
 

 

 University of Groningen

Towards a corpuscular model of optical phenomena
Jin, Fengping

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Jin, F. (2011). Towards a corpuscular model of optical phenomena. s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-06-2022

https://research.rug.nl/en/publications/f5c8469b-ac98-497a-b401-f57ddd9c3718


39

Chapter 2

Hanbury Brown-Twiss

Experiment with Coherent

Light

This chapter was previously published as

F.Jin, H. De Raedt, and K. Michielsen, Commun. Comput. Phys. 7, 813 (2010).

2.1 Introduction

Computer simulation is widely regarded as complementary to theory and experi-

ment [4]. Usually, the fundamental theories of physics provide the framework to

formulate a mathematical model of the observed phenomenon, often in terms of differ-

ential equations. Solving these equations analytically is a task that is often prohibitive

but usually it is possible to study the model by computer simulation. Experience has

shown that computer simulation is a very powerful approach to study a wide vari-

ety of physical phenomena. However, recent advances in nanotechnology are paving

the way to prepare, manipulate, couple and measure single microscopic systems and

the interpretation of the results of such experiments requires a theory that allows us
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to construct processes that describe the individual events that are being observed.

Such a theory does not yet exist. Indeed, although quantum theory (QT) provides

a recipe to compute the frequencies for observing events, it does not describe indi-

vidual events, such as the arrival of a single electron at a particular position on the

detection screen [1, 54, 65, 67]. Thus, we face the situation that we cannot rely on an

established physical theory to build a simulation model for the individual processes

that we observe in real experiments. Of course, we could simply use pseudo-random

numbers to generate events according to the probability distribution that is obtained

by solving the Schrödinger equation. However, that is not what the statement “QT

does not describe individual events” means. What it means is that QT tells us noth-

ing about the underlying processes that give rise to the frequencies of events observed

after many of these events have been recorded. Therefore, in order to gain a deeper

understanding in the processes that cause the observed event-based phenomena, it

is necessary to model these processes on the level of individual events without using

QT. The challenge therefore is to find algorithms that simulate, event-by-event, the

experimental observations that, for instance, interference patterns appear only after a

large number of individual events have been recorded by the detector [67, 79], without

first solving the Schrödinger equation.

In this chapter, we leave the conventional line-of-thought, postulating that it is fun-

damentally impossible to give a logically consistent description of the experimental

results in terms of causal processes of individual events. In other words, we reject

the dogma that there is no explanation that goes beyond the quantum theoretical de-

scription in terms of averages over many events and search for an explanation of the

experimental facts in terms of elementary, particle-like processes. It is not uncommon

to find in the recent literature, statements that it is impossible to simulate quantum

phenomena by classical processes. Such statements are thought to be a direct conse-

quence of Bell’s theorem [5] but are in conflict with other work that has pointed out

the irrelevance of Bell’s theorem [6–28, 80]. This conclusion is supported by several

explicit examples that prove that it is possible to construct algorithms that satisfy

Einstein’s criterion for locality and causality, yet reproduce exactly the two-particle

correlations of a quantum system in the singlet state, without invoking any concept

of QT [29–34]. It is therefore an established fact that purely classical processes can

produce the correlations that are characteristic for a quantum system in an entangled

state, proving that from the viewpoint of simulating quantum phenomena on a digital

computer, Bell’s no-go theorem is of no relevance whatsoever.

The present chapter builds on earlier work [29–34, 55–61, 81] that demonstrates that

quantum phenomena can be simulated on the level of individual events without first

solving a wave equation or invoking concepts of QT, wave theory or probability the-

ory. Specifically, we have demonstrated that it is possible to construct event-by-

event processes, that reproduce the results of QT for single-photon beam-splitter and

Mach-Zehnder interferometer experiments [79], Einstein-Podolsky-Rosen-Bohm ex-

periments with photons [38, 82, 83], Wheeler’s delayed-choice experiment with single
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Figure 2.1: Schematic picture of a HBT experiment [36]. Top: Source. Coherent light, generated

by a YAG laser, is sent through the Gan prism GP1,a single slit S, a beam splitter (a CaCO3 crystal),

an electro-optic modulator (EOM) and another Gan prism GP2 to produce two beams A and B as

if they would have emerged from a double slit separated by 1.3 mm [36]. The EOM is switched

rapidly to destroy the first-order coherence between beams A and B. Bottom: The interferometer

consists of two beam splitters BS1 and BS2 and phase shifters φAn and φBn (n = 1, 2, 3). Light

intensity is measured by the three detectors D1, D2 and D3.

photons [84], quantum eraser experiments with photons [37], double-slit and two-beam

single-photon interference, quantum cryptography protocols, and universal quantum

computation [57, 58]. According to the theory of quantum computation, the latter

proves that at least in principle, we can construct particle-like, event-by-event pro-

cesses that can simulate any quantum system [85]. Some interactive demonstration

programs can be downloaded from http://www.compphys.net and Ref. [62].

In our earlier work, we studied first-order interference only. In this chapter, we extend

the range of applications of the event-based simulation approach by demonstrating

that the event-based algorithms, used in our previous work, can be re-used, with-

out modification, to build a particle-only simulation model for another fundamental

physics experiment, the Hanbury Brown-Twiss (HBT) experiment [86]. The HBT

effect refers to a variety of correlation and anti-correlation effects in the intensities

received by two or more detectors from a beam of particles [87–89], examples being

second and third order interference. According to common lore, when a HBT experi-

ment is performed using single-particle detectors, the HBT effect is attributed to the

wave-particle duality of the beam. In this chapter, we present a particle-only model

of the HBT effect, demonstrating that it is possible to construct causal, particle-like

processes that describe the experimental facts without invoking concepts of QT.

As a concrete realization, we consider a recent HBT experiment [36], a schematic



42 Hanbury Brown-Twiss Experiment with Coherent Light

picture of which is shown in Fig. 2.1. A radiation source, a frequency doubled Q-

switched Nd:YAG laser with wavelength 532nm, is used. The coherent light from this

source is split by a beam splitter. The electro-optical modulator (EOM) erases the

first-order interference of the light [36]. The two beams that emerge are labeled A and

B, see Fig. 2.1(top). Then, the two beams are sent to three detectors through two

beam splitters (BS), see Fig. 2.1(bottom). After measuring the coincidences between

the signals of the three detectors by means of a triple coincidence circuit (TCC), the

third-order intensity interference pattern is observed [36].

The purpose of this chapter is to demonstrate that one can construct a simulation

model of this experiment that

• is a one-to-one copy of the experimental setup such that each device in the real

experiment has a counterpart in the simulation algorithm

• is event-based and satisfies elementary physical (Einstein’s) requirements of lo-

cal causality

• reproduces the results of wave theory by means of particles only.

The structure of the chapter is as follows. In Section 2, we briefly review the wave

theory of second and third-order interference. The simulation model is described in

Section 3. Section 4 presents our simulation results and a discussion thereof. Our

conclusions are given in Section 5.

2.2 Wave theory

Conceptually, the experiment of Fig. 2.1 can be viewed as a double-slit type ex-

periment with three detectors, as shown in Fig. 2.2. Assume that source A emits

coherent light with amplitude α and that source B emits coherent light with ampli-

tude β. Thus, according to the superposition principle, the total amplitude falling on

the n-th detector (n = 1, 2, 3) is

an = αeiφAn + βeiφBn , (2.1)

where φAn (φBn) is the accumulated phase of the photon travelling from source A

(B) to the n-th detector. While the intensity is

In = |an|2 = IA + IB + 2Reαβ∗eiφn , (2.2)

where IA = |α|2, IB = |β|2, and φn = φAn − φBn. If the relative phase of α and

β is fixed, Eq. (2.2) predicts that interference fringes will be observed. This type of

interference is referred to as first-order interference. If there is no correlation between

the phases of α and β, there are no interference fringes because

〈In〉 = 〈IA〉+ 〈IB〉. (2.3)
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Figure 2.2: Schematic picture of third order intensity correlation. Photons emitted from sources A

and B are registered by three detectors D1, D2 and D3. φAn and φBn (n = 1, 2, 3) are the phases

accumulated during their flight from sources A or B to the n-th detector.

On the other hand, the product of the intensities is given by

InIm = |anam|2 = |α2ei(φAn+φAm) + β2ei(φBn+φBm)

+αβ(ei(φAn+φBm) + ei(φAm+φBn))|2, (2.4)

and after averaging over the uncorrelated phases of α and β, we find

G(2)
nm = 〈InIm〉 = 〈IAIA〉+ 〈IBIB〉+ 〈IAIB〉|ei(φAn+φBm) + ei(φAm+φBn)|2

= 〈I2A〉+ 〈I2B〉+ 2〈IAIB〉(1 + cosφnm) (2.5)

where φnm = φn − φm and n,m = 1, 2, 3. According to Eq. (2.5) the intensity-

intensity correlation will exhibit interference fringes, a manifestation of the so-called

Hanbury Brown-Twiss effect. This type of interference is referred to as second-order

interference. It is convenient to introduce the normalized, dimensionless, correlation

by

g(2)nm ≡ G
(2)
nm

〈In〉〈Im〉 , (2.6)

where 〈In〉 = 〈Im〉 = 〈IA〉+ 〈IB〉. Assuming that the sources A and B have the same

statistics and the same average intensities, we have IA = IB and obtain

g(2)nm = g(2)
(
1 +

1

2
cosφnm

)
, (2.7)

where g(2) = 〈I2A〉/〈IA〉2 is the second-order normalized intensity autocorrelation func-

tion. Similarly, we consider the averages of the product of three intensities given by

G
(3)
123 = 〈I1I2I3〉 = 〈I3A〉+〈I3B〉+[〈I2A〉〈IB〉+〈I2B〉〈IA〉][3+2(cosφ12+cosφ23+cosφ13)],

(2.8)
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and, assuming IA = IB as before, we have

g
(3)
123 ≡ G

(3)
123

〈I1〉〈I2〉〈I3〉
=
g(3)

4
+
g(2)

2

(
3

2
+ cosφ12 + cosφ23 + cosφ13

)
, (2.9)

where g(3) = 〈I3A〉/〈IA〉3 is the third-order normalized intensity autocorrelation func-

tion. This type of interference is referred to as third-order interference. In this

chapter, we consider the case of coherent light only. Then we have g(3) = g(2) = 1.

2.3 Event-by-event simulation

We first discuss the general aspects of our event-by-event, particle-only simulation

approach. This approach is unconventional in that it does not require knowledge of

the wave amplitudes obtained by first solving the wave mechanical problem nor do we

first calculate the quantum potential (which requires the solution of the Schrödinger

equation) and then compute the Bohm trajectories of the particles. Instead, the

detector clicks are generated event-by-event by locally causal, adaptive, classical dy-

namical systems. Our approach employs algorithms, that is we define processes, that

contain a detailed specification of each individual event which cannot be derived from

a wave theory.

The simulation algorithms define processes that are most easily viewed in terms of

events, messages, and units that process these events and messages. In a pictorial

description, the photon is regarded as a messenger, carrying a message that represents

its time-of-flight. In this pictorial description, we may speak of “photons” generat-

ing the detection events. However, these so-called photons, as we will call them in

the following, are elements of a model or theory for the real laboratory experiment

only. The only experimental facts are the settings of the various apparatuses and the

detection events.

The processing units mimic the role of the optical components in the experiment. A

network of processing units represents the complete experimental setup. The standard

processing units consist of an input stage, a transformation stage and an output stage.

The input (output) stage may have several channels at (through) which messengers

arrive (leave). Other processing units are simpler in the sense that the input stage

is not necessary for the proper functioning of the device. A message is represented

by a set of numbers, conventionally represented by a vector. As a messenger arrives

at an input channel of a processing unit, the input stage updates its internal state,

represented by a vector, and sends the message together with its internal state to the

transformation stage that implements the operation of the particular device. Then,

a new message is sent to the output stage which selects the output channel through

which the messenger will leave the unit. At any given time, there is only one messenger

being routed through the whole network. There is no direct communication between

the messengers nor is there any communication between the processing units other
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than through the messengers. We view the simulation as a message-processing and

message-passing process: It routes messengers, representing the photons, through

a network of message-processing units, representing the optical components in the

laboratory experiment. From this general description, it should already be clear that

the process that is generated by the collective of classical dynamical systems is locally

causal in Einstein’s sense.

2.3.1 Simulation model

The network of processing units represents the whole experimental setup. For the

present purpose, that is the demonstration that the HBT effect can be explained by

a particle-only model, it is sufficient to simulate the bottom part of Fig. 2.1. All the

components, photons, beam splitters and photon detectors, have corresponding parts

in our event-based simulation. As all the components are already presented in our

previous work [29–32, 34, 55–61, 81], for completeness, we only give a brief description

of each of the components of the simulation setup.

2.3.1.1 Messenger

We view each photon as a messenger. Each messenger has its own internal clock, the

hand of which rotates with frequency f . When the messenger is created, the time

of the clock is set to zero. As the messenger travels from one position in space to

another, the clock encodes the time of flight t modulo the period 1/f . The message,

the position of the clock’s hand, is most conveniently represented by a two-dimensional

unit vector ej = (e0,j , e1,j) = (cosψj , sinψj), where ψj = 2πftj and the subscript

j > 0 labels the successive messages. The messenger travels with the speed of light

c. In this chapter, we do not need to specify the fixed frequency f and to specify a

message, we use the angle ψj instead of the time-of-flight tj .

2.3.1.2 Beam splitter

The structure of the processing unit for a beam splitter (BS) is shown in Fig. 2.3.

The unit has two input and two output channels labeled by k = 0, 1 and consists

of an input stage (DLM), a transformation stage (T), and an output stage (O). The

input stage receives a message on either input channel 0 or 1, never on both channels

simultaneously. The input events are represented by the vectors vj = (1, 0) or vj =

(0, 1) if the jth event occurred on channel 0 or 1, respectively and are processed

by a simple deterministic learning machine (DLM) [55–58, 60]. The DLM has two

internal registers Yk,j = (Ck,j , Sk,j) and one internal vector xj = (x0,j , x1,j), where

x0,j + x1,j = 1 and xk,j ≥ 0 for k = 0, 1 and all j > 0. Upon receiving the jth

input event, the DLM performs the following steps: It stores the input message

ek,j = (cosψk,j , sinψk,j) in its internal register Yk,j = (Ck,j , Sk,j). Then, it updates
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Figure 2.3: Diagram of a DLM-based processing unit that performs an event-based simulation

of a beam splitter (BS). The processing unit consists of three stages: An input stage (DLM), a

transformation stage (T) and an output stage (O). The solid lines represent the input and output

channels of the BS. The dotted lines indicate the data flow within the BS.

its internal vector according to the rule

xj = γxj−1 + (1− γ)vj , (2.10)

where 0 < γ < 1. A detailed analysis of the update rule Eq. (2.10) can be found in

Ref. [81].

The transformation stage accepts the messages from the input stage, and transforms

them into a new four-dimensional vector

T =
1√
2




C0,j
√
x0,j − S1,j

√
x1,j

C1,j
√
x1,j + S0,j

√
x0,j

C1,j
√
x1,j − S0,j

√
x0,j

C0,j
√
x0,j + S1,j

√
x1,j



. (2.11)

The output stage sends out a messenger (representing a photon) carrying the message

w =

(
w0,j

w1,j

)
, (2.12)

where

w0,j =

(
C0,j

√
x0,j/2− S1,j

√
x1,j/2

)/
sj ,
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w1,j =

(
C1,j

√
x1,j/2 + S0,j

√
x0,j/2

)/
sj ,

sj =
√
w2

0,j + w2
1,j . (2.13)

through output channel 0 if s2j > r where 0 < r < 1 is a uniform pseudo-random

number. Otherwise, if s2j ≤ r, the output stage sends through output channel 1 the

message

z =

(
z0,j

z1,j

)
, (2.14)

where

z0,j =

(
C1,j

√
x1,j/2− S0,j

√
x0,j/2

)/
tj ,

z1,j =

(
C0,j

√
x0,j/2 + S1,j

√
x1,j/2

)/
tj ,

tj =
√
z20,j + z21,j . (2.15)

We use pseudo-random numbers to mimic the apparent unpredictability of the exper-

imental data only: The use of pseudo-random numbers to select the output channel

is not essential [56]. Note that in our simulation model there is no need to introduce

the (quantum theoretical) concept of a vacuum field, a requirement in the quantum

optical description of a BS.

2.3.1.3 Photon detector

A schematic diagram of the unit that functions as a single-photon detector is shown

in Fig. 2.4 [81]. The first stage consists of a DLM that receives on its input channel

the jth message represented by the two-dimensional vector ej = (cosψj , sinψj). In

this chapter, we use the simplest DLM containing a single two-dimensional internal

vector with Euclidean norm less or equal than one.
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We write pj = (p0,j , p1,j) to denote the value of this vector after the jth message

has been received. Upon receipt of the jth message the internal vector is updated

according to the rule

pj = γpj−1 + (1− γ)ej , (2.16)

where 0 < γ < 1 and j > 0. A machine that operates according to the update rule

Eq. (2.16) has memory to store an amount of information that is equivalent to the

information carried by a single message only. Obviously, the rule Eq. (2.16) is the

same as that used for the BS (see Eq. (2.10)) but the input data is different.

The second stage of the detector (see Fig. 2.4) uses the information stored in the

internal vector to decide whether or not to generate a click. As a highly simplified

model for the bistable character of the real photodetector or photographic plate, we

let the machine generate a binary output signal Sj using the threshold function

Sj = Θ(p2
j − rj), (2.17)

where Θ(.) is the unit step function and 0 ≤ rj < 1 is a uniform pseudo-random

number. Note that in contrast to experiment, in a simulation, we could register both

the Sj = 0 and Sj = 1 events such that the number of input messages equals the sum

of the Sj = 0 and Sj = 1 detection events. Since in experiment it cannot be known

whether a photon has gone undetected, we discard the information about the Sj = 0

detection events in our future analysis. The total detector count is defined as

N =

NR∑

j=1

Sj , (2.18)

where NR is the number of messages received. Thus, N counts the number of one’s

generated by the machine.

2.3.1.4 Experiment

The processing units that simulate the optical components are connected in such a

way that the network corresponds to the experimental setup in the laboratory. As

explained earlier, it is sufficient to consider the bottom part of Fig. 2.1.

2.4 Simulation results

Our aim is to show that the event-based simulation model is capable of reproducing

the wave mechanical results of the laboratory experiment [36] schematically shown

in Fig. 2.1. As these laboratory experiments are carried out with continuous light

and do not probe the individual photon regime, we cannot expect to see effects that

relate to individual light quanta. Hence we expect that the results agree with those

derived from classical electrodynamics. Accordingly, in this chapter we take the time
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window that defines the coincidences large enough such that there are no quantum

correlations. For a more extensive discussion of this important point, see Section

2.4.4.

Following Ref. [36], the phase of the coherent photons emitted by the source is “ran-

domized” by letting the light pass through an EOM, the voltage of which is switched

with a frequency of 50 Hz. To mimic this in the simulation, we send Ninterval mes-

sengers with some fixed but randomly chosen phase, then another Ninterval messen-

gers with another fixed but randomly chosen phase, and so on. In practice, we use

Ninterval = 2500. The messengers (photons) are sent through either channel A or B,

one at a time and are either transmitted or reflected by the beam splitters. Before

hitting a detector, the messenger experiences a time delay corresponding to φAn or

φBn (n = 1, 2, 3). The detector processes the message carried by the messenger and

decides whether or not to produce a click.

We consider three different experiments. In case 1, we remove both BSs in Fig. 2.1

(bottom) and study the signal produced by detector D1. Then, in case 2, we re-

move BS2, that is we consider the HBT experiment with two detectors, as indicated

by the dashed-dotted line in Fig. 2.1 (bottom). Finally, in case 3, we study the

full three-photon correlation experiment, see Fig. 2.1 (bottom). In cases 2 (3), the

intensity-intensity correlations are calculated by counting coincidences of two (three)

messengers, meaning that the arrival times of the two (three) messengers are within

a time window W , to be discussed in Section 4.4. All simulations have been carried

out with γ = 0.99.

2.4.1 Case 1: One detector

Let us first demonstrate how the event-based model of the detector works [81]. To

this end, we remove BS1 and BS2 in Fig. 2.1 (bottom). The messengers, randomly

entering through channels A or B, are sent directly to the time-delay units that

change the angle of the hand of the clock representing the time-of-flight by φA1 or

φB1, respectively. The messengers are then processed by detector D1. We perform

two different sets of simulations. First, we keep the differences between the time-of-

flights of the messengers entering channel A and the time-of-flights of the messengers

entering channel B constant. In this case, according to wave theory, we expect to

see clear interference fringes. Second, the differences between the time-of-flights of

the messengers entering channel A and the time-of-flights of the messengers entering

channel B are taken to be random. Then, according to wave theory, there should be

no sign of interference effects. Hence, as shown in Fig. 2.5, our particle-only simulation

approach reproduces both features and the results are in very good agreement with

the wave theoretical results (see Eq. (2.2)).
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Figure 2.5: Case 1: All BSs in Fig. 2.1 (bottom) removed. Simulation results for the detector

counts as a function of φ1 = φA1−φB1. The differences between the time-of-flights of the messengers

entering channel A and the time-of-flights of the messengers entering channel B are constant (top)

or random (bottom, see text). Circles: Simulation data; Dashed line: Wave theoretical solution

Eq. (2.2) (top) and Eq. (2.2) averaged over φ1 (bottom).
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Figure 2.6: Case 2: BS2 in Fig. 2.1 (bottom) removed. Simulation results of the two-particle

coincidence counts as a function of φ12 where φ12 = φ1 − φ2, and φn = φAn − φBn (n = 1, 2).

The time-of-flights of the messengers entering channel A and the time-of-flights of the messengers

entering channel B are taken to be random (see text). Circles: Simulation data; Dashed line: Wave

theoretical solution Eq. (2.7).

2.4.2 Case 2: Hanbury Brown-Twiss experiment

We consider the HBT experiment with two detectors, that is we remove BS2 from

the diagram in Fig. 2.1 (bottom). Messengers enter the apparatus through channel

A or B, one by one. The time-of-flights of the messengers entering channel A and the

time-of-flights of the messengers entering channel B are taken to be random. Hence,

as shown in Fig. 2.5 (bottom) there is no first-order interference. When passing a BS,
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Figure 2.7: Case 3: Three particle correlation experiment (see Fig. 2.1 (bottom)). Simulation

results of the three-particle coincidence counts as a function of φ12 where φ12 = φ1 − φ2, and

φn = φAn − φBn (n = 1, 2, 3). We only show data for the case φA2 = φB2 = 0, φA1 = φB3,

φB1 = φA3 where φA1 and φB1 are chosen randomly. The time-of-flights of the messengers entering

channel A and the time-of-flights of the messengers entering channel B are taken to be random (see

text). Circles: Simulation data; Dashed line: Wave theoretical solution Eq. (2.9).

the message changes according to the rules explained in Section 2.3.1.2. Then, before

entering the detector, the message is changed once more by φAn or φBn (n = 1, 2),

depending on which path the messenger took. If the two detectors fire with the time

window W (see Section 4.4), we increase the number of coincidences. The simulation

data shown in Fig. 2.6 confirm that this procedure reproduces the results of wave

theory, see Eq. (2.7).

2.4.3 Case 3: Three-particle intensity-intensity correlation

Finally, we consider the laboratory experiment [36] that measures the correlations

between three detectors (see Fig. 2.1). The simulation procedure is the same as in

case 2, except that we count coincidences of clicks of three different detectors. Also in

this case, the simulation data shown in Fig. 2.7 confirm that this procedure reproduces

the results of wave theory, see Eq. (2.9).

2.4.4 Discussion

Our simulation model is based on a particle picture and makes no reference to con-

cepts or results from wave theory. In contrast to the conventional quantum theoretical

explanation in terms of the wave-particle nature of photons, our simulation approach

requires a particle picture of photons only. During the event-by-event simulation we

always have full which-way information of the photons (messengers) since we can

always track them. Nevertheless, depending on the settings of the optical appara-

tuses, intensity-intensity interference is observed. Although the appearance of an

interference pattern is commonly considered to be characteristic of a wave, we have

demonstrated that, as in experiment, it can also appear as a result of a collection of
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particles that interact with the various optically active devices such as beam splitters

and detectors.

It is of interest to ask what aspects of the model are essential for producing the cor-

rect interference patterns. There are three different aspects that need to mentioned,

namely (1) the discrete-event nature of the simulation, (2) the memory in both the

beam splitter and detector model and (3) the threshold feature of the detector model.

Obviously, as our model is event-based, the simulation proceeds in discrete “time

steps”. It has been shown [90] that Newton’s equation in a discretized form with a

finite time-step can also produce interference patterns (although it is not clear yet

whether this approach can reproduce the results that derive from Maxwell’s theory).

However, in our approach the discrete time label j plays a very different role from

that of the discrete time step in discretized classical equations of motion. The label

j merely serves to label successive events and does not have the dimension of time.

In our idealized model, it does not matter how far, in real time, successive events are

separated from each other. To make our model more realistic, we could introduce a

“real time” by specifying how many events per unit of time are being processed. As

it is the aim of this chapter to demonstrate that the same processing units as those

used for very different purposes can, without making any modification, be combined

to reproduce the results of HBT experiments (as described by Maxwell’s theory), the

simulations are performed such that the event-based system operates in its stationary

regime, corresponding to the regime in which the number of events per time unit is

large.

In our approach, interference appears as a result of processing individual events.

Clearly, under these circumstances it is impossible to explain in a logical, rational

manner the appearance of interference without some form of indirect communication

between individual events. In our models, the local memory in the DLMs together

with the update rules (see Sec. 2.3.1.2 and 2.3.1.3) provide the mechanism for this

indirect communication to take place. In the HBT experiments that we simulate in

the present chapter, only the memory in the detector is essential. For other types of

experiments [55–57, 60, 61], also the memory in the beam splitter is essential. The

detector model (which does not rely on concepts of probability theory) that we employ

is very different from models that are based on the hypothesis that memory effects

in the equipment, operating as a random dynamical system over the field of p-adic

numbers, can lead to interference phenomena [91, 92].

Regarding the threshold mechanism, it is intuitively clear that single-photon detectors

must necessarily operate as a threshold device because they have to discriminate

between no and one photon. The presence of a threshold may have far reaching

implications. For instance, it has been shown that it may lead to apparent violations

of the Bell inequalities observed in EPRB experiments with photons [93]. The detector

model employed in this chapter differs from models discussed in Ref. [93] in that there

is a simple, one-to-one relation between the equations describing the event-based

model and the material equations in Maxwell’s theory [81].
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Finally, we address the question of simulating quantum correlations (changing the

factor of 1/2 in Eq. (2.7) into one) in HBT experiments. In real experiments, and also

in our simulation approach, it is necessary to specify the procedure by which we count

coincidences of detection events. For the experiments at hand, one introduces a time

windowW and one defines as a two (three) particle coincidence, two (three) detection

events with the time difference(s) are smaller thanW . As discussed extensively in our

work on the simulation of Einstein-Podolsky-Rosen-Bohm (EPRB) experiments [29],

the choice of the time window W is of crucial importance, both in the simulation

and in real experiments [38], to obtain the correlation of a quantum system in the

singlet state. In general, only whenW → 0, experiment and simulation can reproduce

the correlation of a quantum system in the singlet state [29]. For large enough W ,

the relation to a quantum system in the singlet state is lost. In this chapter, we

have chosen W sufficiently large and generated groups of two (three) messengers such

that if the two (three) detectors fire, this constitutes a coincidence of two (three)

particles. In other words, the time delays are only used by the detector but are

ignored in determining coincidences. In this sense, the simulation results presented

in this chapter pertain to classical light and are therefore in excellent agreement

with classical wave theory. To study the quantum aspects of two- and three-particle

correlations the time delays should be used to also determine the coincidences, as in

our EPRB simulations [29]. For completeness we mention that in this chapter, we

considered light sources that produces photons in a coherent state only. We leave the

study of quantum and thermal features in these correlation experiments for future

research.

2.5 Conclusion

We have demonstrated that our classical, locally causal, particle-like simulation ap-

proach reproduces the results of the Hanbury Brown-Twiss effect. Our event-based

simulation model, a classical, locally causal, adaptive dynamical system, reproduces

the results of wave theory without making reference to the solution of a wave equation

and provides a simple, particle-based mental picture for what each individual photon

experiences as it travels from the source to the detector. Our simulation algorithm

demonstrates that the wave-particle duality is not the only way to describe the na-

ture of a photon but that there is another way that only needs the particle nature,

satisfies Einstein’s local causality and does not defy the common sense. Finally, we

would like to emphasize that the algorithms used to simulate the optical components

in this chapter have not been designed to simulate the HBT-type experiments. The

algorithms have been taken, without modification, from our earlier work on very dif-

ferent quantum optics experiments [29–32, 34, 55–61, 81, 81]. In this sense, it seems

that our approach has predictive power: The algorithms can be reused to simulate

very different experiments than those for which they were originally developed.

Finally, we would like to draw attention to the fact that our event-based simulation



54 Hanbury Brown-Twiss Experiment with Coherent Light

models make specific predictions that can be tested in properly designed experiments.

First, we recall that the distribution that the simulation model produces when it

has reached the stationary regime agrees with wave theory and will therefore be in

concert with any experiment that reproduces the results of wave theory. However,

we can also simulate the system in the transient regime in which the convergence to

the correct, stationary distribution can be monitored. Our simulation models make

specific predictions for the transient behavior of the distribution of events because

they depend on the details of the model [81]. Thus, a meaningful confrontation of our

model with experiment requires that the latter has recorded all the events, starting

with the very first photon that is detected (and not after alignment, calibration etc.

has been performed). We hope that our work creates a stimulus to carry out such

experiments.


