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Swtnary

Summary

In the last decade tremendous progress has been made in the study of complex

heterogeneous systems like solutions and biological macromolecules. Detailed computer

modelling of these systems on the atomic level has become feasible, and in fact indispensable,

considering the use of simulation techniques in structure determination with X-ray or NMR.

Yet the theoretical methods to deal with dynamical systems composed of hundreds of atoms are

still in their infancy. In this thesis several aspects of molecular interaction models for biological

systems are discussed, with the emphasis on the treatment of electrostatic interactions.

After a short overview of the field is given in the introductory chapter, the theoretical

basis of the study of intermolecular interactions is outlined in chapter 2. It is argued that

empirical force fields, and many ab initio approaches using supermolecules, neglect the serious

problem of separating intermolecuiar interaction energies from the intramolecular energy

change due to the presence ofother particles. In this way strong interdependencies between

potential function parameters are introduced, hampering systematic improvement of these

functions and transfer of parameters from e.g. crystals to the liquid phase. Conspicuous

differences between existing force fields are observed with respect to charge distributions and

hydrogen bond strengths. The usual 'effective potential' approach for induction and dielectric

effects is invalidated by qualitatively and quantitatively different results obtained with more

detailed models. Examples are cited from the literature, showing the sensitivity of calculated

molecular energies to variation of the elecnostatic model. The conclusion must be that present

day force fields are least reliable in situations where the electric field plays a prominent role,

such as binding sites, active centres and ionic solutions - cases which are at the heart ofmany
'molecular engineering' studies. Many of these problems can be attacked by using quantum

mechanical pern:rbation theory to develop force fields. Molecular interactions can be expressed

in terms of well defined and calculable monomeric properties. An overview is given of practical

approaches to evaluate these quantities, and to represent them in many-body interaction

calculations.

h chapter 3 the problem of deriving macromolecular charge distributions from ab initio

calculations is discussed, with emphasis on the inductive interactions between fragments and

on the problem of merging the charge distributions of neighbouring, and partially overlapping,

fragments. A model is set up to treat inter- and intra-molecular polarization on equal footing.

Helical and extended conformations of poly-glycine, and serine dipeptide are considered as test

cases. Especially the long range co-operative polarization of a-helices is represented quite well
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by the model.

In chapter 4 ob initio charge distributions for protein fragments (amino acid side chains,

peptide groups) are derived. The merging ofthese charge distributions to describe polypeptide

chains is investigated in detail, by comparing with ab jnitio results obtained for dipeptides.

Polarization plays a small, but distinct role in improving the agreement. The main problem is

the correction offragment distributions for boundary effects. Increasing the overlap between

fragments reduces the error. Another problem is to describe the subtle changes when varying

the conformation of a group of atoms. This, however, requires a careful analysis of large basis

set calculations.

Overall the dipole moments and partial charges from the overlapping-fragments-plus-

polarization model are correlated well enough with Hartree Fock SCF results to include mutual

polarization of fragments as a standard procedure in macromolecular calculations. An

automated 'protein building' progmm has been developed to retrieve partial charge (or other)

data from a data base and to generate the information required by macromolecular energy

programs (c/. chapter 7).

Chapters 5 and 6 deal with the description ofelectrostatic interactions in solutions. In

chapter 5 a hydration model without periodic boundary conditions is developed, in which the

solute and two or threo layers of water molecules are embedded in a dielectric continuum. A

Monte Carlo program has been written to perform simulations with this model. Subsequently

the hydration of alifatic amines in different protonation states has been studied. Experimental

energies of protonation can be reproduced quite well, provided that the definition of the

dielectric boundary takes into account the van der Waals volume of the enclosed water

molecules. The continuum contribution to the energy is found to depend almost exclusively on

the the net charge of the solute and on the distance between solute and boundary. Further

analysis shows that continuum type models can not represent faithfully displacements of

charges and water-water correlations within 3 to 5 A of the boundary. Improvement of the

non-periodic model is only possible by using 'potentials of mean force' for water molecules

near the boundary, or by further increasing the number of hydration layers, possibly combined

with a simplihed molecular description in the outermost layers.

In the amine protonation studies a comparison has also been made between two

electrostatic potentials, the semi-empirical GROMOS potential and the ab initio TD potential,

which is based upon a dipole conserving population analysis. Replacement ofone potential by

the other has a large effect on the protonation energy in water, and also on protonation energy

differences between similar compounds. The hydration energy is sensitive to details of the

charge distribution, such as the pafiial charges of CH2 and CH3 groups. Polarizability of water

molecules also appears to be essential.
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This is the subject of chapter 6, in which a polarizable water model is developed. After

inplementing this model in the Monte Carlo hydration program, again protonation energies of

amines were calculated. In the case of ionized substituents the agreement with experimental

results is much improved by using the polarizable in stead of pair-additive water model. In

combination with the polarizable model the ab initio potential performs better than the

semi-empirical one. A fully self consistent treatment of polarization, allowing for interactions

between induced dipoles, is shown to be necessary 6nd feasible.

In chapter 7 models from previous chapters are combined in a study of the active site of

the cysteine protease papain. Partial charge and polarizability of all protein atoms, as well as a

number of crystal waters, were included in the calculations. The central question is whether the

active site residues exist as a neutral Cys-His or as a zwitterionic Cyr-His+ pair. In vacuum

the former is much more stable. However, the surrounding protein and the crystal water near

the active site are found to stabilize the zwitterionic state much more than the neutral state. Both

states are likely to be in thermal equilibrium. These theoretical results support the interpretation

given to experimental data, as well as the proposed mechanism for the catalytic activity of

papain, which involves a thiolate anion rather than a thiol group. The main factor causing the

stabilization of the ion pair is the field of a long cr-helix, but local interactions - involving

specific residues and water molecules - turn out to be also important. The dielectric properties

of the protein in particular can not be described by a continuum type model. All atom

representations are needed to properly balance the screening of charge-charge interactions

(which actually may be enhanced in stead of reduced), and the self energy change due to

interactions between a charge and its polarizable environment.


