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Chapter 2

Virtual bremsstrahlung
reaction

In this chapter we introduce the theoretical models that describe the
virtual bremsstrahlung process. The observables used to describe the
ppete” reaction are deduced and explained. The underlying models are
based on Low’s low energy theorem (LET), also known as soft-photon
approximation (SPA).

In the first part of this chapter we will introduce the accompanying
kinematics for the ppete™ reaction. The dynamics of the reaction is
discussed in the the second part of the chapter.

2.1 ppeTe reaction observables

The cross section for the p+p — p+ p + e™ + e~ reaction is given in
ref. [Kor95, Kor96] as:

dPp'd3q Pk, d®k_
E,E Ey. Ey

mim?
0= (2;_)8%/|A|264(p+q_p/_q/_k+_k—)

L (2.1)

In this equation m, and m,; are the masses of the proton and electron
(positron), respectively, p, g and p’, ¢’ are the 4-momenta of the protons
before and after the interaction, and k., k_ are the 4-momenta of the
leptons. The respective 3-momenta for all particles are given in bold
face, and the energy part of the 4-momentum is labelled with E. The
4-dimensional ¢ function enforces the 4-momentum conservation for the
reaction. The flux factor is F = |/(pg)? — m3, as given in [Itz80]. |A|?
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2.1 ppeTe™ reaction observables

is the square of the transition amplitude that is discussed in the next
section.

The transition amplitude contains information about the reaction
dynamics. The reaction kinematics is described by the remaining part
of the integral. The non-trivial integration of the final 4-body phase-
space is carried out in [Kor95, Kor96] analytically in a reduced form
where the solid angle of the outgoing particles was constrained. In
order to compare the results of measurements with the predictions of
the theoretical model, a numerical integration using a Monte Carlo
method was performed. An overview of the applied method will be
given in chapter 3.

2.1.1 Transition amplitude

Before we can evaluate the cross section, the matrix element of the
transition amplitude has to be calculated in an appropriate coordinate
system. In the analysis of the virtual bremsstrahlung the square of the
transition amplitude is obtained from the coupling of the nucleonic cur-
rent J, with the leptonic transition current j,. The nucleonic current
leads to emission of the virtual photon (p +p — p+ p + ~*) while the
leptonic current describes the dilepton pair (y* — e™ + e7) final state.
The coupling is described by the transition matrix element

Al* = !J’“‘J % (2.2)

M4
where the factor W arises from the mass of the virtual photon in the
photon propagator. To develop this expression, a summation over the
lepton polarizations is performed. The square of the leptonic transition
current is given in terms of a leptonic tensor

72 1 v v 2 _uv
= > = (kj“k 4 — MZg™). (2.3)

spins

The tensor is expressed in terms of the 4-momentum of the virtual
photon k = k, + k_ and the relative 4-momentum of the dilepton pair
l = 5(ky — k_). The metric tensor g follows the convention of [Itz80].
Using the current conservation condition k#J, = 0 the transition am-
plitude squared, summed over the lepton polarizations, can now be
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Virtual bremsstrahlung reaction

written as
2 64 v *
AP = 3l
v
4
o € vV oT* vV T* 2 v 7%
= S (KM Tk Ty — Al g0 T — M2J".J)
4
_ € 712 2 LT
T (41 - 12+ M2(T - T)) - (2.4)

The nucleonic transition current J is sensitive to the nucleon-nucleon
interaction and, to lesser extent, to the nucleon-photon vertex. The
modelling of J will be discussed in the last section of this chapter.

2.1.2 Response functions

The cross section for the p+p — p+p+e+e~ reaction can be expressed
in terms of the so-called longitudinal-transverse (LT) decomposition, as
usually applied for electron-scattering, [Fru84]. The LT decomposition
is performed by separating the spatial part of the nucleonic current J
into longitudinal and transverse components with respect to the virtual
photon direction. In addition, the transverse component is further de-
composed into two components corresponding to left- and right-handed
circular-polarization of the virtual photon.

Following [Kor96], the LT decomposition is obtained in the coordi-
nate system where the virtual photon direction determines the OZ axis
(see Fig. 2.1). The reaction plane is given by the incoming proton di-
rection and the virtual photon direction. Fig. 2.1 depicts the described
coordinate system. As noticed in ref. [Kor95], the reaction plane is
ill-defined if the photon is emitted in the (opposite) direction of the
incoming proton.

The virtual photon appears as an electron-positron (dilepton) pair
with 4-momenta k., k_. The virtual-photon momentum is given by k =
k4 + k_ and the relative virtual-photon momentum by [ = £(k; —k_).
In the coordinate system of Fig. 2.1, the vector 1 has its direction
determined by the leptonic angles 6;, ¢;. The polar and azimuthal angles
of 1, #; and ¢;, are also called energy-sharing angle and dihedral angle,
respectively.



2.1 ppeTe™ reaction observables

Figure 2.1: The coordinate system used in the LT-decomposition of the
reaction amplitude |A|?. The incoming and outgoing particles in the p+p —
p+p+ e’ + e reaction are shown; incoming momenta of proton p, target
proton q, outgoing protons p’ and q’. The outgoing virtual photon k with
mass M, appears as a dilepton pair, i.e. electron k_ and positron k. The
angles 0; and ¢; are the polar and azimuthal angle of the relative momentum
[ of the dilepton pair in the given coordinate system. Note that the reaction
plane is determined by the incoming proton and outgoing virtual photon,
whereas the dilepton plane is spanned by the outgoing lepton momenta.
Also shown is the polar angle 6, of the virtual photon in the lab frame.

The LT decomposition is now given by:

) et 22, 412,
|A| = W WT 1-— W Sin 0[ + WL 1-— ﬁ COS Ql
1y ¥ 0
212 sin2 91

—r (W cos 2¢; + Wi sin 2¢y)
5
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Virtual bremsstrahlung reaction

212 sin 26,
koM,
The above equation is defined using the transversal Wr, longitudinal

W1, and interference W;,7 = TT, TT', LT, LT’ response functions (RF).
The response functions W; in Eq. (2.5) are given by:

We = JJi+ .

(Wyr cos ¢ + Wi g sin gbl)} ) (2.5)

M?
W, = L]
WTT - Jy(]; - JIJ;

Wir = —2Re(J,J})
M
WLT = —QJRG(JZJ;)
ko
M
Wiz = —27 Re(L.J;). (2.6)
0

where Re() takes the real part of the expression.

2.1.3 Cross section for the ppe*e™ reaction

The cross section Eq. (2.1) can be integrated over the leptonic degrees
of freedom using the LT decomposition Eq. (2.5). We start by writing
Eq. (2.1) in a differential form

3,2
do = (213’87;’ APy (2.7)
where the flux factor F' = | /(pq)? — m} = m,|p|. The phase-space term
Pete— in this equation is
B/ 3o Pk, Pk

Pppe*e* = 54(p+q_p/ - ql —ky — k*)

2.8
EyEyEy, By, (28)

The integration over the momenta of the dilepton pair is performed
by introducing the virtual photon with a 4-momentum given by k£ =
ki 4 k_, that is used to split the ¢ function in Eq. (2.8)

Fp+q—p —q — ke —k)=
= [6'p+a—p = — ) — by — k)%

- /54(p Yq—p —q — k)6 — ky — k_)dkdko. (2.9)
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2.1 ppeTe™ reaction observables

Using the invariant mass M, = (/kj — k? of the virtual photon and
equation Eq. (2.8), the phase-space term Eq. (2.9) can be written as

Pppe"’e‘ = Ppp’yPe+e— MvdM’w (210)
where
d3 /d3 /dSk
Popy = 0% (p+q—p' —d =) F 50
24Q_,dp'q'2dSY,, dq'k2dk sin 6., d6.,d¢
=0 pt+q—p —q — k)T e (20
and

Pk, dk
Ev, By

The dilepton phase-space term P,+.- is evaluated in the rest frame of
the virtual photon, ref. [Nec94|, which results in

P =8k —ky — k) (2.12)

P = gdcos ddp, (2.13)
where 7 = /1 — 4;}—2 is the lepton velocity in the virtual photon rest
Y

frame. The angles ¥ and ¢ are the polar and azimuthal angle of the
relative momenta of the dilepton pair in the rest frame of the virtual
photon. Using the above expression we can integrate the leptonic part
in Eq. (2.7). To do so, the square of the transition amplitude | A|? has to
be decomposed in terms of Eq. (2.13). The longitudinal-transverse (LT)
decomposition of |A|? in the lab frame given in Eq. (2.5) is Lorentz-
transformed into the rest frame of the virtual photon

64

AR =
4] 2ml2M72

{WT (1 - %62 sin? 0) + Wy, (1= 3 cos®v)

- %BQ sin? O(Wpr cos 2¢ + Wiy sin 2¢)

+ %ﬂ2 sin 20(Wyr cos ¢ + Wi sin gp)} : (2.14)
| A|? is further integrated over the leptonic angles ¥ and ¢

2met
2072
mi Mz

/\A|2d cos ¥dyp = (1 — %ﬁ2> (Wrp + W). (2.15)
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Virtual bremsstrahlung reaction

Using e¢? = 4rwa, Wy = Wr + Wy, Eq. (2.11), and the result of the
above integration, the 6-fold differential cross section is obtained from
Eq. (2.7)
1
do _ *Oszgﬁ(l — 50%)
A2,y dQdyd M., dO., T 1670|p| M,
The Jacobian J,« for p+p — p+p + 7" is given by

Ws. (2.16)

p2d|p’|q%d|q |K2d|K]| sin 6., d¢.,
EyEy kg

Sy 2/54(p+q—p’—q'—k) - (2.17)

An analytical expression for J,- can be found in [Kor95].

2.2 Extraction of response functions from mea-
sured cross section

The main topic of this thesis is the analysis and interpretation of the
response functions defined in Eq. (2.6). The extraction of RFs from the
measured p+p — p+p+ et + e~ reaction is explained in chapter 3.
Here we discuss the feasibility of extraction in general.

Eq. (2.5) gives us an idea how to obtain different response functions
from the measured cross section. Since RFs are independent of the
leptonic degrees of freedom (6, and ¢;), we can exploit the particular
functional dependence on 6; and ¢, of the sum in Eq. (2.5). Each
of the interference RF's enters the sum as a product with orthogonal
sine/cosine harmonics of the dihedral angle ¢;. Therefore we can weight
each event with the appropriate harmonic to integrate out all other RF's
and obtain the desired one. For example, to obtain W each event has
to be weighted with cos 2¢;. For the above procedure to work well, the
¢ has to be covered in its full range (0-27).

In order to probe the transversal Wt and the longitudinal W7, re-
sponse functions the integration over the full range of ¢; is performed
and the interference RF's drop out. The remaining transversal and lon-
gitudinal RF's are then separated by using the energy-sharing angle 6;.
In principle it is possible to disentangle Wy and Wy, if sufficient statis-
tics is available. In our case we constrain ourselves to two regions of 6,
chosen in such a way that in the first region 6; < 40° the Wr signal is
enhanced in comparison to Wi, and the opposite occurs in the second
region. Obviously from Eq. (2.5), for the extraction of W and Wi, we

13



2.3 Models

cannot use the orthogonality property of the spherical harmonics that
we use to extract the interference RF's.

In our experimental setup we were not able to distinguish between
electrons and positrons. This ambiguity is reflected in the choice of the
direction of the relative dilepton momenta 1 = %(k+ —k_), or rather, as
a certain transformation of the leptonic angles. By interchanging two
leptons the leptonic angles will be reflected in the following way

o — gt
0[ — 7r—0l. (218)

As it can be seen by substitution of the above expressions into Eq. (2.5),
|A|? remains unaltered, thus, the choice of the lepton charge and the
direction of 1 is for our purpose arbitrary. Note that this consideration
holds as long as the multiplicity of the detected leptons is two.

2.3 Models

In this section we will present the theoretical models for the virtual
bremsstrahlung, which are an extension of the models used to describe
the real bremsstrahlung process. There are two distinctive approaches
in the description of the bremsstrahlung process which are refered to as
the microscopic and the macroscopic approach. The microscopic model
calculation was used to compare the results of the pilot experiment
[Mes99] and was developed by Martinus et al. [Mar98]. It is based
on the OBE potential developed by Fleischer and Tjon [Fle74]. In
the meantime an improved version of this potential has been published
[Cos04]. For the present work, the macroscopic model calculation in
the following subsection was adopted and used for comparison to the
data.

2.3.1 The low-energy theorem

The macroscopic calculation used is based on the low energy theorem
(LET), first proved by Low [Low58]. The theorem states that it is
possible to evaluate a gauge-invariant amplitude J, in an expansion in
the photon energy kq in such a way that the first two coefficients are
given solely in terms of the on-the-mass-shell nucleon-nucleon phase
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Virtual bremsstrahlung reaction

shifts and the on-shell NN electromagnetic vertex:

J, = ’2—;‘ + B, + Cuko + O(K). (2.19)
The approximation suggested by the theorem, in which only the first
two (model independent) terms of the above expression are regarded, is
also known as the soft-photon approximation (SPA). However, only the
terms of order ky and higher are related to the off-shell properties of the
NN interaction. Therefore, we have to go beyond the region of validity
of the SPA to address the off-shell effects. For the case of the virtual
bremsstrahlung! the situation is somewhat different because even for
a vanishing photon momentum k the virtual photon mass M., # 0,
which means that the intermediate nucleon is always in the off-shell
state [Kor95].

By comparing the pp and pn scattering we notice that cancelation in
four external legs for the pp scattering suppresses the lowest-order term
in Eq. (2.19), A,. In the pn scattering the dominant electric dipole
radiation (E1) has a strength of the order 1/ko, which substantially
decreases the sensitivity of the bremsstrahlung process to the model
dependencies. This makes the pp scattering advantageous in the study
of the ppy reaction.

2.3.2 The virtual Low approach

In order to adapt the original Low’s theorem to the virtual photon
production, modifications were made in order to preserve the gauge-
invariance of the reaction amplitude. The reaction amplitude for the
LET calculation is expressed in terms of the on-shell NN T-matrix,
which is deduced from the elastic scattering, and the static properties
of the nucleon (mass, charge, and anomalous magnetic moment). Nev-
ertheless, an ambiguity appears in the construction of the LET models,
depending on the choice of the independent variables at which the on-
shell T-matrix is evaluated. It was shown by [Lio93] for the case of
the real photon that the ambiguity results in the introduction of two
different classes of LET models.

Two different LET models have been evaluated in [Kor96] for the
case of virtual photon production. The approach based on the original

'For the real photons the LET becomes model dependent only at higher energies.
Contrary, for the virtual photon the LET calculation is model dependent.

15



2.3 Models

Low theorem [Lowb8] for the real photon production and adapted for
virtual photons is designated as the Virtual Low approach (VL). The
other approach based on the propositions presented by Liou, Lin and
Gibson in [Li093] will be refered to as LLG approach. Both LET calcu-
lations used in this thesis are based on the T-matrix obtained from the
Bonn potential [Mac96]. According to the LET the difference between
two models appears in the order of ky, the photon energy.

A general principle for the construction of the total reaction am-
plitude J, for the bremsstrahlung production is as follows; first, an
external amplitude JﬁXt is calculated from the leading order contribu-
tions. The total amplitude J, = J>* 4 Ji* is obtained by requiring
current conservation, k,J* = 0. The internal amplitude obtained by
this requirement actually represents the higher order contributions (like
the meson-exchange and the rescattering diagrams that are included
explicitly in a microscopic model).

From the leading-order diagrams for the real bremsstrahlung, as
shown in Fig. 1.1, the external amplitude is obtained [Kor95]

JX = T, dsp—k,q)So(p — k)T u(p — k,p)
+ T, "+ k)So(p' + B)T(p" + k,¢'sp,q) + (1 « 2)(2.20)

where exchange (1 < 2) implies exchange between first and second
nucleon: p — ¢ and p’ — ¢. In the above, T is the half-off-shell T-
matrix and Sy(p) = (p —m +140)~" is the bare nucleon propagator. I',
is the reducible half-off-shell NN~ vertex function. Here we will not
go into details of the derivation of I',, which are given in [Kor95]. The
right-side of the expression Eq. 2.20 is sandwiched between the nucleon
spinors in the initial u(p)u(q) and the final u(p’)u(q’) state.

It turns out that condition k,J* = 0 is satisfied if Jif‘t obeys the
relation

TN =e(T(,qip—k.qér — T +k,¢'ip,q) + (1 < 2), (2.21)

where é; = (1 4+ 7.(1))/2, 7. being the nucleon isospin operator. To
evaluate the external amplitude Eq. 2.20 the half-off-shell T-matrix
is approximated by an expansion around the on-shell T-matrix Ty =
T(p',q;p,q) , up to first order in ko, or M, in the virtual photon rest-
frame. Here we quote the final result for the total amplitude J, from
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Virtual bremsstrahlung reaction

[Kor95]:

kp' kp

i (L Am prm
_% <0’uykj 2k S lilTO T()/{l 2]{jp O',ul,k? )

I X ) R
Jy = [ EeTy — —uToel + Du(p,)elTO + Dy, (p)Toéy

2k’ Qkp

Py k? .
_<W61To (kp) Toel> S +a 2)], (2.22)

where & = (1 + 7.)kp + 5(1 — 2)ky, K, = 1.79 and K, = —1.91

are the anomalous magnetic moment of the proton and the neutron,

respectively, and 5 5
pN v

The difference compared to the real photon case is in the last term of

Eq. (2.22), which vanishes in the limit of the real photon k& — 0.

The calculation of the reaction amplitude is connected with a choice
of the independent Mandelstam variables e.g. s,t or u,t at which the
T-matrix is evaluated. We can define the set of Mandelstam variables
used to evaluate 1 as

(2.23)

si=(p+a?  s=0+4d)

th=p-0) ta=(1—¢)

w=p-4¢)? uw=(-p)>
In Low’s original work the on-shell T-matrix is evaluated at Ty(S,?)
where § = (s1 + s2)/2 and t = (t; + t2)/2. However, when the LET
is applied at some finite value of k it turns out [Lio93] that s; # so,
t; # t9, and u; # ug. For the derivation of a LET amplitude a set

of independent variables t, s or ¢,u has to be chosen, and the point at
which the T-matrix is going to be evaluated has to be defined.

2.3.3 The Liou-Lin-Gibson approach

The idea for the LLG model is based on the OBE tree-level expan-
sion of the on-shell T-matrix. Two different approximations can be

17



2.3 Models

distinguished [Lio93]: the expansion of the on-shell T-matrix into s-
and t-type diagrams, and the expansion into u- and t-type of the OBE
diagrams. An illustration of the two expansions is shown in Fig. 2.2.
The corresponding expansions Ty(s, t) and Ty(u, t) lead to two different

p qg p ()
I
n
p q p
p qg p () q q () p
C, E,
=z i
n J
p qg P q p q

Figure 2.2: Illustration of the tree-level expansion: top Ty(s,t) expansion
and bottom Tp(u,t) expansion. Ty designates the pp elastic scattering T-
matrix.

classes of the modified LETSs. It is assumed that the Ty(s,t) expansion
is more suitable for the processes in which the s-channel is important,
e.g. for the resonance production processes. In the meson-exchange
type of process the u-channel is better suited. In the LLG model used
in this work, the (u,t) expansion was applied.

The evaluation of the external amplitude for the real photon [Lio93]
in the pp system is obtained by coupling the photon to each external
leg of the u and ¢ OBE diagrams. This results in an expression in
which the T-matrix is evaluated at different combinations of u and ¢:
To(uy, t1), To(uy, ta), To(us, t1), and To(us, t2), which is in contrast to the
original Low approach in which the T-matrix is evaluated at averaged
values Ty(5,¢). An obvious difference to the original Low approach is

18



Virtual bremsstrahlung reaction

that the produced amplitude is free from the derivatives of the on-shell
T-matrix, which have been replaced by finite differences.

The internal amplitude in the LLG model is obtained by coupling a
photon to the intermediate boson from the OBEP. It can be expressed
in terms of To(ul, tl), TO (U17 tQ), To(UQ, tl), and To(UQ, t2) [BI‘O83, 1110937
Kor96]. In the pp scattering where the exchange includes only the
neutral mesons, this term is canceled. Similar to the original LET
calculation, in order to obtain a gauge-invariant total amplitude, the
gauge term JE*"€ is introduced into the total reaction amplitude J, =
JOC+ Tt 4 Jgee. The total amplitude is calculated from the current
conservation criteria.

For real photons (k% = 0) the choice of averaged Mandelstam vari-
ables results in a constant 5+t + 4 = 4m? + %/{:2, contrary to vir-
tual bremsstrahlung (k* = M2). In references [Kor95, Kor96] it is
demonstrated that the Pauli principle for pp is violated if the averaged
Mandelstam variables are used. Instead, the amplitude should be anti-
symmetric under the interchange of protons in the initial and the final
state

(aPu(d) " JJuP)u(@) = —(@@)u(d)"J.lu(a)u(p))
= —(u(q)u(p’)]j" Ju|u(p)u(q)i2.24)

The violation is caused by the property of the T-matrix: To(5,¢) =
—To(s, t_—%k’Q). By the original choice of averaged Mandelstam variables
the symmetry would be violated in terms of order k2. By choosing ¢ and
u as independent variables one would cure this problem but that would
violate the crossing symmetry?. The unique choice of the Mandelstam
variables which do not violate above symmetry principles turns out to

be k? k? k?
§=85— — t=t——, A=0——. 2.25
§=5-+, g 4=u-% (2.25)
From §+t+ = 4m?, independently of the choice of the two independent
variables, both crossing symmetry and Pauli principle will be fulfilled.

2.3.4 Comparison between VL and LLG model

In Fig. 2.3 we demonstrate consequences of the LET approach by show-
ing the difference between the two models. When the virtual photon

2The crossing symmetry relates the pp and pp reactions.
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Figure 2.3: The differential cross section for the p+p — p+p +e +
e~ reaction as function of the polar angle 6, of the virtual photon. The
calculation is parameterized by the lab angles of protons 61 and 65 with ¢1 =
0° and ¢2 = 180° (coplanar kinematics), and the polar angle of the virtual
photon 6, and its invariant mass M,. Two different sets of parameters are
chosen to illustrate the model differences. The top panel with 6; = 8° and
0y = 16° illustrates the situation far from elastic scattering where the virtual
photon momentum k can have a large variation and therefore the model
differences are substantial. The bottom panel demonstrates the situation
where protons are close to the elastic limit (f; = 35° and 6 = 45°). The
small photon momentum causes both calculations to fold to the same result.

momentum k is constrained to a small value, one can hardly observe
any difference between VL and LLG model. As soon as the reaction
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Virtual bremsstrahlung reaction

kinematics allows the phase-space for the larger photon momentum, a
difference starts to appear. Fig. 2.4 demonstrates that this difference
is more pronounced for the larger virtual photon invariant mass, i.e.
larger k.

—
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—
—
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—
——

T T
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_
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—
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LI IIIIII|

1 1 IIIIII|

do/dQ dQ,d0 dM, [nb/st” rad MeV]

'
[\

10" E E
. — VL | 1
- -- LLG| ]
10-3 I | I | I | I | ! | !
0 10 20 30 40 50 60

MY [MeV]

Figure 2.4: The differential cross section for the p+p — p+p+et +
e reaction as function of the invariant mass M, of the virtual photon.
The parameters for proton angles are identical to those in Fig. 2.3 and
6, = 110°. The top panel shows that we can observe a difference between
the models, and this difference will be more pronounced at higher M,. In
case of parameters close to the elastic limit (bottom panel) the difference
between the models vanishes.

The set of parameters used to obtain the response functions shown
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Figure 2.5: The set of six response functions defined by Eq. 2.5, calculated
for both the VL and LL.G models, and presented as functions of the invariant
mass M, .
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Virtual bremsstrahlung reaction

in Fig. 2.5 is similar to the one used to obtain the cross section shown
in Fig. 2.4, apart from the fact that the non-coplanarity angle A¢p =
T — (¢p, — Op,) Was set to Ag = 20°. In both Figs. 2.3 and 2.4 we have
used the calculations for the coplanar kinematics, A¢ = 0°. Due to
the symmetry properties of the response functions [Kor96] both Wi,
and W/, vanish in case of the coplanar kinematics. The difference
between the two models for different RFs is clearly observed. The most
striking difference is shown in the calculation of Wy, where the LLG
model predicts a large contribution at the higher invariant masses M., .
Note that the LLG model gives an overall larger estimate of the cross
sections as well.
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