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ABSTRACT

We formulate Browne's (1984) unbiased estimator for the elements of the matrix
of fourth-order moments in terms of inatrices. We show that this matrix is indeed an
unbiased estimator, without using the theory of cumulants and k-statistics.
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1. INTRODUCTION

Suppose we have n independent realizations x,....,x, of a random p X 1
vector x, which has a distribution with mean u = &(x), variance K = 2(x),
fourth-order moment W=¢&[(x —pu)(x —p)'®(x — p)(x —p)], and fi-
nite eighth-order moment. The usual unbiased estimator for K is

K=

X'NX,
n—1

where X'=(x,....x,) and N=1-(1/n) ', ¢ being an n X1 vector of
ones. The matrix N transforms ohservations into deviations from their means.
Let k = vec K, and let _@(k) be the population variance of k. How can one
find an unbiased estimator D of 2(k)?

Browne (1984) gave the answer, using certain results on scalar cumulants
and k-statistics. In this paper we reformulate Browne's estimator in matrix
form and show that it is an unbiased estimator of 2(k). Our proof of
unbiaseduness is direct and is not based on the theory of cumulants and
k-statistics. .

The paper is organized as follows. In Section 2 we present a useful
operator and some matrix notation. In Section 3 we present Browne's
estimator in matrix form. In Scction 4 we derive an auxiliary result that we
use in Section 5 to prove the unbiasedness of Browne's estimator. In the final
section we discuss our results in relation to the theory of cumulants.

2. THE TILDE OPERATOR

The first thing to do is to define a special operator, which we will call the
tilde operator. This operator transforms a matrix of order m? X m?, say,
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whose submatrices are square of order m, into

A=(vecA,...,vecA,,....,vecA, Y=Y (vecA )(vec E,),
i

where E;, = e;ej and ¢, is the ith unit vector of order m X 1. It is easy to see
that

®] JvecA,

nm

vecA=Y (vecE, ®vecA,)=(1,®P,
iJ

i the commutation matrix (see Magnus and Neudecker 1979,
Wansbeek 1989). We used Theorem 3.1()) of Neudecker and Wansbeek
(1983) to take the second step. Both the commutation matrix P and the tilde
operator can be generalized to apply to matrices with a less specific structure
than A, but for our purpose there is no need to do so.

If D and F are square m X m matrices and C is partitioned into square
m X m blocks, we are able to prove the following results, which we will use
in the sequel:

where P

if C=D®F then C=(vecF)(vecD), 2.1
if C=(vecF)(vec D) then C=D®F; (2.2)
if c=P, (D®F) then C=P, (D®F). (2.3)

For more properties of the tilde operator and generalizations, we refer to
Koning, Neudecker, and Wansbeek (1990).

Proof of (2.1). vecC=(I,®P,, ®1,)vecC=(I,®P,,81,XI &P, &I, )
(vec D®vee F) = vec{(vec F)(vec D)'}. As C and (vec FXvec D) are ma-
trices of the same order, we conclude that 'C = (vec F)Xvec DY. Mutatis

mutandis, this reasoning applies to the following proofs as well. [ ]

Proof of (2.2). veeC=(,®P, 81, )vecC=(l,®P,, ®I.)

vec{(vee F)(vee D)’} =(1,8P, 81, Xvec D®vec F)= vec(D® F). [
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PT()Uf 0.[ (23) Vccc:(lvu@Pmm®,m)vcc[Pmm( DGF) a(Im®[’mm®1m)

vee[( FOD) P, .} = vec|(F'®D)P,, )= vec(P, (D®F')}, using Lenmm
4.1(i) of Neudecker and Wansbeek (1983). n

Let y=x — . In Section 4, we use two properties of the matrix of
fourth-order moments W = &(yy' ® yy'), viz.

W=wW (2.4)
and
Pmmw—_-w' (25)

These results are straightforwardly proven:

W=2&(yy' @yy') = &{vec(yy')} {vee(y))’
=&(yoy)(y®y) =& (yy'yy') =W,
by applying (2.1) in the first step; and
P, .W=2&(P,. [y ®yy']}
=&(P,.(y®y)(y®y))=E(y®y)(y®y) =W,

as P (y®y)=P, , vec{yy) = veclyy'), yy' being a symmetric matrix.

3. BROWNE'S ESTIMATOR

From now on we make a useful simplification: we will consider the p X1
vector y = x — u rather than x. Since all expressions in X that we employ
are of the form NX, and because NX = NY, with

Y= (ypoya) = (2= e, — 1))

this simplification is without loss of generality.
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Browne's results are that

n(n-1) n—1\?2
‘Iukls("__z)("_s) wukl’( " )kukkl

DT b+ kb - ——k i
- n(n—2)(n—-3){ k™t il™ jk n-14 kl}
is an unbiased estimator for cov{( n— 1)'/2ku, (n- l)lﬂk,‘,}, and the latter
is

n—1 1 n—1
Ot ;(Klk"_/! + KIIKjk) - n K Kyp-

n

In these formulas, w,; =(1/nE (i, — U XY)a = G XYka = G Xypa ~ 7))
where the indices i, j, k, and | refer to elements of y; k,j is the (i, j)th
element of K; x; is the (i, ))th element of K; and 0, = &(y,y,y,y,)-

Let :

Ws%(Y@Y)'(N®N)A(N®N)(Y®Y).

be an estimator for W, with A=Y,(E,,®E,,). Now we have that, in matrix
notation,

Bl (W (14 py(ROR) — ) - — ik
Ta(n-2){(n—-3){n-1 (I+P)(KeK)- n—2 @3.1)

is an unbiased estimator for 2(k). The latter quantity is

.@(12)=%w+ (I+P)(K®K)—%kk'. (3.2)

_r
n{n—1)

Note that we do not scale k by (n ~1)*/2 as is done by Browne. We will now
prove (3.2) and the unbiasedness of (3.1).
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4. AN AUXILIARY RESULT AND SOME APPLICATIONS

The starting point in our analysis is the following expectation:

&£ (Y'RY®Y'RY) = é’( Yy ® Z‘,mmy/)
i.J k!
= Cf{ Yriviyi®yyi
t

+ E ("uruylyile!ljyj + rﬁleJ'@!hUj +f§U.‘U}'®!I;U|’)}
Y

- Sriw T [rur,KeK+ rikk'+ rfP(KoK)),
i i*J

(4.1)

where R =(r/)) is a symmetric matrix. Note that the second equality is based
on the omission of all terms in the fourfold summation preceding it that
contain y's with a unique index. These terms have expectation zero.

There are two applications of this result. First, for R = N=(n,) there
follows immediately

a”(K@I@)=m117£()”NY®Y'NY)

1 -1)* -1
(D) s 0D e

2 K
(n-1) n n

n—1
+T[P(K®K)+kk']

1 -1 1
- W+ K@K+ ———— (P(K®K) +kk'), (4.2)
n n n{n-1)

since ry=n,=1-1/nand ry=n,;=—1/n (i+j). On premultiplying
the left-hand and right-hand sides of (4.2) by P, we find

el P(ReR)| = %w+ -'-1-—;——1-P(K®K)+ Tr'l_:—l—(xcox +kk'), (4.3)

)
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using (2.5), and on applying the tilde operator to (4.2), we obtain

aa 1 1 n—1
é(kk)=’—lw+m(l+l’)(l(®l()+——n——kk, (44)

using (2.4). As a corollary to the latter,

N an 1 1 1
(k)= V-kk'=—W+ ——+(I+P ——kk'. (4.
D(k)=¢&(kk') " n(n_l)( Y K®K) nkk (4.5)
This expression was also given by Traat (1984, Equation (15)). This proves

(3.2).
The other application of (4.1) is to evaluate £(W). Since

S| e

W =— Y (Y'NE,,NY®Y'NE,,NY),
k

and E;; = e, e;, we have to evaluate first
1

1
Ne, = (I - -—u')e,t =g~ —u,
n n

e,"Ne, = 8“ bl ‘n‘,

where 8, is Kronecker's delta, so for this case

1y 1v¢ n-—1
2 Vs ——|) =l1~=
2‘:’” ‘E(” n) ( n)+ nt

_ (n—=1)(n*~3n+3)

H
n8

1\? 1\?
Z’"ury: 2'%’ ) (8“——-) (Bjk""”)
in) Lo} ivj n n

_ (n—1)(2n-3)

nd
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Insertion of these swmations in (4.1) yields

c”(W) = l;—;—l[(nz—u’}n +3)W+(2n=3)[(I + P)(K®K) + kk'}}. (4.8)

5. PROOF OF UNBIASEDNESS

We can collect the equations (4.2), (4.3), (4.4), and (4.6) as follows:

KeR
Ca B 1
& P(K®K)
PPl n(n-1)
W
(n—-1)° 1 1 n—1
% i (n-1)° 1 n—1|g;
1 1 (n=1% n-1
a a a b
K®K
«| P(KeK) | (5.1)
kk'
W
where

n—1\? n ’
aE(————) (2n-3) aund l)E(—————) (n?=3n+3).
n n

We can also rewrite (4.5) in this fonnat and reformulate our task into that
of finding an unbiased estimator of

| K®K
(k)= ———5 (L1 1= = D)e1) ”(’;;’j") (45)

w
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1n condensed form, we can write (5.1) and (4.5') as

é’(r)=m(M®1)T.

1
m(g ®I)T,

with M, g, T, and T implicitly defined. So

D=(gM'el)T (5.2)

is by construction an unbiased estimator of (k). 1t remains to evaluate
g'M ™" It can be given in the following form:

2 ’
’I'E g'Al_l =\{—-¢,—cCc,—¢Cc— ! y ! cl, (53)
n-2 n-1

with c=(n—1)/n{n—2Xn~3). This can be shown by straightforward
multiplication, by verifying h'M = g’. An auxiliary result is

n? (""1)2
(-—l,—l,—l,————) 1
n-1

2 n—1\2
=("’_l)(_"—l—l)(zn—s)—z—(n—l)z

=(n=1)(2n=-3)=-2~(n~1)*

=n?2-3n=n(n-3),

so the first two elements of h'M obey

1
h'Me, = h'Me, = cn(n —3) - o= l=gley=g'e,,
n-—

171
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and the third obeys
! 2
hMey=cn(n—3)~ ;—:—2(11 —1)*=1-n=g'e,.

Finally, fur the fourth element, we have

n? n—1\? n—1
hWMe,=c ( ) (n*-3n+3)-3(n-1)|- —
n-1 n n—2

1
=C"("'1)("‘"3)"—2'= n—1=g'e,.
n-

Hence h'M = g', and a comparison of (5.2) and (5.3) with (3.1) shows that
the latter indeed presents an unbiased estimator of 2(k). Of course, we can
derive unbiased estimators for all linear combinations of the elements of T,
using this procedure.

6. MULTIVARIATE CUMULANTS

Browne derived his result by using scalar results on multivariate cumu-
lants. This section shows the connection between the theory of cumulants
and our resulls.

First, note that the matrix K has elements k), the second-order cumu-
lants of y. The matrix K is the matrix with elements «,, the fourth-order
cumulants of y:

K=W-(I+P)(K®K)— kk'. (6.1)

This expression was also given by Traat (1984, Equation (16)). Further we
define

n?(n+1) R

K (n=1){(n-2)(n-3)

]

(n-1)* N
"m{(lw)(kexnu}. (6.2)
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The matrices K and K have elements ku,‘, and k,j, the so-called k-statistics.
The k-statistics are unhiased estimators for the corresponding cumulants (sce
for instance Kaplan 1952), and hence, R and K are unbiased estimators for K
and K. A proofl of the latter case in matrix format can be given analogously to
the proof of the unbiasedness of D:

K=(r'®eI)T
and
K=(q'®NT,

where r'=(—1,—-1,~1,1) and

vl —a—a 112(1x+l)d i de (n=-1)*
PE\TETATETTE Y MY E Ry

It is casily verified that ¢'M = r', and hence that &(K) =K. By insertion of

(6.1) in (3.2) we can express 2(k) in terms of cumulants:
- 1 1
.@(k)=;l—K+m(1+P)(K®K) (6.3)

(also given by Traat, 1984), and il we insert (6.2) in (3.1) we obtain

"l e (14 P)(ReR) - i
n(n+1) (n—2)(n+l)( (n—2)(n+1)

DA=

as an cxpression for D in terms of k-statistics.
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