
Chapter 3

Optical transitions in the
D0−D0X system in n-GaAs

This chapter provides an introduction into the variety of optical transi-
tion that exist for low-doped n-GaAs. The main focus is on excitation of
free excitons (X ) and donor-bound excitons (D0-D0X system), and their
dependence on magnetic field.
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3.1 Neutral donor D0, free exciton X and donor-bound
exciton D0X

When it comes to the optical transitions in GaAs with donor or acceptor atoms at
a low concentration, one can think of the following transitions:

• Excitation of the free electron-hole pairs. The minimal photon energy that is
required is equal to the gap energy, ħω= Eg .

• Excitation of free excitons (X ), which is an electron-hole pair bound together
by the attractive Coulomb potential. The photon energy that is required for
this transition is less than the gap energy by the amount of the exciton bind-
ing energy EX , leading to ħω= Eg −EX .

• Excitation of the neutral donor-bound exciton complex D0X . This requires
less energy than the excitation of free excitons by the amount the binding
energy ED0 X of the exciton to the donor. This yields ħω= Eg −EX −ED0 X .

• Excitation of an exciton bound to an ionized donor (D+X ) or acceptor-bound
excitons (A0X ). These require even less photon energy due to the stronger
binding for the exciton.

In this chapter we will focus on the optical properties of the donor-bound ex-
citons D0X since these will form the key object for the studies of coherent optical
manipulation in this thesis.

3.1.1 Neutral donor: D0

In GaAs doped with silicon, Si dopants usually play the role of donor by donat-
ing their excess electron to the electron ensemble in the conduction band. At low
temperatures, however, the electron remains bound to the donor. If the concentra-
tion of dopants is sufficiently low the electron wave-functions of the neighboring
donors do not overlap, and this results a system of localized non-interacting elec-
trons in hydrogen-like orbitals. The temperature below which the donors are not
ionized and the radius of the electron wavefunction can be found quite accurately
with the effective mass theory [1]. This allows for writing the equation of motion
for the electron’s envelope wave-function Fn (⃗r ) as:(

−ħ2∇2

2m∗
e
− e2

4πε0εr r

)
Fn (⃗r ) = EnFn (⃗r ) (3.1)
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where m∗
e = 0.067me is the effective mass of the electron in the conduction band of

GaAs, me is the free electron mass, e is the elementary charge, ε0 = 8.85 ·10−12 F/m
is the vacuum permittivity constant and εr = 12.56 is the relative permittivity con-
stant for GaAs.

Equation 3.1 is a hydrogenic Schrödinger equation of motion in the Coulomb
potential of the ionized donor, which results in following spectrum of eigenener-
gies:

En =−m∗
e

me

1

ε2
r

RH

n2 (3.2)

where RH = 13.6 eV is the Rydberg constant of the hydrogen atom and the energy
En is defined with respect to the bottom of the conduction band.

The ground state (n = 1) of the D0 electron lies 5.8 meV below the bandgap of
the GaAs Eg = 1.519 eV (value for at 0 K). This means that donors are not ionized
for temperatures well below ≈ 70 K.

The Bohr radius rn of the nth level can be approximated by:

rn = me

m∗
e
εr n2aH (3.3)

where aH = 5.29177×10−11 m is the Bohr radius of the hydrogen atom. This gives
r1 ≈ 100 Å. This size sets an upper limit of 10−14 cm−3 for the concentration of
donors if one aims to work with an ensemble of non-interacting donor-bound
electrons (this number is also supported by the experimental observations from
Chapter 6 of this thesis).

The first excited state (n = 2) has a binding energy of 1.4 meV (again with re-
spect to the bottom of conduction band) and a Bohr radius r2 = 396 Å. The differ-
ence in energy between the ground n = 1 and the first excited n = 2 state is 4.4 meV.
For the optical transitions of the D0-D0X system this translates into difference in
wavelength of 20 Å. This is important to keep in mind since optical emission by a
D0X system from a transition to a D0 state with n = 2 can be observed in lumines-
cence experiments, and these luminescence side peaks are often referred to as two
electron satellites (TES).

3.1.2 D0 in a magnetic field

When no magnetic field is applied, the n = 1 ground state is two-fold degenerate
due to the spin of the electron. When a magnetic field B is applied this degeneracy
is lifted and a two-level system is formed. The energy of the spin-up state | ↑〉 is
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lower than the energy of the spin-down state | ↓〉 by an amount:

∆E = geµB B (3.4)

where ge ≈−0.42±0.02 [2, 3] is the g-factor for the electron of the GaAs D0 system,
and µB = 5.79 ·10−5 eV/T is the Bohr magneton. In a magnetic field B = 9 T, ∆E =
0.23 meV. For the optical transitions of the D0-D0X system this translates into a
difference in wavelength ∆λ = 1.2 Å. It would require a temperature below T ≃
∆E/kB = 2.7 K, where kB is the Boltzman constant, to thermally depopulate the
| ↓〉 state. If one operates at liquid Helium temperature (T = 4.2 K), both states are
populated with a ratio of about 2 : 1 for thermal equilibrium.

3.1.3 Free exciton: X

A free exciton X can be described as a weakly bound electron-hole pair. Even
though the free exciton is not a localized state, the correlated motion of the elec-
tron and hole does follow the hydrogenic equation of motion. For the mass one
now has to use the reduced electron-hole mass mr = (1/m∗

e +1/m∗
h)−1 = 0.05 me ,

where m∗
h = 0.2me of the weighted average of the heavy and light hole effective

masses in GaAs [1]. The binding energy of the n = 1 free exciton EX = 4.3 meV and
the corresponding Bohr radius is rX = 133 Å. The optical transitions associated
with excitation of free excitons require an energy equal to bandgap energy Eg mi-
nus the binding energy of the exciton EX , corresponding to λX ≃ 818 nm in zero
magnetic field.

3.1.4 X in a magnetic field

When a magnetic field is applied the wavefunction of the free exciton is perturbed
and the binding energy decreases [1]. In weak fields, where Coulomb attraction
between an electron and a hole is larger than the cyclotron orbit energy, the mag-
netic field is treated as a perturbation to the excitons wavefunction resulting in a
diamagnetic shift for the exciton energy that scales as ∝ B 2:

∆Ed =+ e2

12mr
r 2

X B 2 (3.5)

For the values given above this yields an energy shift ∆Ed ∼ 0.052 meV/T2.
In strong magnetic fields, the cyclotron energy is stronger than the electron-

hole Coulomb interaction and both electrons and holes form Landau levels. Now
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the Coulomb interaction can be treated as a perturbation. In this regime the de-
pendence of the exciton energy on magnetic field becomes linear and corresponds
to the difference in energy between the electron and hole Landau levels:

∆EL =+ ħe

mr
B (3.6)

The expected energy shift with magnetic field follows ∆EL ∼ 2.3 meV/T.
Even though this description of the diamagnetic shift of X using the reduced

mass mr provides a good indication of the system’s behavior, understanding high-
resolution spectroscopy of this system requires a more detailed description that
takes into account the difference in mass for light holes and heavy holes, and the
Zeeman splittings of all particles involved. A complete picture of the energy shifts
of free excitons is therefore rather complicated, and beyond the scope of this the-
sis. It is, however, important to note that the energy of optical transitions associ-
ated with the creation or destruction of free excitons increases with magnetic field,
since the cyclotron shifts are typically larger than the Zeeman splitting.

3.1.5 Neutral donor-bound exciton: D0X

The neutral donor forms an attractive potential to which an exciton can be bound,
thus creating the donor-bound exciton complex D0X . This is a three-body com-
plex (two electrons and one hole) around an ionized Si+ donor core. The lowest
energy levels of this system have the two electrons in a singlet state.

The energy of the optical transition associated with excitation of a D0X com-
plex is (besides the fine structure) equal to the energy for exciting a free exciton
X minus the binding energy of the exciton to the neutral donor D0. The binding
energy for an exciton to the D0 system (with both systems in their ground state)is
for B = 0 T approximately 0.9 meV (corresponding to a difference in wavelength
between such X and D0 −D0X excitation of ∆λ= 55 Å) [2–9].

3.1.6 Neutral donor-bound excitons D0X in a magnetic field

Since the energy for exciting free excitons X increases with magnetic field, also the
energy of the D0−D0X transitions increase according to similar diamagnetic-shift
laws. The optical spectra of the donor-bound exciton also shows a fine structure
due to Zeeman splitting of the electron and the hole’s spin. For the transitions with
lowest energy this concerns the Zeeman splitting of the D0 electron spin, and the
Zeeman and the orbital energy of the hole in the D0X complex which has a spin
J = 3/2 character (heavy hole) [1, 3]. The spin of electron in the D0X complex can
be disregarded since the two electrons are in a singlet state.
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In order to characterize the diamagnetic shifts and the fine structure of the
GaAs exciton complexes we have performed magneto-photoluminescence experi-
ments (see also Chapter 5). Results of this study are shown in the gray scale plot of
Fig. 3.1.

The fine structure of the neutral donor was described earlier. To describe the
energy levels of the D0X complex in magnetic field one has to account for an in-
terplay between the Zeeman splitting of the hole spin and formation of cyclotron
orbits. This requires a rather complicated theoretical treatment [1], which goes be-
yond the scope of this thesis. Instead, we will focus on an empirical study of theX D0X D+X, A0X
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Figure 3.1: Grayscale plot with magneto-photoluminescence spectrums for a range of magnetic fields
B , for a GaAs sample with Si doping at nSi = 3×1013 cm−3. Dark represents strong luminescence, light
represent weak luminescence. The leftmost broad transition corresponds free-exciton luminescence
(X ). The narrow lines that start for B = 0 T at 818.7 nm and evolve into rich spectrum of transitions
is the D0 −D0 X system. Other transitions that are observed (as labeled) are due to acceptor-bound
excitons (A0 − A0 X ) and ionized donor-bound excitons (D+−D+X ).
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Figure 3.2: Schematic with energy levels and optical transitions associated with excitation of a donor-
bound exciton D0 X in an external magnetic field. The ground state of the system (neutral donor D0,
with an electron in a hydrogen-like 1s orbital) Zeeman split and labeled as | ↑〉 and | ↓〉. The excited
states are donor-bound excitons states (D0 X ), with two electrons in a singlet state and a hole that can
have various z-projections for its total angular momentum. The lowest D0 X level |e〉 this is mh =−1/2
due the hole’s spin and orbital state L = 1. For the second-lowest D0 X level |e′〉 this is expected to be a
mh =−3/2 and L = 0 hole’s state [7] The two pairs of optical transitions A−A∗ and B−B∗ form so-called
Λ-systems. Such pairs of transitions can be used for implementing EIT.

lowest energy levels of the D0X complex. This provides adequate information for
the investigations later in this thesis. Notably, the associated optical transitions
show very strong polarization dependent selection rules [3].

The polarization dependent transmission spectroscopy, that will be described
later in the thesis (Chapter 5) provides a very strong indication that the lowest D0 X
level corresponds to a state with mh = − 1

2 for the z-projection of the hole spin.
This also agrees recent reports by Fu et al. [7] (this also provides an example of the
complex character of the D0X complex, since one expects in fact mh =− 3

2 lowest
hole level). A schematic picture of the two lowest D0X levels together with the two
D0 Zeeman-split electron spin states is shown in Fig .3.2. Each pair of transitions
that start from the two D0 spin states to a particular D0X level form a so-called
Λ-system that can be applied in studies of EIT.
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3.2 Polarization selection rules of the optical transi-
tions in D0 −D0X system

The strength of optical transition is determined by the magnitude of the dipole
moment associated with this transitions, which in general form is written as:

〈⃗µ〉 = 〈i |µ̂| f 〉 (3.7)

where |i 〉 and | f 〉 are the initial and the final state of the optical transitions and
µ̂= e · r⃗ is a quantum mechanical dipole operator where e is the charge of electron.
Owing to the presence of the r⃗ in the dipole’s operator, the expectation value of the
dipole moment is also expected to be a vector.

Knowing the dipole moment, the interaction Hamiltonian for light-matter in-
teraction can be written as:

V̂i nt =−µ⃗ · E⃗ (3.8)

where E⃗ = E0 · e⃗ with E0 being an amplitude of the electric field associated with the
optical excitation and e⃗ is an unitary cartesian vector that describes a polarization
of the optical field.

Using the expression for the optical field and the dipole operator the expecta-
tion value of the interaction Hamiltonian can be written as:

〈i |V⃗i nt | f 〉 = qE0〈i |⃗r · e⃗| f 〉 = qE0〈i |(x · e⃗x + y · e⃗y + z · e⃗z )| f 〉 (3.9)

The non-zero value of the expectation value in the angled brackets will result
in the optical transition that is dipole allowed.

It is often possible to determine whether the interaction Hamiltonian results in
zero expectation value based on the principles of symmetry, which creates a basis
for sets of polarization and other selection rules.

Lets consider the interaction of the optical field with a donor bound electron
spin D0 that can be excited to the donor-bound exciton complex D0X . The initial
and the final states for the optical transitions of the D0−D0X type can be factorized
in the product of the envelope wavefunction and the Bloch wevefunction ampli-
tude as F (⃗r ) ·Ψ (⃗r ). Since the amplitude of the dipole oscillations is comparable to
the period of the lattice, while the spread of the envelope function is much larger
then that [1] the expectation value in the equation 3.9 can be approximated as:

〈i |V⃗i nt | f 〉 = qE0Fi (⃗r ) ·F f (⃗r )〈Ψi (⃗r ) |(x · e⃗x + y · e⃗y + z · e⃗z )|Ψ f (⃗r )〉 (3.10)
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The expression Fi (⃗r )·F f (⃗r ) is a scalar product of two functions in integral sense
(product integral) and is non-zero only when both functions have the same parity,
which demonstrates an example of the parity optical selection rules.

On the other hand, the product 〈Ψi (⃗r ) |(x · e⃗x + y · e⃗y + z · e⃗z )|Ψ f (⃗r )〉 is inter-
esting from the spherical symmetry point of view. The angular part of the Bloch
wavefunctions Ψi , f (⃗r ) that describes the electron’s or the hole’s spin is the spher-
ical harmonics of the type Y m

l

(
θ,ϕ

)
, where l is the orbital momentum quantum

number and m is the projection momentum quantum number. Exact expressions
in terms of the angles ϕ and θ for the spherical harmonics can be found in most
textbooks on quantum mechanics [10].

Electron spin, for example, which possess an angular momentum of 1/2 is de-
scribed by the Y ±1/2

1/2 spherical harmonics. The spherical part of the heavy hole’s
spin, that has an angular momentum of 3/2 and therefore four projections, will be
a set of four functions Y −3/2..+3/2

3/2 .
The product of the type r⃗ · e⃗ can be written as a sum of the spherical harmonics

by using the following set of transformations [10]:

√
3

4π
z = r ·Y 0

1

(
θ,ϕ

)
(3.11)√

3

4π
x = rp

2
· [Y −1

1

(
θ,ϕ

)−Y −1
1

(
θ,ϕ

)]
(3.12)

−i

√
3

4π
y = rp

2
· [Y −1

1

(
θ,ϕ

)+Y −1
1

(
θ,ϕ

)]
(3.13)

Using the spherical representation of the wavefunctions and operators, the ex-
pectation value of the interaction Hamiltonian for the optical transitions of the
type D0 −D0X reduces to calculating a following integral product:

〈V̂i nt 〉 ∼ 〈Y ±1/2
1/2 |Y 1,0,−1

1 |Y −3/2..+3/2
3/2 〉 (3.14)

A conservation of the angular momentum requires that ∆l = 0,±1 and ∆m = 0.
The first condition is always satisfied in GaAs owing to the fact that in the process
of electron-hole pair generation the spin of electron is 1/2, the maximum angular
momentum of the hole’s spin is 3/2 and the angular momentum carried by the
photon is 1 ·ħ. The second condition depends on the choice of the polarization of
the optical field and on the actual projection of the electron’s and hole’s spin that
are participating in the transition.

Lets consider a situation, where an external magnetic field is applied along the
z⃗ direction, which sets a quantization axis for electron’s and hole’s spins. A light is
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propagating along the direction that is collinear with the applied field. If polariza-
tion of the light is a right-circular then its polarization state is e⃗x+i ·e⃗y , which leads
to the calculation of the expectation value that is x + i · y . In terms of the spherical
harmonics this expression is proportional to the Y 1

1 function and when using it in
the expression 3.14, the only non-zero products will be obtained between the pair
of states Y −1/2

1/2 (electron spin mh =−1/2) and Y +1/2
3/2 (heavy hole’s spin mh =+1/2)

and the pair Y +1/2
1/2 (electron mh = +1/2) and Y +3/2

3/2 (heavy hole mh = +3/2). The
result of this exercise could have been easily predicted on a basis of the fact that
right-circularly polarized photon is inducing an optical transitions with a change
in projection of angular momentum by +ħ. In a similar fashion one can show that
the left-circularly polarized light induces an optical transition with a change of an-
gular momentum of −ħ. The left and the right circular light’s polarization are often
referred to as σ+ and σ− respectively.

It is interesting to note that in the geometry where the propagation direction of
light is along the direction of magnetic field no transitions without change in pro-
jection of angular momentum are possible since light can not have polarization
vector that is along the propagation direction. If, however, light propagates along
the x⃗ or y⃗ - direction that is orthogonal to the magnetic field, it can be linearly po-
larized along the direction of the field - z⃗-direction. This polarization state leads
to the integration of the z function, which is described by the Y 0

1 spherical har-
monic. When using it in the expression (3.14) we obtain that only the transitions
between Y −1/2

1/2 and Y −1/2
3/2 and between Y +1/2

1/2 and Y +1/2
3/2 are allowed. These transi-

tions do occur without a change in the total projection of angular momentum and
polarization of light that is used is often referred to as a π polarization.

It is quite evident that when light is linearly polarized and orthogonal to both
magnetic field and propagation direction it will be seen by the spins system as a
superposition of σ+ and σ− polarizations, which we will label as σ polarization
later in this thesis.

Throughout this thesis we are using the orthogonal to magnetic field light prop-
agation geometry which allows us to selectively address transitions from the D0

spin | ↑〉(me = +1/2) and D0 spin | ↓〉(me = −1/2) states to the common excited
state D0X that has mh = −1/2 by using two orthogonal linear polarization of the
excitation light.

We also utilize the ability to map polarization state of light on the polarization
state of the electron’s spin and we show in the Chapter 7 of this thesis that together
with coherent optical driving any spin state on the Bloch sphere can be generated.
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