

 University of Groningen

Control in a behavioral context
Belur, Madhu Nagraj

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2003

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Belur, M. N. (2003). Control in a behavioral context. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-06-2022

https://research.rug.nl/en/publications/2dc83aa2-6155-43b6-a445-16d1287bd5d9

Chapter 4

More on interconnection

In this chapter we look into several diverse issues that arise when dealing with control in a

behavioral setup. In section 4.1 we bring out the relation between regular interconnection

and the issue of implementability by feedback. Roughly speaking, regularity of intercon-

nection means that there is a signal flow graph of the kind that exists in ‘intelligent control’

(see figure 1.1). One can describe a regular controller as feeding back the sensor signals

of the plant suitably into the actuator inputs. Feedback interconnection in the behavioral

framework has been broached in Willems [74]. We prove some results related to feedback in

the setting we have adopted, namely, the control variables being different from the to-be-

controlled variables. In section 4.2 we show an important connection between disturbances,

their freeness and regularity of interconnection. We prove that when an interconnection is

not regular, there is a potential situation in which our controller is putting restrictions on

disturbances (against the spirit that disturbances get chosen by the environment and are

hence free for the controlled system). Section 4.3 deals with the filtering problem and this

is formulated and solved. The results here are similar to those in Valcher & Willems [66].

In section 4.4 the pole placement and the stabilization results of the previous chapter are

specialized to the case that we want these specifications on, not just the variables w, but

on the control variables c also. In other words, the case that all the plant variables are to

be controlled (stabilized, etc). In section 4.5 we dwell upon the concept of canonical con-

troller as introduced in van der Schaft [48, 47]. We derive the conditions under which this

controller is a regular controller. Section 4.6 deals with the question under what conditions

we can control a plant with a controllable controller. Many of the results of this chapter

are utilized in chapter 7 when we deal with the synthesis of dissipative systems.

63

64 Chapter 4. More on interconnection

4.1 Feedback interconnection

This section considers the issue of implementability of a controller in a feedback configura-

tion. This issue is important when we want to attach a controller to a plant in a way such

that the controller takes the measured outputs of the plant as inputs and such that the

controller outputs are fed back into the control inputs of the plant. Thus the i/o partition

of the controller gets fixed by the plant. It is an important question whether a controller

that we have obtained (using the results of the previous chapter, for example) adheres to

such an i/o configuration. In case our controller does not adhere, then the question arises

whether there exists one that does adhere to the given i/o partition. Regularity of the

interconnection is related to this question, as was shown in Willems [75]. Before we define

what a feedback configuration is, we recall the necessary results about an i/o partition of

the variables of a behavior.

Let B ∈ Lw and let R(d
dt

)w = 0 be a minimal kernel representation. Then there exists

a partition w = (u, y) (after perhaps a permutation of the components of w) such that B is

represented minimally by P (d
dt

)y = Q(d
dt

)u. It was explained in section 2.9 that w = (u, y)

is an i/o partition if and only if det(P) 6= 0.

We now recall the definition of feedback interconnection as defined in Willems [75] for

the case of full interconnection. The interconnection of B1 and B2 ∈ Lw is said to be a

feedback interconnection if, after permutation of components, there exists a partition of w

into w = (u, y1, y2) such that

• in B1, (u, y1) is input and y2 output,

• in B2, (u, y2) is input and y1 output, and

• in B1 ∩B2, u is input and (y1, y2) output.

Here by ‘input’, we mean in the C∞-sense. Note how, in a feedback interconnection, the

output cardinalities add up, thus showing that a feedback interconnection is a regular

interconnection, i.e. p(B1) + p(B2) = p(B1 ∩ B2). It was shown in Willems [75] that

the converse is also true: if the full interconnection of B1 and B2 is regular, then the

interconnection is also a feedback interconnection. Thus the classical method of attaching

a controller that feeds back the plant outputs into the plant inputs is ‘regular’.

In this section we shall extend the results to the case that the controller acts on just the

control variables. For this case we shall consider the question under what conditions the

control variables c can be partitioned in such a way that the controller can be considered

as a feedback controller. Under the assumption that the manifest controlled behavior

4.1. Feedback interconnection 65

K is autonomous, and under regularity assumption on the interconnection, the following

theorem shows that such a partition always exists. This is illustrated in figure 4.1.

y

w

u2

CPfull
...

w cPfull C......

u1

Figure 4.1: Feedback interconnection of P and C

Theorem 4.1.1 : Let Pfull ∈ Lw+c and let K ∈ Lw be autonomous and regularly imple-

mentable through c. Let C ∈ Lc be a controller that regularly implements K. Then, after

permuting the components of c, there exists a partition of c into c = (y, u1, u2) such that:

(i) for (w, y, u1, u2) ∈ Pfull, (u1, u2) is input and (w, y) is output,

(ii) for (y, u1, u2) ∈ C, (y, u2) is input and u1 is output,

(iii) for (w, y, u1, u2) ∈ Kfull, u2 is input and (w, y, u1) is output.

Proof : Let R1(d
dt

)w + R2(d
dt

)c = 0 be a minimal kernel representation of Pfull. Let U

be a unimodular matrix such that UR1 = col(G, 0), with G full row rank. Accordingly

partition

UR2 =

[
R21

R22

]
.

Then [
G R21

0 R22

][
w

c

]
= 0

is a minimal kernel representation of Pfull. Let C ∈ Lc regularly implement K. Assume

C(d
dt

)c = 0 is a minimal kernel representation of C. Then a minimal kernel representation

of the corresponding Kfull is given by
G R21

0 R22

0 C

[
w

c

]
= 0. (4.1)

66 Chapter 4. More on interconnection

The submatrix col(R22, C) has full row rank, hence (after a permutation of its columns,

and accordingly, of the components of c), there exists a partition of this submatrix into[
P1 Q1

P2 Q2

]

such that col(P1, P2) is square and nonsingular. Due to the nonsingularity, again after

possibly permuting the columns, we can partition[
P1

P2

]
=

[
P11 P12

P21 P22

]
,

with P11 and P22 square and nonsingular. Such a partition exists because of Lagrange’s

formula which expresses the determinant as a sum of the products of the determinants of

its minors of suitable dimensions.

Summarizing, partitioning c = (y, u1, u2), we have now found the following minimal

representation of Kfull:

G ∗ ∗ ∗
0 P11 P12 Q1

0 P21 P22 Q2

w

y

u1

u2

 = 0,

with the ∗’s denoting the corresponding blocks of R21. Note that if K is autonomous, so

is N. Since G(d
dt

)w = 0 is a minimal kernel representation of N, G must be square and

nonsingular. Since[
P11 P12

P21 P22

]

is square and nonsingular, we infer that in Kfull, u2 is input and (w, y, u1) is output. By

nonsingularities of P11 and G, it follows that in Pfull, (u1, u2) is input and (w, y) is output.

Finally from the nonsingularity of P22 we obtain that in C, (y, u2) is input and u1 is output.

This proves the theorem. �

In the special case that Kfull is autonomous there are no inputs and the matrix
G R21

0 R22

0 C

4.1. Feedback interconnection 67

in equation (4.1) is square and nonsingular. The partitioning still works, except that u2

is absent. Figure 4.1 depicts how the control variables are partitioned into inputs and

outputs in order to implement the controller behavior in a feedback configuration. Note

that the transfer functions of both the plant and the controller with respect to the given

i/o partitions are in general singular, i.e. possibly nonproper. This is also the situation in

the following theorem.

The above theorem assigns an i/o partition without modifying the controller itself.

Often, we are not allowed to choose such a partition, because we are given a priori that

some variables are sensors, while others are actuators. Hence, necessarily, the sensors are

plant outputs and should, correspondingly, be controller inputs. The actuators then are

inputs to the plant. In the following theorem we show that if our plant Pfull has an a priori

given i/o structure with respect to sensors and actuators, and if K ∈ Lw is regularly

implementable and autonomous, then K can be regularly implemented by a controller

C ∈ Lc that takes the sensors as input, and actuates part of the plant actuators. Since

Kfull is again not necessarily autonomous, some control variables remain free. These can

be interpreted as plant actuators which are not being used for the control of the to-be-

controlled variables.

Theorem 4.1.2 : Let Pfull ∈ Lw+y+u with to-be-controlled variable w and control variable

c = (y, u). Assume, in Pfull, u is input and (w, y) is output. Then for every regularly

implementable, autonomous K ∈ Lw, there exist a controller C ∈ Lc that implements K

through c, and a partition u = (u1, u2) such that

• in C, (y, u2) is input and u1 is output,

• in Kfull, u2 is input and (w, y, u1) is output.

Proof : The proof of this theorem closely mimics the proof of the previous theorem. Let

Pfull be represented by the minimal kernel representation[
G R21y R21u

0 R22y R22u

]
w

y

u

 = 0,

with G square and nonsingular (again because N is autonomous). Let Cyy+Cuu = 0 be a

minimal kernel representation of a controller C′ ∈ Lc that regularly implements K through

c. Hence we have Kfull given by the following minimal kernel representation
G R21y R21u

0 R22y R22u

0 Cy Cu

w

y

u

 = 0.

68 Chapter 4. More on interconnection

The submatrix

[
R22y R22u

Cy Cu

]
has full row rank. Further, R22y is square and nonsingular

because (w, y) is output in Pfull. This implies that

[
R22y

Cy

]
has full column rank. Hence,

it is possible to partition (after a permutation) u into u = (u1, u2) such that Kfull is

represented as follows

G R21y R21u1 R21u2

0 R22y R22u1 R22u2

0 Cy Cu1 Cu2

w

y

u1

u2

 = 0 (4.2)

with

[
R22y R22u1

Cy Cu1

]
square and nonsingular. This allows us to choose u2 as input to Kfull

and the rest of the variables as output. In order to have u1 as output of the controller,

we require that Cu1 be nonsingular. From C′ we shall construct a C ∈ Lc to obtain the

necessary nonsingularity. We have that

[
R22u1

Cu1

]
has full column rank. Hence there exists

a T ∈ R•×•[ξ] such that det(Cu1 + TR22u1) 6= 0. Once such a T is found, we define C ∈ Lc

by the kernel representation

(Cy + TR22y)y + (Cu1 + TR22u1)u1 + (Cu2 + TR22u2)u2 = 0,

with output u1 and input (y, u2). This C also implements Kfull regularly. This completes

the proof. �

4.2 Disturbances and freeness

This section analyzes the way the freeness of any unmodeled disturbances in a controlled

system is connected to the regularity of the interconnection. The precise meaning of

‘unmodeled’ is made clear in what follows.

Consider again the problems of stabilization and pole placement for a given plant Pfull

with to-be-controlled variable w and control variable c (as formulated in sections 3.3 and

3.4). In most system models, an unknown external disturbance variable d, also occurs. The

stabilization problem is then to find a controller acting on c such that whenever d(t) = 0

(t > 0), we have w(t) → 0 (t → ∞). Typically, the disturbance d is assumed to be free,

4.2. Disturbances and freeness 69

in the sense that every C∞ function d is compatible with the equations of the model. As

an example, think of a model of a car suspension system given by R1(d
dt

)w + R2(d
dt

)c +

R3(d
dt

)d = 0, where d is the road profile as a function of time. In the stabilization problem,

one puts d = 0 and solves the stabilization problem for the full plant Pfull represented by

R1(d
dt

)w+R2(d
dt

)c = 0. In doing this, one should make sure that the stabilizing controller

C: C(d
dt

)c = 0, when connected to the actual model, does not put restrictions on d.

Thus in general when one encounters a to-be-controlled plant Pfull ∈ Lw+c, Pfull can be

extended to Pext
full ∈ Lw+c+d, which includes a representation of the disturbance behavior

as well. We say the disturbance variables were unmodeled in the original system Pfull.

Equivalently, Pext
full is an extension of Pfull such that the disturbances also have been modeled

in Pext
full. We now define precisely how an extension is related to the original model.

Consider the full plant behavior Pfull ∈ Lw+c. An extension of Pfull is a behavior

Pext
full ∈ Lw+c+d (with d an arbitrary positive integer), with variables (w, c, d), such that

1. d is free in Pext
full,

2. Pfull = {(w, c) | (w, c, 0) ∈ Pext
full}.

Thus, Pext
full being an extension of Pfull formalizes that Pfull contains exactly those signals

(w, c) that are compatible with the disturbance d = 0 in Pext
full. Of course, a given full

behavior Pfull has many extensions.

For a given extension Pext
full and a given controller C ∈ Lc, we define the extended

controlled behavior by

Kext
full = {(w, c, d) | (w, c, d) ∈ Pext

full and c ∈ C}.

During the process of controller design, one would need that the controller has the

following property: the disturbance d remains free in Kext
full, for any possible extension Pext

full.

It turns out that this is guaranteed exactly by the regularity of the interconnection of Pfull

and C !

Theorem 4.2.1 : Let Pfull ∈ Lw+c and C ∈ Lc. The following two conditions are equiva-

lent.

1. The interconnection of Pfull and C is regular,

2. for any extension Pext
full of Pfull, d is free in the extended controlled behavior Kext

full.

Proof : ((1) ⇒ (2):) Suppose Pext
full is represented minimally by R1(d

dt
)w + R2(d

dt
)c +

R3(d
dt

)d = 0. Then Pfull is represented by R1(d
dt

)w +R2(d
dt

)c = 0.

70 Chapter 4. More on interconnection

We first claim that [R1 R2] also has full row rank. Indeed, assume this matrix did

not have full row rank. Then after premultiplication by a unimodular matrix, Pext
full is

represented minimally by

[
R′1 R′2 R′3

0 0 R′′3

]
w

c

d

 = 0, (4.3)

with R′′3 6= 0. Equation (4.3) has R′′3(d
dt

)d = 0, and this means that d is not free (against

our assumption). Thus [R1 R2] has full row rank, as claimed.

Assume C(d
dt

)c = 0 is a minimal kernel representation of the controller C. Since Pfull

and C are interconnected regularly,

[
R1 R2

0 C

]
also has full row rank.

Consider the following minimal kernel representation of the extended controlled behav-

ior Kext
full:

[
R1 R2 R3

0 C 0

]
w

c

d

 = 0 , or

[
R1 R2

0 C

][
w

c

]
=

[
−R3

0

]
d. (4.4)

Because of the full row rank condition on

[
R1 R2

0 C

]
, (see proposition 2.9.4), d is free

in the C∞ sense in Kext
full also.

((2)⇒ (1):) Let R1(d
dt

)w+R2(d
dt

)c = 0 be a minimal representation of Pfull. One particular

extension Pext
full of Pfull, is represented by R1w+R2c+d = 0. Let C be given by the minimal

kernel representation Cc = 0. Then we have that d is free in

R1w +R2c+ d = 0, (4.5)

Cc = 0.

We now show that

[
R1 R2

0 C

]
has full row rank. Suppose this matrix did not have full

row rank. Then there exists a polynomial row vector [p1 p2] 6= [0 0], such that

[p1 p2]

[
R1 R2

0 C

]
= [0 0] .

Now we claim that p1 6= 0. For, otherwise, we get p2C = 0, and this implies p2 = 0 too,

since C has full row rank. Hence, as claimed, p1 6= 0. From equation (4.5) we get that for

4.3. Filtering and estimation 71

all (w, c, d) in Kext
full, we have

[p1 p2]

[
R1 R2 I

0 C 0

]
w

c

d

 = 0.

This implies that d satisfies the differential equation p1(d
dt

)d = 0, which would mean that

d is not free in Kfull. Hence [p1 p2] 6= [0 0] leads to a contradiction. This means that[
R1 R2

0 C

]
has full row rank, so we have shown that the interconnection of Pfull and C is indeed regular.

�

The above theorem shows that regularity of interconnection is equivalent to the con-

troller allowing the disturbances in every extended model to be free. By interconnecting

regularly, we are introducing new laws that are just enough to control the plant, without

imposing any restrictions, whatsoever, on disturbances in any extended plant model.

4.3 Filtering and estimation

Our general problem formulation of finding, for a given Pfull ∈ Lw+c, a regularly imple-

mentable, stable K ∈ Lw includes also a problem that is, at first sight, not a control

problem, but rather a filtering problem.

Consider the set-up of figure 4.2. The observed plant Pobs ∈ Lw+y has two types of

variables, w and y. w is a variable that we want to estimate and y is a variable that we

measure.

estimate

estimation

... ...w e

variables

ŵFilter F

to-be-estimated
variables

E
Plant
Pobs

+
error

Σ ...

−
...y...

measured

Figure 4.2: Plant and observer configuration

A filter is a system F ∈ Lw+y, with variables (y, ŵ). The idea is to find a filter F such

that in the interconnection of Pobs and F through y (the measured variable), ŵ becomes

72 Chapter 4. More on interconnection

an estimate of w. In order to formalize this, for a given filter F we define the associated

estimation error behavior E by

E= {e ∈ Lloc
1 (R,Rw) | ∃ w, ŵ, y such that:

(w, y) ∈ Pobs, (y, ŵ) ∈ F and e=w − ŵ} .
(4.6)

If E, Pobs and F are related via equation (4.6), we say that E is implemented by the filter

F. Given Pobs ∈ Lw+y, a given behavior E ∈ Lw is called implementable (with respect to

Pobs) if there exists a filter F ∈ Lw+y such that E is implemented by F. The question what

E’s are implementable is answered in the following lemma. In the following, let N be the

hidden behavior associated with Pobs, i.e.

N = {w | (w, 0) ∈ Pobs}.

Lemma 4.3.1 : Let Pobs ∈ Lw+y. Then we have:

1. The behavior E ∈ Lw is implementable if and only if N ⊆ E.

2. If E is autonomous and implementable, it can be implemented by a filter F ∈ Lw+y

such that, in F, y is input and ŵ output.

Proof : Let Rw(d
dt

)w + Ry(
d
dt

)y = 0 be a minimal kernel representation of Pobs. Then

Rw(d
dt

)w = 0 is a kernel representation of N.

(1 – only if:) Assuming E is implementable, we show that N ⊆ E. We have that there exists

an F ∈ Lw+y that implements E. Let F1(d
dt

)y + F2(d
dt

)ŵ = 0 be a kernel representation of

F. Writing down the various representations in (4.6) into a matrix, we get the following

latent variable representation of E (with latent variable (w, y, ŵ)):
0

I

0

 e =

Rw Ry 0

I 0 −I
0 F1 F2

w

y

ŵ

 . (4.7)

Let e ∈ N. Then Rw(d
dt

)e = 0. Hence, in equation (4.7), e is supported by the latent

variable (w, y, ŵ) = (e, 0, 0). We infer that e ∈ E.

(1 – if:) We assume N ⊆ E. We shall prove that this E is implementable. Clearly, there

exists an F ∈ R•×•[ξ] such that FRwe = 0 is a kernel representation of E. We claim that

FRwŵ + FRyy = 0, (4.8)

4.3. Filtering and estimation 73

is a kernel representation of an F that implements E. Indeed, the estimation error behavior,

E′, implemented by F is represented by the latent variable representation
0

I

0

 e =

Rw Ry 0

I 0 −I
0 FRy FRw

w

y

ŵ

 . (4.9)

To obtain a kernel representation of E′, we eliminate w, y and ŵ from the above equation.

By premultiplication of (4.9) by the unimodular matrix
I1 0 0

0 I2 0

F FRw −I3

we find that E′ is also represented by

0

I

FRw

 e =

Rw Ry 0

I 0 −I
0 0 0

w

y

ŵ

 .

Since

[
Rw Ry 0

I 0 −I

]
has full row rank, we see that E′ is represented by F (d

dt
)Rw(d

dt
)e =

0, whence E′ = E. It follows that F indeed implements E, completing the proof of the first

part of the lemma.

(2:) Now, supposing E is autonomous, we can take the F to be such that FRw is square

and nonsingular. Hence from equation (4.8), it follows that in F, ŵ is output and y is

input. �

The problem we want to consider in this section is to find a filter that makes the

estimation error behavior stable. The following theorem states when such a filter exists.

Theorem 4.3.2 : Let Pobs ∈ Lw+y. There exists a filter F ∈ Lw+y such that the estimation

error E is stable if and only if, in Pobs, w is detectable from y. In that case, there exists a

filter such that the measured variable y is input and the estimate ŵ is output.

Proof : (⇒:) Assume a filter F exists such that E is stable. Since E is implementable,

from lemma 4.3.1 we have that N ⊆ E. Hence N is stable, equivalently w is detectable

from y.

74 Chapter 4. More on interconnection

(⇐:) Assume N is stable. Obviously, E := N is implementable by a filter F. Further, N

is stable and hence autonomous, so it is also implementable by a filter which has input y

and output ŵ. �

Remark : Another relevant problem is to find, for a given Pobs, a filter such that E = 0.

Obviously, such an F exists if and only if, in Pobs, w is observable from y.

4.4 Full plant: stabilization and pole placement

In the previous chapter we have studied the stabilization problem, where we wanted to find

a controller acting on the control variables c such that the w-trajectories in the controlled

system tend to 0 as t→∞. Also in the case of pole placement, only the w-trajectories were

required to satisfy certain specifications. While the to-be-controlled variables are steered

to zero, it is often important to steer the control variables to zero as well. This amounts

to demanding a stable Kfull. We discuss here the conditions on Pfull under which there

exists a stable, regularly implementable Kfull. We also discuss pole placement of Kfull. As

mentioned, the problem of finding a controller such that both w and c satisfy the desired

specifications is a special case of the results in chapter 3.

We continue with the constraint that we can apply control only through the c-variable.

Recall that, given a Pfull ∈ Lw+c, we call Kfull ∈ Lw+c implementable w.r.t. Pfull if there

exists a C ∈ Lc that implements Kfull through c, i.e.

Kfull = {(w, c) ∈ Pfull | c ∈ C}.

Kfull is called regularly implementable if such a C exists with the property that the inter-

connection of Pfull and C is regular. We formulate the problems now.

Full stabilization problem : Given Pfull ∈ Lw+c, find conditions for the existence of

Kfull ∈ Lw+c that is stable and regularly implementable w.r.t. Pfull.

Full pole placement problem : Given Pfull ∈ Lw+c, find conditions under which, for

each monic polynomial r ∈ R[ξ], there exists a Kfull ∈ Lw+c such that χKfull
= r and Kfull

is regularly implementable w.r.t. Pfull.

The following theorem solves the full stabilization problem. The solution to these

problems involves again the hidden behavior as defined in equation (3.4)

N = {w ∈ C∞(R,Rw) | (w, 0) ∈ Pfull}.

4.4. Full plant: stabilization and pole placement 75

We need stabilizability of Pfull and stability of N for the existence of a stable, regularly

implementable Kfull. Note that stability of N is equivalent to detectability of w from c in

Pfull,

Theorem 4.4.1 : Let Pfull ∈ Lw+c. There exists a stable, regularly implementable Kfull ∈
Lw+c if and only if the following two conditions are satisfied:

1. N is stable, i.e. in Pfull, w is detectable from c, and

2. Pfull is stabilizable.

Proof : The idea is to include c in the to-be-controlled variable. Thus we define the

to-be-controlled variable w′ by w′ := (w, c). Let Paux
full be the auxiliary system obtained

from Pfull as follows

Paux
full = {(w′, c) | w′ = (w, c) and (w, c) ∈ Pfull}.

Then the w′-behavior Paux associated with Paux
full is equal to Pfull, while the hidden behavior

Naux, is given by

Naux = {w′ | w′ = (w, 0) and w′ ∈ Pfull}.

It follows that w′ ∈ Naux if and only if w′ = (w, 0) with w ∈ N. This leads to the

equivalence of the stability of Naux and that of N. Also the Kfull that we are seeking is a

stable and regularly implementable Kaux. By using the stabilization theorem – theorem

3.4.1, we get that there exists a Kfull ∈ Lw+c satisfying the problem statement if and only

if Naux is stable and Paux is stabilizable. This completes the proof. �

The following theorem establishes the corresponding conditions for the full pole placement

problem. Here, observability of w from c comes into picture, which from lemma 3.1.3, is

equivalent to N = 0.

Theorem 4.4.2 : Let Pfull ∈ Lw+c. For every r ∈ R[ξ], there exists a regularly imple-

mentable Kfull ∈ Lw+c such that χKfull
= r if and only if the following two conditions are

satisfied:

1. N = 0, i.e. in Pfull, w is observable from c, and

2. Pfull is controllable.

We omit the proof of this theorem since it is similar to that of the previous one.

76 Chapter 4. More on interconnection

4.5 Canonical controller

This section contains a study of the concept of canonical controller as was introduced

in van der Schaft [47, 48]. We look into implementability issues for this elegant method

of constructing a controller. We also prove necessary and sufficient conditions for the

canonical controller to be a regular controller.

Throughout our discussion on control, we have emphasized that it is the controlled

behavior K that is of interest, and we have not paid much attention to constructing con-

trollers that implement a given controlled behavior. We have been satisfied with just

making sure that K is implementable (i.e. making sure that N ⊆ K ⊆ P) and invoking

the controller implementability theorem to guarantee that there exists a controller C ∈ Lc

that implements K. Often there are many controllers that implement a given K.

Given Pfull and an implementable K, there is a representation-free method of construct-

ing a controller that implements K. It was shown in van der Schaft [47] that one could

interconnect the desired controlled behavior K with Pfull through the to-be-controlled vari-

ables w to obtain a controller behavior C ∈ Lc that implements K. This is illustrated in

figure 4.3. This controller has been called the canonical controller.

...

w′

...variables
control

Pfull K

variables
to-be-controlled

c

Figure 4.3: The canonical controller

The canonical controller is particularly attractive because it contains all the features of

a controller that is based on the principle of an internal model of the plant. In requiring a

desired controlled behavior K from the plant, what could be easier than specifying precisely

this K to the plant? The following figure (figure 4.4) illustrates the canonical controller

interconnected with the plant.

More precisely, we arrive at the following definition of the canonical controller.

Definition 4.5.1 : Suppose Pfull ∈ Lw+c and let K ∈ Lw satisfy N ⊆ K ⊆ P. The

canonical controller Ccan ∈ Lc is defined as

Ccan := {c | ∃ w′ ∈ K such that (w′, c) ∈ Pfull}. (4.10)

4.5. Canonical controller 77

...
...

...

control
variables

K

canonical controller

Pfull Pfull

variables
to-be-controlled

cw w′

Figure 4.4: The canonically controlled system

Compare the above equation of Ccan with the condition in equation (3.3), which ex-

presses that a controller C ∈ Lc implements K:

K = {w | ∃ c ∈ C such that (w, c) ∈ Pfull}.

The reversal of the roles that w and c play in the above two equations leads us to interpret

Ccan as the controller behavior implemented by K, by interconnection with Pfull through

w. We shall use this remark later in corollary 4.6.4 below.

The following proposition from van der Schaft [47] makes sure that the canonical con-

troller implements K precisely when K is implementable.

Proposition 4.5.2 : Let Pfull ∈ Lw+c and K ∈ Lw. Let Ccan be the associated canonical

controller. Then Ccan implements K if and only if N ⊆ K ⊆ P.

Before we continue studying further properties of the canonical controller Ccan that is

constructed from K, with K satisfying the assumption N ⊆ K ⊆ P, we shall digress into

the role that N ⊆ K ⊆ P plays. Obviously, definition 4.5.1 of Ccan applies to any K, and

not just to those K’s satisfying N ⊆ K ⊆ P. The following theorem shows that, in general,

Ccan implements N + K ∩ P.

Theorem 4.5.3 : Let Pfull ∈ Lw+c and K ∈ Lw be given. Let Ccan be the canonical

controller defined in equation (4.10) above. Let K̂ ∈ Lw be the manifest controlled behavior

obtained by the interconnection of Pfull and Ccan through c. Then

K̂ = N + K ∩ P.

Proof : (K̂ ⊇ N + K∩ P :) Since K̂ is implementable (by Ccan, for instance) it follows

that K̂ ⊇ N. Now let w ∈ K ∩ P. Then there exists c such that (w, c) ∈ Pfull. w ∈ K

implies that c ∈ Ccan. Since (w, c) ∈ Pfull and c ∈ Ccan, by definition of K̂ we infer that

w ∈ K̂. Thus K̂ ⊇ K ∩ P. By linearity we get K̂ ⊇ N + K ∩ P.

78 Chapter 4. More on interconnection

(K̂ ⊆ N + K ∩ P :) Let w̃ ∈ K̂. This implies that there exists c ∈ Ccan such that

(w̃, c) ∈ Pfull. By definition (equation (4.10)), c ∈ Ccan means there exists w ∈ K such

that (w, c) ∈ Pfull. This implies that w ∈ P and hence w ∈ K ∩ P. Thus it only remains

to show that w̃ − w ∈ N. This follows since both (w, c) and (w̃, c) ∈ Pfull thus implying

(w̃−w, 0) ∈ Pfull. Thus every w̃ ∈ K̂ can be written as the sum of w̃−w ∈ N and w ∈ K∩P

proving K̂ ⊆ N + K ∩ P. �

Note that as a special case of the above theorem, if N ⊆ K ⊆ P, we indeed obtain

K̂ = K. We now address the issue whether Ccan is a regular controller. The conditions

under which the canonical controller is regular turns out to depend on just Pfull and not on

the desired controlled behavior K. We shall show that the canonical controller is regular

if and only if the control variables are free in Pfull.

Define the control variable plant behavior Pc ∈ Lc as the behavior obtained from Pfull

by eliminating w

Pc := {c | ∃ w such that (w, c) ∈ Pfull}. (4.11)

Pc = C∞(R,Rc) is equivalent to c being free in Pfull. (In fact, this was the way freeness was

defined in section 2.9.) The following theorem characterizes the conditions on Pfull under

which every controller is a regular controller.

Theorem 4.5.4 : Let Pfull ∈ Lw+c be given and let Pc ∈ Lc be the control variable plant

behavior (as defined in equation (4.11)). Then every controller C ∈ Lc is a regular controller

if and only if Pc = C∞(R,Rc).

Proof : Let R(d
dt

)w + M(d
dt

)c = 0 be a minimal kernel representation of Pfull. We begin

by noting that Pc = C∞(R,Rc) is equivalent to R having full row rank.

(if :) Suppose Pc = C∞(R,Rc). Let C ∈ Lc be given by a minimal kernel representation

C(d
dt

)c = 0. Then[
R M

0 C

][
w

c

]
= 0

is a kernel representation of Kfull.

Then it follows that the interconnection is regular since both R and C have full row rank

themselves. This shows that C is a regular controller.

(only if :) We need to show that if every controller is regular then Pc = C∞(R,Rc).

Assume, to the contrary, Pc $ C∞(R,Rc). This implies that R does not have full row rank.

4.5. Canonical controller 79

We premultiply the equations R(d
dt

)w + M(d
dt

)c = 0 to obtain the following equivalent

minimal kernel representation of Pfull[
0 M1

R2 M2

][
w

c

]
= 0 (4.12)

with R2 and M1 having full row rank. We see that the controller C ∈ Lc with minimal

kernel representation M1(d
dt

)c = 0 is a controller that is not regular. This contradiction

establishes that Pc = C∞(R,Rc). �

One of the immediate consequences of the above theorem is that, under the condition

Pc = C∞(R,Rc), every implementable K is also regularly implementable. This is shown as

follows. Suppose Pc = C∞(R,Rc). Let K be implementable. Then there exists a C ∈ Lc

which implements K. From the above theorem, this C is also a regular controller. This

implies that K is regularly implementable.

We now come to regularity of the canonical controller. Consider the the canonical

controller Ccan ∈ Lc as defined in equation (4.10). The following theorem shows that

Pc = C∞(R,Rc) is both necessary and sufficient for Ccan to be a regular controller. Relating

this to theorem 4.5.4, we notice that the canonical controller is regular if and only if every

controller is regular.

Theorem 4.5.5 : Let Pfull ∈ Lw+c and let K ∈ Lw satisfy N ⊆ K ⊆ P where N and P are

the hidden and the manifest plant behaviors, respectively. Let Ccan ∈ Lc be the canonical

controller. Ccan implements K regularly if and only if Pc = C∞(R,Rc).

Proof : (if :) If Pc = C∞(R,Rc), then every controller is regular from the previous

lemma. In particular, the canonical controller is also regular.

(only if :) Without loss of generality, we assume Pfull to have a minimal kernel rep-

resentation of the form in equation (4.12) above, with R2 and M1 having full row rank.

Since N ⊆ K, we can assume a minimal kernel representation of K to have the form

F (d
dt

)R2(d
dt

)w = 0. Then the following is a latent variable representation of Kfull (with

latent variable w′).

Pfull

{

Ccan

0 M1

R2 M2

0 M1

0 M2

0 0

[
w

c

]
=

0

0

0

R2

FR2

w′ (4.13)

80 Chapter 4. More on interconnection

Eliminating w′ from the above equation we see that a kernel representation of the canonical

controller Ccan is of the form:[
M1

FM2

]
c = 0 . (4.14)

We see that Ccan always repeats some laws of Pfull, namely the rows in M1. Thus Ccan is a

regular controller only if M1 = 0. This is equivalent to Pc = C∞(R,Rc). This proves the

result. �

Remarks:

(1:) We note here that the condition Pc = C∞(R,Rc) is not particularly restrictive. It

is satisfied in several standard classical control problems where it is assumed that the

additive ‘noise’ influences the measured output surjectively. For example, see Trentelman,

et al [60], theorem 11.14 in the H2 optimal control setup and theorem 14.1 in the context

of H∞ control, or see Zhou [83], assumption (ii) in section 13.5 regarding the H2 optimal

control problem. These assumptions ensure that Pc = C∞(R,Rc).

(2:) A second remark about the canonical controller is relevant. Suppose a given K is reg-

ularly implementable w.r.t. Pfull through c. This means that there exists a controller that

regularly implements K. However, every controller that implements K need not be a regu-

lar controller. From theorem 3.2.2, we know that the property of regular implementability

of K means that the autonomy of P is retained within K. Hence, every controller that

implements K, though not necessarily regularly, at least ensures that the autonomy of P

is retained within K. In this sense the (possible) non-regularity of the canonical controller

need not make it any less attractive.

4.6 Controllability of the controller

In this section we address the issue about the controllability of the controller that we

utilize to implement K in, for example, the pole placement problem. This property of K

which allows us to implement it by a controllable controller is defined below as K being

controllably implementable.

Definition 4.6.1 : Let Pfull ∈ Lw+c and K ∈ Lw. K is called controllably implementable

if there exists a C ∈ Lc
cont that implements K.

4.6. Controllability of the controller 81

Note that the word ‘controllably’ in the definition above refers to the controllability of

C and not to the controllability of K. Suppose K is implementable, then controllability

of K is not necessary for K to be controllably implementable. However, it turns out that

controllability of K is sufficient, i.e. if K is controllable and implementable, then K is

controllably implementable. This is shown within the following theorem, which contains a

slightly more general result. We will use this theorem later in chapter 7. We first need the

following straightforward lemma.

Lemma 4.6.2 : Let Pfull ∈ Lw+c and assume C1 and C2 implement K1 and K2, respec-

tively. Then

C1 ⊆ C2 ⇒ K1 ⊆ K2.

Proof : Let w1 ∈ K1. Hence there exists c1 ∈ C1 such that (w1, c1) ∈ Pfull. Since C1 ⊆ C2,

we have c1 ∈ C2 also. Hence w1 ∈ K2. This proves K1 ⊆ K2. �

In other words, the smaller a controller behavior becomes, the more it restricts. This

fact is utilized in proving the second statement of the following theorem.

Theorem 4.6.3 : Let Pfull ∈ Lw+c.

1. Let C1 and C2 ∈ Lc implement K1 and K2 ∈ Lw, respectively.

Then C1
cont = C2

cont ⇒ K1
cont = K2

cont.

2. Suppose C ∈ Lc implements K ∈ Lw and assume K is controllable, then Ccont also

implements K.

Proof : (1:) Let C0 := C1
cont = C2

cont. Further, let K0
full, K1

full and K2
full ∈ Lw+c be

the full controlled behaviors resulting from interconnection of Pfull with C0, C1 and C2,

respectively. Since C1
cont = C2

cont, there exist C0, C1, C2 ∈ R•×•[ξ] such that C1 and C2 are

nonsingular, and C1(d
dt

)C0(d
dt

)c = 0, C2(d
dt

)C0(d
dt

)c = 0 and C0(d
dt

)c = 0 are minimal kernel

representations of C1, C2 and C0, respectively. Let Rw(d
dt

)w + Rc(
d
dt

)c = 0 be a minimal

kernel representation of Pfull. We obtain the following kernel representation of K1
full:[

Rw Rc

0 C1C0

][
w

c

]
= 0.

Let (K1
full)cont have an observable image representation:[
w

c

]
=

[
Mw

Mc

]
` .

82 Chapter 4. More on interconnection

This results in C1C0Mc = 0 and by nonsingularity of C1, we also get C0Mc = 0. This

means that K0
full has the same controllable part as K1

full. Similarly, by nonsingularity

of C2, we obtain that K2
full also has the same controllable part as K0

full. It follows that

K1
cont = K2

cont = Im(Mw(d
dt

)). This proves statement 1.

(2:) Define C1 := C and let C2 := Ccont. Assume K1 and K2 ∈ Lw are the behaviors that

C1 and C2 implement, respectively. Then K1 = K. We need to show that K2 = K. From

statement 1 of this theorem, we already have K2
cont = K. Now since C2 ⊆ C1, we use lemma

4.6.2 to infer that K2 ⊆ K. This implies K2 = K. �

Theorem 4.6.3 has a useful extension in the context of canonical controllers. Let

Pfull ∈ Lw+c and let K be a given implementable behavior (i.e. N ⊆ K ⊆ P). Sup-

pose C ∈ Lc is the canonical controller that implements K. We noted that the canonical

controller C is the controller behavior that K implements by interconnection with Pfull

through w. Hence, using theorem 4.6.3, Kcont implements Ccont. Moreover, suppose Kcont

also is implementable, i.e. N ⊆ Kcont ⊆ P, then using theorem 4.6.3 again we easily infer

that Ccont implements Kcont. We state this into the following corollary for easy reference.

Corollary 4.6.4 : Let Pfull ∈ Lw+c and let N,P be its hidden and manifest plant behav-

iors, respectively. Let K ∈ Lw be an implementable behavior. Suppose Kcont is also im-

plementable. Let C be the canonical controller that implements K. Then Ccont implements

Kcont.

The significance of the above corollary is as follows. Suppose we have an implementable

K ∈ Lw and we are actually interested in implementing Kcont (assumed implementable).

Instead of using Kcont to construct a controller that implements it, we can first construct the

canonical controller C from K and then use Ccont to implement Kcont. Thus the operation

of ‘taking-the-controllable-part’ can be done after we construct a canonical controller. We

shall need this later in subsection 7.3.3 in the context of synthesis of dissipative systems.

We now come to the issue of regular implementability of K by a controllable controller.

The definition of controllably regularly implementable behavior is a straightforward exten-

sion of definition 4.6.1.

Definition 4.6.5 : Let Pfull ∈ Lw+c and K ∈ Lw. K is called controllably regularly

implementable if there exists a C ∈ Lc
cont that regularly implements K.

Another extension of theorem 4.6.3 is the following corollary. This result admits as

a special case that if K is regularly implementable and if it is controllable then K is

4.6. Controllability of the controller 83

controllably regularly implementable. The proof of the corollary is very similar to that of

theorem 4.6.3. The fact that p(C) = p(Ccont) makes sure that if C is a regular controller

then Ccont is also a regular controller. We omit the straightforward proof.

Corollary 4.6.6 : Let Pfull ∈ Lw+c.

1. Let C1 and C2 ∈ Lc regularly implement K1 and K2 ∈ Lw, respectively.

Then C1
cont = C2

cont ⇒ K1
cont = K2

cont.

2. Assume C ∈ Lc regularly implements K ∈ Lw and K is controllable, then Ccont also

regularly implements K. In other words, if K ∈ Lw
cont is regularly implementable then

K is controllably regularly implementable.

We have seen that controllability of K is sufficient (in addition to, of course, regular

implementability) for K to be controllably regularly implementable. We now come to the

issue that K is not controllable but autonomous. Consider the problem of pole placement.

From the pole placement theorem (theorem 3.3.1) we know under what conditions on

Pfull, for each monic r ∈ R[ξ], there exists a K with characteristic polynomial r such

that K is regularly implementable with respect to Pfull through c. We shall now consider

the question under what conditions on Pfull, for each monic polynomial r, there exists

a controllably regularly implementable K with characteristic polynomial r. Before we

consider the general case we shall state and prove the result for the full interconnection

case.

Theorem 4.6.7 : Let P ∈ Lw. For each monic r ∈ R[ξ], there exists a controllably

regularly implementable K such that χK = r if and only if the following two conditions are

satisfied:

1. P is controllable and m(P) > 1,

2. m(P) < w, i.e. P $ C∞(R,Rw).

Proof : (if :) Without loss of generality we shall assume that a minimal kernel repre-

sentation of P is already in Smith form: [Ip 0]w = 0, with Ip of size p(P). Partition w

accordingly, into w = (wp, wm). We partition wm further into wm = (wm1, wm2) such that

wm1 has m(B) − 1 components and wm2 is the single remaining component of wm. We

define K as that having the following minimal kernel representation:
Ip 0 0

0 Im−1 0

0 0 r(d
dt

)

wp

wm1

wm2

 = 0 .

84 Chapter 4. More on interconnection

The controller that would regularly implement this K can be easily defined as the one

defined by the last m(P) rows of the above equation. However, this controller is not con-

trollable. We define C ∈ Lw by the following minimal kernel representation:

m− 1 rows
{

1 row
{ [

0 0 · · · 0 Im−1 0

1 0 · · · 0 0 r

]
wp

wm1

wm2

 = 0 .

It is easy to see that this C regularly implements the K defined above, and that this C is

controllable.

(only if :) We already know from the pole placement theorem that controllability of P

and m(P) > 1 are both necessary for pole placement. We shall show that P $ C∞(R,Rw) is

necessary for the existence of a controllable controller. Suppose P = C∞(R,Rw). Then to

implement any K we have to take C = K. If K is not controllable, neither can C be. This

proves the necessity of m(P) < w. This completes the proof. �

Having considered the full interconnection case, we now consider the general case. The

sufficiency part is easily formulated as the following result. Note that controllability of P

is implicit when we assume Pfull to be controllable.

Theorem 4.6.8 : Let Pfull ∈ Lw+c. For each monic r ∈ R[ξ], there exists a controllably

regularly implementable K such that K has characteristic polynomial r if the following four

conditions are satisfied

1. N = 0, equivalently, in Pfull, w is observable from c,

2. Pfull is controllable,

3. m(P) > 1, i.e. P is not autonomous, and

4. w + m(P) 6 p(Pfull).

Proof : We note that for the general case, we are allowed only some kinds of isomorphisms

on the space C∞(R,Rw)×C∞(R,Rc). The kind of isomorphisms have to retain the structure

that the ‘interconnection through c’ constraint requires. Let Rw(d
dt

)w + Rc(
d
dt

)c = 0 be a

kernel representation of Pfull. Let Uw ∈ Rw×w[ξ] and Uc ∈ Rc×c[ξ] be unimodular matrices.

Then we are allowed to manipulate [Rw Rc] by postmultiplication by unimodular matrices

of the kind:[
Uw 0

0 Uc

]
.

4.6. Controllability of the controller 85

For premultiplication of [Rw Rc] there is no particular structure in the kind of unimodular

matrices allowed.

Let Rw(d
dt

)w+Rc(
d
dt

)c = 0 be a minimal kernel representation of Pfull. Using the above

remark, we shall assume Pfull to have a simpler representation. Since Pfull is controllable,

so is P. We assume P to have a kernel representation [Ip 0]w = 0. Further, since N =

0 we obtain that Rw is left invertible. This brings us to the following minimal kernel

representation of Pfull (after perhaps an isomorphism on Pfull of the kind described above).
0 0 0 Rc1

0 Im−1 0 Rc2

0 0 1 Rc3

Ip 0 0 0

wp

wm1

wm2

c

 = 0

with col(Rc1, Rc2, Rc3) having full row rank and w = (wp, wm1, wm2) partitioned such that

dim(wp) = p(P), dim(wm1) = m(B)− 1 and dim(wm2) = 1. In other words, the partition is

just like in the ‘if part’ of the proof of theorem 4.6.7 (the full interconnection analog). Now,

since Pfull is controllable we obtain that Rc1(λ) has constant rank for all λ ∈ C. Moreover,

since we started with a minimal representation, Rc1 has full row rank. From the above

equation we see that rowdim(Rc1) = p(Pfull)− w =: pc (say). (Notice that Pc ∈ Lc defined

by Pc := Πc(Pfull) is given by a minimal kernel representation Rc1(d
dt

)c = 0, and Pc has

output cardinality pc.) Let U and V be unimodular matrices such that Rc1 is written in

its Smith form U [Ipc 0]V = Rc1. Let V (d
dt

)c = (c1, c2) be partitioned accordingly. Hence

by using an isomorphism induced by a unimodular matrix on the variable c, we obtain the

following minimal kernel representation of Pfull:
0 0 0 Ipc 0

0 Im−1 0 0 R′c4

0 0 1 0 R′c5

Ip 0 0 0 0

wp

wm1

wm2

c1

c2

= 0 . (4.15)

(The zeros below Ipc are a result of premultiplication by a unimodular matrix.) We define

the controller C1 ∈ Lc by

m− 1 rows
{

1 row
{ [

0 R′c4

0 r R′c5

][
c1

c2

]
= 0 .

Appending the above controller equations to equation (4.15), and making a few row opera-

tions, we see that C1 indeed regularly implements K with χK = r. However, this controller

86 Chapter 4. More on interconnection

need not be controllable. We need to add the first few rows of equation (4.15) to the

equations of C1 and this operation will yield us the desired C2 ∈ Lc which is controllable.

Define C2 by the following minimal kernel representation:

[
Im−1 0 0 R′c2

0 1 0 r R′c3

]
c11

c12

c13

c2

 = 0 .

where c1 = (c11, c12, c13) is partitioned as follows: dim(c11) = m(P) − 1, dim(c12) = 1,

dim(c13) = pc−m(P) (and as before, dim(c2) = c− pc). For this procedure to be possible,

we need pc−m(P) > 0. From pc−m(P) = p(Pfull)−w−m(P), it follows that this is equivalent

to w + m(P) 6 p(Pfull). �

It is possible to show that the (sufficient) conditions as in the theorem above are not

necessary. The precise kind of necessary conditions remains to be formulated. Similarly,

it is interesting to know under what conditions a stabilizing controller can be chosen to be

controllable. These issues are currently under investigation.

