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Chapter 3

A Top-Down Approach to Construct Execution
Views

Published as: Trosky B. Callo Arias, Paris Avgeriou, Pierre America – “Analyzing the actual
execution of a large software-intensive system for determining dependencies,” In: Proceedings of the
15th Working Conference on Reverse Engineering, pp. 4958. IEEE Computer Society, 2008.

In revision as: Trosky B. Callo Arias, Pierre America, Paris Avgeriou – “A Top-Down Ap-
proach to Construct Execution Views of a Large Software-Intensive System,” Journal of Software
Maintenance and Evolution: Research and Practice, December 2010.

Abstract

This chapter presents a top-down approach to construct execution views of a large and
complex software-intensive system. Execution views describe what the software does at
runtime and how it does it. The approach represents an architecture reconstruction solu-
tion based on a metamodel, a set of viewpoints, and a dynamic analysis technique. The
metamodel and viewpoints capture the conventions to describe and analyze the runtime of
a software system developed by a particular organization. The dynamic analysis technique
is to extract runtime information from a combination of system logging and runtime mea-
surements in a top-down fashion. The approach was developed and validated constructing
execution views for an MRI scanner. Therefore, the approach represents a solution that
can be applied with similar large and complex software-intensive systems.

3.1 Introduction

Large software-intensive systems development combines various hardware and soft-
ware elements, which are typically associated with large investments and multidisci-
plinary knowledge. A particular characteristic of the development of this type of sys-
tems is that their software elements take a considerable fraction of the development
effort. These software elements typically contain millions of lines of code, written in
several different programming languages (heterogeneous implementation), and influ-
ence the design, construction, deployment, and evolution of the system as a whole.
These characteristics have led to a demand for architectural descriptions that can help
software architects and designers to get a global understanding of a software-intensive
system.

The ISO/IEC 42010 Standard (ISO/IEC 2007) mandates that the architectural de-
scription of a system is organized into multiple views. An architectural view (or sim-
ply, view) consists of one or more architectural models, which in turn represent a set
of system elements and relations associated with them. Each such architectural model
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conforms to a model kind, which is part of the conventions and methods established
by an associated architectural viewpoint. An architectural viewpoint frames particular
concerns of the system’s stakeholders and consists of the conventions for the construc-
tion, interpretation, and use of an architectural view. One of the most popular ex-
amples of viewpoints are the logical, process, development, and physical viewpoints
(also known as the 4+1) proposed by Kruchten (Kruchten 1995).

As part of our research project (van de Laar et al. 2007), we investigate how to
improve the evolvability (i.e., the ability to respond effectively to change) of software-
intensive systems studying a Magnetic Resonance Imaging (MRI) scanner developed
by Philips Healthcare MRI (Philips Healthcare 2010). In this context, we observed
that up-to-date architectural views are important assets to support the incremental
development or evolution of software-intensive systems. However, the architectural
views of this type of systems are not always up-to-date, available, or accessible. This is
especially the case when a system has a long history of being exposed to changes and
contains legacy components, which are associated with multidisciplinary knowledge
spread across the practitioners of the development organization. Therefore, our goal
is to find methods and techniques to construct up-to-date views of large and complex
software-intensive systems.

In the literature, most techniques aimed at constructing up-to-date views, focus
on development or module views, typically gathering information from the system’s
source code (Koschke 2009). However, up-to-date module views are not enough to
get a global understanding of a large software-intensive system and support its evolu-
tion. A system of this type has a large number of stakeholders, and each of them has
concerns about different aspects, including the software implementation, realization,
quality, and even economic value. Therefore, architects and designers need to com-
bine different kinds of up-to-date views to address the various stakeholders’ concerns
and effectively support the evolution of the system.

Our focus is the construction of execution views, which we define as views that
describe what the software embedded in a software-intensive system does at runtime
and how it does it (Callo Arias, America and Avgeriou 2009b). The term runtime
refers to the actual time that the software system is functioning during test or in the
field. In contrast to module views, which describe how a system is constructed in
terms of source code entities (e.g., modules, classes, functions, or methods), execu-
tion views describe how a system actually works in terms of high-level runtime con-
cepts (e.g., scenarios, components), actual runtime platform entities (e.g., processes,
threads), hardware and data system resources, and the corresponding runtime inter-
actions between them. As we will describe later, using execution views, practitioners
can get a global understanding of the actual runtime of a software system without
being overwhelmed by the size and complexity of its implementation.

This chapter is an extension of our previous work, in which we presented how to
analyze the runtime of a large software-intensive system (Callo Arias et al. 2008). The
main contributions of the extension are:

• An architecture reconstruction solution. In our previous work we presented a dynamic
analysis approach to extract and abstract up-to-date runtime information. Now, we
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present an improved approach, which enables the top-down construction of execu-
tion views. By top-down, we refer to the construction of views with high-level infor-
mation at first and then, if the stakeholders need it, information to dig down into the
details. The approach is an iterative and problem-driven architecture reconstruction
process, which we implemented following a conceptual framework for architecture
reconstruction using views and viewpoints (Koschke 2009, van Deursen et al. 2004).

• Comprehensive description of the approach. In our previous work we described how a
metamodel and mapping rules supported the extraction and abstraction of runtime
information. Now, we present an extended metamodel and details about the def-
inition and use of mapping rules. In addition, we summarize the key elements of
the viewpoints for execution views, which together with the metamodel represent
explicit guidance for the (re)construction and use of execution view.

• Case study. In our previous work we presented the application of the dynamic anal-
ysis approach to enable the identification of dependencies between the runtime ele-
ments of the software in the Philips MRI scanner. We describe the validation of the
architecture reconstruction solution with the construction of an execution profile
view for the Phillips MRI scanner. According to the feedback from the practitioners
involved in the validation, the execution profile view helped them to get an up-to-
date global overview and insights about the actual runtime of key features of the
Philips MRI scanner.

The organization of the rest of this chapter is as follows. In Section 3.2, we introduce
our approach. Section 3.3 presents the metamodel and the execution viewpoints used
by the approach. In Section 3.4, we present the dynamic analysis technique, including
the source of runtime information and the use of mapping rules. In Section 3.5 and
Section 3.6, we describe the application of the approach with the construction and use
of an execution profile view for the Philips MRI scanner. Section 3.7 describes the
technical contribution and potential limitations of the approach. Section 3.8 presents
related work. Finally, in Section 3.9, we present some conclusions and future work.

3.2 Overview of the approach

As part of our research, we observed how architects and designers follow top-down
analysis to support the incremental development and maintenance of the Philips MRI
scanner. These practitioners start top-down analysis by constructing simple diagrams
or sketches of what they consider the important parts of the system, or the architec-
ture (Fowler 2003). The diagrams and sketches reflect the practitioners’ mental models
about the system, including its functionality, components, and how they interact with
each other. The purpose of conducting top-down analysis using such representations
is first to get a global understanding of the system and then, if it is needed for the
problem at hand, to dig down for details.

We observed that practitioners prefer top-down analysis because they can focus on
the problem at hand without being overwhelmed by the size and complexity of the
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Figure 3.1: Top-Down approach to construct execution views of a large software-intensive
system

system. Hence, we decided to develop a top-down approach that support practition-
ers, mainly architects and designers, in the construction of up-to-date execution views.
The approach, illustrated in Figure 3.1, comprises: a set of elements that define the
inputs for the approach, and a set of activities that enable the extraction-abstraction-
presentation of runtime information. Together, these elements build an architecture
reconstruction process based on Symphony (Koschke 2009, van Deursen et al. 2004), a
conceptual process framework for architectural reconstruction. Symphony is an amal-
gamation of common patterns and best practices of reverse engineering using archi-
tectural views and viewpoints, which define architecture reconstruction as a process
of two phases, reconstruction design and reconstruction execution.

3.2.1 Reconstruction design

The approach starts with a group of practitioners, e.g., an architect, responsible for
documenting the architecture, and other personnel of the development organization
who are domain experts with fair knowledge about the parts or features to be ana-
lyzed. With a set of execution viewpoints, described in Section 3.3.1, as guidelines, the
architects identify the kind of concerns and problem(s) that can be addressed by con-
structing execution views, and then, if a match exists, select the kind of models to be
constructed. For the reconstruction design, the experts contribute important domain
knowledge, in order to identify:

• A set of representative execution scenarios that involve the part(s) or feature(s) of
the system to be analyzed.

• A set of facts or domain knowledge that allows the decomposition of the system
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runtime structure and behavior in terms of the entities and relationships organized
by the execution metamodel described in Section 3.3.2. The facts can be collected in
the form of text patterns, sketches, and references to existing documentation about
the system or its runtime platform.

Then, runtime data, i.e. logging and measurements, can be collected running the sys-
tem with the identified set of execution scenarios.

3.2.2 Reconstruction execution

With the construction input at hand, the approach continues through four activities.
The first three are tool-supported activities that implement a dynamic analysis tech-
nique. The first and second activities, task identification and interpretation of runtime
information, are for extracting and abstracting runtime information from the collected
runtime data. Both activities rely on a repository of mapping rules, which is composed
of regular expressions derived heuristically from the set of facts and domain knowl-
edge identified in the design phase. In the third activity, construction of execution
model, the architects select a subset of the extracted information and present it us-
ing the kind(s) of model(s) selected in the design phase. In the fourth activity, model
presentation, the practitioners interested in the view analyze the constructed model
and provide feedback about it. As Figure 3.1 illustrates, the result of the activity can
determine one of the following situations:

• Model acceptance: The constructed models provide enough useful information to ad-
dress the issue(s) in the development project. Therefore, the model is accepted as
an actual execution model and becomes part of the execution view for the project at
hand.

• New iteration: The model misses relevant information, hence an iteration of the re-
construction phase is needed. In the new iteration, the practitioners’ feedback will
be used to tune the extraction and abstraction of runtime information, including the
extension or modification of the mapping rules repository and the subset of infor-
mation in the constructed model.

In Section 3.5, we describe how several iterations are often necessary, especially when a
model is constructed for the very first time. The next two sections describe in depth the
elements and activities that support the design and execution phases of the approach.

3.3 Elements for the reconstruction design phase

Reconstruction design is considered useful beyond the scope of the construction of a
particular view, because it plays a role in continuous architecture conformance check-
ing and the construction of other views (Koschke 2009, van Deursen et al. 2004). In our
approach, we support making explicit the viewpoints and metamodel that describe the
conventions to construct, interpret, and use execution views. In the rest of this section,
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we summarize the viewpoints for execution views and describe an improved version
of the metamodel presented in (Callo Arias et al. 2008).

3.3.1 Execution viewpoints

An architectural viewpoint frames particular concerns of the system’s stakeholders
and consists of the conventions for the construction, interpretation, and use of an
architectural view (ISO/IEC 2007). The logical, process, development, and physical
viewpoints (Kruchten 1995) are some of the existing viewpoints used to describe the
architecture of software systems with multiple views. In practice, these viewpoints are
customized, extended, or replaced according to the needs of the development organi-
zation and the characteristics of the system at hand. Often, the customization, exten-
sion, or replacement remains implicit in the head of the architect(s) that construct the
views. Therefore, without the help of the original architect(s), other practitioners may
not be able to (re)construct and use the same or similar views easily.

To facilitate the application of our approach and the use of the views constructed
with it, we have defined and documented a set of execution viewpoints (Callo Arias,
Avgeriou and America 2009, Callo Arias, America and Avgeriou 2009b). The definition
includes the customization of some viewpoints from the literature, our observations
from describing the runtime of the Philips MRI scanner, and the preferences of key
practitioners, which we collected conducting dedicated interviews. The documenta-
tion includes the specification of concerns and conventions that guide the construction
and use of the following three kinds of execution views:

i. Execution profile view: The models in an execution profile can be used to provide
overviews and facilitate the description of details about the runtime realization of
a given system feature, without being overwhelmed by the size and complexity of
the system implementation. The case study, presented in Section 3.5, focuses on the
construction of a view of this kind. Some of the questions that can be addressed
with this kind of view are:

• What are the major components that realize a given system feature?

• What are the major tasks that build the actual runtime workflow of key fea-
tures?

• What are the dependencies between runtime elements?

• What is the development team that develops or maintains a given system’s
function?

ii. Execution concurrency view: The models in an execution concurrency view can be
used to provide overviews of how the runtime elements of a software-intensive sys-
tem execute concurrently at different levels of abstraction. An example of this kind
of view is presented in (Callo Arias, Avgeriou and America 2009). Some of the ques-
tions that can be addressed with this kind of view are:

• Which runtime elements execute concurrently?
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• How does the runtime concurrency match the designed concurrency?

• What are the aspects that constrain or control the system’s runtime concur-
rency?

• What are the bottlenecks and delays of the system and their root causes?

• What are the opportunities to improve the concurrency of the system?

iii. Resource usage view: Resource usage models can be used to provide overviews and
facilitate the description of details about how the elements, e.g. component and
process, of a system use hardware resources at runtime. An example of this kind
of view and how to construct it is presented in (Callo Arias, America and Avgeriou
2009a). Some of the questions that can be addressed with this kind of view are:

• How to assure adequate resource usage and justify the development effort
needed to accommodate hardware resources changes?

• What are the metrics, rules, protocols, and budgets that rule the use of re-
sources at runtime?

• How do software components and their respective processes consume proces-
sor time or memory when running key execution scenarios?

• Does the realization of the system implementation have an efficient resource
usage?

The questions listed above reflect some of the stakeholders’ concerns with respect
to the runtime of a software system. The separation or classification of these concerns
into three different kind of execution views is important to facilitate the construction,
analysis, and communication of models with information that address each set of con-
cerns separately. It is not possible to construct a single, usable execution view to ad-
dress all of these concerns. Table 3.1 is a summary of other key aspects, documented
by the execution viewpoints, which supports the construction and use of execution
views as follows:

• Stakeholders: The kind of practitioners concerned about the runtime of the system,
who need or can contribute in the construction, analysis, and communication of
execution views.

• Development activities: Some of the usual activities in a development project where
practitioners need to describe or analyze the actual runtime of a system.

• Runtime entities: Subsets of entities, elements in the execution metamodel described
in Section 3.3.2, that determine the abstraction level to described the runtime of
system used in each kind of model.

• Model: The kind of representations that can be constructed with the approach to
organize and present runtime information. The documentation of the correspond-
ing execution viewpoints includes details about the notations and representations in
each kind of model. Therefore, given the kind of execution view to be constructed,
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the practitioner can select the kind of model that presents and organizes best the
information that they need.

Overall, the execution viewpoints support the elicitation of the problem that re-
quires the construction of up-to-date execution views. This includes the identification
of the concerns to be addressed, the stakeholders to be involved, and how to represent
the required information. Further details about the elements that build the execution
viewpoints can be found in (Callo Arias, Avgeriou and America 2009, Callo Arias,
America and Avgeriou 2009b), which are cited by the new version of the ISO/IEC
CD1 42010 standard as a representative example of viewpoints and how to document
them.

Table 3.1: Summary of the elements in the viewpoints for execution views.
Stakeholders: Software architects, designers, developers, testers, and system
platform supporters.
Development activities: System understanding, analysis of alternative de-
signs and implementations, introduction of new hardware resources, testing,
conformance of design and implementation, corrective maintenance, and tun-
ing of nonfunctional properties.

View Models Runtime entities

Execution
Profile

Functional mapping Task, component, process, and
data and code resources

Execution workflow Processing node and task
Matrix model Task, component, and quantifica-

tions
Sequence diagrams Task, component, process, and

data and code resources

Execution
Concurrency

Workflow concurrency Processing node, task, and compo-
nent

Process and thread structure Component, process, and thread
Control and data flow Process, thread, and control and

data interactions

Resource
Usage

Task resource usage Task and hardware usage over-
time

Component resource usage Component and hardware usage
overtime

Thread resource usage Thread and hardware usage over-
time

3.3.2 Execution metamodel

Practitioners are often familiar with abstractions to describe the structural decompo-
sition of a system, but less familiar with abstractions that allow them to describe the
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Figure 3.2: A high-level description of the runtime of the Philips MRI scanner

runtime of a software-intensive system. Figure 3.2 shows a description of two key
runtime features of the Philips MRI scanner in the field. This description shows at a
high-level the steps in the execution scenario of one of the features and the software
components that implement each step. The usual approach to extend this description
in a top-down fashion would be to map software components to source code artifacts
such as code packages, modules, classes, or methods. Using these abstractions can
be overwhelming for systems with large and heterogeneous implementations. In ad-
dition, one can easily miss other relevant elements, such as data and hardware, and
relationships such as dynamic communication links that play an important role in the
runtime of a software-intensive system.

The metamodel illustrated in Figure 3.3 organizes a set of concepts and relation-
ships between them, which play a role in the runtime of a software-intensive system.
The organization is a hierarchical representation that links architectural concepts (e.g.,
execution scenario, task, software component, and relationships between them) to ac-
tual runtime platform elements (e.g., processes, threads, and their activity) and other
important elements or resources (e.g., data, code, and hardware) that belongs to a
software-intensive system at runtime. It is important to notice that the elements and
relationships in the metamodel are not an exhaustive description of all possible archi-
tectural concepts, elements of the runtime platform, and runtime resources. Instead,
we consider it an useful subset that matches the characteristics of the Philips MRI
scanner and similar software-intensive systems.

Execution scenarios.

A scenario is a brief narrative of expected or anticipated use of a system from both de-
velopment and end-user viewpoints (Kazman et al. 1996). Scenarios can be described
with use cases, which are frequently used to support the specification of system usage,
to facilitate design and analysis, and to verify and test the system functionality. In our
approach, we assume that a set of execution scenarios can represent a benchmark of
the actual runtime of a system. For this purpose, it is necessary that the development
organization, based on domain knowledge, point out and agree on the key execution
scenarios that compose the benchmark.
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Tasks.

An execution scenario consists of specific steps, which we call tasks, in order to fulfill
the intended functionality. Tasks are different from execution scenarios in the degree
of complexity and the specialization of their role and function. Tasks in an execution
scenario implement its workflow. The identification of execution scenarios and tasks
corresponds to the stakeholders’ interest. Figure 3.2 shows two execution scenarios at
the top, System Startup and MRI Exam. From an end-user (clinical operator) interest,
MRI Exam is the main execution scenario and System Startup may not be too relevant.
However, in a large software-intensive system, the system start-up involves a wide
range of interactions that the development organization wishes to control and analyze,
thus it also represents a relevant execution scenario. A similar situation applies to the
identification of tasks because some tasks can be so complex that it is necessary to
divide them into smaller tasks.

Processing nodes.

Large software-intensive systems often include more than one computer or special-
ized hardware devices. A processing node represents a computer or hardware device
where part of the software elements of a software-intensive system are deployed and
run.

Software components and processes.

In our approach, we consider a software component as a set of processes that belong
together. A process is an entity handled by the operating system or runtime platform
hosting the software of a software-intensive system. A process represents a running
application, including its allocated resources: a collection of virtual memory space,
code, data, and platform resources. Large software systems are often composed of
many processes or running applications. The metamodel describes that one or more
running processes make up a software component, because it is possible to group them
taking into account two types of relationships between them:

• Actual parent-child relationships can be established between processes when a main
process (parent) creates another process (child) to delegate a temporary or specific
function.

• Design relationships are established by the development organization to distin-
guish that a set of processes belong together because they share functional or non-
functional characteristics. This kind of distinction is used to reduce complexity and
facilitate the analysis of the system.

The latter supports our view of software component as a set of processes because ex-
perts can then identify a set of processes as important, reusable, non-context-specific,
distributable, and often independently deployable units.
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Interactions between components.

Interactions between individual processes can be identified and therefore between
their corresponding software components. Based on our observations and the litera-
ture (Kruchten 1995, Rozanski and Woods 2005), some interesting runtime interactions
at the architecture level are:

• Data-sharing interactions allow two or more processes to share and access one or
more data structures concurrently. Examples include shared memory, databases,
and file storages.

• Procedure call interactions are some sort of inter-process function calls, often based
on remote procedure calls or message-passing operations.

• Execution coordination interactions allow two or more processes (or threads) to sig-
nal to each other when certain events occur, e.g., access to shared data. Semaphores
and mutexes are common coordination mechanisms at the process or thread level.

Instances of these types of interactions between software components can be identified
analyzing runtime activity of their processes. For instance, analyzing read and write
operations, performed by two different processes over a common data file can help to
infer data-sharing interactions between the two processes. Then, if each process be-
longs to separate components, the identified interaction will represent a data-sharing
interaction between the respective components.

Threads and runtime activities on resources.

A process starts running with a primary thread, but it can create additional threads.
A thread represents code to be executed serially within its process, which at the same
time is the realization of execution activities for the utilization of various resources.
These activities can be distinguished into three groups according to the type of the
involved resource:

• Data access activity represents the usage of different sorts of data structures. A com-
mon sort of data is persistent data, which is stored in files and database systems. For
instance, data files include configuration parameters, input and output buffers for
inter-process communication, and temporary buffers where processes store tempo-
rary computations.

• Code utilization activity represents the loading and execution of code. Code in-
cludes executable code from the process executable files and from statically or dy-
namically loaded libraries. Executables and libraries can be distinguished either
as system-specific or as provided by the runtime platform (platform API). System-
specific code includes implementation elements such as libraries and code modules
of the software system.

• Platform utilization activity represents the utilization of platform resources. The
processing nodes and the runtime platform of a software-intensive system provide
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Figure 3.3: A metamodel of the runtime of a software-intensive system and the sources of
information in terms of the elements in the metamodel.

hardware and software resources that the software of a software-intensive system
uses or controls at runtime. Hardware resources include processors, memory (vir-
tual or physical memory) units, and other sorts of hardware devices that the pro-
cesses of the software system access using software resources like APIs and com-
munication services. Executables and libraries provided by the runtime platform
also qualify as platform resources.

3.4 The reconstruction execution phase

The reconstruction execution is defined as an extract-abstract-present process, which
yields the architectural view needed to address the problem that triggered the con-
struction activity (Koschke 2009, van Deursen et al. 2004). In this section, we describe
the source of information and the dynamic analysis technique to extract-abstract-present
runtime information in our approach.

3.4.1 Sources of runtime information

Figure 3.3 illustrates that runtime information, in terms of the abstractions or concepts
described in the execution metamodel, can be extracted and abstracted from sources
like logging and runtime measurements.
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• Logging: Most large software systems use logging mechanisms to record and store
information of their specific activities into log files. For example, Figure 3.4 shows a
piece of a log file, which records the runtime events in the workflow of the function-
ality of an MRI scanner. The ’...’ in the figure means that many other kinds of log-
ging messages were filtered out for the example. In practice, logging messages are
recorded with mechanisms that are implemented according to the implementation
technology of the system and the preference of the development organization (Moe
and Carr 2001). Regardless of the logging mechanisms, it is common that develop-
ers, testers, and other specialized users use logging information for understanding,
debugging, testing, and corrective maintenance (Moe and Carr 2001, Yantzi and
Andrews 2007, Jiang, Hassan and Hamann 2008). For our approach, logging is a
source of workflow information, like the messages illustrated in Figure 3.4, which
we used to identify high-level abstractions such as the tasks and software compo-
nents in a execution scenario (defined in Section 3.3.2). Analyzing logging is not
a trivial activity, especially when the development teams adopt different logging
formats, naming conventions, and even different logging mechanisms. Rule-based,
codebook-based, and AI-based mechanisms are available in the literature to sup-
port the abstraction and analysis of logging (Jiang, Hassan and Hamann 2008). As
we will describe in Section 3.4.2, our approach is based on rule-based mechanism,
which relies on a set of hard-coded rules that map log lines to runtime abstractions.

• Runtime measurements: Most runtime platforms offer tools and mechanisms to collect
runtime measurements. Runtime measurements record the activities of processes
and resources such as processors and memory in a system’s processing node(s).
For example, process activity and resource activity can be monitored with tools like
Process Monitor in the Microsoft Windows platform (Microsoft Corporation 2010b).
Other tools are also available to monitor process activity in the Linux and Unix plat-
forms (Gavin 1998). Runtime measurements are available in semi-standardized for-
mats independently of the implementation technologies. Runtime measurements
can provide information about activity of non-system-specific entities (e.g. instances
of persistent storage, third party software components, platform resources, and even
hardware resources). For our approach, runtime measurements provides informa-
tion about process activity, which is used to identify elements such as processes,
threads, and their activities on resources like data, code, and hardware devices (de-
fined in Sections 3.3.2).

In addition to the information provided by logging and runtime measurements, these
sources can be easily collected and combine for most software systems without con-
siderable overhead. Logging mechanisms are available in most systems and the over-
head produced by these mechanisms is part of the normal system behavior or within
the expectations of the development organization. Having logging and runtime mea-
surement tools running at the same time eases the collection and synchronization of
runtime data. Figure 3.5 illustrates the latter. The figure shows that when a log mes-
sage is recorded (written) in a log file, a tool monitoring process activity can capture
the write event that happens on the log file. The data captured for the write event can
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Figure 3.4: Example of a log file with workflow messages

Figure 3.5: Simultaneous gathering of runtime data from logging and process activity

include information about the acting process, the size of the message, and the times-
tamp of the write event. In our approach, we exploit this situation to synchronize the
logging and other runtime measurements.

3.4.2 Mapping rules repository

As illustrated in Figure 3.1, the first two activities of the dynamic analysis use a map-
ping rules repository. Mapping rules can be both formal and informal specifications
that describe how entities in a given level of abstraction can be mapped to entities in
a higher level of abstraction. In the case of our approach, mapping rules specify how
to map data from logging or runtime measurements to instances of the elements and
relationships organized by the execution metamodel, described in Section 3.3.2. The
mapping rules in our approach are mainly regular expressions derived from the set of
facts and domain knowledge identified in the design phase.

Figure 3.6 and Figure 3.7 show the structure of the mapping rules repository and
the definition of some mapping rules. The repository is an XML file and its main en-
tries classify mapping rules based on the kind of runtime entities, e.g. tasks, software
components, and resources. As the figures show, the definition of a mapping rule cap-
tures a set of parameters according to the kind of runtime entity. Among the kind
of definitions, regular expressions are used to specify text patterns (see BeginPattern,
EndPattern, or processDescriptionPattern in the figures). These different parameters
are described in the next subsections. Defining mapping rules and populating the
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Figure 3.6: Examples of mapping rules for task identification

repository is a problem-driven and iterative process. At first, mapping rules are de-
fined only to extract runtime information of interest for a problem at hand. Later, in
a new iteration or a new reconstruction activity, we can reuse some mapping rules or
redefine them, either to zoom in on details or aggregate them. The next sections de-
scribe the use of mapping rules for task identification and interpretation of runtime
information.

3.4.3 Task identification

The task identification activity aims at: 1) the identification of the tasks that build the
workflow of an execution scenario, and 2) the synchronization of logging and runtime
measurements for each identified task. Figure 3.8 shows the input and output of this
activity. The input consists of the logging, e.g. a log file, and the collected runtime
measurements, e.g. monitored process activity, for the execution scenario. The output
is a set of task data structures. A task data structure is a bundle of sequentially com-
bined logging messages and process activity events, along with a task name and the
identification of the process that logs the workflow messages. The task identification
activity is implemented as follows:

• Find logging events: Assuming that the collected runtime measurement contains
monitored process activity that captures write events in the log fie, as illustrated
in Figure 3.5, the runtime measurements are sequentially parsed to identify write
events in the log file.

• Extract logging messages: When a write even is identified, the parameters in the event
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Figure 3.7: Examples of mapping rules for the interpretation of runtime information

information (offset and length) are used to extract the corresponding text message(s)
from the log file.

• Apply mapping rules: The mapping rules for task identification in the repository are
applied to the extracted logging message. The main and first mapping to be ap-
plied is ”Regular Workflow Tasks”, shown in Figure 3.6. This rule represents our
assumption that the tasks in an execution scenario are often delimited by logging
messages that contain variations of start or end like text patterns, like the messages
shown in Figure 3.4. Other mapping rules with specific patterns like ”Startup of Ap-
plication software”, shown in Figure 3.6, are defined and applied according to the
problem at hand and the knowledge captured in the design phase. The application
of a mapping rule can lead to one of these situations:

• Begin task. When the text of a logging message matches the BegingPattern of a
mapping rule, a task data structure is created including the corresponding kind
of task, name, and the identification of the process that logged the message.

• End task. When the text of a logging message matches the EndPattern of a map-
ping rule and a task structure exist with similar parameters, the task structure
is closed and stored updating its parameters. Attributes of the mapping rule,
like endSetName, may indicate that the EndPattern provides the final name or
identifier for the task.

• Runtime activity in task: When the logging message does not match a mapping rule
or the parsed runtime measurement is not a logging event, the data item is consid-
ered as source of runtime information and it is sequentially added to the last task
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Figure 3.8: Identifying task information

structure being created. When multiple task structures are open because they run
concurrently, the data item is added to the task structure with similar processing
node, or logging process, or thread id.

The tool support for this activity is a set of Python scripts that we wrote to parse log-
ging files and runtime measurements files. Both kinds of files are parsed as comma-
separated values files taking into account their original specification, e.g., column
names and data type. For situations where mapping rules like ”Regular Workflow
Tasks” cannot be applied or facts and domain knowledge about the system are not
available to define specific mapping rules, the analysis of timestamps is an alternative
to split execution scenarios into tasks and synchronize logging and runtime measure-
ments.

The task identification activity plays an important role in the top-down approach.
On the one hand, it helps to split a large amount of runtime data into manageable
data sets, i.e. task data structures. These data structures can be stored independently
and later processed on demand or in parallel. On the other hand, the output of this
activity provides relevant high-level information. The information includes the work-
flow messages that represent the boundaries of an identified tasks and a set of process
that can be considered the root of software components. The latter is based on the
assumption that only important or main processes write log messages. In cases where
an overview is needed before going into details, this information can be used already
to construct high-level descriptions, e.g. execution workflow models like the one in
Figure 3.15.

3.4.4 Interpretation of runtime information

The activity of interpreting runtime information, extends the runtime information
extracted in the task identification activity according to the kind of view to be con-
structed and the problem to be addressed. The extension constitutes the interpreta-
tion of the runtime data bundled in the task data structures. Figure 3.9 illustrates the
concept behind the interpretation using mapping rules. According to the sources of
information, mapping rules can be created to abstract logging messages (LMR) and
runtime measurements, i.e., process activity events (PAMR). In all cases, system- and
platform-specific facts are used to define mapping rules. As the figure illustrates LMR
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and PAMR are partial functions because they do not necessarily map every logging
message (Li) or every process activity event (Aj) into runtime interactions according
to the elements and relationships in the execution metamodel. The application of map-
ping rules for the interpretation of runtime information is a combination of LMR and
PAMR, text patterns are considered in the text of logging messages and in the text of
runtime measurements at the same time. This combination is need to generate one or
more of the elements in an execution interaction tuple. The elements in such a tuple
are:

• A subject represents a software component or a process entity, which can be identi-
fied applying ”SWComponent” mapping rules, shown in Figure 3.7. The definition
of this kind of mapping rule can capture: facts about the runtime platform to iden-
tify important processes as software components (see ”Configuration Repository”
rule), or system-specific design relationships to group individual processes into a
software component (see ”Field Service Application” rule).

• A verb represents an execution activity (e.g. read, write, load, and execute), which is
often part of the text in the logging message or process activity event.

• An object represents data, code, platform resources, or other software component
and process. Data, code, and platform resources can be identified applying ”CodeRe-
sources” or ”DataResources” mapping rules, shown in Figure 3.7. The definition of
these kinds of mapping rules capture facts about the system and the platform file
structure.

• info is an alternative element that can contain information such as the thread identi-
fier or a timestamp, which can be used to zoom in on details.

Figure 3.10 illustrates the interpretation of runtime information activity for a task in
a scenario. The inputs are the task data structure and the mapping rules repository,
in particular the kind of mapping rules shown in Figure 3.7. These mapping rules
are applied to the logging messages and process activity events bundled in the task
data structure to abstract them into execution interactions in terms of the elements
organized by the execution metamodel. The output of the activity is a set of interac-
tion tuples, which we store as a graph structure called interaction graph, shown at the
right side of the figure. As an example, the interpretation of a process activity event
that describes a running Process B creating another process B1 within its thread T,
generates the tuple: (Process B, Create, Process B1, Thread T). Subsequently SWCom-
ponent mapping rules, defined with logging patterns, can be applied to map Process B
and Process B1 to the corresponding software component(s). Similarly, CodeResource
or DataResource mapping rules can be applied to the object in the interaction tuple to
identify data and code aggregations.

An additional output of interpretation of runtime information is a list of the iden-
tified software components and the aggregation or system resources within the task.
The tool support for this activity is a set of Python scripts that we wrote to parse the
text of logging messages and runtime measurements, i.e., monitored process activity.
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Figure 3.9: Concepts for the interpretation of runtime information

Figure 3.10: Overview of the interpretation of runtime information

To build and store interaction graphs, the scripts use the NetworkX library (NetworkX
n.d.). The implementation and use of graph structures facilitate the analysis and query
of the extracted runtime information in the next activity, construction of execution
model.

3.4.5 Construction of execution model

This activity focuses on the construction of the execution model(s) that will present
the runtime information that address the concerns or questions identified in the re-
construction design phase. As we described in Section 3.3.1, the execution viewpoints
include a set of specific questions, the kinds of models that can be constructed to ad-
dress the questions, and the runtime elements that are used in each kind of model.
With this specification as a reference, the realization of this activity is a top-down op-
eration that consist of the following steps:

• The corresponding tool, a .Net application, displays the set of high-level elements,
e.g. tasks, software components, and data or code aggregations, that were automat-
ically identified in the data stored in the interaction graphs of the execution scenario
under analysis.
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• With the question or concern in mind, we select a subset of the high-level elements
and the kind of model to be constructed.

• With the subset of elements as input, the tool queries the interaction graphs’ struc-
ture for the actual runtime entities, that build or are part of the high-level elements,
and their respective runtime activity.

• According to the kind of model, the tool can automatically generate representations
like the one in Figure 3.12, the matrices in Figure 3.16, or data inputs for other visu-
alization tools.

The .Net application that support the construction model activity includes a user
interface to run the Python scripts that implement the previous two activities, task
identification and interpretation of runtime information. As we stated before, another
feature of the tool is the generation of data inputs for some visualization tools. These
tools include Graphviz (Graphviz - Graph Visualization Software n.d.), to present models
like the one in Figure 3.12, UML Graph (Automated Drawing of UML Diagrams n.d.) to
generate the sequence diagrams in Figure 3.14, and Microsoft Excel to generate models
like the one in Figure 3.15. In the next section, we describe more about the iterative
construction of these various models and their respective use and value.

3.5 Validation of the approach

The approach has been validated across several development projects of the Philips
MRI scanner (see Section 1.2.1). In our previous work (Callo Arias et al. 2008), we
reported the results of the approach for dependency analysis. In this chapter, we de-
scribe the validation of the approach with the construction of a set of execution models
that build an execution profile view for the Philips MRI scanner. In the rest of this sec-
tion, we summarize the phases for the construction of the execution profile view. In
Section 3.6, we describe some use cases for the view that we observed during the vali-
dation.

3.5.1 Design reconstruction for an execution profile view

As we described in Section 3.3.1, an execution profile view provides overviews and
details about the actual runtime structure and behavior of a system. In this case, the
main motivation was to get up-to-date overviews and insights about the runtime of
key features of the Philips MRI scanner. For this purpose, the development organi-
zation selected three key features: 1) the management of MRI coils (system-specific
hardware devices), 2) the standard clinical scan procedure, and 3) the startup pro-
cess of the software system. These features were selected for three reasons. First,
knowledge about each feature was required for the planning of several development
projects. Second, the runtime of these features change often, not only due to changes
in the software elements but also in the hardware elements that compose the system.
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Third, these features are tightly coupled with performance and distribution require-
ments; this implies that tuning any of the features to match changing requirements
will influence the runtime structure and behavior of the system. The characteristics of
the reconstruction design in our case are as follows:

• Stakeholders: For each feature, an architect and a designer were assigned as the main
stakeholders. The architect was responsible for documenting and communicating
the constructed models. The designer was identified as the feature or domain ex-
pert. In addition, a platform supporter and some developers were involved based
on their interest in the design and implementation of a solution for the problem
being addressed by the development project.

• Scenarios: The feature expert selected some of the usual system test cases as repre-
sentative execution scenarios for the selected features. For the validation, we only
focus on “clean” scenarios, e.g., scenarios without faults.

• Facts or domain knowledge: Sketches made by the experts were the main forms to
capture facts and domain knowledge about the selected features. In the sketches, the
experts depicted the system elements and their relationships, which were supposed
to play a relevant role in the runtime of the given feature. In addition, we used
some system documents to understand the logging mechanism and the structure of
the logging file used by the system.

• Runtime data: We collected the runtime data by running the selected execution sce-
narios with the assistance of system operators. These practitioners were necessary
to setup and operate the system according to the specifications of the execution sce-
nario. Table 3.2 is a summary of the logging and runtime measurement that we
collected for the construction of the models in the view. To collect runtime measure-
ments, we used the Process Monitor Tool (Microsoft Corporation 2010b) since the
runtime platform of the system is Microsoft Windows. The summary also includes
the technical information or documentation that we studied to identify the text pat-
terns or facts that we used to define the mapping rules for the execution profile view
of the Philips MRI scanner. The size of the data is not included because, as we de-
scribed in Section 3.4.4, our mapping rules are partial functions and we do not have
an accurate measurement on how many logging message or process activity events
were actually used to extract high-level information.

3.5.2 Execution reconstruction for an execution profile view

The models that we constructed as part of the execution profile view for the Philips
MRI scanner are functional mapping, execution workflow overview, matrices, and
sequence diagrams models. Some simplified examples of these kind of models are
illustrated in Figures 3.12, 3.15, 3.16, 3.13, and 3.14. To produce such useful models,
we went through several iterations of the execution construction phase to cope with
three main situations:
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Table 3.2: Summary of runtime data for the construction of an execution view.
Data Extracted information Source of patterns
Logging:
Workflow
messages

Tasks, software components, processes,
and threads

MRI Log
guidelines

Debug mes-
sages

Major code modules

Runtime measurements:

File access
events

HW and SW configuration-setting data MRI naming conventions
System database and data elements Filesystem structure

and (Microsoft
Corporation 2010b)

DLLs, assemblies, and dynamic wrappers
Script programs

Process activ-
ity

Software components, processes, and
threads

(Microsoft Corporation
2010b, About Processes and
Threads (Windows) n.d.)

Windows reg-
istry access

COM elements, HW and SW
configuration-setting data, and Commu-
nication services and platform resources

(About Processes and Threads
(Windows) n.d., Registry
(Windows) n.d.)

i. Tune the task structure of a scenario: For every feature, we started presenting the task
structure found by applying the ”Regular Workflow Tasks” mapping rule, shown
in Figure 3.6. At first, it exposed an approximation of the actual task structure of
a scenario, but additional iterations were necessary to decompose coarse-grained
tasks, aggregate repetitive occurrences of a task, correct gaps between tasks, or even
define a different task structure. For most of these cases, the iterations included
the definition of mapping rules with specific logging messages, e.g. the ”Startup of
Application Software” rule shown in Figure 3.6.

ii. Classify and aggregate runtime elements: An initial set of mapping rules based on pat-
terns about naming conventions and the filesystem structure enabled the classifica-
tion of software, data, and even hardware elements, in a execution scenario, into
high-level aggregations, e.g. some files were classified as data files, system con-
figuration files, and so on. Yet, it was not enough to address specific problems. For
example, we run an iteration to distinguish between the runtime activity on the con-
figuration data for the MRI Coils devices, from the runtime activity on the system
configuration data. This iteration included the definition of the ”Coils Definition
Data” rule, shown in Figure 3.7, which enabled the classification and aggregation
of hundreds of data files and runtime activity on them. Similar iterations were nec-
essary for the other features and different kinds of runtime elements and activity.
For example, Figure 3.11 illustrates three system specific classifications, based on
the elements in the metamodel, for which we had to define specific mapping rules.

iii. Filter out irrelevant runtime information: The stakeholders’ feedback can indicate that
part of the recovered runtime information does not belong or is exclusive to the re-
alization of the feature under analysis, or simply is not relevant for the problem at
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Figure 3.11: Further specialization or classification or runtime elements

hand. Therefore, additional iterations are necessary to identify and filter out such
runtime information from a new execution model. The iterations entail running the
interpretation of runtime information activity with fewer mapping rules or simply
editing the constructed model. For example, the first time that we constructed func-
tional mapping models like the one in Figures 3.12, part of the information in the
model was about the runtime activity of the antivirus application and other system
utilities running in the computers of the system. However, the expert decided that
this information was not relevant for the problem at hand, so we run an iteration to
filter out such information from the constructed model.

Most of the iterations included the gradual definition of mapping rules and the
tuning of the diagrammatic representations. Basic mapping rules like those based on
workflow messages and the file system structure were defined upfront. The defini-
tions of other special rules to create specific aggregations or tasks were only possible
and necessary when the problem was better understood. Overall, the mapping rules
recorded a number of facts about the system that were implicit in the text of logging
messages, runtime measurements, technical documents, and in the mental models of
some practitioners. Since we stored the definition of the mapping rules in a repos-
itory, reconstructing the same models after the first time, e.g., to verify changes or
conformance, did not include more iterations than the ones to filter out irrelevant in-
formation.

3.6 Use cases for an execution profile view

Software-intensive systems like the Philips MRI scanner are evolved or incrementally
developed. This implies that a development cycle focuses on changing parts of the
system rather than the system as a whole. Therefore, before, during, and after changes
are performed, a proper understanding of the design, implementation, and realization
of the parts to be changed is required. To achieve such understanding, practitioners
perform a number of analysis activities. In this section, we describe the analysis activ-
ities that we supported by the construction of the execution profile view.

3.6.1 Feature analysis.

We observed that during the incremental development of the Philips MRI scanner,
feature analysis is necessary to plan and perform changes on existing features. This



82 3. A Top-Down Approach to Construct Execution Views

is especially the case when it is not obvious which software elements are involved
in the realization of a changing feature. Consequently, it is not possible to have an
accurate estimation of the part that will be touched, or the development effort and re-
sources that are required to perform the change. Typically, feature analysis is done to
identify those parts of the source code which implement a specific set of related fea-
tures (Eisenbarth et al. 2003). However, feature analysis at the granularity of source
code elements such as functions, methods, or classes is impractical for large systems
like the Philips MRI scanner. Instead, we observed, that higher-level abstraction and
ways to breakdown complex features into less complex units are more appealing for
practitioners, e.g., architects and designers, steering the development of large and
complex software-intensive systems.

Functional mapping models constitute the main contribution of the execution profile
view to support feature analysis. A functional mapping model is a graph-based repre-
sentation of traceability links that exist in the realization of a system feature based on
an execution scenario. Figure 3.12 shows and example of a functional mapping model
and its notations. The model in the figure is a simplified version of a model that we
constructed to analyze the system feature for the management of MRI coil devices. The
model helped us to describe the main tasks (remove, add, and enable coil) that com-
pose the feature, the relations between the tasks and the system software components,
the runtime processes that belong together and build up the software components,
and the runtime activity performed by the respective processes to use resources such
as code modules and data elements.

Using functional mapping models, the practitioners involved in the validation
were able to analyze a number of aspects for planning changes. For example, the
links between tasks and components in Figure 3.12 shows that to change the way
coils are removed (Remove Coil task), the participation of the teams developing the
COILCONFIG UPDATE and CONFIGURATION REPOSITORY components will be
required. Similarly, the description of the runtime activity of the processes, in the
involved software components, shows that the change will also require knowledge
about the drivers (Coil Code modules) and the configuration data (both Coil Defini-
tion and Configuration Repository).

In practice, a development project involves more that one system feature and each
feature can be represented by more than one execution scenario. Therefore, produc-
ing useful functional mapping models requires the input from experts, especially to
carefully select the features to be analyzed and their respective set of representative
execution scenarios.

3.6.2 Dependency analysis.

During the incremental development of a large system like the Philips MRI scanner,
dependencies imply ramifications of changes between parts of the system or features
that are developed by different teams of the organization. Therefore, without explicit
and up-to-date information about dependencies, it is not possible to have an accurate
view on how changes in a given feature can propagate to other parts of the system.
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Figure 3.12: Example of a functional mapping model for the Philips MRI scanner

Typically, source code constructs such as function calls, shared variables, and shared
libraries are characterized as dependencies. However, in a large and complex system
like the Philips MRI scanner, relationships that determine dependencies are not always
established in the source code, but can occur in many different ways at runtime, e.g.
inter-processes communication, shared data, and temporal relationships.

Matrix models like the ones in Figure 3.13 and Figure 3.16 provide details that com-
plement high-level information such as the information given in functional mapping
models. Table 3.3 lists the types of matrices that we constructed for the execution
profile view. The tool support for our approach provides filtering facilities to choose
between these types and the runtime elements than can be tabulated and quantified in
the cells of a matrix. Figure 3.13 show two matrices, (b) and (c), of type III that provide
details to determine if high-level relationships, described by the functional mapping
model (a), constitute dependencies between software components and data reposito-
ries. The model (a) in the figure is a simplified version of a functional mapping model
for the clinical scan procedure performed with the Philips MRI scanner. The matrix
(b) is used to find the data elements in the UI MENU STRUCTURE repository that the
EXAMCARDS WIN and GYROVIEW WIN components commonly read and write,
which may determine a data dependency between these components. The matrix (c)
is used to find the parameter (data element in the Configuration Repository), that the
SCANNER component constantly reads during the tasks in the scenario, which may
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Figure 3.13: Looking for details with functional mapping and matrix models to determine
dependencies

determine a dependency between the component and the data repository.
Sequence diagrams constitute another kind of model that provides details that com-

plement high-level information and can be used to determine dependencies, especially
due to temporal relationships. Figure 3.14 illustrates two sequence diagrams that we
constructed to zoom in on details, e.g. the code elements that software components ex-
ecute before accessing, reading or writing, to data repositories. The sequence diagram
in (a) aims at zooming in on the sequence of runtime activities that realize the task Add
Coil of the scenario described in Figure 3.12. The elements described in the sequence
diagram are the key software components (stereotyped as SWC) that execute or load
code elements (stereotyped as Code) such as modules, COM elements, and DLLs, be-
fore accessing data repositories (stereotyped as Data). The names in the edges between
the aggregations in the sequence diagram contain the respective runtime activity and
the element of the aggregation that is used.

When the problem at hand requires zooming in on further details and the collected
runtime data contains such details, it is possible to construct sequence diagrams with
finer runtime information. The notes in the right side of the sequence diagram (a)
describe that the task can be dived into five subtasks: operator actions (1), COM com-
munication (2, 4), load Coils’ configuration (3), and update system repository config-
uration (5). The sequence diagram (b) in Figure 3.14 zooms in on the third subtask
(3). The diagram shows the runtime activity and the order required to read all the files
that contain the Coil Definition data, a key aspect for the feature under analysis. The
sequence diagram shows, at the top, the realization to read a first file and then how a
similar sequence is repeated to read subsequent files.
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(a) (b)

Figure 3.14: Looking for details with sequence diagrams models

3.6.3 Conformance and realization analysis.

Large and complex software-intensive systems like the Philips MRI have strict con-
straints on nonfunctional properties such as reliability and performance. Ideally, the
architecture and design, documented or in the mental models of the experts, specify
how to achieve the desired quality. However, the realization deviates from the specifi-
cation, especially when the implementation includes third party or off-the-shelf com-
ponents, multiple implementation technologies, and it is constrained by the character-
istics of the runtime platform. An execution profile can convey a number of insights
about the runtime and realization of a system like the Philips MRI scanner, which
practitioners can use to refresh their mental models and validate their expectations
about the realization of the system. Execution workflow models and some types of
matrix models are the main means provided by an execution profile for conformance
and realization analysis.

An execution workflow model is a Gantt-chart-based representation that describes
how the tasks that realize a given feature are distributed over time and over the pro-
cessing nodes of the system. Figure 3.15 shows a example of an execution workflow
model and its respective notations. The model describes the major tasks that are per-
formed inside the main computers of the Philips MRI scanner (Host, Reconstructor,
DAS) during the startup of its software system. The description helped the organi-
zation to visualize the actual realization of this key feature, i.e., the actual duration
of each task and how these tasks run concurrently or sequentially across the process-
ing nodes of the system. In addition, the description shows how major tasks can be
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mapped to finer tasks to zooming into details. For example, PF Client Recon, which is
a major task in the Host, coordinates the start-up of the Reconstructor subsystem and
is mapped to the finer tasks in the Reconstructor computer. Currently, the model is
constructed on a regular basis to verify and predict changes in the performance, e.g.
distribution and duration of the startup process through ongoing and future develop-
ment projects.

Figure 3.16 shows two matrix models that correspond to the type IV listed in Ta-
ble 3.3. The matrices complement the functional mapping model in Figure 3.12, by
checking the expectations about the role of key components in the scenario. On the
one hand, matrix (a) serves to check the actual processes, per software component,
that are active in the scenario. On the other hand, matrix (b) helps to check the ac-
tual number of threads, per software component, during the respective tasks in the
scenario. The latter enabled the identification of unintended use of threading mecha-
nisms. As the figure shows, the situation was especially noticeable in the realization
of the Enable Coil task. After further investigation as part of a downstream analy-
sis, the situation was attributed to the implementation of third-party elements in the
SMARTCARD WIN component.

In addition to matrix models, functional mapping models help to distinguish de-
tails such as the implementation technology of software components and the use of
platform utilities. For example, the model in Figure 3.12 shows that two of the software
components in the scenario include different instances of the csc.exe process, which
represents the C-Sharp compiler for the systems runtime platform. This shows that
the respective software components include or use .Net implementations. The same
model shows that a software component contains an attrib.exe process, and the model
in Figure 3.13 shows that another component contains an unzip.exe processes, which
indicates that these components require platform utilities to manage access rights and
data compression respectively.

Table 3.3: Type of matrix models for runtime information analysis.
Type Rows Columns Cells

I Soft. components Soft. components Data, code, and platform elements
II Tasks Tasks Data, code, and platform elements
III Soft. components Tasks Components’ interactions
IV Soft. components Tasks Components’ processes or threads

3.7 Contribution and potential limitations

In this section, we describe the technical contribution of our and some possible limita-
tions.



3.7. Contribution and potential limitations 87

Figure 3.15: Execution workflow of the start-up process of the Philips MRI scanner

Figure 3.16: Examples of matrix models to check the realization of the Philips MRI scanner

3.7.1 Technical contribution

As part of our research, we have observed that architecture reconstruction is an in-
trinsic activity for the evolution of software-intensive systems. Architecture recon-
struction solutions have become the basis for re-documentation, investigation, and
system understanding, especially for practitioners who need a global understanding
of the system. Architecture reconstruction can make use of resource such as avail-
able documentation, interviews, domain knowledge, source code, and as we demon-
strated, logging and runtime measurements. A number of solutions, e.g. approaches
and techniques, have been proposed in the literature to support architecture recon-
struction (Koschke 2009, Ducasse and Pollet 2009). Yet, nowadays software-intensive-
systems like the Philips MRI scanner pose a number of challenges that architecture
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reconstruction solutions must cope with to effectible contribute to the maintenance
and evolution of such systems.

Stoermer et al. surveyed architecture reconstruction practice needs and approaches
(Stoermer et al. 2002). Their findings with respect to practice needs are very similar
to some of the aspects that we addressed through the development and validation of
our approach. To distinguish the technical contribution of our approach, we present
the practice needs, as described by Stoermer et al., and how we address them for the
Philips MRI scanner.

• Multiple Views. One of the first problems to perform architecture reconstruction
activities is to determine which architecture views sufficiently describe the system
and cover stakeholder needs. The evaluation by Stoermer et al. describes that none
of the approached in their evaluation supports an explicit selection of architecture
views that can be systematically reconstructed in order to describe a system suffi-
ciently and address its stakeholders’ needs. The support of our approach for multiple
views relies on using execution viewpoints. As we described in Section 3.3.1, exe-
cution viewpoints explicitly describe the set of views that can be constructed with
our approach, as well as the concerns that can be addressed by constructing a given
execution view. The validation of our approach, described in Section 3.5, shows that
a view is selected based on the characteristic of the problem at hand, i.e., the con-
cerns about the realizations of a given set of features to be changed. Then the view is
systematically constructed in a top-down fashion, i.e., with high-level information
at first and details when needed by the stakeholders. As a whole, our approach is
a solution that offers an explicit catalog of views and a systematic process to select
and construct a required view.

• Enforce Architecture. On of the main reasons to conduct architecture reconstruc-
tion activities is the lack of consistency between the as-built architecture and the
as-designed architecture of a system, because traceability information is missing,
from architecture design through code implementation. The support of our approach
to enforce architecture relies on a metamodel described in Section 3.3.2. The meta-
model makes explicit the concepts or entities and traceability relationships between
them. The development organization and we agreed on that the metamodel is the
bases to describe and analyze the runtime architecture of the Philips MRI scanner.
Therefore, during the validation of our approach, with the metamodel as a common
guideline, some of the models were dedicated to check how the realization of key
features match the expectations or mental models of the practitioners.

• Quality Attribute Changes. Another reason to conduct architecture reconstruction
on software-intensive systems is to determine the relationship among quality at-
tributes and architecture elements. Software-intensive systems like the Philips MRI
scanner are tightly coupled with performance and distribution requirements. These
characteristics can change more often than other system aspects due to dependen-
cies, not only with software elements but also with the hardware elements. The sup-
port of our approach includes the construction of models to determine the relations
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between performance and both, software and hardware elements. The validation
of our approach, presented in Section 3.5, shows that some of the execution mod-
els constructed with our approach are dedicated to support the description, anal-
ysis, and assure the performance of a key feature like the start-up of the system.
In addition, the validation of our approach presented in (Callo Arias, America and
Avgeriou 2009a) shows that our approach supports the construction of execution
models to describe and analyze the performance of data-intensive and computation-
intensive features of the Philips MRI scanner.

• Common and Variable Artifacts. Commonality and variability are used in prod-
uct line environments so that organizations can reduce costs by reusing common
assets. The problem is to identify the common and variable parts in several sim-
ilar products. Variability is important for the Philips MRI scanner. However, we
have not observed direct application or results regarding variability as part of the
development and validation of our approach.

• Binary Components. The software industry is quickly moving toward systems
based on commercial components. A component in this context has three charac-
teristics: it is produced by a vendor, who sells the component or licenses its use; it
is released by a vendor in binary form; and it offers an interface for third-party in-
tegration. The problem is conducting architecture reconstruction in settings where
commercial off-the-shelf (COTS) components are used. The support of our approach
to conduct architecture reconstruction when COTS components are used relies on
the kind of abstractions and the source of information that are used. The Philips
MRI scanner has a large implementation, which contain both in-house and COTS
components. Though the source code is available for most COTS components, the
time and knowledge required to understand them are simple not available during
development projects. Therefore, practitioners like architects and designers look at
these components as gray and even black boxes. In the validation of our approach,
presented in Section 3.5, COTS components are mapped to entities, like runtime pro-
cesses or code elements, e.g., DLLs, COM components, and code modules, which
are executed inside threads.

• Mixed-Language. Software systems implemented in several languages are com-
monplace today. The problem is to reconstruct the architecture of a system that
is implemented in more than one language. The Philips MRI scanner has a het-
erogeneous implementation. Thus, it was required that our approach can abstract
away or cross the borders between elements that are implemented with different
programming languages and paradigms. The support of our approach to deal with
heterogeneous implementations relies in the construction of high-level descriptions
at first, and then, if needed, details for dedicated areas. In the validation of our
approach, presented in Section 3.5, we show that high-level descriptions present
software components as a set of processes, which abstract away their implementa-
tion language and paradigm. However, as we described for realization analysis, in
some cases the description of software components provides means to distinguish
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the implementation technology.

• Overhead. In addition to the practice needs reported in (Stoermer et al. 2002), an
important requirement of development organizations of large software-intensive
systems is that the application of reverse engineering techniques should generate
the least possible overhead. On the one hand, it is appreciated if development ac-
tivities do not require extra effort from practitioners for the application of a given
technique. On the other hand, it is especially appreciated that the execution of the
system does not change its actual temporal relationships and performance due to
the application of a given technique. In the case of our approach, the overhead was
minimal. We use already available data from logging and runtime measurements.
As we described in Section 3.4.1, logging is a source of runtime information created
and maintained by development organization. Although it is based on a sort of
source code instrumentation, the validation of our approach did not required extra
instrumentation for logging. Instead, we choose to complement the existing log-
ging, with runtime measurements collected with monitoring tools provided by the
system runtime platform.

3.7.2 Potential limitations

The usage of viewpoints and a metamodel specific to our industrial partner can be seen
as a limitation for the generalization and reuse of our approach in other systems and
projects. We do not consider that our viewpoints can be used off-the-shelf but should
be customized to the organization and project at hand to construct useful execution
views in practice. The presentation of our approach in this article and our related re-
search (Callo Arias et al. 2008, Callo Arias, America and Avgeriou 2009b, Callo Arias,
America and Avgeriou 2009a) illustrate how other practitioners and researchers can
perform such customization for their particular settings. This may include the exten-
sion or specialization of the described execution models and execution viewpoints,
adding their particular concerns and favorite ways to address them as we described
in (Callo Arias, America and Avgeriou 2009b). Then the execution metamodel may
include similar high-level elements, but different elements that describe the runtime
platform and the resources of their particular system. This may include changing
the mapping of software components to the representative runtime element of their
system runtime platform. For a single process, but still multithreaded software ap-
plication, software components may be mapped to persistent threads or major objects
for the case of an object-oriented implementation. For even larger and distributed sys-
tems using service oriented architectures, the service element may be included as a
high-level element above or instead of software component. Our set of viewpoint is
referred as representative examples in the new definition of the ISO/IEC CD1 42010
standard and we welcome proposals from the community on how to customize them
for other purposes.

In Section 3.4 and Section 3.5, we described how the construction requirements,
the system domain, and the system runtime platform are key factors that drive the
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implementation of the set of mapping rules as partial functions. This means that we
selectively implement and apply mapping rules to a given subset of logging messages
and process activity events rather than to all the collected data. Although this usage of
mapping rules may look as a limitation for the completeness of our approach, we con-
sider this as the key factor that enables the top-down approach, i.e., provide high-level
information at first, and dig down for details when it is needed or triggered by the con-
struction requirements. Another possible limitation is the fact that in the validation,
the technique of our approach uses mapping rules that were implemented for the spe-
cific format or patterns of the Philips MRI scanner logging and the collected runtime
measurements. However, we consider this more as an illustration on how to imple-
ment and use the concept of mapping rules. Thus, other practitioners or researchers
can consider those to deploy our approach in different settings.

Finally, due to the settings of our research, the perception of the value and limi-
tations of our approach are based on our observations and the feedback of the prac-
titioners of our industrial partner. This can represent a major limitation that we still
need to evaluate with the collaboration of external researchers and practitioners will-
ing to deploy our approach in different settings involving large and complex software-
intensive systems.

3.8 Related Work

In this section, we discuss work that is related to the main characteristics of our ap-
proach.

3.8.1 Top-down solutions

Top-down solutions take some high-level knowledge as input, e.g. problem require-
ments, decomposition of a system, and design conventions. This input guides a dis-
covery of the architecture or the information needed to address the problem at hand.
Software reflexion models (Murphy et al. 2001) is the most representative example of
a top-down solution closely related to our work. The top-down process for reflexion
models summarizes a source model, i.e. the source code of a software system from the
perspective of a particular high-level model, which is a hypothesis defined by a devel-
oper. The summarization is based on declarative mapping that associates entities in
the source code with entities in the high-level model defined by the developer.

The use of high-level knowledge and declarative mapping are the main common-
alities between reflexion models and our approach. In the case of our approach, the
use of high-level knowledge is driven by a set of reusable viewpoints and a meta-
model about the runtime of a system. Similarly, our mapping rules associate runtime
data, i.e. logging and measurements, and high-level abstractions with respect to the
runtime structure and behavior of the system. We consider that a combination of the
process to construct reflexion models and our approach can be an ideal top-down so-
lution to construct module and execution views, especially for organizations that need
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to manage size and complexity of software-intensive system.

3.8.2 Runtime description and analysis

The main goal of our approach is to support the description and analysis of the run-
time of a system like the Philips MRI scanner. In the literature, a number of techniques
focus on the description and analysis of the runtime of software systems. According
to the kind of views that can be constructed, the techniques can be classifies as follows:

• Dynamic module views: Dynamic module views describe the runtime interactions be-
tween implementation artifacts such as modules, classes, and objects. These views
are mainly constructed applying dynamic analysis techniques (Briand et al. 2003,
Hamou-Lhadj and Lethbridge 2004, Systä 2000, Egyed 2003). These techniques fo-
cus on the extraction and abstraction of execution traces, which track code level
events at runtime, e.g., the entry and exit of functions and methods. To extract ex-
ecution traces, these techniques rely on techniques such as compiler profiling, or
source code instrumentation (Briand et al. 2003). For the abstraction, i.e., present-
ing the extracted data at a high-level of abstraction and manage large amounts of
execution traces, these techniques use aggregation, summarization, and visualiza-
tion mechanisms (Hamou-Lhadj et al. 2005, Safyallah and Sartipi 2006, Cornelissen
et al. 2007).

Code-based techniques are especially useful when the problem at hand involve con-
cerns around the implementation structure or require accurate traceability to code
elements, e.g. modules or at least functions. The development of dynamic analy-
sis techniques is overemphasized for object-oriented implementations (Cornelissen
et al. 2009). In the case of our approach, the proposed dynamic analysis technique
is more suitable for distributed and multithreaded systems with heterogeneous im-
plementations like the Philips MRI scanner, where analyzing only the source code
is not enough to achieve a proper understating of the system.

• Application management views: Management views describe information related to
the externally observable behavior of system elements (Keller and Kar 2000) such
as performance, availability, and other end-user-visible metrics (Brown et al. 2001).
Management views of software systems can be constructed using techniques that
analyze monitored information and system repositories (Keller and Kar 2000, Brown
et al. 2001, Gupta et al. 2003). Monitored information represents runtime events such
as errors, warnings, and resources usage generated by the system runtime platform
(e.g. operating system, middleware, virtual machine). The format and elements
within monitored information are generic for all systems running on the same run-
time platform. System repositories are maintained by the runtime platform and con-
tain information related to monitored information and configuration of the system
environment.

Management views describe the major elements of a running system (subsystems,
applications, services, data repositories etc.) as black boxes. This enables a high-
level understanding of the runtime of a system, the integration of constructed views
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into the system documentation, and their reuse in further analysis (Brown et al.
2001). The focus on high-level abstractions and the use of monitored information
are important aspects that inspired the development or our approach. Therefore,
our approach can be seen as an extension of application management techniques,
especially for situations where unintended variations of end-user-visible properties
need to be analyzed and solved by software architects and designers as part of the
development and maintenance cycle.

3.9 Conclusions and Future Work

The contribution of our approach is centered on two points. First, it is a structured
and problem-driven architecture reconstruction solution. The involved stakeholders,
software architects and designers, considered important the use of viewpoints and
a metamodel as guideline for the preparation of the construction requirements and
the presentation of information in a top-down fashion. This allows us to conduct the
construction involving the practitioners, deal with complexity, and construct useful
views to address a concrete problem. Second, the stakeholders involved in the various
applications of our approach got actual information about the runtime behavior and
structure at an architectural level without being overwhelmed by the complexity of the
software system. These aspects make our approach an extensible and scalable solution
to construct execution views. In our future work, we aim to report further validation of
our approach with the large and complex software-intensive system of our industrial
partner and similar systems. Finally, we consider that our approach is complementary
to the existing techniques, therefore in future work we aim to provide the means to
link our approach with the existing techniques. This will allow the development orga-
nization to have complete and actual information about its software-intensive system.






