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ON THE PARAMETRIZATION AND CONSTRUCTION OF
NONLINEAR STABILIZING CONTROLLERS

A.D.B. PAICE* and A.J. VAN DER SCHAFT**

*Institut Jür Dynamische Systeme, Universität Bremen, PostJach 330 440, D-28334 Bremen, Ger-
many

**Dept. oj Applied Mathematics, University oj Twente, P.O. Box 217, 7500 AE Enschede, The
Netherlands

Abstract. Continuing on our previous papers, we specialize the parametrization of stabilizing
controllers to the case of a stable nonlinear plant, and we obtain a nonlinear generalization of
the Internal Model Control principle. Furthermore, based on the notions of a stable kernel and
stable image representation of a nonlinear system, we derive two candidate stabilizing controllers for
unstable nonlinear plants.
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1. Introduction

In linear control theory the Youla parametrization
of stabilizing controllers of a given linear plant
has proved to be a very powerful tool in vari-
ous control problems. In our previous paper (3)
we have obtained an intrinsic generalization of
the Youla parametrization to the nonlinear case.
In fact, given a single stabilizing controller, the
class of all nonlinear stabilizing controllers is being
parametrized. A crucial notion in this approach
is that of a stable kernel representation of a non-
linear system, generalizing (and in the linear case
equivalent to) the notion of a left coprime factor-
ization of a system.
In the present note we first explicitate the
parametrization of stabilizing controllers for the
special case of a stable nonlinear plant, where the
given stabilizing controller can be taken to be the
zero-system. In particular, we show that in this
case the above parametrization of stabilizing con-
trollers leads to a nonlinear version of Internal
Model Control. Based on the notions of a sta-
ble kernel representation and a stable image rep-
resentation of a nonlinear plant we propose in the
last section two candidate stabilizing controllers
for unstable plants.

2. An explicit parametrization of all
stabilizing controllers of a stable plant

Consider a smooth nonlinear state space system

(the plant), for simplicity given in affine form

G:
·x = f(x) + g(x)u, u ∈Rm

y = h(x), y ∈ RP
(1)

where x = (Xl,'" ,Xn) are local coordinates for
some n-dimensional state space manifold X.
In our paper (3), see also [4], it has been shown
how, given a single stabilizing controller K for G,
the class of all stabilizing compensators may be
parametrized. This result directly generalizes the
well-known Youla parametrization of stabilizing
linear controllers of a linear plant G to the non-
linear setting. In this section we wish to make this
parametrization more explicit and transparable in
the case the plant G is already stable, and so K
may be taken to be the zero-compensator.
First we recall from [3) the following crucial no-
tions. Consider an arbitrary state space system

Σ:
·p F(p, v), v ∈ Rk

z = H (p, v), z ∈ Rl
(2)

with inputs v, outputs z, and state p (belonging to
some state space manifold P). Denote the space
of input signals for Σ by V (a subset of the space
of (time-) functions from [0,(0) to Rk), and the
space of ou tpu t signals by Z (a subset of the space
of functions from [0, (0) to Rl). In the next section
we will take

V = Lk2e[O,oo), Z = Ll2e[0,oo), (3)

but this is not necessary yet at this level of gener-
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ality. Write V as a disjoint union of a set of stable
signals Vs including the zero signal, and a set of
unstable signals Vu, i.e.

V = Vs ∪ Vu, vs ∩ Vu = 0, 0 ∈ VS (4)

and similarly,

Z = zs ∪ Zu, Zs ∩ Zu = 0. 0 ∈ Zs (5)

(In case V = Lk2e[0, ∞) we will take Vs = Lk2[0, ∞)
and VU its complement; similarly for Z.)

Definition 1 Σ is a stable system if for every ini-
tial condition Po ∈ P the input-output map asso-
ciated to Σ maps VS into Zs.

In [5] it has been shown that under appropriate
technical conditions (see also Section 3) any plant
G admits (at least locally around an equilibrium)
a stable kernel representation:

Definition 2 Consider the plant G. A nonlinear
system Σ

x = F(x,y,u), u∈arm, y∈arp

z = H(x,y,u), x ∈ X, z ∈ are
(6)

with U = Us ∪ Uu, Y = Ys ∪ yu, Z = zs ∪ ZU, is
a stable kernel representation of G if

(i) For every initial condition X0 ∈ X and every
u ∈ U there exists a unique solution y ∈ Y
to (6) with z = 0, which equals the output
of (1) for the same initial condition X0 and
input u.

(ii) For every initial condition X0 ∈ X and every
z ∈ Zs there exists a unique solution 11, y to
(6) with u ∈ US, Y ∈ Ys.

In shorthand notation a stable kernel representa-
tion for G will be denoted by RG : Y x U → Z.

Note that if the plant G is itself a stable system,
then a stable kernel representation He of G is sim-
ply

x = f(x) + g(x)u

z = y - h(x)
(7)

The class of controllers we wish to consider for G
are stable kernel representations of smooth state
space systems, i.e., controllers K with stable ker-
nel representations

RK : U x Y → ZK, (8)

with a state space manifold (space of initial condi-

!.ions) XK. The stability of the closed-loop system

{ RG(y, u) = 0

RK(u, y) = 0
(9)

is defined in the following strong sense [3].

Definition 3 Let RG : Y x U → Z be a stable ker-
nel representation of G, and let RK : U x Y → ZK,
with state space XK, be a stable kernel representa-
tion of a controller K for G. The closed-loop sys-
tem (9), denoted by {RG, RK }, is said to be stable
if for all initial conditions X0 ∈ X, x0K ∈ XK, and
all z ∈ ZS, ZK ∈ ZsKthere exists a unique solution
y ∈ Ys, u ∈ Us to

Z = RG(y, u)

ZK = RK(u, y)
(10)

Note that if the plant G is stable with stable kernel
representation (7), and also the controller K is
itself a stable system

ξ = α(ξ, y), ξ ∈ XK

u = β(ξ, y)
(11)

with obvious stable kernel representation

·ξ = α(ξ,y)

ZK = u-β(ξ,y)
(12)

then the closed-loop system {RG, RK} is stable if
and only if for all initial conditions X0 ∈ X, ξ0 ∈
XK, and all stable Z ∈ Zs , ZK ∈ ZsK, the signals y
and u in Figure 1 are stable. This is a very classi-

Fig. 1.

cal notion of closed-loop stability, apart from the
fact that usually the initial conditions x0

, ξ0 are
taken to be fixed.
The basic idea in [3] is now the following. Con-
sider a stable closed-loop system {RG, RK }, and
consider two additional systems Sand Q with sta-
ble kernel representations

RS Z X ZK → ZS

RQ ZK X Z → ZQ
(13)

and initial condition spaces XS,XQ respectively.
Define new systems G sand K Q with stable kerne I
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representations RG50 and RKQ (in the signals y
and u)

RG50 Y xU → ZS

RKQ U X Y → ZQ

given as

zS = RS(RG(y, u), RK(U, y))

zQ = RQ(RK(U,y), RG(y, u))
(14)

The main observation of [3] is that the closed-
loop system {RG 50'RK Q} is stable if and only if
the closed-loop system {RS, RQ} is stable, and
furthermore that all stabilizing controllers can
be generated this way. This yields a nonlinear
Youla parametrization of all stabilizing controllers
(based on the given stabilizing controller K) by
letting S to be the system 0 corresponding to a
zero input-output map, i.e.

Rs (z , ZK) = R0 (z , ZK) = z. (15)

In [3] it has been shown that the closed-loop sys-
tem {Flo, RQ} is stable only if Q is a stable input-
output system (from Z to Zk):

Q:
·xQ = FQ(xQ, z)

Zk = HQ(xQ, z)
(16)

Conversely, if Q is a stable input-output system
then by taking the obvious stable kernel represen-
tation RQ given as

·xQ = FQ(xQ, z)

ZQ = U - HQ(xQ, z)
(17)

it follows that {R0, RQ} is stable if and only if Q
is a stable input-output system.
Note that in this case (14) specializes to

ZS = RG(Y,u)

zQ = RQ(RK(U,y),RG(Y,u))
(18)

Now, let us furthermore assume that the plant
G is already stable with obvious stable kernel
representation (7). Then, as above the zero-
controller K = 0, with stable kernel representa-
tion R0( u, y) = u, yields a stable closed-loop sys-
tem {RG,R0}, while (18) further specializes to

ZS = RG(Y, u)

ZQ = RQ(u, Rc(y, u))
(19)

It thus follows that the set of all stabilizing con-
trollers for the stable plant G is given (in implicit

form) as

0= RQ( u, RG(y, u))

with RQ given by (17). Since RG is given by (7)
the resulting stabilizing compensators are given in
implicit form as

·^x = f(^x+g(^x)u, ^x∈X

·xQ = FQ(xQ,y - h(^x)), xQ ∈ XQ

u = HQ(xQ,y- h(^x))

(20)

and in explicit form as

·^x = f(^x) + g(^x)HQ(xQ, y - h(^x))

KQ: ·xQ = FQ(xQ, y - h(^x))

x ∈ X,xQ ∈ XQ (21 )

To be precise, it is shown in [3] that for every
stable Q as in (16) the controller KQ is stabilizing
for G (i.e., the closed-loop system {RG,RKQ} is
stable) whenever ^x(O) = x(O), and that moreover
all stabilizing controllers may be generated in this
way.
It follows that every stabilizing controller for G
necessarily contains a model of G, namely

·^x = f(^x) + g(^x)u,^x ∈ X

The signal flow diagram is given in Figure 2, and
generalizes the concept of Internal Model Control
(see [1]) to the nonlinear setting.

Fig. 2.

3. On the construction of stabilizing
controllers

Consider the plant G, together with the Hamilton-
Jacobi equations (in the unknowns V, resp. W)

Vx(x)f(x) - ½Vx(x)g(x)gT(x)VxT(x)

+½hT(x)h(x) = 0
(22)
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Wx(x)f(x) + ½Wx(x)g(x)gT(x)WxT(x)

-½hT(x)h(x) = a
(23)

with
Vx(x) denoting the gradient
of the function V(x), and similarly for Wx(x). In
[5] the following is proven. Suppose there exists a
solution W ≥ a to (23), and additionally assume
there exists a solution k(x) to

Wx(x)k(x) = hT(x) (24)

Then the system

RG {X = f(x) - k(x)h(x) + g(x)u + k(x)y

z = y-h(x) (25)

has finite L2-gain from to z; in fact the L2-

gain is equal to 1. Thus (25) constitutes a stable
kernel representation of G (where we take signal
spaces L2e with stable part L2).

On the other hand, suppose there exists a solution
V ≥ a to (22), then the system

has L2-gain equal to 1 (from s to ); in fact

the system is inner. System (26) constitutes a
stable image representation of G, since the set of
input-output pairs generated by the driving signal
s equals the input-output behavior of G.

In the linear case, RG corresponds to the nor-
malized left coprime factorization, while 1G cor-
responds to the normalized right coprime factor-
ization.

A right inverse system to RG is given by

Indeed, if p(0) = x(O), then the input-output map
(from ξ to z) of RG ∘Rc1G is the identity mapping.
Furthermore, a left inverse system to IG is given

by

Indeed, if p(O) = x(O), then the input-output map
(from s to ζ) of IG-1 ∘ IG is the identity mapping.
Now note that RG- 1 is an image representation of

(29)

while on the other hand 1G-1 is a kernel represen-
tation of this same system K!
Following linear theory, see e.g. [2], this strongly
supports the idea that K is a "good" stabilizing
controller for G. Note that K is the nonlinear ver-
sion of the LQG controller; it is composed of the
optimal state feedback (with regard to the cost
criterion ∫ooo (II u ||2 + II y ||2)

u = _gT(x)VxT(x), (30)

with the actual state x replaced by the "optimal
estimate" p of x, generated by the nonlinear ob-
server

·p = f(p) + g(p)u + k(p)[y - h(p)] (31)

(Indeed, in the linear case (31) is precisely the
Kalman filter!) Since RK = 1G-1 the closed-loop
system {RG, RK} as in (10) is given in state space
form as (see (25) and (28))

x = f(x) - k(x)h(x) + g(x)u + k(x)y

·p = f(p) - k(p)h(p) + g(p)u + k(p)y

z = y-h(x)

ξ = u + gT(p)VpT(p)

(32)

In order to investigate closed-loop stability in the
sense of Definition 3 we invert the system (32) (by
solving y and u) to obtain

x = f(x) - g(x)gT(p)VpT(p) + g(x)ξ

+k(x)z

y = h(x)+z

u = _gT(p)VpT(p) - ξ (33)

Following Definition 3 the closed-loop system
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{RG, RK } is stable if for every pair if initial condi-
tions x(0),p(0) of (33), and all stable signals z,ξ,
the signals y, u produced by (33) are stable, i.e.,
{RG, RK} is stable if (33) is a stable input-output
system (from z,ξ to y, u).
Unfortunately the input-output stability of (33) is
not easy to check in general. Note that for a linear
plant ·x = Ax + Bu,y = Cx, the matrix k(x) will
be a constant matrix K, and the error dynamics
in e := p - x is simply given as

ė=(A-KC)e (34)

from which input-output stability immediately
follows.

Remark 4 Suppose G has an equilibrium x0,
i.e., f(x0) = 0 and without loss of generality
h( X0) = 0. Assume that the linearization GL of
G around X0 is stabilizable and detectable. Then
the linearization KL of K around P0 = X0 equals
the LQG controller for G L, and thus the linearized
closed-loop system of G and K is stable.

A different candidate stabilizing controller can be
obtained as follows, generalizing an idea proposed
in [6]. Again, consider the stable image represen-
tation Ie of G, and its left inverse Ic1G given by
(28). Now consider the control law (with v a new
external input)

u=~u+v-ζ (35)

~u = -gT(OVξT(ξ)+ζ

·ξ = f(O - g(ξ)gT(ξ)VξT(ξ) + g(ξ)ζ,
ξ(O) = 0

(36)

where ζ is generated by lG-I for p(0) = 0. Since
IG11 is the left inverse of Ie it follows that ζ (t) =
s(t), t ≥ 0. Therefore, cf. (26), if x(0) = ° then
also ~u(t) = u(t),t ≥ 0, yielding v(t) = ζ(t),t ≥ 0,
and thus the input-output map from v to y (in
closed-loop) is simply given as

·x = f(x) - g(x)gT(x)VxT(x) + g(x)v,

y = h(x), x(o) = ° (37)

which is stable by construction.
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