
 

 

 University of Groningen

Mature Architecting - A Survey about the Reasoning Process of Professional Architects
Heesch, Uwe van; Avgeriou, Paris

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Heesch, U. V., & Avgeriou, P. (2011). Mature Architecting - A Survey about the Reasoning Process of
Professional Architects. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for
Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://research.rug.nl/en/publications/1a0a45f7-d925-49a4-b1b3-07fd38815386


Mature Architecting - A Survey about the Reasoning Process of Professional
Architects

Uwe van Heesch
University of Groningen,

Fontys University of Applied Sciences Venlo
Venlo, The Netherlands

uwe@vanheesch.net

Paris Avgeriou
University of Groningen

Groningen, The Netherlands
paris@cs.rug.nl

Abstract—
Architecting is to a large extent a decision-making process.

While many approaches and tools exist to support architects
during the various activities of architecting, little guidance
exists to support the reasoning part of decision-making. This
is partly due to our limited understanding of how professional
architects make decisions. We report on findings of a survey
that we have conducted with 53 industrial software architects
to find out how they reason in real projects. The results of the
survey are interpreted with respect to the industrial context
and the architecture literature. We derive reasoning best
practices that can support especially inexperienced architects
with optimizing their decision-making process.

I. MOTIVATION

A software architecture is the result of a complex system
of inter-dependent architectural design decisions [1], [2].
These decisions are made by architects who strive towards an
optimal balance between the forces acting on the decisions,
including financial and technical constraints. Architectural
decisions are the corner stone for the whole software archi-
tecture and as such they are vital for the achievement of the
system key drivers and goals.

Architecture decisions are made during the iterative and
incremental process of architecting. Hofmeister et al. de-
rived three general, recurring architecting activities, which
are common in five industrial architecture approaches [3]:
Architectural analysis, which is concerned with identifying
architecturally significant requirements (ASR) from a set of
architectural concerns and the business context; architectural
synthesis, which concerns finding candidate solutions for
the ASRs; and finally architectural evaluation in which
decisions are made and validated against the architecture as
a whole. These three activities are iteratively performed by
moving back and forth between the problem and the solution
space [4].

Various approaches have been proposed to support the
three architecture design activities, and they are either con-
cerned with the architecting process as a whole, or they focus
on one of the three activities. Well known examples of the
former category are the 5 processes used as reference in [3]:

RUP, ADD, Siemens’ 4 Views, BAPO and ASC. The latter
category includes approaches for architecture evaluation like
ATAM, SAAM, or CBAM [5]; approaches for architecture
analysis like the goal-oriented paradigm ( e.g. [6]); and var-
ious methods supporting architects in identifying candidate
solutions during architectural synthesis, e.g. architectural
patterns [7], styles [5] and reference architectures [8].

The aforementioned approaches, however, either ignore
the reasoning process behind decision-making, or take de-
sign decisions into account only as input or output for indi-
vidual architecture activities (ATAM for instance evaluates
the role of design decisions in quality attribute scenarios).
To the best of our knowledge, there is no holistic reasoning
process that includes all three major architecture activities
(analysis, synthesis and evaluation); nor can one be derived
from the combination of multiple approaches, as the whole is
more than the sum of the parts. In fact, with a few exceptions
(e.g. [9], [10], [11]), very little research has been done on
the reasoning part of decision-making so far.

Design reasoning is a logical process that designers follow
when developing architectural solutions [11]. It applies to
all three architecture activities and allows for systematic
and disciplined decision making, based on argumentation
instead of intuition. Furthermore, if the output of reasoning
is documented, it can support stakeholders who were not
involved in the decision making process to comprehend
decisions and the resulting design. The lack of such rea-
soning processes, forces software architects to follow an
ad-hoc, creative process [12], [13] relying heavily on their
personal experience and expertise. As a consequence, rather
inexperienced software architects go through a long and
painful succession of sub-optimal decisions, before they
can successfully reason about the design options and make
informed, well-balanced trade-offs. Training practitioners to
follow a systematic reasoning process could narrow the gap
between expert architects and novice ones.

In our previous work, we started analyzing the reason-
ing process that inexperienced architects follow when they
are architecting [14]. Our aim was to establish a baseline
reasoning process that is based on common sense instead

2011 Ninth Working Conference on Software Architecture

978-0-7695-4351-2/11 $26.00 © 2011 IEEE

DOI 10.1109/WICSA.2011.42

260

2011 Ninth Working IEEE/IFIP Conference on Software Architecture

978-0-7695-4351-2/11 $26.00 © 2011 IEEE

DOI 10.1109/WICSA.2011.42

260



of experience. In this paper we present the results of a
descriptive survey that we conducted with 53 industrial soft-
ware architects from end-October 2010 until mid-January
2011. We investigate how experienced architects reason in
the context of industrial projects and interpret the data
according to industrial context and theory from the literature.
Eventually we refine the findings and summarize them into
a set of reasoning best practices that junior architects can
use to improve their reasoning skills.

The rest of this paper is organized as follows. Section II
presents related work. In Section III, the design of the study
is introduced. The next section presents the analysis of the
results, which are interpreted in Section V. The paper ends
with conclusions and directions for future work.

II. RELATED WORK

Our research is related to three areas within software
architecture: architecting processes, architecting practice in
the industry and design reasoning.

In order to study the reasoning process, we use the general
model of architecture design by Hofmeister et al. as a
reference process [3]. This model consists of three main
architecture activities from industrial approaches, namely
architectural analysis, architectural synthesis and architec-
tural evaluation. Jansen et al. adopt the model to describe
architecture activities from the perspective of architectural
decision making [15]. They suggest that architectural deci-
sions are the result of a decision-making process comprised
of the activities defined in Hofmeister et al. ’s general model.
Our work is complementary to these approaches, as we
explicitly focus on the reasoning process related to each of
the architecture activities when making decisions.

The role and duties of software architects in the industry
have been analyzed in multiple studies [16], [17], [18], [19].
Findings include, that risk assessment and architecture evalu-
ation is not regarded very important by practicing architects
and that architects mainly follow a non-iterative approach
that subsequently satisfies requirements[16]. Fahrenhorst et
al. refine those findings, stating that auditing and quality
assurance activities are regarded more important with in-
creasing years of experience [17]. Clements et al. suggest
that evaluation and analysis are regarded less important
in practice than in the literature [19]. In this study, we
also observe the behavior of practicing architects in the
context of industrial projects. However, the emphasis in the
aforementioned papers is to find out what architects do, i.e.
which activities they follow while they are architecting. In
our study, we try to understand how architects perform the
activities in order to derive reasoning practices.

As pointed out in Section I, little work has been done in
the field of design reasoning in software architecture. Tang et
al. look at design reasoning from a more general perspective,
not only specific to software architecture and also take
psychological aspects into consideration to explain human

behavior during design activities [13]. In earlier work, they
declared the importance of design reasoning in software
architecture [11], [9], [20]. The results were used by Tang
and Lago to describe an initial set of design reasoning
tactics that can be used by software architects to improve
their reasoning process [10]. Our work also emphasizes the
importance of reasoning processes in software architecture.
As opposed to Tang et al., who look at design reasoning
from a very general, cognitive perspective, our aim is to
understand and describe concrete reasoning practices within
the three architecting activities found by Hofmeister et al. [3]
that can be used as guidelines for inexperienced architects.

III. DESIGN OF THE STUDY

A. Goal
The goal of this survey is to understand the reasoning

process that industrial software engineering practitioners
follow while they are architecting. To make the research
goal concrete, we map the reasoning process onto the general
model of architecture design by Hofmeister et al. [3]. The
three activities in the model are iteratively performed by
architects when making decisions. We aim at finding out the
reasoning practices behind these activities, i.e. how each of
the three activities is performed, which leads to the following
research questions:

RQ1 : How do software architects scope and prioritize
the problem space during architectural analysis?

RQ2 : How do software architects propose solutions
during architectural synthesis?

RQ3 : How do software architects choose among solu-
tions during architectural evaluation?

Research question one considers the involvement of ar-
chitects in requirements engineering activities such as: re-
quirements elicitation, evaluation of the importance and
prioritization of quality attribute requirements and functional
requirements and the definition of concrete problems that are
small enough to be addressed in the architectural synthesis.

The aim of research question two is to find out how
architects search for and choose design options based on
the output of the architectural analysis.

Finally research question three applies to the assessment
of candidate solutions and the evaluation of the architecture
as a whole during architectural evaluation. The scope of this
question includes architecture reviews and risk management.

B. Subjects and Sampling
The population under study are industrial software engi-

neering practitioners, who have been working in the industry
for at least five years and who have been responsible for
software architectural design for at least two years. As an
additional constraint, subjects were excluded from the study
if their daily tasks do not include at least one of the follow-
ing: requirements engineering, system architecture/design, or
software design and specification. To evaluate if the subjects

261261



Table I
QUESTIONS FOR SAMPLING

Question Response Format
How many years have you
been working as an IT
professional?

Positive natural numbers
including zero

How many years have you
been working as a soft-
ware architect / designer?

Positive natural numbers
including zero

As an architect / designer,
which of the following are
your tasks?

Possible answers:
• project management
• requirements engi-

neering
• software

architecture
• software design and

specification
• test planning and

design
• reviewing / auditing
• programming
• others

Sheet2

Page 1

2.17

8.7

26.09

63.04

Less than 10 
employees 2,17%  
Between 10 

and 50 
employees 8,70%  
Between 50 

and 250 
employees 26,09%  

More than 250 
employees 63,04%  

Less than 10 
employees
Between 10 

and 50 
employees
Between 50 

and 250 
employees

More than 250 
employees

Less than 
10 
employees
Between 10 
and 50 
employees
Between 50 
and 250 
employees
More than 
250 
employees

Figure 1. Number of employees in participating companies

fit into the target population, we asked the questions shown
in Table I. To find appropriate subjects, we used chain
referral sampling (also known as snowballing) [21]: the
authors asked some individuals from their own network to
forward the participation request to other professionals who
fit the sampling requirements. In total, 53 people took part
in the survey, out of which the results from seven people
were excluded, because they did not satisfy the sampling
requirements. On average, the remaining participants have
worked 18.22 years in the IT-industry (min: 6, max: 35),
and on average 10.59 years as a software architect/ designer
(min: 4 , max: 30). For statistical means, we asked the
participants to specify the numbers of employees in their
companies using an interval scale ranging from less than 10
to more than 250 employees. Figure 1 shows the distribution
of answers. The majority of participants work in large
companies.

C. Data Collection

To collect data, a web-based questionnaire was designed
with questions that map to the defined research questions.
Table II shows the questions from the questionnaire along
with the response format and their relation to the research
questions. If multiple research questions are concerned, the
primary one is printed bold.

Using questionnaires, the subjects and researchers do not
have to synchronize in time and place. Participants can fill
them in, whenever they find time. A potential disadvantage
of questionnaires is that in the case of ambiguous and
poorly-phrased questions, there is no interviewer to explain
the questions and make sure they are well understood. To
mitigate this risk, Lethbridge et al. propose to pilot-test
the questions and then re-design those questions that were
interpreted wrongly [22]. We followed this advice and tested
the questionnaire initially with one participant from the
target population. Right after the questionnaire was filled in
online, we had a video conference with the subject and asked
him to explain how he understood every single question.
After this, all questions that were poorly understood were
re-designed and we provided additional help texts explaining
the questions. Then we repeated the procedure with three
additional participants from the target population until every
question was explained back to us just the way we aimed it
to be understood.

As described in the previous subsection, the URL of the
questionnaire was sent to the participants by e-mail. It con-
tained a mix of structured and un-structured questions. The
structured questions had a five-point interval-level response
format, also referred to as Likert-scale [23], whereas the un-
structured questions requested numeric input or free-text.

In the questionnaire, we asked respondents to remember
one specific software project they were involved in as
a software architect and which is representative for the
way they are working. The whole set of questions in the
questionnaire referred only to this concrete project. To focus
the participants on this project we asked them to estimate
the project size and specify the domain of the project. The
characteristics of the chosen projects are further described
in Section IV. Furthermore we explicitly requested them
to reflect upon their personal thoughts and their personal
actions instead of describing their company policies or what
the whole development team did. They were also asked to
skip questions they did not understand.

IV. ANALYSIS

We use descriptive statistics and qualitative analysis to
describe the collected data. This section is divided according
to the research questions. As described in the study design,
the participants were asked to reflect on one representative
project they had worked on. Table III shows some charac-
teristics of the chosen projects.

262262



Table II
MAPPING OF QUESTIONS AND RESEARCH QUESTIONS

No Question Resp. Format RQ1 RQ2 RQ3
Q1 How much were you in-

volved in the requirements
elicitation of the project?

Likert (Com-
pletely to Not
at all)

X

Q2 Have you understood the
reasoning behind the re-
quirements of the project?

Likert (Com-
pletely to Not
at all)

X

Q3 Compared to other influenc-
ing factors, how important
were the requirements as in-
put/motivation for your ar-
chitectural decisions?

Likert (Very
important to
Unimportant)

X

Q4 To what extent did you re-
flect on identifying which of
the requirements were hard-
est to fulfill?

Likert (To the
largest possi-
ble extend to
Not at all)

X X

Q5 How important were the
functional requirements for
your architectural design?

Likert (Very
important to
Unimportant)

X

Q6 How important were
the quality attribute
requirements for your
architectural design?

Likert (Very
important to
Unimportant)

X

Q7 Have you searched for alter-
native design options, when
making decisions?

Likert
(Always
to Never)

X

Q8 Have you searched for alter-
native design options even if
you already had a solution
in mind?

Likert
(Always
to Never)

X

Q9 Have you thought about the
pros and cons of the design
options you found?

Likert
(Always
to Never)

X X

Q10 Have you preferred solu-
tions that you are familiar
with, in favor of others that
you are not so familiar with?

Likert
(Always
to Never)

X

Q11 Did you relax requirements? Likert
(Always
to Never)

X

Q12 How confident are you that
the architectural decisions
you made are sound?

Likert (Very
confident
to Not
confident)

X

Q13 How often did you decide
on multiple architectural so-
lutions at the same time?

Likert
(Always
to Never)

X X

Q14 How often did you withdraw
solutions that you decided
on earlier in the project?

Likert
(Always
to Never)

X

Q15 How often did you make
trade-offs, while making de-
cisions, between multiple
requirements?

Likert
(Always
to Never)

X

Q16 How often did you come
across dependencies
between architectural
solutions you decided on?

Likert
(Always
to Never)

X X

Q17 How long did it take until
you had a first vision of the
overall software architecture
in mind?

numeric
(% of the
whole proj.
duration)

X X X

Q18 Does the final software ar-
chitecture significantly dif-
fer from this initial vision?

Likert
(Completely
to Never)

X X X

Q19 What are the three most im-
portant things in decision
making for you?

Open X X X

Q20 How have you come from
one decision to the next?

Open X X X

Table III
CHARACTERISTICS OF THE CHOSEN PROJECTS

Variable N Value
Project size
in SLOC

19 Min: 50K, Max: 15mill., Med: 400K

Project size
in person-
months

43 Min: 2, Max: 8000, Med: 150

No of
architects
involved

46 Min: 1, Max: 100, Med: 3

Domain of
the project

46 Top six domains: Embedded systems
(13.04%), Healthcare (13.04%),
Transportation (13.04%), Enterprise
Computing (10.87%), Realtime
(10.87%), Telecommunication
(10.87%)

Analysis

Page 4

Q1 Q2 Q3 Q5 Q6 Q11
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
4
3
2
1

Q7 Q8 Q10 Q16
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
4
3
2
1

Q4 Q9 Q12 Q13 Q14 Q15
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
4
3
2
1

Figure 2. Cumulative frequencies of answers to questions related to RQ1

A. Analysis RQ1 - Architectural Analysis

Figure 2 shows a stacked bar chart with cumulative
frequencies of answers to questions primarily related to
RQ1. The colors and hatchings represent the answers to the
Likert-scale questions. Depending on the concrete question
”1” stands for positive answers (completely, very important,
to the largest extend, always, or very confident), while ”5”
represents negative answers (not at all, unimportant, never
or not confident). Please refer to Table II for the scalings of
the respective questions.

Approximately 60% of the architects stated that they were
involved either completely or a lot, in requirements elicita-
tion (Q1). More than 80 % understood the reasoning behind
requirements well (Q2). With more than 70% of affirmation,
the requirements were regarded important for architecture
decisions compared to other influencing factors like tech-
nology constraints, budget, or company culture (Q3). About
57% of the participants found the functional requirements
important or very important (Q5). The quality attribute
requirements were found important or very important by
81% of the respondents (Q6). Finally, the vast majority
stated that they seldom or never relaxed requirements to have
more design options (Q11).

263263



Analysis

Page 4

Q1 Q2 Q3 Q4 Q5 Q6 Q11
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
4
3
2
1

Q7 Q8 Q10 Q16
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
4
3
2
1

Q4 Q9 Q12 Q13 Q14 Q15
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
4
3
2
1

Figure 3. Cumulative frequencies of answers to questions related to RQ2

Apart from the structured questions, some answers to the
open question Q19 are related to architectural analysis. The
following procedure was used to analyze the open answers.
We browsed the answers and searched for comments related
to the research question. From the comments, we derived
single concrete statements expressing what the respective
participant answered. Finally, we counted the occurrences
of the derived statements.

With respect to RQ1, the following statements were made.
We only mention statements that were concordantly made by
at least three participants. The numbers in brackets express
the number of participants who made that comment: Un-
derstand the problem domain (12 times), have well-defined
requirements (7 times), consider non-technical requirements
like time and resource limitations, political issues and re-
turn on investment (7 times), involve stakeholders in the
decision making process (7 times), regard performance (4
times), consider functional- and non-functional requirements
equally (3 times), negotiate and relax requirements (3 times).
In total, 48 comments were related to architectural analysis.

B. Analysis RQ2 - Architectural Synthesis
Figure 3 illustrates cumulative frequencies for Likert-scale

questions related to architectural synthesis (RQ2).
With only one exception, all participants (74% plus 22%

neutral) indicated that they usually search for alternative
design options when making decisions (Q7). Significantly
less participants (46%) search for alternative design options
if they already have a suitable solution in mind (Q8). The
respondents concordantly prefer well-known solutions in
favor of unknown alternatives (Q10, 68% affirmation, 4%
negation); more than 50% answered that they often come
across dependencies between architectural solutions they
decide on (Q16).

As for RQ1, we qualitatively analyzed the answers given
to Q19 with respect to RQ2. The following statements were
made by at least three participants: Know the solution space
(7 times), find multiple design options (7 times), discuss
design options with colleagues (5 times) and choose the

Analysis

Page 4

Q1 Q2 Q3 Q4 Q5 Q6 Q11
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
4
3
2
1

Q7 Q8 Q10 Q16
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
4
3
2
1

Q4 Q9 Q12 Q13 Q14 Q15
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
4
3
2
1

Figure 4. Cumulative frequencies of answers to questions related to RQ3

simplest design (5 times). In total, 31 comments were related
to architectural synthesis.

C. Analysis RQ3 - Architectural Evaluation
The results with respect to RQ3 are shown in Figure 4.
With roughly 10% of negation, more than 60% strongly

reflected on identifying the most challenging requirements
(Q4) and thought about the pros and cons for each of the
considered design options (Q9). Likewise more than 80%
had strong confidence in the soundness of their decisions
(Q12). The question regarding the making of multiple deci-
sions at the same time was answered less clearly. Approxi-
mately 50% negated the question, while less than 30% stated
that they usually make multiple decision at the same time
(Q13). With strong significance, the vast majority of the
respondents (76%) did not withdraw decisions they decided
on earlier in the project (Q14). Q15 does not show a clear
tendency. The mode answer was neutral with a tendency
towards affirmation (39% compared to 24% negation).

Concerning Q19, the following statements were made by
at least three participants: Understand pros and cons of each
design option (7 times), validate decisions in reviews (3
times). In total, 16 comments were related to evaluation.

D. Analysis of questions 17,18 and 20 in the questionnaire
Questions 17,18 and 20 in the questionnaire cannot be

clearly assigned to a specific research question. We asked the
participants how long it took relative to the whole duration
of the architecture phase until they had a first vision of the
architecture in mind (Q17), how much they derived from this
initial vision after having completed the architecture (Q18)
and how they came from one decision to the next (Q20).

As far as Q17 is concerned, 44 participants answered the
question. In average it took the architects 17.2 % (min: 5%,
max: 75%, med: 12.5 %) of the time spent on architecture
to develop a first vision of the overall system. The same
number of people answered question 18. The mode answer
to this Likert-type question was “moderately” (39%), 11%

264264



answered that the final architecture differed from the first
vision completetly (2%) or a lot (9%). The remaining 46%
answered, that the final architecture differed slightly (35%)
or not at all (11%).

The open answers to question 20 describe the overall
process that architects follow. For the qualitative analysis
of the answers we use the same procedure as for Q19,
i.e. we derive statements from the answers and count the
occurrences of every statement.

The following statements were made by at least two
participants. The number in brackets is the number of oc-
currences of the respective statement: Requirements should
be prioritized. The important ones should be regarded first
(6 times), architecture is iteratively refined and improved
(6 times), there is no specific order in decision making (6
times), the requirements guide the decision making process
(5 times), some decisions have to be made in combination (3
times), sometimes candidate solutions should be prototyped
to find the right one (3 times), some decisions have strong
dependencies (3 times), decisions from other projects can
guide the decision making process (3 times), the decision
making process is driven by risks (2 times).

V. INTERPRETATION

In this section, we interpret the findings from the analysis.
Specifically we interpret the architects’ answers and compare
them to existing approaches in the software architecture
literature. The section is organized according to the three
architecting activities.

A. Architectural Analysis
The purpose of architectural analysis is to define and

scope the problems that have to be solved by the archi-
tecture [3], [15]. The outcome of this activity is a set of
architecturally significant requirements that serve as input
for the architectural synthesis.

The analysis of RQ1 showed that practicing architects are
usually involved in the requirements elicitation of the project
(Q1); this means that they do not just receive requirements
and constraints as artifacts from requirements engineers,
but they are actively involved in the communication with
customers. This differs from architecture approaches in the
literature, which generally assume that a set of requirements
is given to the architects as input for the architectural design
(see for instance ADD [5]).

The involvement in requirements elicitation partially ex-
plains the results of Q2: the vast majority of architects stated
that they understood the reasoning behind requirements very
well. The answers to Q19 also showed that architects find it
very important to understand the problem domain and have
well defined requirements. These statements were the most
frequent answers to Q19, which allows the conclusion that
a deep understanding of the requirements and the problem
space is regarded as essential by most industrial architects.

Requirements are an important input factor for architec-
tural decisions (Q3). This includes functional and quality
attribute requirements (Q5, Q6), although the quality at-
tribute requirements are clearly found more important than
the functional requirements. Apart from the functional and
quality attribute requirements the architects mentioned non-
technical concerns like time and resource limitations, politi-
cal issues and return on investment as important drivers for
architectural decisions. This is comprehensible, as industrial
practice is constrained by factors like budget and time
limitations, development teams being experienced in specific
technologies and customers who indicate the use of specific
software systems, because of in-house software licenses.
Consequently this means that an architecture that perfectly
fulfills the functional and quality attribute requirements is
not necessarily the right architecture in every organizational
context. This finding stresses the need to document the
rationale of design decisions, as decisions influenced by non-
technical concerns may seem irrational or at least incom-
prehensible to stakeholders who are unfamiliar with those
concerns.

Most of the architects answered that they seldom relax
requirements (Q11). This sounds surprising in the first place
as relaxing requirements that are too constraining would be
a means to get more design options [10]. However, it is in
accordance to the answers to Q1 and Q2: architects who are
highly involved in the requirements engineering activity for
a project gain deep knowledge about the problem space and
have presumably already ensured that the requirements are
not unrealistic or too challenging. Nevertheless, three archi-
tects mentioned that negotiating and relaxing requirements
is one of the most important activities (Q19). A correlation
analysis showed, that the three architects who made this
comment were less involved in the requirements elicitation
(med: 3 compared to med:2), understood the requirements
worse than the average (med:3 compared to: med:2) and
relaxed requirements more often than the average(med:3
compared to med:4). This means that architects who are
less involved in the requirements elicitation process have to
relax and negotiate requirements more often.

B. Architectural Synthesis
Architectural synthesis is the main activity in architectural

design as it is concerned with identifying candidate solutions
for the architecturally significant requirements [3]. Archi-
tects have to make use of their existing design knowledge
or create new knowledge by consulting external knowledge
repositories [3], [10] in order to find candidate solutions.
Tang et al. suggest that creative design requires architects
to refine and formulate the problem and solution space at
the same time [13], in line with the “Twin Peaks” model
[4]. This implies that architectural analysis and architectural
synthesis are closely coupled activities.

The architects who took part in the study very frequently

265265



searched for multiple design options when making decisions
(Q7). However this happens significantly less often if the
architects already have a solution in mind (Q8). This might
be due to the fact that searching for design options is
an effort-intensive task, for which designers often do not
afford the resources to perform adequately. Furthermore,
designers need to search for design options on external
knowledge repositories and choose candidate solutions based
on unproven assumptions. In line with this finding architects
prefer solutions they are familiar with instead of unfamiliar
alternatives (Q10). It is less risky to select known solutions,
even if they have known shortcomings, because these can
be assessed and mitigated. Unfamiliar alternatives require
substantial effort to reflect on and analyze, which is not
always possible within the tight budget of a project.

The analysis of Q19 showed that architects find it very
important to know the solution space and have multiple
design options. This supports the finding by Cross [24] and
Tang [11], who concordantly found that designers create
better designs when they explicitly take multiple design
options into consideration. In cases where the participants of
our study did not have enough knowledge about the solution
space to find candidate solutions on their own, they stated
that they discuss design options with colleagues. They also
emphasized that the simplest design for a problem should
be chosen. This indicates that the size and complexity of
system architecting is so overwhelming that simplicity of
design solutions is of paramount importance to manage this
complexity.

The answers to the open question Q20 and to the struc-
tured question 16 reflect that architects are aware of de-
pendencies that exist between some of the decisions. Three
architects suggest that dependencies have to be considered
when finding candidate solutions. In addition some architects
consider that certain dependencies are so significant, that the
related decisions can only be made in combination. The anal-
ysis of dependencies between decisions is not supported in
current architecting processes [3], but it has been discussed
extensively within the Architecture Knowledge community
[25].

C. Architectural Evaluation
During architectural evaluation, the candidate solutions

from the synthesis are validated against the architecturally
significant requirements [3]. This entails considering ad-
vantages and disadvantages of the candidates [15]. Some
of the candidate solutions require trade-offs to be made
between multiple requirements [3], [10]. Dependencies be-
tween decisions and constraints for future decisions should
be analyzed and documented thoroughly [5]. Many archi-
tecture approaches regard risk assessment as integral part
of architectural evaluation (see for instance [10] and [26]).
Finally, the architecture as a whole should be evaluated
regularly to make sure that decisions are consistent with

each other, e.g. that older decisions do not harm constraints
that came up after they were made.

With respect to the evaluation of candidate solutions,
almost all architects stated that they usually think about the
pros and cons of design options (Q9). Some emphasized the
necessity for prototyping different candidate solutions before
making a decision (Q20). They also have high confidence
in the soundness of their design (Q12), which indicates that
they have made an informed choice with respect to the
pros and cons of the design options. It is noticeable that
comparably few architects often decide on multiple decisions
at the same time (Q13), although the majority of architects
are aware of dependencies between decisions (Q16). A
correlation analysis (Kendall’s tau) did not show a significant
correlation between Q13 and Q16 (corr.-coefficient 0,256,
sig. 0,066), which means that architects who are aware of
dependencies between decisions do not necessarily make
more decisions in combination. This may also be due to
the complexity of the various problems and their solutions;
each design decision may be complex enough in its own
right, making it difficult to take into account its dependent
decisions.

Regarding Q14, the results are clear: architects seldom
reject decisions they made before. This is in line with
the findings of Tang et al., who suggest that designers
are reluctant to change their minds [13]. This, however,
could indicate that previously made architecture decisions
are seldom revisited, i.e. the architecture is not validated at
the end as a set of decisions. One comment to Q19 is a strong
affirmation of this attitude: “once the decision was made it
is not allowed to rediscuss it”. This may be again due to the
time and budget constraints of the projects: there is simply
not enough time and resources to continue reflecting on past
decisions; the architects need to consider them finalized and
move on.

In general, architecture evaluation seems to be less impor-
tant for practicing architects than the other two activities.
This assumption is supported by the fact that only 16
out of 95 comments to Q19 (the most important thing
in decision making) concerned architecture evaluation (31
for architectural synthesis, 48 for architectural analysis).
Only three architects mentioned the necessity for reviews.
Additionally to this finding, we observed that architects do
not seem to pay particular attention to risks. In the answers
to Q19, the word “risk” was not mentioned at all. In a
survey with Dutch software architects, Clerc et al. also found
that risk assessment was not regarded particularly important
[16]. However, some of our results show that architects at
least unconsciously perform risk mitigation, for instance by
reflecting on identifying the requirements that are hardest to
fulfill (Q4) and preferring well-known solutions in favor of
unknown alternatives (Q10). In question 20, six architects
explicitly answered that requirements should be prioritized
and that the most important ones should be regarded first,

266266



which is also a means to minimize risks.

D. Overall architecting process

To understand the reasoning followed within the overall
decision-making process, we interpret the findings from
open question 20, in which we asked the participants to
describe freely how they come from one decision to the
next. One of the most frequent comments was that the
prioritized requirements guide the decision making process.
This, however, does not imply a sequential approach to
decision making. Instead, many architects stated that ar-
chitecture is iteratively refined and improved, which is in
line with architecture approaches in the literature [3]. The
iterative nature of architectural design is also indicated by
the answers to Q17 and Q18. Architects rather quickly
develop a first vision of the overall architecture (<20% of
the time for the complete architecture phase, Q17) and then
refine this vision until the architecture is complete without
significantly deriving from the initial vision any more (Q18).

As opposed to the architects who used the requirements to
imply the order of decisions, the same amount of architects
reflected that there was no specific order in decision-making.
This is an indication that the decision-making process fol-
lows an arbitrary reasoning path; we argue that further
research should be conducted to provide practicing architects
with effective methods and tools to structure their decision-
making sequence.

Finally, it is a noticeable finding that only one respondent
named a concrete architecture approach he followed (in his
case the rational unified process). Thus the greatest part
of the participants does not seem to follow one particular
architecture approach from the literature; instead they at
least partially adopt architecture activities to define their own
customized approach to architecture.

E. Threats to validity

To describe the internal validity of empirical results, it
is important to exclude or at least explain confounding
variables and other sources of potential bias [27]. Surveys
generally bare the risk of poorly controllable variables [28],
at least if online questionnaires are used as data collection
method. In such cases the only means to control variables
is by exclusion or by randomization. In this study we used
both: participants who were not sufficiently experienced in
software architecture were excluded from the study, and
other potential variables were randomized by using the
snowballing as sampling technique. Other potential threats to
internal validity (especially construct validity) in question-
naires are ambiguously and poorly-worded questions [22].
To mitigate this risk, we pilot-tested our questionnaire in
multiple iterations until the respondents understanding of the
questions matched our intentions (see Section III for more
details).

An addition threat to internal validity is the fact that the
answers to the open question Q19 (the three most important
things in decision making) could have been influenced by the
structured questions we asked before. However, the majority
of the answers were complementary to the questions. Few
of the answers indeed demonstrate such a correlation, but in
these cases, the participants still had to make a choice that
reflected their personal behavior.

An additional limitation of questionnaires is the uncer-
tainty whether the participants answer truthfully. We tried
to keep this risk low by ensuring the respondents that
the participation is voluntary and that no data is gathered
that would allow us to draw conclusions with respect to
the identity of the respondent. Moreover, if people are not
willing to be honest, they usually do not volunteer for such
a survey. However, this risk can never be excluded totally.

External validity is the extent to which conclusions can
be generalized and capture the objectives of the study [27].
It is primarily concerned with the representativeness of the
sample for the target population [28]. The target population
of this study is software architects, who have been working
in the industry for at least five years and who have been
responsible for software architectural design for at least two
years. We assume that our findings concerning the reasoning
process can be generalized to the population of architects
who fit to these sampling criteria. However, one might argue
that the reasoning process is not just influenced by the
experience of the architect, but also by the characteristics of
the software project (e.g. size and domain) and the culture of
the company in which the project is done. The demographics
of the participants demonstrate that they worked in a variety
of application domains and companies, as discussed in the
following two paragraphs.

The influence of the company culture is limited by the
fact that multiple companies took part, which were not
chosen by us directly. We know of at least eight different
companies who took part in the study, because respondents
from eight different organizations across Europe and the
USA sent us e-mails after participating, to state their interest
in obtaining the study results. Data about the domain and
size of the project that the architects considered in the study
was collected in the questionnaire. The average project size
was 1441 person-months (1.4 mill SLOCs), which means
that mainly large projects were regarded.

The domains of the project included software engineer-
ing (17%), embedded systems (13%), transportation (13%),
healthcare (11%), realtime (11%), command and control
(9%), enterprise computing (9%), telecommunication (9%),
finance (8%), e-commerce (6%) and manufacturing (6%).
Thus, a wide range of projects from different domains was
covered. To understand the influence that the project domain
had on the results, we correlated the domains with the
dependent variables (Spearman’s rho). At the significance
level of 0.05 (2-tailed), the domains finance, transportation

267267



and healthcare showed correlations. Architects from the
finance domain reflected less on identifying which of the
requirements were hardest to fulfill (Q4, corr.-coeff: -.291,
sig. 0.05), they spent less effort on searching for alternative
design options, if they already had a solution in mind
(Q8, corr.-coeff: -.306, sig. 0.039) and had less confidence
in the soundness of their decisions (Q12, corr.-coeff.: -
.303, sig. 0.041). Architects from the healthcare sector more
often searched for alternative design options, if they already
had a solution in mind (Q8, corr.-coeff: .307, sig. 0.038).
In the transportation domain, architects reflected more on
identifying which of the requirements were hardest to fulfill
(Q4, corr.-coeff: .298, sig. 0.044) and also thought more
about the pros and cons of design alternatives (Q9, corr.-
coeff: .296, sig. 0.049). However, the fact that only few
correlations were found shows that project domains seem
to have no significant influence on the reasoning process.

VI. CONCLUSIONS AND FUTURE WORK

We conducted a descriptive survey with industrial soft-
ware architects from several companies and project domains
to get insight in the reasoning process followed during
architectural design. The results were interpreted according
to the pragmatic constraints in the industry, as well as
established architecting approaches in the literature. As
explained in Section I, our aim is to define reasoning best
practices guiding especially inexperienced architects in the
three architectural activities. The following best practices
were derived from our results:

• Architectural Analysis: A deep understanding of the
requirements and the problem space is essential for
successful architecting. If possible, architects should get
involved in the requirements elicitation to gain a better
understanding of the requirements and other architec-
tural drivers like time and budget-constraints. If, for
some reason, they cannot get involved in requirements
gathering, they should make sure that requirements
are not too constraining or unrealistic and eventually
negotiate and relax them with the respective stake-
holders. Requirements should be prioritized; the most
important ones and the ones that are hardest to fulfill
should be regarded first, as they bare potential risks.
Requirements are an important part of the rationale
behind architecture decisions and as such they should
be documented adequately.

• Architectural Synthesis: It is advisable to search for
multiple design options and get to know the solution
space well when making decisions. In cases where time
and budget is very limited it is sometimes practical to
consider less design options, if the architect already has
a working solution in mind that has proven itself in
prior projects. In cases where multiple design options
equally fit to the design problem at hand, it is less
risky to stick to a solution the architect knows well.

When weighing pros and cons of design options, a
colleague can act as a sounding board to make sure
that choices are informed and unbiased by personal
preference. In cases where multiple decisions have
strong dependencies, they can be discussed as a whole,
i.e. the total of such strongly-dependent decisions can
be treated as a single decision. Finally, as in other
design disciplines, simplicity should be a key goal in
software architecture; unnecessary complexity should
be avoided.

• Architectural Evaluation: In architectural evaluation,
candidate solutions must be validated against the ASRs
to make a decision. In situations, in which a decision
cannot satisfy two requirements at the same time, the
optimal trade-off between those requirements has to
be found. Prototyping design options or combinations
of design options can help understanding solutions
and provides additional rationale for informed choices.
Apart from evaluating design options, the architecture
should regularly be evaluated as a whole to ensure con-
sistency between the decisions and to uncover hidden
constraints. If this is not possible due to time and budget
constraints, it should at least be done once at the end
of the architecture phase. A thorough documentation of
architecture decisions can reduce the effort needed for
their evaluation.

There is one more best practice that spans through all three
activities of architecture design and concerns the iterative
refinement and improvement of an architecture. Architects
should try to develop an overall vision of the complete
architecture rather quickly, and then revisit the constituent
parts of the vision to finalize the decisions. Decisions from
comparable projects can serve as a starting point to develop
the vision and can furthermore help to make sure that no
important considerations were forgotten.

We are currently developing a documentation framework
for architecture decisions to effectively support software
engineers in the different activities of architectural design.

In our previous work we started analyzing the reason-
ing process of inexperienced software engineers [14]. We
performed these studies with graduate students who have
followed lectures specifically in software architecture and
undergraduate students who have not had any software
architecture education. This distinction is made to find out in
how far software architecture education influences the way
students reason about architecture. We assume that students
who have had some kind of software architecture training
adopt at least some of the practices and methods they were
taught, while others are ignored. We plan to use these
results and compare them with the findings presented in this
article, in order to propose appropriate training material for
inexperienced architects.

268268



ACKNOWLEDGEMENTS

The authors would like to thank all respondents of the
survey for their participation. Especially, we thank Philippe
Kruchten, Antony Tang, Christian Dietrich and Kevin Er-
hardt for pilot-testing and discussing the questionnaire with
us.

REFERENCES

[1] J. Ven, A. Jansen, J. Nijhuis, and J. Bosch, Design decisions:
The bridge between rationale and architecture. Springer,
2006, pp. 329–348.

[2] A. Jansen and J. Bosch, “Software Architecture as a Set
of Architectural Design Decisions,” in Proceedings of the
5th Working IEEE/IFIP Conference on Software Architecture.
IEEE Computer Society, 2005, pp. 109–120.

[3] C. Hofmeister, P. Kruchten, R. Nord, H. Obbink, A. Ran, and
P. America, “A general model of software architecture design
derived from five industrial approaches,” Journal of Systems
and Software, vol. 80, no. 1, pp. 106–126, 2007.

[4] B. Nuseibeh, “Weaving Together Requirements and Architec-
tures,” Computer, vol. 34, no. 3, pp. 115–117, 2001.

[5] L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice, 2nd ed. Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 2003.

[6] A. Van Lamsweerde, “Goal-Oriented Requirements Engineer-
ing: A Guided Tour,” in Proceedings of the Fifth IEEE In-
ternational Symposium on Requirements Engineering. IEEE
Computer Society, 2001, p. 249.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-oriented software architecture: a system of
patterns. John Wiley & Sons, Inc. New York, NY, USA,
1996.

[8] G. Muller, “CAFCR: A Multi-view Method for Embedded
Systems Architecting. Balancing Genericity and Specificity,”
Ph.D. dissertation, Technische Universiteit Delft, 2004.

[9] A. Tang, M. Babar, I. Gorton, and J. Han, “A survey of ar-
chitecture design rationale,” Journal of systems and software,
vol. 79, no. 12, pp. 1792–1804, 2006.

[10] A. Tang and P. Lago, “Notes on design reasoning tactics,”
Swinburne University of Technology, Tech. Rep., 2009.

[11] A. Tang, M. Tran, J. Han, and H. Vliet, “Design Reason-
ing Improves Software Design Quality,” in Proceedings of
the 4th International Conference on Quality of Software-
Architectures: Models and Architectures. Springer-Verlag,
2008, pp. 28–42.

[12] F. Brooks, The Design of Design: Essays from a Computer
Scientist. Addison-Wesley Professional, 2010.

[13] A. Tang, A. Aleti, J. Burge, and H. van Vliet, “What makes
software design effective?” Design Studies, vol. 31, no. 6, pp.
614 – 640, 2010, special Issue Studying Professional Software
Design.

[14] U. van Heesch and P. Avgeriou, “Naive architecting-
understanding the reasoning process of students: a descriptive
survey,” in Proceedings of the 4th European conference on
Software architecture. Springer-Verlag, 2010, pp. 24–37.

[15] A. Jansen, J. Bosch, and P. Avgeriou, “Documenting after
the fact: Recovering architectural design decisions,” Journal
of Systems and Software, vol. 81, no. 4, pp. 536–557, 2008.

[16] V. Clerc, P. Lago, and H. van Vliet, “The architect’s mindset,”
in Proceedings of the Quality of software architectures 3rd
international conference on Software architectures, compo-
nents, and applications. Springer-Verlag, 2007, pp. 231–249.

[17] J. Hoorn, R. Farenhorst, P. Lago, and H. van Vliet, “The
Lonesome Architect,” Journal of Systems and Software, vol.
In Press, Corrected Proof, pp. –, 2010.

[18] P. Kruchten, “Controversy Corner: What do software archi-
tects really do?” Journal of Systems and Software, vol. 81,
no. 12, pp. 2413–2416, 2008.

[19] P. Clements, R. Kazman, M. Klein, D. Devesh, S. Reddy, and
P. Verma, “The Duties, Skills, and Knowledge of Software
Architects,” in Proceedings of the Sixth Working IEEE/IFIP
Conference on Software Architecture. IEEE Computer
Society, 2007, p. 20.

[20] W. Bu, A. Tang, and J. Han, “An analysis of decision-
centric architectural design approaches,” in Proceedings of the
2009 ICSE Workshop on Sharing and Reusing Architectural
Knowledge. IEEE Computer Society, 2009, pp. 33–40.

[21] N. Mack, C. Woodsong, K. MacQueen, G. Guest, and
E. Namey, Qualitative research methods: A data collector’s
field guide. FLI, 2005.

[22] T. Lethbridge, S. Sim, and J. Singer, “Studying Software
Engineers: Data Collection Techniques for Software Field
Studies,” Empirical Software Engineering, vol. 10, no. 3, pp.
311–341, 2005.

[23] M. William and J. Donnelly, “The Research Methods Knowl-
edge Base,” Mason, OH: Atomic Dog Publishing, 2007.

[24] N. Cross, “Expertise in design: an overview,” Design Studies,
vol. 25, no. 5, pp. 427–441, 2004.

[25] A. Jansen, P. Avgeriou, and J. van der Ven, “Enriching
software architecture documentation,” Journal of Systems and
Software, vol. 82, no. 8, pp. 1232–1248, 2009.

[26] P. Kruchten, “Tutorial: introduction to the rational unified
process R�,” in Proceedings of the 24th international confer-
ence on Software engineering, 2002, p. 703.

[27] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin,
K. Emam, and J. Rosenberg, “Preliminary guidelines for em-
pirical research in software engineering,” IEEE Transactions
on Software Engineering, vol. 28, no. 8, pp. 721–734, 2002.

[28] M. Ciolkowski, O. Laitenberger, S. Vegas, and S. Biffl,
“Practical experiences in the design and conduct of surveys
in empirical software engineering,” Empirical Methods and
Studies in Software Engineering, pp. 104–128, 2003.

269269


