

 University of Groningen

GPU-ASIFT
Codreanu, Valeriu; Dong, Feng; Liu, Baoquan; Roerdink, Jos B.T.M.; Williams, David; Yang,
Po; Yasar, Burhan
Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Codreanu, V., Dong, F., Liu, B., Roerdink, J. B. T. M., Williams, D., Yang, P., & Yasar, B. (2013). GPU-
ASIFT: A Fast Fully Affine-Invariant Feature Extraction Algorithm. In EPRINTS-BOOK-TITLE University of
Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-06-2022

https://research.rug.nl/en/publications/f11b74be-de5f-40dd-809e-b618e832c52f

GPU-ASIFT: A Fast Fully Affine-Invariant Feature
Extraction Algorithm

Valeriu Codreanu∗, Feng Dong†, Baoquan Liu†, Jos B.T.M. Roerdink∗, David Williams∗, Po Yang† and
Burhan Yasar‡

∗Scientific Visualization and Computer Graphics
Rijksuniversiteit Groningen, Groningen, The Netherlands

Email: v.b.codreanu@rug.nl
†Department of Computer Science and Technology

University of Bedfordshire, Bedfordshire, UK
Email: Feng.Dong@beds.ac.uk

‡Rotasoft Inc. Email: see http://www.rotasoft.com.tr/

Abstract—This paper presents a method that takes advantage
of powerful graphics hardware to obtain fully affine-invariant
image feature detection and matching. The chosen approach is
the accurate, but also very computationally expensive, ASIFT
algorithm. We have created a CUDA version of this algorithm
that is up to 70 times faster than the original implementation,
while keeping the algorithm’s accuracy close to that of ASIFT.
It’s matching performance is therefore much better than that of
other non-fully affine-invariant algorithms. Also, this approach
was adapted to fit the multi-GPU paradigm in order to assess
the acceleration potential from modern GPU clusters.

Keywords—High performance computing, GPU, Computer
Vision

I. INTRODUCTION

Local feature extraction from images is one of the main
topics in pattern matching and computer vision in general.
For any object present in an image, the locally extracted points
provide the feature description of that object. The purpose of
this description is to recognize that object when present in a
different image. The image matching problem has as inputs
two sets of images: the query and search images. The search
images are the images that contain the objects of interest.
The features of these images are usually computed first and
then saved in a database of features. The next step is the
computation of features from the query images. The query
features are then compared to the search set of image features
by using a similarity measure to find the closest matches. The
composition of each set of images is dependent on the target
application.

Probably one of the most popular feature detection al-
gorithms is the Scale-Invariant Feature Transform (SIFT),
proposed by Lowe [1]. It is scale, rotation and translation
invariant, but offers relatively modest robustness regarding
viewpoint change. Some of the applications developed using
SIFT include robot localization [2]–[4], panorama stitching [5]
or traffic sign recognition [6].

However, as most algorithms of its kind, SIFT is not fully

affine-invariant, and thus does not handle optimally the view-
point change variations between the query and search images.
A fully affine-invariant extension to SIFT, called affine-SIFT
(ASIFT), has been proposed [7]. In that extensive evaluation
it has been shown that ASIFT is superior to SIFT on various
datasets, both in terms of the number of detected matches
and matches’ stability. This improved accuracy method comes
however with a cost. The computational complexity is rel-
atively high when compared to the other approaches. This
is because the method applies SIFT multiple times, SIFT
alone already having a high computational cost [8]. This
high computational complexity of ASIFT forms the motivation
behind our approach.

To our knowledge, the method proposed in this paper is
the first implementation of the ASIFT algorithm for efficient
execution on GPUs. We chose the NVIDIA CUDA environ-
ment for this implementation, mainly because it is more tightly
coupled to the NVIDIA hardware than OpenCL, and hence
gives better control over the new hardware features introduced
in the latest NVIDIA GPUs. The speed-up obtained goes to
almost 70 times when applying GPU-ASIFT to high-resolution
5MPixel images, while having a matching accuracy close to
that of the original ASIFT. Also, the proposed approach can
make use of multiple GPU devices to speed up the computa-
tion even more. Our experiments done using 2 GPUs have
shown performance increase with speed-up factors ranging
from 1.8 to 1.9 times when compared to using a single GPU.

The remainder of this paper is as follows. Section II briefly
presents the state-of-the-art feature extraction algorithms and
some of the GPU implementations. Section III presents the
proposed method for accelerating ASIFT using the GPU. Sec-
tion IV goes further into the implementation details, with Sec-
tion V showing the experimental results. Section VI presents
our conclusions and possible directions for future work.

II. RELATED WORK

Modern feature matching algorithms are typically composed
of two stages: the feature detector and the feature descriptor.

978-1-4799-0838-7/13/$31.00 ©2013 IEEE 474

This scheme works by first detecting the points of interest
in the image (the “keypoints”) and then by assigning a
“descriptor vector” to the region associated with each keypoint.
The comparison between the “descriptor vectors” associated to
the query and search images is usually done using a form of
the nearest-neighbor algorithm [9] and is defined as the image
matching process.

Two of the most popular algorithms designed to solve this
problem are the SIFT and the Speeded Up Robust Features
(SURF) [10] algorithms. Comparisons between the SIFT and
SURF descriptors recommend the former for applications
where high-accuracy is required [8]. It has been proven that
SIFT outperforms all other image feature extraction methods
in terms of scale invariance [11].

A. Scale-Invariant Feature Transform

Scale-invariant feature transform (or SIFT) is an algorithm
in computer vision used to detect and describe local features in
images [1]. The SIFT method designed by Lowe is composed
of a DoG (Difference-of-Gaussians) region detector and a 128-
dimensional descriptor based on the orientation distribution
in the region. The DoG detector has been proven to provide
invariance to translation, rotation and scale change, while
the descriptor ensures limited invariance to viewpoint and
illumination change. It has been shown by Lowe that a lower-
dimensional descriptor reduces the accuracy of the algorithm.

B. GPU-based SIFT implementations

There are a few groups that have presented various SIFT im-
plementations suitable for execution on programmable graph-
ics hardware [12]–[17]. Heymann et al.reported a speed-up
of about 8 times against a baseline CPU implementation for
640×480 images [17], while Sinha et al.obtained a speed-up
of 10-12 times over an optimized CPU implementation [18].
However, these two older implementations harnessed the GPU
power prior to the introduction of CUDA, making use of Cg
and GLSL shader programs, which are more cumbersome to
write and debug. From the above implementations, we could
access the source code and experiment with two of the ones
already implemented in CUDA [12], [16].

C. Affine-SIFT

ASIFT (standing for Affine-SIFT) is a fully affine-invariant
feature matching algorithm described in [7]. As most modern
feature matching algorithms, ASIFT consists of two distinct
stages: keypoint detection and keypoint matching. The first
part of the algorithm consists of simulating a predefined
number of image tilts and rotations (variations of the camera
viewpoint’s longitude and latitude angles) and then applying
the SIFT algorithm on each of them. Because SIFT is proven
to be invariant to scale, rotation and translation, by simulating
these viewpoint variations the ASIFT extension covers effec-
tively all six parameters of the affine transform. This method
has been mathematically proven to be fully affine-invariant in

[7]. The descriptors resulting from the application of ASIFT
can be matched using any matching algorithm that would work
for SIFT, the descriptors’ structure being equivalent.

III. PROPOSED METHOD

We propose a GPU method to efficiently execute a fully
affine-invariant local image feature detection algorithm. The
method, based on the ASIFT algorithm, proves to be robust
and much faster than the original implementation for a diverse
range of image sizes. Moreover, it uses the same parameters
as the original implementation, as well as the same sampling
methods.

Figure 1. ASIFT keypoint detection profiling data.

As stated previously, the strong motivation towards the
development of this implementation was the very high com-
putational cost of ASIFT. In order to find out what the most
demanding parts of the application were, we have profiled the
original CPU implementation of the ASIFT keypoint detection
for 640×480 images. The profiling results are presented in
Figure 1. As can be seen in the chart, the computational
load is not concentrated in a single function as is the case
with many algorithms, but is instead divided across multiple
functions. Therefore, in order for the algorithm as a whole to
be massively accelerated all of the following four functions
need to have a GPU implementation:

• Variation of the latitude angle (rotation)
• Anti-aliasing filtering along the vertical axis using a

Gaussian convolution kernel
• Variation of the longitude angle (tilt)
• SIFT keypoint computation for all resulting images

Due to Amdahl’s law [19], if we would only parallelize
the function that computes the SIFT keypoints, the maximum
possible speed-up would be around a factor of 2. On the
other hand, if all four functions are accelerated, the maximum
application speed-up for 640×480 feature extraction would
be around a factor of 33. Moreover, for images of higher
resolution, the fixed cost denoted as Other in the profiling
data is below 1%, permitting even higher speed-ups.

Furthermore, in order to obtain a big whole-application
speed-up, one important goal of this implementation was to

475

minimize as much as possible the communication between
the CPU and the GPU, this being the typical bottleneck in
GPGPU applications.

For this implementation of the ASIFT algorithm on the
GPU, adaptation of the original CPU algorithm was required
for a better fit. The function that has the highest computational
cost from the ASIFT keypoint detection step is the one that
detects SIFT keypoints out of a distorted image. It has a weight
of more than half of the runtime, and thus is a clear candidate
for parallelization. For the purpose of efficiently computing
the SIFT keypoints we chose siftGPU [12] as our building
block.

We have implemented CUDA kernels for the rest of the
functionality, giving us the advantage of only needing a single
memory copy from host to device for the input image. All the
subsequent image transformations are executed on the GPU,
on data already present in device memory. After finishing
the execution of ASIFT, the GPU memory is freed and the
detected keypoints are read back in host memory for further
processing. The detailed description is given in Section IV.

IV. GPU IMPLEMENTATION

We have implemented the ASIFT for efficient execution on
the GPU with the following objectives in mind: (1) Perform
keypoint detection and keypoint matching in a fraction of
the time taken by the CPU implementation, (2) Create an
implementation that is scalable in terms of the number of
GPUs and (3) Obtain results with similar accuracy to those
from the original ASIFT implementation.

Figure 2. GPU-ASIFT execution diagram.

The diagram of this implementation is presented in Figure
2. Following is the description for each of the computational
stages.

A. Transferring the image to the GPU

This is the only image copying throughout the execution of
the algorithm. All other generated images are allocated and
computed directly in device memory, in order to minimize
the CPU↔GPU data transfers. This is the typical problem in
GPGPU applications, and we consider that the execution flow
of our algorithm greatly reduces the need for such data copies.

B. Simulation of all image transformations

This step computes the three functions required to simulate
all possible affine distortions caused by the change of the
camera optical axis orientation from a frontal position. The
distortions depend upon two parameters: the longitude angle
φ and the latitude angle θ shown in Figure 3. The images
undergo φ -rotations followed by tilts with parameter t given
by Equation (1).

t = | 1

cos θ
|. (1)

The image rotation operation is formally defined in Equation
(2), where u(i, j) is the input image and ū(i, j) represents the
bilinear interpolated image.

u′(i, j) = ū(i cosφ− j sinφ, i sinφ+ j cosφ). (2)

Figure 3. Geometric interpretation of the six affine parameters.

A CUDA kernel was created for efficiently computing
the image rotation operation. The kernel performs a rotation
by angle φ on a 2D input image u(i, j), as described by
Equation (2), using bilinear interpolation to compute the final
rotated image. Since the rotated image must be included in a
rectangular window, a background of grey level 128 is set on
the undefined parts of the rotated image.

The tilts are modeled by applying an anti-aliasing Gaus-
sian filtering kernel followed by a directional subsampling
operation. The filtering operation is done only in the vertical
direction, as defined by ASIFT, and is given in Equation (3).

G(x) =
1√
2πσ

exp(− x2

2σ2
) , σ = c

√
t2 − 1 (3)

The modeling of the directional subsampling operation is
defined in Equation (4).

u(x, y)→ u(x, ty) (4)

476

We have implemented a CUDA kernel inspired from the
texture-memory based convolution example from the CUDA
SDK [20] to provide this functionality. We have used the value
c = 0.8 as standard deviation for the convolution kernel, the
same as in the original ASIFT.

The tilting operation represents the application of an affine
transformation to an image. NVIDIA offers along with the
CUDA toolkit different sets of libraries containing acceler-
ated primitives. The NPP (NVIDIA Performance Primitives)
library [21] contains a set of image/signal processing functions
executed efficiently by NVIDIA hardware. We have identified
the function nppiWarpAffine as solving the directional subsam-
pling equation (4) required by ASIFT and further use it in this
implementation.

C. SIFT keypoint computation for all resulting images

The next step after having all tilted/rotated versions of
the input image is to detect the SIFT features associated
to each of the transformations. For this purpose we use a
modified version of siftGPU, tailored to our specific needs.
An important modification to the siftGPU original code is
adding the possibility of loading image data stored directly
in device memory. In the original implementation, siftGPU
supported only image data transferred from the host to device
memory. For our application this would mean that each GPU-
computed image transformation should first be transferred to
host memory and then transferred back from host to device,
or that the image transformations should be computed on the
CPU. Both these options would deteriorate the performance
of a GPU approach, and through this modification the com-
putational cost of passing an image to siftGPU is not bigger
than that of a pointer assignment.

Figure 4. CUDA streams optimization to siftGPU. Serial kernel execution
is compared to concurrent kernel execution.

Another important modification done to the siftGPU imple-
mentation was to increase its level of concurrency. This is done
through the usage of CUDA streams in some of its important
functions. For example, the function that computes the key-
point orientations calls a CUDA kernel multiple times, but the
kernels individually don’t fully occupy the GPU. All the calls
are independent though, so newer CUDA devices of compute

capability 2.0+ can launch multiple kernels concurrently to
increase the GPU occupancy if the code is written accordingly
(asynchronous with regard to memory copies). The impact
of this modification is outlined in the GPU profiling data
obtained from NVIDIA’s CUDA Visual Profiler from Figure
4. For a sequence of 15 independent kernel calls, the serial
version executes more than four times slower than our stream-
enhanced concurrent one. This improvement alone speeds up
siftGPU by about 20% when running on NVIDIA GTX680
hardware.

After having the keypoints computed for each affine distor-
tion of the input image, the list of keypoints is read back and
stored in host memory.

D. Matching keypoints between two images

In order to match the keypoints computed for two images,
we are using the same approach as the original ASIFT.
The first and most computationally-expensive part of the
keypoint matching stage is computing the similarity between
all keypoint descriptors for each pair of image transforma-
tions(rotation/tilt). The basic idea for the matching stage is
to find the two minimum distances between each detected
feature from each transformation of the query image and all
other features from all transformations of the search image.
The distance function used is either the L1 or L2 norm. If
the distance ratio is greater than 0.8 the match is discarded,
otherwise the match is considered stable and is saved in the
matched keypoints list [1]. Thus, if we set the tilt parameter
t such that the total number of generated distorted images is
N , N2 calls to the SIFT descriptor matching routine will be
made for each search image.

After all matches from all transformations are detected,
some further refining is needed. The identical matches from
different transformations, as well as the one-to-multiple and
multiple-to-one matches are discarded. The next step is dis-
carding the false matches using the powerful Moisan-Stival
epipolar geometry-based ORSA (Optimized Random Sam-
pling Algorithm) [22]. The number of matches resulted after
applying ORSA is essentially the number of correct matches,
and is being used in the results section to assess the accuracy
of our implementation. All these steps follow closely the
ASIFT implementation of keypoint matching. Because ASIFT
typically detects a large number of keypoints, especially for
large images, the biggest computational cost is associated to
the N2 calls made to the SIFT descriptor matching routine.
In order to alleviate this cost, we have integrated the keypoint
matching routine from siftGPU in our implementation. All
the other parts of the matching stage remain identical as in
the original ASIFT method.

E. Multi-GPU implementation

Apart from providing a SIFT implementation for the GPU,
a proof-of-concept multi-GPU approach to SIFT is presented

477

in [12]. This multi-GPU solution makes use of either a multi-
process multi-GPU or a multi-threaded multi-GPU implemen-
tation. It essentially creates multiple processes/threads and
each of them controls one distinct NVIDIA GPU. Then,
the SIFT keypoint extraction is started independently, with
each 〈CPU thread,GPU device〉 pair computing features for
a different image concurrently.

This type of multi-GPU parallelism is a good fit for the
ASIFT algorithm, given that the ASIFT computation is largely
independent, several image transformations being generated
and SIFT being applied independently on all of them. In our
multi-GPU implementation initially only one thread is started
and the number of available GPUs is detected. If multiple
GPUs are present on the system, the master thread divides
the computational workload among the participating GPUs by
creating a CPU thread for each detected GPU device. After
all child threads finish the computation, control is returned to
the master thread that creates the final keypoint list.

As an example, if we choose to simulate 3 tilts in our
application, the sampling defined within ASIFT generates 10
independent images and SIFT is applied on all of them, while
if we choose to simulate 7 tilts, 61 independent images are
generated. Thus, ideally, each image transformation followed
by the application of SIFT can be executed as an independent
thread, and the limit of achievable concurrency is the number
of independent images processed. By reaching this limit of
parallelism, we expect ASIFT keypoint detection to have a
computational cost as high as a single instance of SIFT on the
largest image transformation from within ASIFT.

We have evaluated this implementation on the NVIDIA
GTX690 dual-GPU card and the results were as expected.
Our execution times when using the GTX690 almost halved
as compared to the GTX680, as will be presented in Section
V.

V. EXPERIMENTAL RESULTS

In this section we present the results obtained using the pre-
viously described implementation in terms of both execution
speed and matching accuracy. We first focus on evaluating
the execution speed-up when using images with resolutions
ranging from 640×480 to 5MPixel. Secondly, we evaluate the
system using the classic evaluation metric (number of true
matches) and a classic dataset. The experiments include tests
with the standard Mikolajczyk database [23] and also with
another set of images that exhibit strong viewpoint change.

Our test hardware is composed of a quad-core Intel Core
i7-2600K CPU with 16GB DDR3 RAM and an NVIDIA
GTX680 GPU with 2GB GDDR5 device memory. The op-
erating system is 64-bit Windows 7, and the programming
environment is composed of Visual Studio 2010 and NVIDIA
CUDA 5.0. To assess the performance of the multi-GPU
approach, we have used an NVIDIA GTX690 dual-GPU card
with 4GB of GDDR5 memory.

Figure 5. Images used for the quantitative analysis [24].

A. Evaluation of execution speed

In this section we focus on evaluating the speed-up obtained
against the original ASIFT implementation. The most impor-
tant factor for the keypoint detection and descriptor generation
stage is the size of the input image (number of pixels).
Thus, we vary the size of the input images, and compare the
implementations regarding the keypoint detection time.

The image pair used in this evaluation is shown in Figure 5.
The images are originally sampled at 3MPixel (1536×2048)
resolution and are taken from different viewpoints. They are
then downscaled and upscaled to cover the following reso-
lution values: 480×640, 600×800, 1024×1280, 1200×1600
and 1936×2584 chosen for experimentation. Because the
viewpoint change is not so abrupt for this image pair, and also
to limit the number of detected keypoints that tends to be very
large for high resolution images, we have set the maximum
value for the tilt parameter from Equation (1) to 2 for this
set of evaluations. The experimental results are presented in
Table I. The “Time” column represents the total time spent
detecting the keypoints out of both input images. “single-core”
is the single-core ASIFT implementation and “quad-core” is
the OpenMP-augmented implementation utilizing all 4 CPU
cores. “single-GPU” is the single-GPU ASIFT implementation
running on the NVIDIA GTX680 and “dual-GPU” is the
multi-GPU implementation running on the dual-GPU NVIDIA
GTX690.

The speed-up factor of GPU-ASIFT relative to the single-
core CPU implementation ranges between 22 and 68, and
between 6 and 17 relative to the OpenMP 4-core imple-
mentation. This is including all the memory copies between
host and device. The OpenMP approach is highly scalable,
offering near-linear or even supra-linear speed-up up to the
number of SIFT instances called. An advantage of the GPU
implementation is that it relieves the CPU of excessive load,
so in this scenario the CPU can be also used for other tasks.

The same high degree of scalability that the OpenMP imple-
mentation exhibits is observed in our multi-GPU implemen-
tation. Due to the highly-independent processing employed

478

within ASIFT, the workload can be evenly divided across
multiple GPUs as presented in the previous section. The
obtained speed-up by using two GPU devices instead of one
ranges from factors of 1.75 to 1.9, depending on the image
sizes. When using this approach, the execution time for finding
keypoints in a VGA(640×480) image is about 110ms. We
expect that by using more GPU devices(e.g. two NVIDIA
GTX690s) we can detect ASIFT features in real-time. This
would be a tremendous speed-up, considering that initially
more than 4 seconds were needed to analyze a single VGA
frame.

One noticeable problem of the original ASIFT implemen-
tation is the very high cost of performing keypoint matching,
both in terms of memory consumption and of execution time.
As an example, for the 1024x1280 image test, the CPU version
of ASIFT detected 780 matches out of two sets of about
25,000 keypoints each in 230 seconds. In contrast, GPU-
ASIFT generates about 20,000 keypoints for each image, that
are matched in 1.1 seconds. Even for images having detected
keypoint numbers in the range of 100,000 each, as is the case
for the high resolution 1936x2584 image, the matching time
is under 10 seconds when using this method.

The ASIFT-CPU implementation typically generates be-
tween 11% and 40% more keypoints than our GPU implemen-
tation for these input images. The relative difference in terms
of detected keypoints is reduced as the size of the input image
increases. This happens because of the parameter difference
in the design of the underlying SIFT routines. siftGPU thus
tends to find less keypoints than the SIFT routines used in the
original ASIFT. However, the number of keypoints detected
by GPU-ASIFT is consistently over 10 times larger than that
detected by siftGPU on the whole range of image sizes. This
greatly improves the matching accuracy, the number of correct
matches being also on average about 10 times larger.

TABLE I
TIMING RESULT IN MILLISECONDS FOR ALL IMAGE SIZES, USING ALL

ASIFT IMPLEMENTATIONS.

Resolution single-core quad-core single-GPU dual-GPU

480x640 8861 2262 390 222

600x800 13634 3464 483 272

1024x1280 35101 8414 765 425

1200x1600 54039 13136 921 492

1536x2048 90465 21840 1342 710

1936x2584 141711 34086 2075 1092

The total image area for which SIFT is applied within
ASIFT is given by the input image area multiplied by A(t)
from Equation (5).

A(t) = 1 + (|Γt| − 1)
180◦

72◦

(5)

|Γt| = |{1,
√

2, ...,
√

2
t−1
}|

|Γt| represents the number of simulated tilts. With the
maximum tilt value set to 2, the value of |Γt| is 3 and hence
the area over which SIFT is applied is 6 times the area of
the input image. For obtaining SIFT keypoints on 6 times
the input image, the cost is on average only about 4 times
higher than that of a single SIFT call for the same input image,
including the cost for performing the image distortions. This
is possible because all image data was calculated on the GPU,
thus eliminating the need for expensive CPU↔GPU copying.
Another contributor to this improvement is the siftGPU con-
current kernel execution optimization described in the previous
section.

B. Evaluation of accuracy

For the accuracy results presented in this section we have
used images that exhibit abrupt viewpoint change, to assess
the quality of this implementation. We have chosen the graffiti
images from the Mikolajkzyk [23] standard dataset, presented
in Figure 6. Also, we have chosen the magazine image set
from Figure 7 out of the original ASIFT dataset [7].

Figure 6. Images from the Mikolajczyk standard dataset [23]. Image 1 and
Image 6 are shown.

The first set of images is composed of one frontal view and
5 different views of the same object, with increasing change
in viewpoint, all sampled at a 800×640 resolution. Figure 6
shows the frontal image and the one with the largest viewpoint
change. The second set aims at evaluating the detector with
respect to variation of scale and viewpoint. It is composed of
9 images sampled at a 600×450 resolution, one frontal view
zoomed by a factor of 4, and 8 images with 10◦ variation in
viewpoint, ranging from 10◦ to 80◦ and without zoom.

Figure 7. Images from the ASIFT dataset [7].Taken from middle distance
(zoom by a factor of 4) at frontal view and at 80 degree angle.

As has been also shown previously [7], for a very high

479

viewpoint difference SIFT cannot detect matches between the
images. From the first set, SIFT cannot detect matches for
2 out of the 5 tests, the same holding for the second set.
Typically, SIFT’s robustness drops sharply when the viewpoint
variation increases to over 50◦, as also stated by Lowe in [1].
The accuracy comparison between GPU-ASIFT, CPU-ASIFT
and siftGPU on the images that exhibit the largest viewpoint
difference out of these datasets is found in Tables II and III.
We use the number of correct matches to assess the accuracy
of the three approaches. The first column from the tables lists
the compared methods, together with two parameters. The t
parameter is the maximum tilt parameter, and the u parameter
selects whether to perform upsampling by a factor of two in
each direction prior to execution or not. The second column
lists the total number of correct matches detected by each
method.

TABLE II
ACCURACY RESULTS FOR THE MIKOLAJCZYK DATASET ON THE IMAGES

FROM FIGURE 6.

Method Number of correct matches [#]

ASIFT-CPU(t = 2, u = 0) 160

GPU-ASIFT(t = 2, u = 0) 159

GPU-ASIFT(t = 2, u = 1) 445

ASIFT-CPU(t = 4
√
2, u = 0) 753

GPU-ASIFT(t = 4
√
2, u = 0) 497

GPU-ASIFT(t = 4
√
2, u = 1) 1508

siftGPU 1

TABLE III
ACCURACY RESULTS FOR THE ASIFT DATASET ON THE IMAGES FROM

FIGURE 7.

Method Number of correct matches [#]

ASIFT-CPU(t = 2, u = 0) 69

GPU-ASIFT(t = 2, u = 0) 34

GPU-ASIFT(t = 2, u = 1) 90

ASIFT-CPU(t = 4
√
2, u = 0) 141

GPU-ASIFT(t = 4
√
2, u = 0) 151

GPU-ASIFT(t = 4
√
2, u = 1) 467

siftGPU 0

The tables are composed of two sets of measurements, one
with a maximum tilt value t set to 2, and the other with
the maximum value set to 4

√
2. The second set generates

more matches than the first because more image distortions
are performed, at the expense of a higher computational cost.
Also, u = 1 in the table means that the input image was
upsampled by a factor of two prior to performing ASIFT.

By comparing lines 1 − 3 and 4 − 6 in Tables II and
III, we can see that our GPU implementation of ASIFT has
similar accuracy with regard to the CPU one. The accuracy
can be further increased either by upsampling the input image
or by simulating a larger number of image transformations.
Simulating a larger number of transformations increases the

execution time by the same factor for both CPU and GPU
implementations of ASIFT.

However, for images not exceeding 2MPixel, the input
image size can be safely doubled without running out of GPU
memory, and all computation applied to the larger image. This
is the case for the results from lines 3 and 6 in Tables II and
III. In this scenario the number of correct matches in the GPU-
ASIFT case is about 3 times bigger, with the execution time
only doubling, but still being a fraction of the CPU-ASIFT
execution time. When using the same upsampling technique
for increasing the keypoints detected by the CPU version of
ASIFT the execution time is 4 times higher. For this purpose
one should compare the execution time data from Table I.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated a method to increase
the throughput of the ASIFT algorithm by using programmable
graphics hardware. We have shown performance speed-ups by
factors of up to 70 when compared to the single-core CPU
implementation, while keeping the same level of accuracy.
We have evaluated the algorithm on a standard dataset for
quality checks and also on a range of image sizes to assess
speed performance. The result is that the current approach
can process a 5MPixel image in about one second while
adhering to the high level of accuracy of ASIFT, making it the
fastest implementation currently available. Also, a multi-GPU
approach that further accelerates ASIFT was implemented.
The results were as expected, the algorithm’s performance
almost doubling when using a dual-GPU card. This leads to the
idea that the initially intractable problem of real-time ASIFT
detection can be solved by using 4 GPUs.

As future work we are thinking of implementing a GPU-
ASURF (affine-SURF) implementation using this framework.
We are expecting that implementation to work in real-time
using a single GPU, based on the experiments presented in [8]
that show the relative difference in computing time between
SIFT and SURF. Also, we aim at using these highly accu-
rate descriptors as input data to machine learning classifiers
and address challenging object recognition datasets like the
PascalVOC and Caltech-256 [25] [26].

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the European Union’s Seventh Framework Pro-
gramme managed by REA-Research Executive Agency http://
ec.europa.eu/research/rea (FP7/2007-2013) under grant agree-
ment no. 286545.

REFERENCES

[1] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

480

[2] S. Se, D. Lowe, and J. Little, “Vision-based mobile robot localization
and mapping using scale-invariant features,” in IEEE International Con-
ference on Robotics and Automation, Proceedings 2001 ICRA, vol. 2.
IEEE, 2001, pp. 2051–2058.

[3] H. Tamimi, H. Andreasson, A. Treptow, T. Duckett, and A. Zell,
“Localization of mobile robots with omnidirectional vision using particle
filter and iterative sift,” Robotics and Autonomous Systems, vol. 54, no. 9,
pp. 758–765, 2006.

[4] S. Se, D. Lowe, and J. Little, “Mobile robot localization and mapping
with uncertainty using scale-invariant visual landmarks,” The Interna-
tional Journal of Robotics Research, vol. 21, no. 8, pp. 735–758, 2002.

[5] M. Brown and D. Lowe, “Recognising panoramas,” in Proceedings of
the Ninth IEEE International Conference on Computer Vision, vol. 2,
no. 1218-1225, 2003, p. 5.

[6] M. Kus, M. Gokmen, and S. Etaner-Uyar, “Traffic sign recognition
using scale invariant feature transform and color classification,” in
23rd International Symposium on Computer and Information Sciences,
ISCIS’08. IEEE, 2008, pp. 1–6.

[7] J. Morel and G. Yu, “ASIFT: A new framework for fully affine invariant
image comparison,” SIAM Journal on Imaging Sciences, vol. 2, no. 2,
pp. 438–469, 2009.

[8] L. Juan and O. Gwun, “A comparison of SIFT, PCA-SIFT and SURF,”
International Journal of Image Processing (IJIP), vol. 3, no. 4, pp. 143–
152, 2009.

[9] J. Beis and D. Lowe, “Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces,” in IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition Proceed-
ings. IEEE, 1997, pp. 1000–1006.

[10] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded up robust
features,” Computer Vision–ECCV 2006, pp. 404–417, 2006.

[11] J. Morel and G. Yu, “Is SIFT scale invariant?” Inverse Problems
Imaging, vol. 5, pp. 115–136, 2011.

[12] C. Wu, “SiftGPU: A GPU implementation of scale invariant feature
transform (SIFT),” http://cs.unc.edu/∼ccwu/siftgpu, 2007.

[13] A. Chariot and R. Keriven, “GPU-boosted online image matching,”
in 9th International Conference on Pattern Recognition, ICPR 2008.
IEEE, 2008, pp. 1–4.

[14] S. Sinha, J. Frahm, M. Pollefeys, and Y. Genc, “Feature tracking and
matching in video using programmable graphics hardware,” Machine
Vision and Applications, vol. 22, no. 1, pp. 207–217, 2011.

[15] S. Warn, W. Emeneker, J. Cothren, and A. Apon, “Accelerating SIFT
on parallel architectures,” in IEEE International Conference on Cluster
Computing and Workshops, CLUSTER’09. IEEE, 2009, pp. 1–4.

[16] M. Bjorkman, “A CUDA implementation of SIFT,” http://www.csc.kth.
se/∼celle/ .

[17] S. Heymann, K. Muller, A. Smolic, B. Frohlich, and T. Wiegand,
“SIFT implementation and optimization for general-purpose GPU,” in
Proceedings of the International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision, 2007, p. 144.

[18] S. Sinha, J. Frahm, M. Pollefeys, and Y. Genc, “GPU-based video feature
tracking and matching,” in EDGE, Workshop on Edge Computing Using
New Commodity Architectures, vol. 278, 2006, p. 4321.

[19] G. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the Spring Joint
Computer Conference. ACM, 1967, pp. 483–485.

[20] V. Podlozhnyuk, “Image convolution with CUDA,” NVIDIA Corporation
white paper, June, vol. 2097, no. 3, 2007.

[21] NVIDIA, “NVIDIA NPP library,” https://developer.nvidia.com/npp.
[22] L. Moisan and B. Stival, “A probabilistic criterion to detect rigid point

matches between two images and estimate the fundamental matrix,”
International Journal of Computer Vision, vol. 57, no. 3, pp. 201–218,
2004.

[23] K. Mikolajczyk, “Affine covariant features,” Collaborative work be-
tween: the Visual Geometry Group, Katholieke Universiteit Leuven, Inria
Rhone-Alpes and the Center for Machine Perception, 2007.

[24] S. El-Hakim, “Florence (italy) data set,” http://www.isprs.org/data/
florence/default.aspx.

[25] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

[26] D. Hoiem, S. K. Divvala, and J. H. Hays, “Pascal VOC 2008 challenge,”
2009.

481

