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Chapter 2

Virtual bremsstrahlung
reaction

In this chapter we introduce the theoretical models that describe the
virtual bremsstrahlung process. The observables used to describe the
ppe+e− reaction are deduced and explained. The underlying models are
based on Low’s low energy theorem (LET), also known as soft-photon
approximation (SPA).

In the first part of this chapter we will introduce the accompanying
kinematics for the ppe+e− reaction. The dynamics of the reaction is
discussed in the the second part of the chapter.

2.1 ppe+e− reaction observables

The cross section for the p + p → p + p + e+ + e− reaction is given in
ref. [Kor95, Kor96] as:

σ =
m4

pm
2
l

(2π)8F

∫

|A|2δ4(p+q−p′−q′−k+−k−)
d3p′d3q′d3k+d3k−

Ep′Eq′Ek+
Ek−

. (2.1)

In this equation mp and ml are the masses of the proton and electron
(positron), respectively, p, q and p′, q′ are the 4-momenta of the protons
before and after the interaction, and k+, k− are the 4-momenta of the
leptons. The respective 3-momenta for all particles are given in bold
face, and the energy part of the 4-momentum is labelled with E. The
4-dimensional δ function enforces the 4-momentum conservation for the
reaction. The flux factor is F =

√

(pq)2 − m4
p, as given in [Itz80]. |A|2
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2.1 ppe+e− reaction observables

is the square of the transition amplitude that is discussed in the next
section.

The transition amplitude contains information about the reaction
dynamics. The reaction kinematics is described by the remaining part
of the integral. The non-trivial integration of the final 4-body phase-
space is carried out in [Kor95, Kor96] analytically in a reduced form
where the solid angle of the outgoing particles was constrained. In
order to compare the results of measurements with the predictions of
the theoretical model, a numerical integration using a Monte Carlo
method was performed. An overview of the applied method will be
given in chapter 3.

2.1.1 Transition amplitude

Before we can evaluate the cross section, the matrix element of the
transition amplitude has to be calculated in an appropriate coordinate
system. In the analysis of the virtual bremsstrahlung the square of the
transition amplitude is obtained from the coupling of the nucleonic cur-
rent Jµ with the leptonic transition current jµ. The nucleonic current
leads to emission of the virtual photon (p + p → p + p + γ∗) while the
leptonic current describes the dilepton pair (γ∗ → e+ + e−) final state.
The coupling is described by the transition matrix element

|A|2 =
e4

M4
γ

|jµJµ|
2, (2.2)

where the factor 1
M4

γ
arises from the mass of the virtual photon in the

photon propagator. To develop this expression, a summation over the
lepton polarizations is performed. The square of the leptonic transition
current is given in terms of a leptonic tensor

Lµν =
∑

spins

jµjν∗ =
1

2m2
l

(kµkν − 4lµlν − M2
γgµν). (2.3)

The tensor is expressed in terms of the 4-momentum of the virtual
photon k = k+ + k− and the relative 4-momentum of the dilepton pair
l = 1

2
(k+ − k−). The metric tensor g follows the convention of [Itz80].

Using the current conservation condition kµJµ = 0 the transition am-
plitude squared, summed over the lepton polarizations, can now be
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Virtual bremsstrahlung reaction

written as

|A|2 =
e4

M4
γ

LµνJµJ
∗
ν

=
e4

2m2
l M

4
γ

(

kµJµk
νJ∗

ν − 4lµJµl
νJ∗

ν − M2
γJνJ∗

ν

)

= −
e4

2m2
l M

4
γ

(

4|J · l|2 + M2
γ (J · J∗)

)

. (2.4)

The nucleonic transition current J is sensitive to the nucleon-nucleon
interaction and, to lesser extent, to the nucleon-photon vertex. The
modelling of J will be discussed in the last section of this chapter.

2.1.2 Response functions

The cross section for the p+p → p+p+e++e− reaction can be expressed
in terms of the so-called longitudinal-transverse (LT) decomposition, as
usually applied for electron-scattering, [Fru84]. The LT decomposition
is performed by separating the spatial part of the nucleonic current J
into longitudinal and transverse components with respect to the virtual
photon direction. In addition, the transverse component is further de-
composed into two components corresponding to left- and right-handed
circular-polarization of the virtual photon.

Following [Kor96], the LT decomposition is obtained in the coordi-
nate system where the virtual photon direction determines the OZ axis
(see Fig. 2.1). The reaction plane is given by the incoming proton di-
rection and the virtual photon direction. Fig. 2.1 depicts the described
coordinate system. As noticed in ref. [Kor95], the reaction plane is
ill-defined if the photon is emitted in the (opposite) direction of the
incoming proton.

The virtual photon appears as an electron-positron (dilepton) pair
with 4-momenta k+, k−. The virtual-photon momentum is given by k =
k+ + k− and the relative virtual-photon momentum by l = 1

2
(k+ − k−).

In the coordinate system of Fig. 2.1, the vector l has its direction
determined by the leptonic angles θl, φl. The polar and azimuthal angles
of l, θl and φl, are also called energy-sharing angle and dihedral angle,
respectively.
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2.1 ppe+e− reaction observables

Mγ

θl

φl

π−θγ

x

z

y

o k

−

+p’q’

p

k

l

q

k

Figure 2.1: The coordinate system used in the LT-decomposition of the
reaction amplitude |A|2. The incoming and outgoing particles in the p+p →
p + p + e+ + e− reaction are shown; incoming momenta of proton p, target
proton q, outgoing protons p′ and q′. The outgoing virtual photon k with
mass Mγ appears as a dilepton pair, i.e. electron k− and positron k+. The
angles θl and φl are the polar and azimuthal angle of the relative momentum
l of the dilepton pair in the given coordinate system. Note that the reaction
plane is determined by the incoming proton and outgoing virtual photon,
whereas the dilepton plane is spanned by the outgoing lepton momenta.
Also shown is the polar angle θγ of the virtual photon in the lab frame.

The LT decomposition is now given by:

|A|2 =
e4

2m2
l M

2
γ

{

WT

(

1 −
2l2

M2
γ

sin2 θl

)

+ WL

(

1 −
4l2

k2
0

cos2 θl

)

+
2l2 sin2 θl

M2
γ

(WTT cos 2φl + W ′
TT sin 2φl)
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+
2l2 sin 2θl

k0Mγ

(WLT cos φl + W ′
LT sin φl)

}

. (2.5)

The above equation is defined using the transversal WT, longitudinal
WL, and interference Wi, i = TT, TT′, LT, LT′ response functions (RF).
The response functions Wi in Eq. (2.5) are given by:

WT = JxJ
∗
x + JyJ

∗
y

WL =
M2

γ

k2
0

|Jz|
2

WTT = JyJ
∗
y − JxJ

∗
x

W ′
TT = −2Re(JxJ

∗
y )

WLT = −2
Mγ

k0

Re(JzJ
∗
x)

W ′
LT = −2

Mγ

k0

Re(JzJ
∗
y ), (2.6)

where Re() takes the real part of the expression.

2.1.3 Cross section for the ppe+e− reaction

The cross section Eq. (2.1) can be integrated over the leptonic degrees
of freedom using the LT decomposition Eq. (2.5). We start by writing
Eq. (2.1) in a differential form

dσ =
m3

pm
2
l

(2π)8|p|
|A|2Pppe+e− , (2.7)

where the flux factor F =
√

(pq)2 − m4
p = mp|p|. The phase-space term

Pppe+e− in this equation is

Pppe+e− = δ4(p + q − p′ − q′ − k+ − k−)
d3p′d3q′d3k+d3k−

Ep′Eq′Ek+
Ek−

. (2.8)

The integration over the momenta of the dilepton pair is performed
by introducing the virtual photon with a 4-momentum given by k =
k+ + k−, that is used to split the δ function in Eq. (2.8)

δ4(p + q − p′ − q′ − k+ − k−) =

=
∫

δ4(p + q − p′ − q′ − k)δ4(k − k+ − k−)d4k

=
∫

δ4(p + q − p′ − q′ − k)δ4(k − k+ − k−)d3kdk0. (2.9)
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2.1 ppe+e− reaction observables

Using the invariant mass Mγ =
√

k2
0 − k2 of the virtual photon and

equation Eq. (2.8), the phase-space term Eq. (2.9) can be written as

Pppe+e− = PppγPe+e−MγdMγ, (2.10)

where

Pppγ = δ4(p + q − p′ − q′ − k)d3p′d3q′d3k

Ep′Eq′k0

= δ4(p + q − p′ − q′ − k)
p′2dΩp′dp′q′2dΩq′dq′k2dk sin θγdθγdφγ

Ep′Eq′k0
, (2.11)

and

Pe+e− = δ4(k − k+ − k−)
d3k+d3k−

Ek+
Ek−

. (2.12)

The dilepton phase-space term Pe+e− is evaluated in the rest frame of
the virtual photon, ref. [Nec94], which results in

Pe+e− =
β

2
d cos ϑdϕ, (2.13)

where β =
√

1 − 4
m2

l

M2
γ

is the lepton velocity in the virtual photon rest

frame. The angles ϑ and ϕ are the polar and azimuthal angle of the
relative momenta of the dilepton pair in the rest frame of the virtual
photon. Using the above expression we can integrate the leptonic part
in Eq. (2.7). To do so, the square of the transition amplitude |A|2 has to
be decomposed in terms of Eq. (2.13). The longitudinal-transverse (LT)
decomposition of |A|2 in the lab frame given in Eq. (2.5) is Lorentz-
transformed into the rest frame of the virtual photon

|A|2 =
e4

2m2
l M

2
γ

{

WT

(

1 −
1

2
β2 sin2 ϑ

)

+ WL

(

1 − β2 cos2 ϑ
)

+
1

2
β2 sin2 ϑ(WTT cos 2ϕ + W ′

TT sin 2ϕ)

+
1

2
β2 sin 2ϑ(WLT cos ϕ + W ′

LT sin ϕ)
}

. (2.14)

|A|2 is further integrated over the leptonic angles ϑ and ϕ

∫

|A|2d cos ϑdϕ =
2πe4

m2
l M

2
γ

(

1 −
1

3
β2
)

(WT + WL). (2.15)
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Virtual bremsstrahlung reaction

Using e2 = 4πα, WS = WT + WL, Eq. (2.11), and the result of the
above integration, the 6-fold differential cross section is obtained from
Eq. (2.7)

dσ

dΩp′dΩq′dMγdθγ

= Jγ∗

α2m3
pβ(1 − 1

3
β2)

16π5|p|Mγ

WS. (2.16)

The Jacobian Jγ∗ for p + p → p + p + γ∗ is given by

Jγ∗ =
∫

δ4(p + q − p′ − q′ − k)
p′2d|p′|q′2d|q′|k2d|k| sin θγdφγ

Ep′Eq′k0

. (2.17)

An analytical expression for Jγ∗ can be found in [Kor95].

2.2 Extraction of response functions from mea-
sured cross section

The main topic of this thesis is the analysis and interpretation of the
response functions defined in Eq. (2.6). The extraction of RFs from the
measured p + p → p + p + e+ + e− reaction is explained in chapter 3.
Here we discuss the feasibility of extraction in general.

Eq. (2.5) gives us an idea how to obtain different response functions
from the measured cross section. Since RFs are independent of the
leptonic degrees of freedom (θl and φl), we can exploit the particular
functional dependence on θl and φl of the sum in Eq. (2.5). Each
of the interference RFs enters the sum as a product with orthogonal
sine/cosine harmonics of the dihedral angle φl. Therefore we can weight
each event with the appropriate harmonic to integrate out all other RFs
and obtain the desired one. For example, to obtain WTT each event has
to be weighted with cos 2φl. For the above procedure to work well, the
φl has to be covered in its full range (0-2π).

In order to probe the transversal WT and the longitudinal WL re-
sponse functions the integration over the full range of φl is performed
and the interference RFs drop out. The remaining transversal and lon-
gitudinal RFs are then separated by using the energy-sharing angle θl.
In principle it is possible to disentangle WT and WL if sufficient statis-
tics is available. In our case we constrain ourselves to two regions of θl

chosen in such a way that in the first region θl < 40◦ the WT signal is
enhanced in comparison to WL, and the opposite occurs in the second
region. Obviously from Eq. (2.5), for the extraction of WT and WL we
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2.3 Models

cannot use the orthogonality property of the spherical harmonics that
we use to extract the interference RFs.

In our experimental setup we were not able to distinguish between
electrons and positrons. This ambiguity is reflected in the choice of the
direction of the relative dilepton momenta l = 1

2
(k+−k−), or rather, as

a certain transformation of the leptonic angles. By interchanging two
leptons the leptonic angles will be reflected in the following way

φl → φl + π

θl → π − θl. (2.18)

As it can be seen by substitution of the above expressions into Eq. (2.5),
|A|2 remains unaltered, thus, the choice of the lepton charge and the
direction of l is for our purpose arbitrary. Note that this consideration
holds as long as the multiplicity of the detected leptons is two.

2.3 Models

In this section we will present the theoretical models for the virtual
bremsstrahlung, which are an extension of the models used to describe
the real bremsstrahlung process. There are two distinctive approaches
in the description of the bremsstrahlung process which are refered to as
the microscopic and the macroscopic approach. The microscopic model
calculation was used to compare the results of the pilot experiment
[Mes99] and was developed by Martinus et al. [Mar98]. It is based
on the OBE potential developed by Fleischer and Tjon [Fle74]. In
the meantime an improved version of this potential has been published
[Cos04]. For the present work, the macroscopic model calculation in
the following subsection was adopted and used for comparison to the
data.

2.3.1 The low-energy theorem

The macroscopic calculation used is based on the low energy theorem
(LET), first proved by Low [Low58]. The theorem states that it is
possible to evaluate a gauge-invariant amplitude Jµ in an expansion in
the photon energy k0 in such a way that the first two coefficients are
given solely in terms of the on-the-mass-shell nucleon-nucleon phase
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Virtual bremsstrahlung reaction

shifts and the on-shell NN electromagnetic vertex:

Jµ =
Aµ

k0

+ Bµ + Cµk0 + O(k2
0). (2.19)

The approximation suggested by the theorem, in which only the first
two (model independent) terms of the above expression are regarded, is
also known as the soft-photon approximation (SPA). However, only the
terms of order k0 and higher are related to the off-shell properties of the
NN interaction. Therefore, we have to go beyond the region of validity
of the SPA to address the off-shell effects. For the case of the virtual
bremsstrahlung1 the situation is somewhat different because even for
a vanishing photon momentum k the virtual photon mass Mγ 6= 0,
which means that the intermediate nucleon is always in the off-shell
state [Kor95].

By comparing the pp and pn scattering we notice that cancelation in
four external legs for the pp scattering suppresses the lowest-order term
in Eq. (2.19), Aµ. In the pn scattering the dominant electric dipole
radiation (E1) has a strength of the order 1/k0, which substantially
decreases the sensitivity of the bremsstrahlung process to the model
dependencies. This makes the pp scattering advantageous in the study
of the ppγ reaction.

2.3.2 The virtual Low approach

In order to adapt the original Low’s theorem to the virtual photon
production, modifications were made in order to preserve the gauge-
invariance of the reaction amplitude. The reaction amplitude for the
LET calculation is expressed in terms of the on-shell NN T -matrix,
which is deduced from the elastic scattering, and the static properties
of the nucleon (mass, charge, and anomalous magnetic moment). Nev-
ertheless, an ambiguity appears in the construction of the LET models,
depending on the choice of the independent variables at which the on-
shell T -matrix is evaluated. It was shown by [Lio93] for the case of
the real photon that the ambiguity results in the introduction of two
different classes of LET models.

Two different LET models have been evaluated in [Kor96] for the
case of virtual photon production. The approach based on the original

1For the real photons the LET becomes model dependent only at higher energies.
Contrary, for the virtual photon the LET calculation is model dependent.
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2.3 Models

Low theorem [Low58] for the real photon production and adapted for
virtual photons is designated as the Virtual Low approach (VL). The
other approach based on the propositions presented by Liou, Lin and
Gibson in [Lio93] will be refered to as LLG approach. Both LET calcu-
lations used in this thesis are based on the T-matrix obtained from the
Bonn potential [Mac96]. According to the LET the difference between
two models appears in the order of k0, the photon energy.

A general principle for the construction of the total reaction am-
plitude Jµ for the bremsstrahlung production is as follows; first, an
external amplitude J ext

µ is calculated from the leading order contribu-

tions. The total amplitude Jµ = Jext
µ + J int

µ is obtained by requiring
current conservation, kµJ

µ = 0. The internal amplitude obtained by
this requirement actually represents the higher order contributions (like
the meson-exchange and the rescattering diagrams that are included
explicitly in a microscopic model).

From the leading-order diagrams for the real bremsstrahlung, as
shown in Fig. 1.1, the external amplitude is obtained [Kor95]

Jext
µ = T (p′, q′; p − k, q)S0(p − k)Γµ(p − k, p)

+ Γµ(p′, p′ + k)S0(p
′ + k)T (p′ + k, q′; p, q) + (1 ↔ 2),(2.20)

where exchange (1 ↔ 2) implies exchange between first and second
nucleon: p → q and p′ → q′. In the above, T is the half-off-shell T-
matrix and S0(p) = (/p − m + i0)−1 is the bare nucleon propagator. Γµ

is the reducible half-off-shell NNγ vertex function. Here we will not
go into details of the derivation of Γµ, which are given in [Kor95]. The
right-side of the expression Eq. 2.20 is sandwiched between the nucleon
spinors in the initial u(p)u(q) and the final ū(p′)ū(q′) state.

It turns out that condition kµJ
µ = 0 is satisfied if J int

µ obeys the
relation

kµJ int
µ = e(T (p′, q′; p − k, q)ê1 − ê1T (p′ + k, q′; p, q) + (1 ↔ 2), (2.21)

where ê1 = (1 + τz(1))/2, τz being the nucleon isospin operator. To
evaluate the external amplitude Eq. 2.20 the half-off-shell T-matrix
is approximated by an expansion around the on-shell T-matrix T0 =
T (p′, q′; p, q) , up to first order in k0, or Mγ in the virtual photon rest-
frame. Here we quote the final result for the total amplitude Jµ from
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[Kor95]:

Jµ = e

[

p′µ
kp′

ê1T0 −
pµ

kp
T0ê1 + Dµ(p′)ê1T0 + Dµ(p)T0ê1

−
i

2m

(

σµνk
ν /p′ + m

2kp′
κ̂1T0 − T0κ̂1

/p + m

2kp
σµνk

ν

)

+

(

γµ/k

2kp′
ê1T0 + T0ê1

/kγµ

2kp

)

−

(

p′µ
(kp′)2

ê1T0 +
pµ

(kp)2
T0ê1

)

k2

2
+ (1 ↔ 2)

]

, (2.22)

where κ̂ = 1
2
(1 + τz)κp + 1

2
(1 − τz)κn, κp = 1.79 and κn = −1.91

are the anomalous magnetic moment of the proton and the neutron,
respectively, and

Dµ(p) =
pµ

kp
kν ∂

∂pν
−

∂

∂pµ
. (2.23)

The difference compared to the real photon case is in the last term of
Eq. (2.22), which vanishes in the limit of the real photon k → 0.

The calculation of the reaction amplitude is connected with a choice
of the independent Mandelstam variables e.g. s, t or u, t at which the
T-matrix is evaluated. We can define the set of Mandelstam variables
used to evaluate T0 as

s1 = (p + q)2, s2 = (p′ + q′)2

t1 = (p − p′)2, t2 = (q − q′)2

u1 = (p − q′)2, u2 = (q − p′)2.

In Low’s original work the on-shell T-matrix is evaluated at T0(s̄, t̄)
where s̄ = (s1 + s2)/2 and t̄ = (t1 + t2)/2. However, when the LET
is applied at some finite value of k it turns out [Lio93] that s1 6= s2,
t1 6= t2, and u1 6= u2. For the derivation of a LET amplitude a set
of independent variables t, s or t, u has to be chosen, and the point at
which the T-matrix is going to be evaluated has to be defined.

2.3.3 The Liou-Lin-Gibson approach

The idea for the LLG model is based on the OBE tree-level expan-
sion of the on-shell T-matrix. Two different approximations can be
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2.3 Models

distinguished [Lio93]: the expansion of the on-shell T-matrix into s-
and t-type diagrams, and the expansion into u- and t-type of the OBE
diagrams. An illustration of the two expansions is shown in Fig. 2.2.
The corresponding expansions T0(s, t) and T0(u, t) lead to two different

   n
=  Σ

Cn

p’ q’

p q

   j
+  Σ

Ej

q’ p’

p q

q’p’

To(u,t)

qp

To(s,t)

p’ q’

p qq

Di

p’ q’

p q

   i
+  Σ

Cn

p’ q’

p q

   n
=  Σ

(t) (s)

(t) (u)

Figure 2.2: Illustration of the tree-level expansion: top T0(s, t) expansion
and bottom T0(u, t) expansion. T0 designates the pp elastic scattering T-
matrix.

classes of the modified LETs. It is assumed that the T0(s, t) expansion
is more suitable for the processes in which the s-channel is important,
e.g. for the resonance production processes. In the meson-exchange
type of process the u-channel is better suited. In the LLG model used
in this work, the (u,t) expansion was applied.

The evaluation of the external amplitude for the real photon [Lio93]
in the pp system is obtained by coupling the photon to each external
leg of the u and t OBE diagrams. This results in an expression in
which the T-matrix is evaluated at different combinations of u and t:
T0(u1, t1), T0(u1, t2), T0(u2, t1), and T0(u2, t2), which is in contrast to the
original Low approach in which the T-matrix is evaluated at averaged
values T0(s̄, t̄). An obvious difference to the original Low approach is
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that the produced amplitude is free from the derivatives of the on-shell
T-matrix, which have been replaced by finite differences.

The internal amplitude in the LLG model is obtained by coupling a
photon to the intermediate boson from the OBEP. It can be expressed
in terms of T0(u1, t1), T0(u1, t2), T0(u2, t1), and T0(u2, t2) [Bro83, Lio93,
Kor96]. In the pp scattering where the exchange includes only the
neutral mesons, this term is canceled. Similar to the original LET
calculation, in order to obtain a gauge-invariant total amplitude, the
gauge term Jgauge

µ is introduced into the total reaction amplitude Jµ =

Jext
µ + J int

µ + Jgauge
µ . The total amplitude is calculated from the current

conservation criteria.
For real photons (k2 = 0) the choice of averaged Mandelstam vari-

ables results in a constant s̄ + t̄ + ū = 4m2 + 1
2
k2, contrary to vir-

tual bremsstrahlung (k2 = M2
γ ). In references [Kor95, Kor96] it is

demonstrated that the Pauli principle for pp is violated if the averaged
Mandelstam variables are used. Instead, the amplitude should be anti-
symmetric under the interchange of protons in the initial and the final
state

〈ū(p′)ū(q′)|jµJµ|u(p)u(q)〉 = −〈ū(p′)ū(q′)|jµJµ|u(q)u(p)〉

= −〈ū(q′)ū(p′)|jµJµ|u(p)u(q)〉(2.24)

The violation is caused by the property of the T-matrix: T0(s̄, t̄) =
−T0(s̄, t̄−

1
2
k2). By the original choice of averaged Mandelstam variables

the symmetry would be violated in terms of order k2. By choosing t̄ and
ū as independent variables one would cure this problem but that would
violate the crossing symmetry2. The unique choice of the Mandelstam
variables which do not violate above symmetry principles turns out to
be

ŝ = s̄ −
k2

6
, t̂ = t̄ −

k2

6
, û = ū −

k2

6
. (2.25)

From ŝ+t̂+û = 4m2, independently of the choice of the two independent
variables, both crossing symmetry and Pauli principle will be fulfilled.

2.3.4 Comparison between VL and LLG model

In Fig. 2.3 we demonstrate consequences of the LET approach by show-
ing the difference between the two models. When the virtual photon

2The crossing symmetry relates the pp and pp̄ reactions.
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Figure 2.3: The differential cross section for the p + p → p + p + e+ +
e− reaction as function of the polar angle θγ of the virtual photon. The
calculation is parameterized by the lab angles of protons θ1 and θ2 with φ1 =
0◦ and φ2 = 180◦ (coplanar kinematics), and the polar angle of the virtual
photon θγ and its invariant mass Mγ . Two different sets of parameters are
chosen to illustrate the model differences. The top panel with θ1 = 8◦ and
θ2 = 16◦ illustrates the situation far from elastic scattering where the virtual
photon momentum k can have a large variation and therefore the model
differences are substantial. The bottom panel demonstrates the situation
where protons are close to the elastic limit (θ1 = 35◦ and θ2 = 45◦). The
small photon momentum causes both calculations to fold to the same result.

momentum k is constrained to a small value, one can hardly observe
any difference between VL and LLG model. As soon as the reaction
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kinematics allows the phase-space for the larger photon momentum, a
difference starts to appear. Fig. 2.4 demonstrates that this difference
is more pronounced for the larger virtual photon invariant mass, i.e.
larger k.
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Figure 2.4: The differential cross section for the p + p → p + p + e+ +
e− reaction as function of the invariant mass Mγ of the virtual photon.
The parameters for proton angles are identical to those in Fig. 2.3 and
θγ = 110◦. The top panel shows that we can observe a difference between
the models, and this difference will be more pronounced at higher Mγ . In
case of parameters close to the elastic limit (bottom panel) the difference
between the models vanishes.

The set of parameters used to obtain the response functions shown
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Figure 2.5: The set of six response functions defined by Eq. 2.5, calculated
for both the VL and LLG models, and presented as functions of the invariant
mass Mγ .
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in Fig. 2.5 is similar to the one used to obtain the cross section shown
in Fig. 2.4, apart from the fact that the non-coplanarity angle ∆φ =
π− (φp2

−φp1
) was set to ∆φ = 20◦. In both Figs. 2.3 and 2.4 we have

used the calculations for the coplanar kinematics, ∆φ = 0◦. Due to
the symmetry properties of the response functions [Kor96] both W ′

TT

and W ′
LT vanish in case of the coplanar kinematics. The difference

between the two models for different RFs is clearly observed. The most
striking difference is shown in the calculation of WL where the LLG
model predicts a large contribution at the higher invariant masses Mγ .
Note that the LLG model gives an overall larger estimate of the cross
sections as well.
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