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4 Fano Groups of Linear Differential
Equations

In what follows k is a differential field whose field of constants C is assumed to
be algebraically closed of characteristic 0. Consider a linear differential equation
L(y) = y(n) + ∑

n−1
i=1 aiy(n−i) = 0, ai ∈ k of degree n. Our aim is to compare the dif-

ferential Galois group G of L over k with a similar group introduced by G. Fano in
1900 in his paper [Fa].

4.1 Notations and introduction

The differential operator L induces a differentiation on the polynomial ring

R0 = k[X ( j)
i ,

1
W

] (with 1≤ i≤ n, 0≤ j ≤ n−1, and W = det(X ( j)
i ))

by

(X ( j)
i )′ =

{
X ( j+1)

i i f j < n−1

−∑
n−1
l=1 aiX

(n−l)
i i f j = n−1.

In terms of this, the Picard-Vessiot ring of L over k is R = R0/I, where I ⊂ R0

is a maximal differential ideal. Put yi = X (0)
i mod I, then V = Cy1 + · · ·+Cyn is the

solution space of the equation L(y) = 0.
Consider J = I∩C[X (0)

1 , . . . ,X (0)
n ]. Then C[V ] = C[X (0)

1 , . . . ,X (0)
n ]/J is the sub-

algebra of the Picard-Vessiot ring R generated by the solution space V .
Any σ ∈ GL(V ) can be extended uniquely to a k-algebra automorphism of R0

commuting with the derivation, by σ(X ( j)
i ) = σ(Xi)( j). By definition, the differen-

tial Galois group of L over k is

G = {σ ∈ GL(V )|σI ⊂ I}= {σ ∈ GL(V )|σI = I}.

In a century-old paper of Fano [Fa], not the group G is considered but a group
we denote as G+ here, which is defined as follows.

Any σ ∈ GL(V ) also acts on the subalgebra C[X (0)
1 , . . . ,X (0)

n ] of R0 and we
define G+ to be the group of all σ ∈ GL(V ) which induce C-linear automorphisms
of C[V ], i.e.
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G+ = {σ ∈ GL(V )|σJ ⊂ J}= {σ ∈ GL(V )|σJ = J}.

We will call G+ the Fano group of a linear differential equation.

Remark 4.1.1. G+ is an algebraic subgroup of GL(V ).

Remark 4.1.2. Note that the notation G+ also appears in Chapters 1 and 2. How-
ever, its meaning is quite different here.

The aim of this chapter is to study the relation between G and G+. Obviously,
G⊂ G+. In Section 4.2 we prove

Theorem 4.1.3. G = G+ if and only if I equals the radical of the minimal differen-
tial ideal in R0 containing J.

In Section 4.3 we present examples. In particular, for second order equations,
we show that if a differential Galois group has dimension at least 2 then the corre-
sponding Fano group is GL2. Moreover we give various examples for differential
Galois groups of dimensions 0 and 1. In fact, Fano [Fa] mostly uses the projective
group PG+, defined as the image of G+ in PGL(V ). Our examples show that in
general PG 6= PG+.

More precisely, Fano considers the ideal H ⊂C[X (0)
1 , . . . ,X (0)

n ], generated by the
homogeneous polynomials in the variables X (0)

1 , . . . ,X (0)
n that belong to the ideal I.

Since I is a prime ideal, H is a homogeneous prime ideal and defines an irreducible
projective variety S⊂ P(V )∼= Pn−1. Fano formulates this as follows: “the solutions
of L lie on S”. The interpretation seems to be as follows.

Take a point z0 in the complex plane where the equation L has n independent
local, meromorphic solutions f1, . . . , fn. For z in a neighborhood D of z0, there is a
well-defined analytic map m : D→ Pn−1, given by the formula z 7→ ( f1(z) : f2(z) :
· · · : fn(z)). The smallest projective subspace of Pn−1, containing the image of m,
can be seen to be S.

The group that Fano considers is the algebraic subgroup of PGL(V ) consisting
of the elements A with A(S) = S. This group contains the above group PG+.

We remark that the case of third order linear differential equations with finite
order differential Galois group was recently considered by C. S. Malagón in his
master’s thesis [Ma] including several examples.
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4.2 Equality of G and G+

Let J1 be the radical ideal of the differential ideal generated by J in R0. By [Kap,
Lemma 1.8], as R0 is a Ritt algebra, J1 is a differential ideal. Our aim is to prove
Theorem 4.1.3, i.e.,

G = G+ if and only if I = J1.

Proof. The “if" part is clear, since for an automorphism σ ∈ GL(V), if it fixes J,
then it will also fix J1 = I.

For the “only if" part, we first assume for the moment the following lemma.

Lemma 4.2.1. Let Ĩ be a maximal differential ideal of R0. There exists σ ∈ GL(V)
such that σ(I) = Ĩ.

By this lemma and the fact that G = G+ we conclude that I is the unique
maximal differential ideal in R0 containing J1. Indeed, if Ĩ be a maximal differential
ideal of R0 containing J1, then by the lemma there exists σ ∈ GL(V) such that
σ(I) = Ĩ. We have

J ⊂ Ĩ∩C[X (0)
1 , . . . ,X (0)

n ] = σ(I)∩C[X (0)
1 , . . . ,X (0)

n ] = σ(J).

If J ( σ(J) then we would have the following nonstop chain

J ( σ(J) ( σ
2(J) ( σ

3(J) ( . . .

of ideals in C[X (0)
1 , . . . ,X (0)

n ]. This is a contradiction, as C[X (0)
1 , . . . ,X (0)

n ] is a noethe-
rian ring. Thus J = σ(J), or σ ∈ G+ = G. Therefore Ĩ = σ(I) = I.

Now by [vdP-S, Lemmas 1.23, 1.29], there is a bijection between the differen-
tial ideals of R0 and the G-invariant ideals of C[X ( j)

i , 1
W ]. Under this bijection, radical

differential ideals in R0 correspond to G-invariant radical ideals in C[X ( j)
i , 1

W ]. Let

I1 ⊂C[X ( j)
i , 1

W ] correspond to I under this bijection. By the maximality of I, I1 is not

contained in any strictly larger G-invariant ideal of C[X ( j)
i , 1

W ]. Therefore I1 is a rad-
ical ideal and its zero set Z(I1) ⊂ GL(V ) is a minimal Zariski closed G-invariant
set. By the minimality of Z(I1), there exists ξ ∈ GL(V ) such that Z(I1) = G ·ξ.
Similarly, let Z be the Zariski closed subset of GL(V ) corresponding to J1. We
have Z(I1) = G ·ξ ⊂ Z, and because J1 is radical, I(Z) is the G-invariant ideal in
C[X ( j)

i , 1
W ] corresponding to J1 under the above bijection. We claim that G ·ξ = Z.

Indeed, suppose that there exists η ∈ Z(J1)\G ·ξ, then the differential ideal in R0

corresponding to I(G ·η)⊂C[X ( j)
i , 1

W ] would be another maximal differential ideal
containing J1. This contradicts the uniqueness of I. Thus Z(I) = G ·ξ = Z, and
therefore I = J1.
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Proof of Lemma 4.2.1. Observe that R0/Ĩ is a Picard-Vessiot ring of L over k. By
the uniqueness of the Picard-Vessiot ring, there is a differential ring isomorphism

φ : R0/I −→ R0/Ĩ.

This isomorphism maps V to the solution space of L(y) = 0 in R0/Ĩ. Hence there is
an invertible matrix (ai j)n×n with entries in C such that

φ(Xi mod I) =
n

∑
j=1

ai jX j mod Ĩ,

for all i = 1, . . . ,n. The matrix (ai j)n×n defines a C-automorphism σ ∈ GL(V) of V
and we have σ(I) = Ĩ.

4.3 G+ in GL2(C): Examples

Suppose that L(y) = 0 over k = C(z) is a second order linear differential equation
with differential Galois group G ⊂ GL2(C). We consider some possibilities for G
and G+, based on the dimension of G.

4.3.1 dim(G)≥ 3

Proposition 4.3.1. If dim(G)≥ 3 then G+ = GL2.

Proof. If dim(G) = 4, then G = GL2 and G⊂G+ implies G+ = GL2. Suppose that
dim(G) = 3, then either SL2(C) is a subgroup of G of finite index, or G is the Borel
group B′.

In the first case, a maximal differential ideal I ⊂ R0 is of the form I = ((X1X ′2−
X2X ′1)

n− f ) for some nonzero f ∈C(z). This implies J = 0. Hence G+ = GL2.
In the second case, a maximal differential ideal I ⊂ R0 is of the form I = (X ′1−

f X1) for some nonzero f ∈C(z). This also implies J = 0, hence G+ = GL2.

Remark 4.3.2. If G = B′, then PG 6= PG+. If SL2(C) is a subgroup of finite index
in G, then PG = PG+ and G 6= G+.

4.3.2 dim(G) = 2

In case dim(G) = 2, it follows from the classification as presented in Appendix A
that G⊂ B′. The short exact sequence
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0→Ga→ B′→Gm×Gm→ 1

shows that if Ga 6⊂G, then G is diagonal, hence a maximal differential ideal I ⊂ R0

is of the form I = ((X ′1− f X1, X ′2−gX2) for some f , g∈C(z), such that the equation
H ′ = (λ f +µg)H with λ,µ ∈Q, not both zero, has in the field C(z) only the trivial
solution H = 0. This implies J = 0. Thus G+ = GL2.

In the case that Ga ⊂ G, we may write

G =
{(

a b
0 c

)
|akcl = 1

}
with k,l ∈ Z and (k,l) 6= (0,0).

One computes in this case that a maximal differential ideal in R0 has generators
X ′2 − k f X2 and X ′1 + l f X1 + gX2 for certain functions f ,g. It follows that J = 0,
hence G+ = GL2. So we have proven

Proposition 4.3.3. If dim(G)≥ 2 then G+ = GL2.

4.3.3 dim(G) = 1

We will consider only two cases, G = Ga ⊂ SL2 and G = Gm ⊂ SL2. In the first
case, the second order equation L has a nonzero rational solution s. Suppose first
that L = ∂2− f and so f = s′′

s . Using variation of constants we obtain a second
independent solution x2 = c · s with c′ = 1

s2 . Hence x′2 = 1
s + x2

s′
s . Since the differ-

ential Galois group is Ga, one has that c is transcendental over C(z) . Moreover, a
maximal differential ideal is of the form (X1− s, X ′1− s′, X ′2− 1

s −
s′
s X2). This gives

J = 0, hence G+ = GL2. An explicit s having the required property is s = z+1
z .

Another equation with differential Galois group Ga is zy′′+ y′ = 0 which has
1 and logz as solutions. In this case a maximal differential ideal is of the form
(X1−1, X ′1, X2− 1

z ). This gives us the ideal J = (X1−1), hence G+ =
(1 ∗

0 ∗
)
.

We conclude from the above examples that G+ is not always completely deter-
mined by G.

For the case G = Gm ⊂ SL2, one considers a transcendental element s over
C(z) satisfying s′ = s. The vector space Cs +Cs−1 is the solution space for the
equation L = ∂2− 1. The differential Galois group of L is Gm. Clearly (X1X2−
1, X1−X ′1, X2 +X ′2) is a maximal differential ideal and J = (X1X2−1). Hence G+

is the infinite dihedral group D∞, i.e.,

D∞ :=
{(

c 0
0 c−1

)
|c ∈C∗

}
∪
{(

0 −d
d−1 0

)
|d ∈C∗

}
.

Similarly, the monic operator L of degree two with solution space Cs +Czs−1

is ∂2 + 2
1−2z ∂+ 2z−3

1−2z . One obtains J = 0, and therefore G+ = GL2.
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4.3.4 dim(G) = 0

Example 4.3.4. Consider the differential equation y′′ =− y′
2z over C(z). This equa-

tion has {1,
√

z} as fundamental solutions and the maximal differential ideal in
the Picard-Vessiot ring is I = (X2 − 1, X2

1 − z, 2zX ′1 − X1). The differential Ga-
lois group G of the equation has order two and the same holds for PG. Further,
J = I∩C[X1, X2] = (X2−1). The group G+ is the stabilizer of the line X2 = 1 and

therefore G+ = {
(

a 0
b 1

)
|a,b ∈C}= Ga nGm (PG+ = PB).

Example 4.3.5. Consider the differential equation y′′− 2
z y′+ 2

z2 y = 0 over C(z).
This equation has {z,z2} as fundamental solutions and the maximal differential
ideal in the Picard-Vessiot ring is I = (X1− z, X2− z2, X ′1− 1,X ′2− 2z). Then the
differential Galois group of the equation is G = {1} (PG = {1}). We observe that
(X2

1 −X2) = J = I ∩C[X1,X2]. The group G+ leaves the curve X2 = X2
1 invariant,

therefore G+ = {
( a 0

0 a2

)
| a ∈C∗}.

The following example shows that G = G+ = {1} is a possibility.

Example 4.3.6. Consider the differential equation y′′− 6z2

2z2+z y′+ 6z+2
2z3+z2 y = 0 over

C(z). The solution space is Cz +C(z2 + z3) and the maximal differential ideal in
the Picard-Vessiot ring is I = (X1− z, X2− z2− z3, X ′1− 1, X ′2− 2z− 3z2). The
differential Galois group is G = {1}. One finds (X2

1 +X3
1 −X2) = J = I∩C[X1,X2].

The group G+ is the stabilizer of the curve X2 = X2
1 +X3

1 and thus G+ = {1}.

It can be shown that if dimG = 0, then dimG+ ≤ 2.


