′ = x′
t xtµt (1 − µt )(1 − 2µt ). Again, if we set ∂2 p0/∂θ ∂θ ′ = ∂p0/∂θ =

∂p0/∂θ ′ = 0, the values for ∂2 pt/∂θ ∂θ ′ can be obtained recursively, starting from ∂2 p1/

∂θ ∂θ ′ = ∂2µ1/∂θ ∂θ ′.
The parameter estimates may be obtained by Newton’s method, which uses the Hessian

matrix of the actual second derivatives. To speed up computation, we may avoid calculating
the exact Hessian by approximating it instead by the expected second derivatives, and use
Fisher’s method of scoring. Here we will follow the latter approach. In addition to providing
parameter estimates, the Fisher optimization algorithm produces as a by-product an estimate
of the asymptotic variance–covariance matrix of the model parameters, given by the inverse
of the estimated information matrix evaluated at the converged values of the estimates.
Each element of the inverse of the information matrix is a minimum variance bound for
the corresponding parameter, and the positive square roots of the diagonal elements of this
matrix (i.e., the standard errors of the estimated coefficients) may be used for significance
tests and to construct confidence intervals.

According to asymptotic theory, ML estimators become progressively more unbiased and
more normally distributed, and achieve the minimum possible variance more closely, as the
sample size increases (see, e.g., King, 1989). However, these asymptotic assumptions may be
violated in our complex Markov chain model. Moreover, the estimators in our model have
essentially unknown properties for small to moderate sample sizes, and we cannot present
any guidelines as to when a sample is sufficiently large for the asymptotic properties to be
closely approximated. It is therefore important to investigate the behavior of the estimators
of the parameters in Equation 8.2 by examining their finite-sampling distribution. The
bootstrap and MCMC simulations provide useful tools in this situation.
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8.2.2.2 Parametric Bootstrap Simulation

The bootstrap uses Monte Carlo simulation to empirically approximate the probability dis-
tribution of the parameter estimates and other statistics, rather than relying on assumptions
about its shape that may only be asymptotically correct. The technique used here is the
model-based parametric bootstrap (Davison and Hinkley, 1997). For the parametric boot-
strap, resamples are taken from the original data via a fitted parametric model to create
replicate data sets, from which the variability of the quantities of interest can be assessed. In
the repeated simulations, it is assumed that both the form of the deterministic component
of the model and the nature of the stochastic component are known. Bootstrap samples
are generated using the same fixed covariates as in the original sample and a set of pre-
determined values for the parameters, allowing only the stochastic component to change
randomly from sample to sample. By this means, many bootstrap samples are generated,
each of which provides a set of estimates of the parameters that may then be examined
for their bias, variance, and other distributional properties and used for bootstrap confi-
dence intervals and hypothesis testing. The parametric bootstrap resampling procedure is
implemented here according to the following algorithm:

1. Estimate the unknown parameter θ according to the model 8.2, using the original
sample {xit , yit}, i = 1, . . . , nt , t = 1, . . . , T , with the estimate denoted as θ̂ , and
obtain the fitted values p̂i t of the probability that the binary dependent variable yit = 1.

2. For each xit in the original sample {xit , yit}, generate a value of the bootstrap dependent
variable y∗

i t by random sampling from a Bernoulli distribution with success probability
given by p̂i t .

3. Use the bootstrap sample {xit , y∗
i t} to fit the parameter estimate θ∗.

4. Repeat Steps 2 and 3 R times, yielding the bootstrap replications denoted as θ̂∗
1 , . . . , θ̂∗

R .
The empirical distribution of these replications is used to approximate the finite-
sample distribution of θ̂ .

In this study we look at the density of the values of θ̂∗ under resampling of the fitted
model to examine the bias and variance and to see if it is multimodal, skewed, or otherwise
nonnormal. To obtain an accurate empirical approximation, we use R = 5,000 replications
of the original data set. While the bootstrap estimates of bias and variance under the fit-
ted model are important in their own right, parametric resampling may also be useful
in testing problems when standard approximations do not apply or when the accuracy
of the approximation is suspect. The key to applying the bootstrap for hypothesis testing
is to transform the data so that the null hypothesis is true in the bootstrap population.
That is, we simulate data under the null hypothesis, so that bootstrap resampling resem-
bles sampling from a population for which the null hypothesis holds (Hall and Wilson,
1991). The bootstrap hypothesis test compares the observed value in the original sample
with the R values θ̂∗

1 , . . . , θ̂∗
R , which are obtained from samples independently generated

under the null model that satisfies H0. The bootstrap P -value may then be obtained by
p∗(θ̂) = P (θ̂∗ ≥ θ̂ | H0) = R−1

∑R
i=1 I (θ∗ ≥ θ̂), where the indicator I (·) equals one if

the inequality is satisfied and zero if not (Davison and Hinkley, 1997). We reject the null
hypothesis if the selected significance level exceeds p∗(θ̂).

8.2.2.3 Markov Chain Monte Carlo Simulation

Another powerful tool next to MLE and parametric bootstrap is Bayesian simulation, which
is easily implemented using Markov chain Monte Carlo (MCMC) methods. Bayesian data
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analysis is not concerned with finding the parameter values for which the likelihood reaches
the global maximum. It is primarily concerned with generating samples from the posterior
distribution of the parameters given the data and a prior density, and this distribution may
be asymmetric and/or multimodal. Other advantages of the Bayesian approach include the
possible incorporation of any available prior information and the ability to make inferences
on arbitrary functions of the parameters or predictions concerning specific individual units
in the sample (see Pelzer and Eisinga, 2002). A popular method for MCMC simulation
is Metropolis sampling (Tanner, 1996). The Metropolis sampler obtains a chain of draws
from the posterior multivariate distribution π(θ | y) of the parameter θ . In sampling from
the unknown target distribution, the algorithm uses a known auxiliary density A – e.g.,
a (multivariate) uniform or normal distribution – to select candidate parameters θ c . The
Metropolis algorithm proceeds as follows:

1. Choose a starting value for the parameter (e.g., the ML estimates).
2. Randomly draw the parameter θ c from A, a symmetric proposal distribution with

mean equal to the previous draw θ and an arbitrary variance.
3. If π(θ c | y) ≥ π(θ | y), add the candidate θ c to the chain of draws. If π(θ c | y) <

π(θ | y), calculate the ratio r = π(θ c | y)/π(θ | y), and add θ c with probability r to
the chain of draws.

4. If the candidate θ c is not added to the accepted draws in Step 3, add θ , so that two
successive elements of the chain have the same parameter value θ . Else proceed with
the next step.

5. Repeat Steps 2–4 K times, yielding a sample from the posterior distribution of θ .

In the Markov chain sampling used here, we assumed a priori that we are ignorant of the
values of the parameters (i.e., have a vague prior belief). This implies that π(θ | y) equals
the likelihood of θ . Once stationarity has been achieved, a value from a chain of draws from
the Metropolis algorithm is supposed to have the same distribution as the target density.
We ran the Metropolis algorithm K = 100,000 times, excluding an initial burn-in of 10,000
samples, and subsequently obtained the mean, standard deviation, and limits of the 95%
credibility interval of θ .

8.3 APPLICATION

8.3.1 PC Penetration in Dutch Households

The major concern of this section is how the RCS Markov model performs in practice.
The empirical application is concerned with modeling the rise in computer penetration
rates in Dutch households in the 1986–1998 period using data from the Socio-Economic
Panel (SEP) collected by Statistics Netherlands. The reason for using this 13-wave annual
household panel study is that it offers the opportunity to check the estimation results against
the panel findings. However, it is important to note that in the RCS Markov analysis below the
panel data are treated as if they were observations of a temporal sequence of 13 independent
cross-sectional samples. That is, no use is made of information about lagged values of yit .

The binary dependent variable yit is defined to equal one if the household owns a personal
computer and zero if not. Table 8.1 reports the proportions of Dutch households with a
PC in 1986–1998 along with the observed entry and exit transition rates. As can be seen,
there is a marked upward time trend in PC ownership, from 12% in 1986 to 57% in 1998.
While the entry rates (i.e., ȳt | yt−1 = 0) also show an increase over time, the exit rates (i.e.,
(1 − ȳt ) | yt−1 = 1) show erratic change.
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Table 8.1 Proportions of PC ownership in Dutch households over time,
2208 cases

Year ȳt ȳt | yt−1 = 0 (1 − ȳt ) | yt−1 = 1

1986 .12
1987 .15 .05 .10
1988 .20 .08 .12
1989 .24 .08 .13
1990 .28 .08 .08
1991 .31 .09 .09
1992 .36 .11 .09
1993 .38 .10 .13
1994 .41 .10 .09
1995 .44 .13 .11
1996 .48 .13 .07
1997 .51 .14 .09
1998 .57 .19 .07

It is clear from previous studies which structural determinants explain systematic variation
in the presence of a PC in homes. The most important covariates – in the Netherlands as
elsewhere – are educational attainment, age, the size of the household, and household income
(see, e.g., OECD, 2001). These variables are included in the SEP household study, but they
would generally also be available in a repeated cross-sectional survey. The time-varying
variable age of head of household (hereafter age) is categorized into three different age
categories (18–34, 35–54, and 55+ years). The time-varying variable number of household
members is constructed from cross-sectional information about the number and the ages of
the children in the household and the presence of a spouse. It is assumed that a family with
children has two adults. The variable highest completed education of head of household
(hereafter education) is taken to be fixed over time. In addition to these backcastable variables,
the analysis also includes the temporary, nonbackcastable covariate household income.
The variable used here is the standardized (i.e., corrected for size and type of household)
disposable household income, categorized into quintiles.

8.3.2 RCS Markov Model

8.3.2.1 Maximum Likelihood

The first model fitted was a time-stationary Markov chain with constant terms only. This
model produces the parameters β(µt ) = −2.543 and β∗(λt ) = −3.310 and a log-likelihood
value LL = −15,895.214. These estimates imply constant transition probabilities µ = .073
and λ = .035, and hence predicted rates that underestimate the observed sample frequencies
reported in Table 8.1. The model was subsequently modified to a nonstationary, heteroge-
neous Markov model by adding the covariates reported above. In analyzing the data with
this model, it became apparent that the covariates have a substantial effect on the transi-
tion from have-not to have, but that they contribute little to the explanation of the reverse
transition. We therefore decided to model the exit transitions using a constant term only.
Further, it turned out that the inclusion of a linear time trend in the prediction of obtaining
a computer appreciably improves the fit. We therefore included the variable time in the
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Table 8.2 ML, parametric bootstrap, and MCMC estimates of RCS Markov model and ML estimates of
first-order panel model, observations 26,364

RCS Markov Panel
MLa Bootstrapb MCMCb MLa

δ(pt=1)
Constant −3.713 (.202) −3.718 (.205) −3.754 (.232) −3.606 (.276)

[4.137 −3.318] [−4.225 −3.327]
Education 0.382 (.054) 0.381 (.055) 0.393 (.056) 0.364 (.072)

[0.271 .489] [0.288 .504]
Age 35–54 −0.058 (.119) −0.057 (.121) −0.037 (.120) 0.092 (.170)

[−0.294 .181] [−0.284 .197]
Age 55 and over −0.852 (.162) −0.859 (.165) −0.842 (.178) −0.782 (.252)

[−1.201 −.551] [−1.207 −.513]
No. of household 0.331 (.042) 0.332 ( .043) 0.327 (.038) 0.310 (.061)

members [0.248 .417] [0.249 .397]

β (µt=2, ... ,13)
Constant −6.336 (.121) −6.344 (.124) −6.339 (.130) −5.116 (.138)

[−6.586 −6.110] [−6.605 −6.105]
Education 0.368 (.023) 0.369 (.023) 0.365 (.026) 0.245 (.029)

[0.323 .413] [0.310 .414]
Age 35–54 0.137 (.049) 0.137 (.050) 0.129 (.049) −0.098 (.067)

[0.042 .238] [0.037 .224]
Age 55 and over −1.364 (.066) −1.365 (.065) −1.362 (.067) −1.270 (.089)

[−1.494 −1.240] [−1.499 −1.226]
No. of household 0.421 (.018) 0.422 (.018) 0.425 (.020) 0.375 (.023)

members [0.387 .457] [0.389 .470]
Income 0.438 (.015) 0.438 (.015) 0.438 (.016) 0.230 (.022)

[0.408 .468] [0.403 .467]
Time 0.218 (.009) 0.218 (.009) 0.219 (.010) 0.171 (.008)

[0.201 .236] [0.198 .240]

β∗(λt=2, ... ,13)
Constant −2.292 (.132) −2.300 (.133) −2.307 (.198) −2.284 (.039)

[−2.576 −2.058] [−2.779 −1.938]
�� −12,895.106 −7,766.304

a Standard errors in parentheses.
b The mean is reported as the point estimate, the standard deviation in parentheses, and the 95th percentile interval

in brackets. The parametric bootstrap results are based on R = 5,000 bootstrap samples from the original data,
and the MCMC findings on K = 100,000 Metropolis sampler posterior estimates.

model. This inclusion implies, as indicated in Section 8.2.1, that we drop the assumption of
a time-constant intercept and allow the baseline entry rates to increase linearly over time.
The results are reported in the second column of Table 8.2.

The top part of the table gives the estimated effects on the marginal probabilities pi1. The
table indicates that both education and the number of household members positively affect
the presence of a PC in homes. While there is no significant difference in PC ownership
between the 18–34-year age group and those aged 35–54, ownership is significantly more
widespread among the younger age group than among those aged 55 and over. The middle
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part of Table 8.2 presents the effects on the transition from have-not to have with respect
to PC ownership. The results show that educational attainment of head of household,
household size, household income, and time have a positive effect on obtaining a computer.
This finding confirms the conclusion of cross-sectional studies that computer ownership has
spread most rapidly among affluent, well-educated families with children (OECD, 2001).
The coefficients of the age terms again imply similar entry rates among the younger and
middle age groups. The older age group has considerably lower access rates. The parameter
estimate of the constant term for λi t is shown in the bottom part of the table. An intercept
of −2.292 implies a time-constant exit transition probability of λ = .092 (i.e., κ = .908),
which perfectly matches the observed mean frequency of .092.

8.3.2.2 Parametric Bootstrap

As indicated, the benefit of parametric simulation is that the bootstrap estimates give empir-
ical evidence that likelihood theory can be trusted, while providing alternative methods for
calculating measures of uncertainty if that theory is unreliable. To examine the sampling dis-
tribution of the parameter estimates, we generated R = 5,000 bootstrap samples according
to the algorithm given in Section 8.2.2.2. Table 8.2 provides for each parameter the mean and
the sample standard deviation of the bootstrap estimates. In some applications of likelihood
methods the variability of likelihood quantities may be grossly over- or underestimated. As
the table shows, however, the misestimation is small enough to be unimportant here. The
bootstrap mean values are close to the ML estimates, and the sample standard deviations are
similar to the likelihood-based standard errors. The bootstrap estimates of bias and other
distributional properties are given in Table 8.3.

The ML estimates of the model parameters appear to be only slightly biased, the largest
absolute bias being 0.0086. When the estimated bias is expressed as a percentage of the
parameter estimate (not reported in Table 8.3), the largest differences between standard
theory and the bootstrap results are found for the parameter δ(pi1) of the age 35–54 dummy,
for which the percentage bias is 1.85%. All other parameters have percentage biases less than
1%. The parameters also tend to have a small bias compared to the magnitude of their
standard deviation. A frequently applied rule of thumb is that a good estimator should be
biased by less than 25% of its standard deviation (Efron and Tibshirani, 1993). As can be
seen in Table 8.3, the ratios of estimated bias to standard deviation are all much smaller
than 0.25. Small values are also found for the root mean square error, which takes into
account both standard deviation and bias. The bootstrap sample variance may be compared
with the estimated ML variance using a chi-square test to examine whether the sample
variance from the bootstrap is significantly larger than the variance from ML (Ratkowsky,
1983). For none of the parameters is the bootstrap variance significantly in excess of the
ML variance. The largest value was again found for the δ(pi1) parameter of the age 35–54
dummy. The statistic χ2 = (N − 1)(σ̂ 2

bootstrap/σ̂
2
ML) is distributed as chi-square with 4,999

degrees of freedom (df), a transform of which may be closely approximated by the standard
normal distribution, yielding, for this dummy variable, z =

√
2χ2 − √

2 df − 1 = 1.857.
Table 8.3 also reports the skewness, the excess kurtosis, and the Jarque–Bera (1980)

statistic, which may be used to test whether the estimators are normally distributed. The null
hypothesis of normality is only rejected for the constant and the age 55+ parameter of δ(pi1),
and for the constant term parameter of β∗(λ). The distribution of the latter is somewhat
peaked, and all three estimates have an extended tail to the left. The normal approximation
is least accurate for the β∗(λ) constant. However, even for this estimate the deviation from
normality is negligible. The same goes for the distribution of κ [= (1 + exp(β∗(λ)))−1],
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Table 8.3 Parametric bootstrap estimates, based on R = 5000 bootstrap samples

Excess Jarque–
Bias × 102 Bias÷sd rmse Skewness kurtosis Bera

δ(pt=1)
Constant −.493 −.024 .205 −.098∗ .094 9.812∗

Education −.089 −.016 .055 −.008 .061 0.796
Age 35–54 .107 .009 .121 .032 −.026 1.008
Age 55 and over −.729 −.044 .165 −.179∗ .104 28.954∗

No. of household members .128 .030 .043 .028 −.078 1.985

β (µt=2, ... ,13)
Constant −.862 −.070 .124 −.033 −.012 0.931
Education .066 .029 .023 −.050 −.037 2.405
Age 35–54 .040 .008 .050 .070 −.067 5.225
Age 55 and over −.059 −.009 .065 −.052 .000 2.285
No. of household members .084 .047 .018 .010 −.025 0.224
Income .065 .043 .015 −.032 .044 1.260
Time .022 .025 .009 .008 −.104 2.338

β∗(λt=2, ... ,13)
Constant −.789 −.059 .133 −.293∗ .296∗ 89.691∗

Note: The bootstrap estimate of bias (= θ̄bootstrap − θML) is multiplied by 100, and rmse =
√

sd2 + bias2.
The standard errors of skewness and excess kurtosis are 0.035 and 0.069, respectively. The Jarque–Bera
(1980) test statistic for normality has an asymptotic χ2

2 distribution; the 5% critical value is 5.991.
∗ Significant at the .05 level.

shown in Figure 8.1a. The histogram shows no visible departure of the κ estimates from
those expected for a normally distributed random variable.

8.3.2.3 Markov Chain Monte Carlo

The Metropolis sampler posterior estimates for each parameter are reported in Table 8.2.
The findings are based on K = 100,000 samples, excluding 10,000 samples for initial settling.
Inspection of the posterior means reveals that there are no gross discrepancies in magnitude
with the ML estimates. The MCMC standard deviations and the ML standard errors are also
similar to one another. The same goes for the 95th percentile intervals of the parametric
bootstrap estimates and the Bayesian credibility intervals. Thus Bayesian and frequentist
methods for obtaining estimates produce roughly similar results.

In sum, according to both parametric bootstrap and MCMC simulations, the maximum
likelihood estimators in this application are almost unbiased, with a variance close to the
minimum variance bound, and a distribution close to normal. This implies that the ML
point estimates of the parameters are accurate and that the inverse of the Fisher information
matrix may be used as a good estimate of the covariance matrix of the parameter estimates.

8.3.3 Dynamic Panel Model

It is compelling to compare the RCS Markov ML estimates with the corresponding parameter
estimates of a dynamic panel model that allows for first-order dependence. Most directly
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Figure 8.1. Histogram of ML estimates of κ (a) for 5000 bootstrap samples from the original full data,
with normal curve superimposed, and (b) for 5000 cross-sectional samples of 2208 observations, one
observation per household.

related to the RCS Markov model is a panel model that specifies a separate logistic regression
for P (yit = 1 | yi t−1 = 0, 1), and includes yi t−1 as an additional predictor. This model can
conveniently be written in a single equation as logit P (yit = 1 | yi t−1 = 0, 1) = xi tβ +
yi t−1xi tα, where α = β∗ − β (see Amemiya, 1985; Diggle, Liang, and Zeger, 1994; Beck,
Epstein, Jackman, and O’Halloran, 2001).

The results of applying this logistic model to the binary panel data are shown in the
rightmost columns of Table 8.2. A comparison of the RCS Markov and panel estimates
indicates that most of the findings are insensitive to the choice of model. The point estimates
of all parameters, except perhaps the coefficients for age 35–54 and those for income, are
rather similar, and the standard errors also correspond.

Note that the standard errors of the entry parameters are somewhat smaller for the RCS
Markov model than for the panel data analysis. This may seem to be counterintuitive, as
it would appear to show that more efficient estimates are produced when lagged yit -values
are unknown than when they are known. It should be noted, however, that the two models
differ in the number of observations per parameter. The RCS Markov model uses 24,336
observations (excluding the observations at t = 1) to estimate seven β (µt ) and one β∗(λ)
parameter, hence 3,042 observations per parameter. In the panel model we have 16,431
observations to estimate seven β (µt ) parameters – i.e., 2,347 observations per parameter –
and 7,905 observations to estimate β∗(λ). This explains, at least intuitively, the somewhat
smaller (larger) standard errors of the entry (exit) parameters in the RCS Markov model.
The differences are modest, however, and inferences about the parameters do not change
appreciably with the choice of model. Moreover, the two models predict equal transition
probabilities µi t and λi t for all individual cases (not reported), and the accuracy of the two
models as judged by a ROC curve analysis is almost identical (the area under the ROC curve
for the (yt | yt−1 = 0) observations is 0.763 for the RCS Markov model and 0.768 for the
panel model).

Only with respect to the likelihood is the RCS Markov model clearly inferior to
the panel model. However, the two models differ in the computation of pit and thus
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Table 8.4 Mean and standard deviation (÷√
13) of the RCS Markov ML estimates for

5,000 samples of 2,208 observations, one for each household

δ(pt=1) β (µt=2, ... ,13) β∗(λt=2, ... ,13) a

Constant −3.845 (.199) −6.426 (.120) −2.389 (0.260)
Education 0.403 (.046) 0.366 (.027)
Age 35–54 −0.045 (.118) 0.147 (.045)
Age 55 and over −0.785 (.160) −1.423 (.063)
No. of household members 0.343 (.032) 0.431 (.018)
Income 0.447 (.015)
Time 0.223 (.010)

Note: Each sample is drawn without replacement and consists of 13 sets – one for each time period –
of size 156. The standard deviation, divided by

√
13, is reported in parentheses.

a Excluding 440 samples with β∗(λt ) ≤ −8 (i.e., κ > .9996).

also of the likelihood. In binary panel data, the marginal probability pit is either µi t

or 1 − λi t , conditional on yi t−1, and the likelihood contribution can be written as
�i t = µ

yit (1−yi t−1)
i t (1 − λi t )yit yi t−1 (1 − µi t )(1−yit )(1−yi t−1)λ

(1−yit )yi t−1

i t . In the RCS Markov
model, however, the marginal probability pit is always a weighted sum of two prob-
abilities – µi t and λi t – weighted by pit , and the likelihood is given by �i t =
[µi t (1 − pi t−1) + (1 − λi t )pi t−1]yit [(1 − µi t )(1 − pi t−1) + λi t pi t−1]1−yit . This implies
that even if panel and RCS data produce identical transition probabilities µi t and λi t , the
two likelihood functions may differ because of pi t−1. The likelihood values are identical
only if pi t−1 is equal to yi t−1; that is, if the lagged covariates perfectly predict the previous
response.

8.3.4 Samples of Independent Observations

As indicated, in the RCS Markov model the panel data are treated as independent cross
sections, implying that there is no information on autocov(yit , yi t−1) available in the data
file used for analysis. Nevertheless, the best way to make sure that the results are not ar-
tifacts is to analyze independent observations. To do so, we randomly draw (without re-
placement) samples of 2,028 different households from the (2,028×13 =) 26,364 panel
observations, where each sample consists of 13 separate sets – one for each time period –
of 156 households. Hence each household is selected only once in the “cross-sectional” sam-
ple. The total number of possible “cross-sectional” samples in our application is approx-
imately 102,242 [≈ ∏12

s=0 (2,028 − s × 156)!/156!(2,028 − 156 − s × 156)!]. We randomly
drew 5,000 samples and analyzed each data set separately, using maximum likelihood esti-
mation.

Table 8.4 reports the average values of the parameters across the samples along with the
standard deviation divided by

√
13. A comparison of Tables 8.2 and 8.4 suggests that for

almost all parameters the mean values are close to the MLE obtained for the original full
sample size. The only noticeable difference is in the constant term parameter of β∗(λ). This
mismatch can be explained by referring to the distribution for κ , shown in Figure 8.1b. For
several “extreme”, small samples the true maximum of the likelihood function is attained
when κ takes the boundary value κ = 1. This implies that the true MLE of β∗(λ) is minus
infinity and the Fisher optimization algorithm thus fails to converge.
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Since the resample size is much smaller than the original sample size, it is not surprising
that there is a large drop in efficiency relative to the estimates from the original full sample.
However, dividing the standard deviations by

√
26,364/2,208 = √

13 scales them back to
the standard errors of the parameters in the original sample. As can be seen, the standard
deviations in Table 8.4 agree well with the ML standard errors reported in Table 8.2, the
exception again being the constant parameter of β∗(λ).

8.3.5 Parametric Bootstrap Test

Under parametric bootstrap, hypothesis testing is remarkably easy. We simply need to fit
the hypothesized null model, generate bootstrap replications under the assumptions of this
model, and calculate the measure we wish to test, both for the real data and for the R sets
of bootstrap data. If the value from the real data is among the 5% most extreme values in
the combined set of R + 1 values, the hypothesis is rejected at the .05 level of significance.
For illustrative purposes, we selected a single sample from the “cross sections” of size 2,028,
with ML estimates close to those reported in Table 8.2. The estimated value for κ in this
sample was .916. Now consider testing the hypothesis H0 : κ ≥ .999 against the one-sided
alternative H1 : κ < .999 (H0 : κ = 1 would be a theoretically implausible hypothesis to
test for all cases). In R = 4,999 bootstrap resamples from H0, we found 51 values less then
or equal to .916, so the p∗-value is 51/5,000 = .0102. This finding leads us to reject the null
hypothesis for this particular sample.

8.4 SUMMARY

Repeated cross-sectional surveys have become an important data source for research over the
past decades. The accumulation of these surveys offers researchers from various disciplines
a growing opportunity to analyze longitudinal change. Dynamic models for the analysis of
repeated cross sections are, however, relatively rare, and one may even argue that there is an
increasing lag between the availability of data and models to analyze them.

The results presented here illustrate the usefulness of exploiting repeated cross-sectional
surveys to identify and to estimate 0–1 transition probabilities, which are generally thought
to be nonestimable from RCS data. The bootstrap and MCMC findings for the PC owner-
ship example suggest that the maximum likelihood RCS Markov model produces reliable
estimates in large samples. It also turns out that, in our empirical application at least, the
RCS Markov model performs almost as well as a first-order dynamic panel model. To rule
out artificial results, samples of independent observations from the panel data were also
analyzed, with similar results to those for the full sample.

This paper has made some necessary first steps in exploring a largely unknown area, and
many relevant topics could not be covered here. For example, in some contexts (e.g., the
empirical illustration discussed here) it is pretty clear from previous studies or theory which
covariates are likely to be important and how they are related, at least qualitatively, to the
dependent variable of interest. In other cases, especially in complex data from an unfamiliar
field, covariate selection may be far from obvious. An important part of the analysis is then
a preliminary analysis to search for a suitable model. This involves not just inspecting the
adequacy of the initial model, but doing so in a way that will suggest an improvement of the
model and bring to light possibly unsuspected features of the data.

A difficult problem in model specification is that it is not always possible from the data
themselves to obtain a clear indication of how to improve the model (and how important it
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is to do so). It may also happen that different models fit the data roughly equally well and
that any choice between them has to be made on grounds external to the data.

Further, it is obvious that estimating the “nonestimable” is possible only by making
assumptions. The validity of the assumptions, however, cannot be assessed from the data
under study. Consequently, findings are always conditional on the appropriateness of the
assumed model, which in a fundamental sense is not testable. An appropriate statistical
framework then is to consider how sensitive the results are to model assumptions. An
important subject for future work is therefore to develop sensitivity analysis tools (such
as influence diagnostics) and to study the stability of the results under different model
specifications and small modifications or perturbations of the data.

Topics to be studied by further Monte Carlo work are the distributional properties of the
estimators in different model specifications and the sensitivity of inference procedures to
varying sample sizes. In addition to the parametric bootstrap, nonparametric resampling
could be used to examine the robustness of specification. Nonparametric simulation requires
generating artificial data without assuming that the original data have some particular
parametric distribution. Finally, although the impetus behind developing the methodology
presented here came from the intent to dynamically model RCS data, it would be of interest
to apply the model to panel data with missing observations for yt−1. The Markov chain
model could then be used, in conjunction with a first-order panel model for observations
with nonmissing yt−1, to obtain model-based imputations for the missing data.
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