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General Introduction 

Liver 

The liver is the second largest organ in the mammalian body and is involved in 

versatile functions like synthesis, secretion and metabolism of a variety of bio-molecules, 

including lipids, proteins, vitamins, carbohydrates and toxins. Anatomically, the human 

liver is divided in four lobes. The structural and functional unit of the liver is the lobule. 

Each lobule is composed of various cell types, which are organized in characteristic 

arrays of cells, in particular the hepatocytes, that allow the liver to perform its function 

optimally (Figure 1). The liver is a highly perfused organ. The hepatic artery and the 

portal vein supply the liver with blood, while it exits the liver via the central vein. The 

portal vein carries approximately 80% of the blood and brings nutrient-rich/oxygen-poor 

blood from the intestine, while the other 20% is highly oxygenated and enters through the 

hepatic artery. The portal vein and hepatic artery merge in the portal areas and blood 

flows alongside plates of hepatocytes exchanging nutrients and gases before exiting via 

the central vein [1]. 

A crucial function of the liver is the production of bile, which aids in the 

absorption and/or excretion of fatty compounds from the gastrointestinal tract, including 

cholesterol and fat-soluble toxins. The main constituents of bile are bile acids, 

phospholipids, cholesterol, bilirubin, inorganic salts and water [2]. The bile acids and 

phospholipids form mixed micelles and those are the main carriers for lipid-soluble 

compounds in bile and the small intestine. Bile is synthesized in the liver, secreted into 

the canaliculi, transported via bile ducts out of the liver and stored in the gall bladder. The 

bile ducts are composed of cholangiocytes that modify the composition of bile for optimal 

function [3]. Food intake triggers the contraction of the gallbladder and bile is released 

into the duodenum. In addition to the secretion of lipophilic compounds, bile also 

contains drug metabolites that after phase I modification and phase II conjugation are 

transformed to water-soluble compounds  and  secreted by hepatocytes to the bile for 

fecal excretion or to the blood for renal excretion [1-4]. 

The various liver cell types can be subdivided in parenchymal cells and 

mesenchymal cells. The parenchyma consists mainly of hepatocytes that make up 

approximately 80% of the liver volume and carry out the metabolic functions of the liver. 
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The mesenchymal compartment includes Kupffer cells (KCs, the liver-specific 

macrophages), dendritic cells (DCs), endothelial cells (ECs), cholangiocytes, portal 

myofibroblasts (PMFs), hepatic stellate cells (HSCs) and liver-specific progenitor (oval) 

cells (Figure 1). 

Hepatocytes are polarized cells and are arranged in radial plates around a central 

vein. At the sinusoidal side, hepatocytes are in direct contact with blood via the 

basolateral membrane. The lateral sides of the neighboring hepatocytes are joined 

together separating the basolateral membrane from the apical –or canalicular- membrane[ 

1,6]. The canalicular membranes of the hepatocytes together form small canaliculi that 

merge into bile ducts through which bile is transported from the hepatocytes to the 

gallbladder and small intestine [3]. The positional arrangement of the hepatocytes is 

optimal for controlling circulating levels of a great variety of biomolecules like proteins 

(e.g. albumin and clotting factors), carbohydrates (glucose), lipids (cholesterol) and 

vitamins (vitamin A, B, D, E and K) [1]. Moreover, hepatocytes are involved in the 

biotransformation of drugs and toxic compounds [7]. As such, hepatocytes may be 

regarded as a “filter” for toxins that are absorbed from the blood and excreted into the bile 

directly or after enzymatic modification  [7]. The ultimate goal of biotransformation is to 

reduce the drug-induced toxic effects that cause liver damage and inflammation.  

 

 

 

 

 

 

 

Figure 1. Microscopic features of the liver lobule. Spatial arrangement of liver cells in a lobule showing blood supply 

and bile canaliculi. The portal area is composed of a hepatic artery, portal vein and a bile duct. Blood flows from the 

portal area to the central vein. Bile canaliculi collect bile and drain into the bile duct. Hepatic stellate cells are present 

between the endothelial cells and hepatocytes (space of Disse). Adapted from [5]. 

Cholangiocytes 

Space of Disse 
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Cholangiocytes form the epithelial lining of the bile duct through which bile flows 

from the canaliculi and is stored in the gall bladder. Cholangiocytes modify the 

composition and pH of bile in particular by secretion of bicarbonate ions and water [3,8]. 

Liver sinusoidal endothelial cells (LSEC) form the lining of the hepatic sinusoids 

that carry the blood through the liver. Endothelial cells are highly fenestrated allowing 

exchange of small molecules, including oxygen, in blood so they can reach the underlying 

hepatocytes. At the same time, LSEC form a physical barrier for large particles and 

specific cell types [9,10].  

Hepatic stellate cells (HSCs) reside in the space of Disse, the space between the 

liver sinusoids and the hepatocytes. In healthy liver, HSCs are considered “quiescent” 

(qHSC) containing up to 80% of the body content of vitamin A, which is stored as 

retinyl-esters in large cytosolic lipid droplets, and maintain stable retinol levels in the 

blood [11,12]. These cells produce controlled amounts of extracellular matrix, which 

provides the embedding of other liver cells. HSCs have many characteristics of nerve 

cells, including specific nerve cell markers like glial fibrillar acidic protein, synemin, 

synaptophysin and nerve growth factor receptor p75 [13]. Moreover, qHSC can also act 

as antigen presenting cells thereby playing an immunomodulatory role [14]. Upon liver 

injury, HSCs become activated and transdifferentiate into proliferative myofibroblasts 

that cause liver fibrosis (see below). 

The liver also contains “professional” immunomodulatory cells, such as 

macrophages, dendritic cells and natural killer cells. Kupffer cells (KCs) are the liver-

specific macrophages and are located in the sinusoids in close contact with the endothelial 

cells. Kupffer cells are phagocytic in nature and clear the blood from worn-out blood 

cells, pathogens (bacteria, viruses) and other foreign substances that appear in the blood 

[15]. Dendritic cells are able to pass the fenestrated endothelium and enter the 

parenchyma, where they typically settle in the portal areas. Dendritic cells process 

antigenic materials and present them to lymphocytes bridging the innate and the adaptive 

immune system [1,10] 

The portal area contains liver progenitor cells that are activated and proliferate 

during severe liver disease and replenish lost hepatocytes and cholangiocytes [5]. The 

portal area also contains myofibroblasts (PMFs) that are phenotypically distinct from 
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HSCs. They are devoid of vitamin A and Desmin that are present in HSCs [16,17]. Upon 

liver injury, PMF also become activated, motile and contractile and produce excessive 

amounts of extracellular matrix proteins (ECM), similar as HSC[17,18]. 

Taken together, the various liver cell types coordinate and perform highly 

specialized functions that make the liver a vital organ involved in metabolism, synthesis, 

secretion and biotransformation as well as an immune-competent organ. Therefore, a 

healthy liver is crucial for maintain homeostasis. 

Liver diseases 

Liver diseases can be subdivided in acute and chronic liver diseases depending on 

the time frame leading to symptoms of liver injury. In acute liver failure (ALF), the onset 

of disease takes place within hours to days, while chronic liver disease may develop over 

years to decades. In the United States, chronic liver diseases and cirrhosis claim 35,000 

lives and 2,000 additional death with fulminant ALF every year [19]. Typically, ALF 

results from drug intoxication (paracetamol overdose, mushrooms, and party drugs) and 

viral infection (hepatitis A or B, it is uncommon in hepatitis C). Within a timeframe of 

hours to days, severe liver damage leads to a critical loss of functional liver tissue (over 

80%), which develops into systemic inflammation and multiple organ failure. Patients are 

admitted to the intensive care unit and treatment is primarily aimed at treating symptoms, 

rather than the underlying cause. ALF patients often require liver transplantation to 

survive [20]. 

Chronic liver disease (CLD) develops with persistent viral infections (hepatitis B 

and C, cytomegalovirus (CMV), Epstein Barr Virus (EBV), or long-term intake of 

alcohol and drugs [21,22]. In addition, CLD include multiple forms of autoimmune 

hepatitis, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis 

(PSC) that develop slowly, but progressively to a stage where liver transplantation is the 

only therapeutic option [23-25]. 

Inherited genetic defects in transport processes of bile components may also result 

in various forms of chronic liver disease. For example, a defect in bile salt or 

phospholipid transport across the canalicular membrane (by the bile salt export pump 

(BSEP) or multidrug resistance protein 3 (MDR3), respectively) cause progressive liver 

disease and often requires liver transplantation at early age (within 1 or 2 years) [26]. 



6 | P a g e  

 

Biliary atresia is a disease of the bile ducts caused by inflammation and obstruction of the 

bile duct. The accumulation of bile in the liver causes liver injury. The etiology of this 

disease is largely unknown and most patients require liver transplantation to survive. 

A growing number of patients with liver disease are the result of the consumption 

of high-fat foods characteristic of the “Western” lifestyle. Non-alcoholic fatty liver 

disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are steatotic liver diseases 

related to the excessive dietary fat intake without the involvement of alcohol. NASH, as 

opposed to NAFLD, is characterized by the presence of inflammation and slowly 

develops into chronic hepatitis, fibrosis, cirrhosis and ultimately liver failure. Additional 

complications like fluid retention, muscle wasting and intestinal bleeding may appear. 

Insulin resistance and diabetes are associated with NAFLD and NASH [27]. Weight 

control, dietary interventions and ultimately liver transplantation are the treatment options 

for patients suffering from NASH. 

Liver injury is routinely assessed by biochemical parameters, in particular by 

determining serum levels of alanine aminotransferase (ALT), aspartate aminotransferase 

(AST), prothrombin (PT), gamma-glutamyl-transpeptidase (GGT), albumin and bilirubin 

(conjugated and unconjugated). Bilirubin is the breakdown product of heme, which is 

abundantly present in red blood cells as cofactor of hemoglobin. Bilirubin is efficiently 

secreted into bile and increased serum levels therefore may indicate impairment in bile 

flow [3]. ALT and AST are intracellular enzymes released from damaged hepatocytes and 

therefore specific indicators of hepatocyte damage [28]. Albumin and PT are serum 

proteins synthesized by hepatocytes and are therefore markers for liver function. GGT is a 

membrane-bound enzyme located at the luminal side of bile duct epithelial cells 

(cholangiocytes) and hepatocytes [29]. Increased serum levels of GGT are considered to 

be a marker for bile duct injury in cholestasis, but its specificity as a liver damage marker 

is still unclear [30,31]. No specific serum markers for liver fibrosis are available yet and 

staining liver biopsies for collagen deposition is the golden standard to firmly establish 

the stage of liver fibrosis. In addition, liver fibrosis may be assessed non-invasively by 

transient elastography (Fibroscan) [32,33]. 

The liver has the unique capability to regenerate after an injury or surgical 

procedure. Loss of 50-70% liver tissue may be fully restored in a few days in mice or a 

few weeks in humans. The liver has a significant functional overcapacity: liver functions 
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only become compromised when more than 70-80% of liver tissue is lost. Although the 

functional overcapacity and ability to regenerate is a life-saving characteristic, it also 

means that clear symptoms of liver disease only appear when the liver disease is already 

in an advanced stage.  

Liver fibrosis and resolution 

Virtually all chronic inflammatory diseases lead to tissue damage and, as a result, 

to a wound-healing response characterized by re-establishment of the extracellular matrix 

that provides the proper support for tissue-specific cells. The control of synthesis and 

composition of extracellular matrix (ECM) proteins in a diseased liver is a complex 

mechanism in which various liver cells play a role and is described in detail in the 

following sections. Extracellular matrix (ECM) is composed of various structural proteins 

including, collagens, fibronectin, elastins and laminins. The composition of ECM is 

highly variable among tissues and during health and disease. ECM remodeling (synthesis, 

deposition and degradation) are strictly controlled by enzymes such as matrix 

metalloproteases (MMPs) and tissue inhibitors of matrix metalloproteases (TIMPs) 

secreted by various cell types [34]. MMPs are matrix degrading enzymes and in the liver 

the most relevant MMPs are MMP1 ,MMP3 , MMP9 , and MMP13 that degrades various 

types of collagens, fibronectin, laminins and proteoglycans [35]. The activity of MMPs, 

in turn, is regulated by TIMPs. The levels of TIMPs are increased during liver 

fibrogenesis leading to excessive deposition and diminished degradation of the ECM [34-

37]. Consequently, the low-density ECM in the healthy liver, which is predominantly 

composed of collagen type IV and VI, is replaced by high-density ECM consisting of 

fibrillar collagens I, III and fibronectin [38]. The formation of thick fibrous tissue in the 

sinusoids impairs blood flow causing portal hypertension and limits the uptake and 

secretion of metabolites by hepatocytes resulting in decreased liver function [38-40]. 

When (acute) liver injury is cured, the natural balance between MMPs and TIMPs 

is restored and scar tissue is resolved resulting in the restoration of normal architecture 

and functional capacity of the liver. The reversibility of liver fibrosis is also evident from 

animal studies where fibrosis is resolved after cessation of the causative agent, for 

instance, in carbon tetrachloride (CCl4) treated model of liver fibrosis in rodents [41]. 

Similarly, clearance of hepatitis B virus from infected patients also results in fibrosis 

resolution [42]. However, the resolution of liver fibrosis in patients is slow and complete 
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recovery may require years. Persistent liver injury and (mild) inflammation leads to 

fibrosis that may progress to cirrhosis, which is no longer reversible and increases the risk 

of hepatocellular carcinoma [40,43].   

Cell signaling in liver fibrogenesis 

Cytokines and growth factors 

Initiation, perpetuation and resolution of liver fibrosis are dynamic processes. 

They involve growth factors, cytokines, hormones and eicosanoids (prostaglandins and 

leukotrienes) that are produced by various endogenous and liver-infiltrating cell types and 

have an autocrine or paracrine mode of action. In this section, we will discuss the 

involvement of these molecules in cell signaling in HSCs and other important liver cells 

that play a role in liver fibrosis. 

Transforming growth factor-beta (TGF-β) is a well-characterized fibrogenic 

cytokine that induces the expression of collagens, TIMP-1 and plasminogen activator 

inhibitor type 1, and leads activation and transdifferentiation of HSCs into 

myofibroblasts. Kupffer cells and infiltrating macrophages are the main sources of TGF-β 

during liver injury [40,44]. Although TGF-β promotes proliferation of non-parenchymal 

cells, it suppresses hepatocyte division in the healthy liver [45]. However, in the 

(chronically) injured liver, hepatocytes become resistant to TGF-β and start to proliferate 

to restore liver cell mass [46]. TGF-β mediates its effect by binding to the extracellular 

domain of TGF-β receptor 1 or 2 and, subsequently, activates Sma and Mad Related 

(SMAD) proteins 2/3 that are attached to the intracellular domain of the TGF-β receptors. 

The activation (by phosphorylation) of Smad 2/3 can be inhibited by Smad7. Following 

activation, Smad 2/3 recruits Smad 4 and the protein complex is then translocated to the 

nucleus where it initiates the transcription of selective (TGF-β target) genes [40,47,48]. 

Under normal conditions, the effects of TGF-β are counteracted by a pseudo-TGF-β 

receptor named Bone morphogenetic protein (BMP) and Activin Membrane Bound 

Inhibitor (BAMBI) [49]. BAMBI is highly expressed in quiescent HSCs under normal 

conditions, which is suppressed upon liver injury by activation of Toll-like receptor-4, 

e.g. by lipopolysaccharide (LPS). In the absence of BAMBI, TGF-β is directed to the 

TGF-β receptor 1 or 2 and activates the SMAD signaling cascade [49,57]. Bone 

morphogenetic protein-7 (BMP-7) also suppresses the effect of TGF-β in HSCs and 
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prevents liver fibrosis [50]. TGF-β expression in HSC is also reduced by antagonists of 

the cannabinoid receptor [51,52]. In endothelial cells, low concentrations of TGF-β 

induce angiogenesis, but at high concentrations it actually suppresses angiogenesis [53]. 

TGF-β may also induce epithelial-mesenchymal transition (EMT) giving rise to 

myofibroblasts, although this phenomenon is still debated and putative mechanisms 

underlying this transition are largely unknown [54-56].  

  

 

 

 

 

 

 

 

Figure 2. Cell Signaling in HSC via activation of different receptor thought biological ligands. 

Abbreviations: Tumor necrosis factor (TNF), Platelet derived growth factor (PDGF) receptor (R), 

Transforming growth factor beta (TGFβ), Sma and Mad related protein (smad), Lipopolysaccharide (LPS), 

Toll like receptor (TLR), Nuclear factor kappa B (NFkB), Interferon regulatory factors (IRF), Bone 

morphogenetic protein and Activin Membrane Bound Inhibitor (BAMBI), Interferon gamma (IFNγ), Janus 

kinase, Leptin receptor (ObRb), Phosphoinositide 3 kinase (PI3K), Protein kinase B (AKT), mechanistic 

target of rapamycin (mTOR), Adiponectin (Adipo), Peroxisome proliferator-activated receptor (PPAR), 

inhibitory Kappa B (IkB) and IkB kinase (IkK). Solid lines show activation and dotted line shows 

inhibition, blunt head shows inhibition of the binding of factors, arrows show activation.  

LPS-mediated repression of BAMBI is not the only pathway by which TGF-β 

exerts its effects in promoting liver fibrosis. Several other factors downstream of LPS-

TLR4 signaling result in the progression of liver fibrosis. In activated HSCs (aHSCs), 

LPS-mediated TLR4 activation leads to the translocation of Nuclear Factor kappaB 

(NFĸB) to the nucleus and this induces transcription of pro-inflammatory cytokines, 

including Interleukin-8 (IL-8), monocyte chemoattractant protein 1 (MCP-1) and 

RANTES [47]. TLR4 activation in endothelial cells leads to angiogenesis and sustained 
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exposure of endothelial cells to low concentrations of LPS results in the secretion of IL-

10 thereby inactivating CD4
+
 cells and inducing tolerance against LPS [58]. The most 

significant role of LPS-TLR4 signaling is carried out by Kupffer cells in the early stages 

of liver fibrosis. LPS-TLR4 activation in KC leads to secretion of both TNF-α and TGF-β 

that has stimulatory effects on HSCs [57]. Hepatocytes are not much affected by LPS 

directly and therefore it is believed that LPS-induced TLR signaling in HSCs is the 

predominant pathway that promotes liver fibrosis after microbial infection [49]. Platelet-

derived growth factor (PDGF) and vascular endothelia growth factors (VEGFs) are 

secreted by endothelial cells and are pro-mitogenic molecules. PDGF activates its 

transmembrane PDGF-receptor, tyrosine kinase (TK) and extracellular signal regulated 

protein kinase (ERK) pathway that regulate the transcription of the factors involved in 

cell proliferation and fibrogenesis. TGF-β and PDGF have synergistic effect on HSCs 

migration and expression of MMPs [59]. PDGF can also activate the PI3K-Akt signaling 

pathway and induces HSCs proliferation [60].  

 

 

 

Figure 4. Interaction of Various cells following an injury. In the initiation phase dying hepatocytes 

activate KC and HSC release growth factors and inflammatory cytokines, Cholangiocytes also release 

TGFβ. During perpetuation phase HSCs become fully activated characterized by increased secretion of 

ECM and TIMPS while decrease secretion of MMP and net result is remodeling of ECM. During resolution 

phase macrophages secrete MMP that’s degrades ECM followed by HSC apoptosis. 

Janus kinase (Jak)-dependent activation of Signal Transducer and Activator of 

Transcription (STAT) has an important role in the growth and differentiation of almost 

every cell type in the liver. Jak is phosphorylated through the activation of specific 

receptors by cytokines like IL-6, IFN-gamma and leptin receptors. IL-6 binds to the 

membrane-bound surface receptor gp130 and mediates Stat3 activation [61]. In 
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hepatocytes, Stat3 activation enhances cell cycle progression thereby potentiating liver 

regeneration. 

Leptin, PDGF, EGF and HGF mediate the activation of Stat3 in HSCs thereby 

inducing fibrosis. Leptin is a hormone synthesized by adipose tissue that regulates energy 

metabolism and also promotes the EMT that is mediated through Hedgehog signaling 

[62]. Leptin stimulates the expression of collagen 1a1 and enhances survival signals and 

proliferation of the HSCs [63-65]. In Kupffer cells Stat3 activation results in diverse 

effects that are dependent upon the cytokine profile and related regulatory intermediate 

proteins. For example, IL-6-gp130-mediated signaling results in activation of 

inflammatory pathways, while activation of the IL-10-IL10R-Stat3 pathway results in an 

anti-inflammatory response, which is carried out via silencing mediator of cytokine 

signaling-3 (SOCS3). SOCS3 inhibits the IL-6-mediated inflammatory signaling cascade 

by binding to gp130 [66,67]. 

Tumor Necrosis Factor-alpha (TNF-α) is produced by KCs in response to LPS. 

HSCs and hepatocytes express TNF-α receptors, which upon activation lead to the 

nuclear translocation of NFĸB. NFĸB is a pleotropic nuclear factor that regulates the 

expression of multiple anti-apoptotic (Bcl-2, Bcl-XL and Bfl-1) and pro-apoptotic (Fas, 

FasL and DR4) proteins [68]. TNF-α also activates apoptosis-related caspases via fas 

associated death domain (FADD) attached to the intracellular side of the TNF-receptor. 

Therefore, TNF-α signaling has diverse effects depending on the cell type and the 

downstream activated signaling pathways. In HSCs, TNF-α-mediated NFĸB activation 

enhances cell survival, whereas activation of caspases leads to apoptotic signals [69,70]. 

The balance between the pro-apoptotic and anti-apoptotic activity depends upon the basal 

levels of NFĸB and its inhibitor IĸB. In activated HSCs, the basal activity of NFĸB 

increases due to a drop in activity of IĸB-α, thereby preventing apoptosis and promoting 

proliferation. Hepatocytes express both TNFR1 and TNFR2. In chronic liver injury, 

TNFR1 leads to the activation of pro-apoptotic caspases via fas-associated death 

receptors thereby leading to loss of the hepatocytes [47]. 
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Eicosanoids 

Eicosanoids, e.g. prostaglandins and leukotrienes, are inflammatory mediators 

produced in response to endotoxin, enterotoxins, toxic viral proteins and mechanical or 

thermal injury. Eicosanoids are produced from arachidonic acid (AA) that, itself, is 

synthesized from membrane phospholipids by the action of phospholipase A2 (PLA2) 

[71,72]. AA is either converted into leukotrienes through the lipooxygenase pathway or 

into prostaglandins via the cyclooxygenase pathway. Kupffer cells and infiltrating 

macrophages synthesize LTA4 through the subsequent action of 5-LO-activating protein 

(FLAP), and 5-lipoxygenase (5-LO), after which it is released into the extracellular space 

[72]. LTA4 is taken up by the hepatocytes that convert LTA4 to LTC4 through the action 

of LTC4 synthase. Next, LTC4 is exported from hepatocytes and converted into LTD4 and 

LTE4 by membrane-bound gamma-glutamyl transpeptidase (γGT) and amino-peptidase, 

respectively [72]. LTD4 and LTE4 activate the G protein-coupled receptors CysLT1 and 

CysLT2 on target cells, such as Kupffer cells, sinusoidal endothelial cells and 

myofibroblasts, and induce Ca
+2 

mobilization, vasoconstriction,  bronchoconstriction, 

vascular permeability and chemoattraction of neutrophils and eosinophils (Figure 3) [73]. 

Leukotrienes are degraded via peroxisomal β- and ω-oxidation and the metabolites are 

cleared via the urine [72]. Recent studies show that HSCs contain the complete 

leukotriene synthesis pathway, including 5-LO, FLAP and LTC4 synthase and are able to 

produce LTC4 (Figure 3) [74]. Leukotrienes induce lung fibrosis through binding to the 

CysLT receptors. CysLT receptor antagonists like montelukast and zafirlukast are used 

clinically to prevent bronchial asthma [75]. LTD4 receptor inhibition by montelukast also 

represses the induction of fibrosis in a model of cholestasis-induced liver fibrosis [76]. 

Leukotrienes and prostaglandins have been reported to have opposite roles in fibrotic lung 

disease [77]. However, in the liver it has been shown that inhibition of COX-2 and 5-LO 

both attenuate inflammation and fibrosis via repression of the synthesis of prostaglandins 

and leukotrienes by Kupffer cells [78]. Prostaglandins, depending upon their type, have 

diverse cellular functions and play a key role in inflammation and allergic reactions. They 

inhibit apoptosis and immune response, but initiate cell proliferation and angiogenesis, 

e.g. PGE2 inhibits collagen1a1 production by HSCs via inhibition of TGF-β [79]. This 

shows that the downstream effects of leukotrienes and prostaglandins are cell type- and 

tissue-specific. Collectively, these data show that leukotrienes and prostaglandins have a 

significant impact on the liver inflammation and onset of liver fibrosis.  
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Figure 3. Leukotriene synthesis pathway in the liver. In the liver the inflammatory signal triggers the release of 

membrane phospholipids that are converted to arachidonic acid followed by the conversion to Leukotriene (LT) A4. 

LTA4 is secreted (by Kupffer cells) and taken up by hepatocytes. LTA4 it is conjugated with glutathione in an enzymatic 

reaction driven by LTC4 synthase. LTC4 is either exported via Mrp1 or some related transporter to the exterior of the 

cells where it is converted to LTD4 by extracellular enzyme gamma glutamyl transpeptidase and further to LTE4 by 

dipeptidase. Leukotriene B4 is synthesized by the hydrolysis of LTA4 in the extracellular space. 

Nuclear Receptors 

Transdifferentiation of HSCs to a fibrogenic phenotype is associated with major 

metabolic and transcriptional changes. Also ligand-activated transcription factors of the 

nuclear receptor (NR) family are involved in this. The typical characteristic of HSCs 

transdifferentiation is the loss of the cytosolic lipid droplets that contain retinyl palmitate 

[11,12]. This phenomenon has generated significant interest in analyzing the roles of 

retinoic acid receptors (RARs) and Retinoid X receptor (RXR) in the activation process. 

Indeed, both natural and synthetic ligands of these nuclear receptors modulate 

proliferation and/or activation of HSCs. Activation of RXR repress proliferation, and 
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synthesis of collagen and fibronectin, while RAR activation also suppressed the 

expression of fibrosis markers, but did not affect HSCs proliferation [80]. In line with 

these observations, overexpression of RXR suppressed CCl4-induced liver fibrosis in rats 

[81,82]. However, the use of vitamin A to suppress liver fibrosis is a controversial issue 

as hypervitaminosis A is also associated with liver injury and fibrosis. Recent studies on 

the role of NR in liver fibrosis have particularly focused on the Peroxisome Proliferator-

Activated Receptor gamma (PPAR-γ). Endogenous ligands of PPAR-γ are specific fatty 

acids, but this transcription factor is also activated by thiazolidinediones and 

prostaglandin-derivatives and initiate transcription of adipogenesis-associated genes. 

PPAR-γ expression is high in quiescent HSCs and sharply drops during 

transdifferentiation of HSCs. PPAR-γ ligands have been shown to attenuate HSCs 

activation and repress liver fibrosis [83-85]. 

Other studies have shown that the Farnesoid X receptor (FXR) is also involved in 

the activation of HSCs and fibrosis in mice [86,87]. FXR is known as the bile salt sensor 

and regulate bile salt synthesis and transport activities of the hepatocyte. Low levels of 

FXR are also detected in HSCs. A synthetic agonist of FXR was shown to induce the 

expression of PPAR-γ and thereby reduce the expression of TIMP1 and resolve liver 

fibrosis. However, recent studies show that human stellate cells hardly contain FXR [88] 

and thus may not play a role in liver fibrosis in humans.  

Oxidative stress and its implication during liver fibrosis 

Oxidative stress is defined as an imbalance between pro-oxidants and antioxidants 

[89]. The term pro-oxidant can be used for any substance that produces reactive oxygen 

species directly or indirectly. “Direct” pro-oxidants include transition metal ions like iron 

and copper. “Indirect” pro-oxidants include anticancer drugs or their metabolites. Normal 

metabolism also produces reactive oxygen species (ROS), such as superoxide anions and 

hydrogen peroxide, in particular in metabolically highly active organ like liver. However, 

this does not lead to oxidative stress as sufficient anti-oxidant capacity is present to 

neutralize these potentially toxic compounds. As a result of inflammation, ROS 

production is strongly increased during liver diseases. Pro-oxidants like superoxide 

anions, nitric oxide (NO) and hydrogen peroxide (H2O2) are produced by inflammatory 

and immune cells, including neutrophils and natural killer cells [89,92]. Cytokines and 
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growth factors that are released trigger a cascade of cellular events in the target cells 

resulting in oxidative stress and changes in the intracellular redox potential [93]. A 

disturbance in intracellular redox potential may cause damage to biomolecules like 

proteins, DNA and membrane lipids [94]. Depending upon the recovery mechanism and 

the level of redox shift, this may lead to activation of apoptotic signaling pathways and/or 

necrotic cell death [95,96]. 

Liver cells harbor several antioxidant mechanisms to cope with the endogenous 

and pathogen-induced ROS. These antioxidant mechanisms include antioxidant enzymes, 

antioxidant vitamins A, C and E and an efficient system for synthesis and recycling of the 

antioxidant peptide glutathione (GSH).  

There are several types of antioxidant enzymes, e.g. superoxide dismutases 

(SOD), catalase and glutathione peroxidases. SODs are classified into three types based 

on their subcellular localization. Manganese-SOD (MnSOD/SOD1) is localized in 

mitochondria [97] and Copper/Zinc-SOD (Cu/Zn/SOD2) resides in the cytoplasm with a 

few reports claiming a substantial amount of CuZnSOD being present in peroxisomes 

[97,98]. Finally, extracellular-SOD (ecSOD/SOD3) is, as the name implies, secreted into 

the plasma or extracellular space [89]. Superoxides that are produced in the electron 

transport chain or in other metabolic pathways are highly reactive and therefore 

potentially toxic for the cell. The SODs convert superoxide anions into H2O2. H2O2 is less 

toxic than superoxide, but still has the ability to form free radicals. Therefore, H2O2 must 

be metabolized to prevent cell damage. Catalase is a peroxisomal enzyme and converts 

H2O2 to water and oxygen. Alternatively, H2O2 is detoxified by glutathione peroxidases 

(GPx) that convert it into water thereby forming oxidized glutathione (GSSG) [89]. Eight 

different isoforms of GPx exist with different subcellular locations, but GPx1 is the most 

dominant form in the liver. Glutathione reductase, a flavoprotein enzyme, regenerates 

GSH from GSSG, with NADPH acting as reducing agent. 

The main antioxidant in the body is glutathione [99], which exists in either a 

reduced (GSH) or an oxidized (GSSG) state. Hepatocytes synthesize GSH, which is used 

both as an intracellular anti-oxidant and is exported to interstitial spaces and blood to 

prevent H2O2-induced tissue damage. Blood also contains relatively high levels of 

glutathione (approximately 1 mmol/L), over 90% of which is in the reduced state (GSH) 

[101]. The high cellular concentrations of glutathione (up to 5 mM in the liver) function 
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as a buffer, preventing reactive oxygen species (ROS) to react with other vital cellular 

components [100]. In enzymatic reactions, glutathione can donate a reducing equivalent 

(H
+
+ e

-
) to unstable reactive oxygen species. Consequently, glutathione becomes reactive 

itself. In the presence of glutathione peroxidase (GPx) GSH reacts with H2O2 to form 

water and oxidized glutathione (GSSG). Glutathione seems an important anti-oxidant for 

activated HSCs, since it has been reported that HSCs contain increased amounts of 

glutathione compared to quiescent HSCs [95,102].   

 

 

 

 

 

 

 

 

 

Figure 5. Mechanisms of neutralizing reactive oxygen species in HSC. Oxidative stress leads to the 

production of hydrogen peroxide (H2O2) due to super oxide dismutase activity. H2O2 is neutralized either by 

GSH peroxidase-catalyzed reaction to form disulfide Glutathione (GSSG ) and water or catalase dependent 

reaction to produce H2O and molecular Oxygen O2.  

GSH is not only acting as an antioxidant, but it is also essential for the 

biotransformation of endogenous molecules and drugs. Oxidized glutathione (GSSG), 

glutathione conjugates of drugs, prostaglandins and leukotrienes are exported from the 

cell via ABC transporters, such as multidrug resistance-associated proteins (MRP1, 

MRP2, MRP4, MRP6) or organic anion transporters, like OATP1 and OATP2 [103-108]. 

Inside cells, oxidized glutathione (GSSG) is recycled back to reduced glutathione (GSH) 

by glutathione reductase. Exported GSH/GSSG is catabolized to its constitutive amino 

acids by membrane bound gamma glutamyl transpeptidase (γGT) that is present on many 

cell types including cholangiocytes and endothelial cell [31]. 



17 | P a g e  

 

ABC transporters and their putative role in Liver fibrosis 

In liver disease, all liver cells are confronted with the same pathophysiological 

conditions. However, the cellular response towards these conditions is very different 

depending on cell type. Liver injury is characterized by damage to hepatocytes and 

subsequent decline in liver function. HSCs resist these harsh conditions and even become 

proliferative. One adaptation of the activated HSCs is the increased synthesis of 

glutathione that may protect these cells from the oxidative stress associated with liver 

damage [109]. A second mechanism to protect against cytotoxic conditions is the 

increased expression of specific substrate transporters that export harmful compounds 

from the cell [110]. The phenomenon of acquiring resistance to cytotoxic compounds is 

well known from studies on cancer. Cytostatic drugs are meant to kill the rapidly 

proliferating cancer cells, but often they become resistant by increasing the expression of 

drug transporters present in the cellular membrane that pump out these anticancer drugs 

[110]. These drug transporters belong to the superfamily of ATP binding cassette (ABC) 

transporters. The human genome encodes 48 different ABC transporters that, based on 

structural similarities, are subdivided in 7 subfamilies A to G. Only few of the ABC 

transporters are directly involved in multidrug resistance of cancers cells, and these 

include P-gp/MDR1 (ABCB1), MRP1 (ABCC1) and the breast cancer resistance protein 

(BRCP/ABCG2). Most ABC transporters function in normal physiological processes and 

transport endogenous substrates like lipids, bile acids, bilirubin, etc. Also the ABC 

transporters typically associated with drug resistance may be expressed in normal tissues 

including lung, brain, kidneys, intestine, liver and blood cells [111-114]. The main 

function of these exporters in these tissues is to protect the cells from endogenously 

produced toxic compounds and metabolites [113]. 

The best characterized ABC transporter is P-gp/MDR1 that is encoded by the 

ABCB1 gene. It is a 170 kDa glycoprotein containing 1280 amino acids. Structurally, it 

consists of two homologous halves, each of which consists of 6 transmembrane domains 

and a cytosolic ATP binding domain. Humans only contain one MDR1 gene, while 

rodents have 2: Mdr1a and Mdr1b. MDR1 transports a great variety of structurally 

unrelated substrates across the plasma membrane, hence its characterization as a 

multidrug transporter [110]. Its closest homolog, MDR3 (Mdr2 in rodents) is not 

associated with multidrug resistance, but is a transporter of phospholipids, like 
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phosphatidylcholine and ethanolamine. It resides in the canalicular membrane of 

hepatocytes and transports phospholipids to the bile, where these form mixed micelles 

with bile salts. The bile salt/phospholipid-mixed micelles are the carriers for lipophilic 

compounds in the bile and intestine, so that they can either be efficiently absorbed or 

secreted via the feces [3,111].  

Like MDR1/ABCB1, also members of the ABC subfamily C are associated with 

multidrug resistance. These are referred to as multidrug resistance-associated proteins 

(MRPs). This subfamily consists of 13 members and they transport organic anions, 

regulate chloride channels (CFTR) and act as ATP sensors (ABCC8 and ABCC9) [111]. 

ABCC1 (MRP1) is the founding member of the C-subfamily. Mrp1 is most prominently 

expressed in lung, testis, kidney and peripheral blood mononuclear cells [111]. Under 

healthy conditions, low levels of MRP1 are detected in the liver and intestine. MRP1 

transports a great variety of compounds, including organic anions, reduced glutathione 

(GSH), oxidized glutathione (GSSG), cysteinyl leukotrienes, prostaglandins and 

glucuronide- and sulphate-conjugated hormones [105,115]. It also transports aflatoxin 1 

and alkaloids (vincristine and vinblastine) [116]. The ratio GSH/GSSG is an indicator of 

the cellular redox status and MRP1 seems to play important role in maintaining the redox 

status by exporting the cellular GSH and GSSG [100].  

ABC transporters are expressed by lymphocytes, natural killer cells and dendritic 

cells and have role in immune cell mediated inflammation as they are able to transport  

prostaglandins and leukotrienes. Multidrug resistance (-associated) protein-dependent 

initiation and perpetuation of inflammation has been demonstrated in in vivo studies for 

example exogenous treatment with leukotrienes in Mrp1 knockout mice that restored the 

migration of dendritic cells [117,118]. IL-6-induced expression of Mrp1 may be an 

adaptive response to enhance cytoprotection and leukotriene export [119]. Similarly, 

MRP1 expression is induced in the inflamed epithelium of patients with inflammatory 

bowel disease and this was shown to protect these cells from cytokine-induced apoptosis 

[121]. P-gp and Mrp1 are also associated with cytoprotection in hepatic progenitor cells. 

Mrp1 expression is enhanced in the progenitor cell compartment after partial hepatectomy 

[120]. The expression of Mrp1 is induced upon activation of HSCs and inhibiting its 

transport function by MK571 induced necrosis in these cells. Thus, Mrp1 may be an 

important facilitator in the development of liver fibrosis [122]. However, a direct role of 
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Mrp1 in cytoprotection of HSCs has not been demonstrated yet, as these experiments 

were performed with the pan-Mrp inhibitor MK571, which is also know to antagonize the 

CysLT receptors [123]. Still, a putative role of Mrp1 in stellate cell biology makes it a 

relevant target for detailed studies to delineate its role in liver fibrosis, including the 

identification the substrate(s) involved. Detailed knowledge about this may lead to the 

development of novel antifibrotic therapies. 

Therapeutic targeting for liver fibrosis 

Despite our increasing knowledge about the cellular processes leading to liver 

fibrosis, no effective treatment is available yet for this condition, other than removing the 

causative agent(s) and/or liver transplantation. There is ample evidence that liver fibrosis 

is, at least partly, reversible [40]. Liver fibrosis was shown to regress/resolve and scar 

tissue is replaced by functional liver mass, when the liver damaging conditions are 

eradicated [69,124]. However, when left untreated, liver fibrosis may progress to 

cirrhosis, which irreversibly disturbs the architecture of the liver and predisposes patients 

for liver cancer. It is therefore of eminent importance that anti-fibrotic therapy is started 

as early as possible. During the last decade major advancements have been made in 

understanding the pathogenesis of liver fibrosis and cirrhosis, including the contribution 

of the individual cell types and the intra- and intercellular signaling pathways. This now 

provides us with an array of molecular targets that are tested for their anti-fibrotic action 

[37,38,47,125]. Table 1 summarizes the current leads to develop therapies to treat fibrosis 

and highlights the potential therapeutic effects as well as the limitations.  

For successful therapeutic interventions the accurate diagnosis and elimination of 

the causative factor is the most important factor without which the treatment of liver 

diseases would be inefficient. The primary focus should be the restoration of the 

parenchyma (the hepatocytes). This can be achieved by intake of antioxidants (vitamins) 

that result in reduction of oxidative stress-induced damage. However, this strategy has not 

been very successful yet. Although the gradual loss of hepatocytes can also be inhibited 

by the administration of either hepatocyte growth factor(s) or caspase inhibitors like VX-

166 that prevent  apoptosis in hepatocytes [126], however, this treatment has the potential 

threat of generalized inhibition of apoptosis and  uncontrolled cell growth predisposing 

for cancer development. 
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Hepatic stellate cells and myofibroblast are fibrogenic cells that produce 

extracellular matrix, therefore they are the main target for the development of antifibrotic 

therapies. The inhibition of HSCs activation and induction of apoptosis/necrosis during 

liver fibrosis has been a main focus. The limitations in development of antifibrotic drugs 

are the potential toxic side effects when drugs that are meant to target HSCs are given 

systemically  [127,128]. The drugs that show promising antifibrotic effects in-vitro, often 

show limited efficacy in vivo and/or give rise to unwanted cytotoxic and antiproliferative 

effects on other cells in or outside the liver. This problem can be circumvented by cell-

specific targeting of drugs to hepatic stellate cells [127-129]. In the following section we 

discuss potential anti-fibrotic drugs that are tested without specific targeting to stellate 

cells, but their efficacy could even be improved using this strategy. 

TGF-β/Smad- and PDGF/ERK-dependent signaling pathways have pronounced 

effect on HSCs activation and matrix production [125,130-134]. Due to their ubiquitous 

presence of TGF-β, all liver specific cells will be affected by these mediators when 

applied systemically. So, these pathways can only be modulated therapeutically when 

highly selective targeting to the hepatic myofibroblasts is achieved. TGF-β signaling 

inhibition can be achieved by inhibition of cannabinoid I receptor [51,52]. Similarly, 

Endothelin (ET) receptor A and B are expressed by stellate cells. The ET receptor 

inhibitor bosentan has anti-proliferative effect on HSCs [135], but the drawback of this 

compound is that it adversely inhibits the transport activity of BSEP and may cause 

cholestasis, in particular in genetically-prone patients [136]. NF-kB inhibition has been 

evaluated in vitro and in vivo. Inhibition of NF-kB sensitizes HSCs to apoptotic cell 

death, but this also leads to hepatocyte cell death [45,46]. Nerve growth factor (NGF)-

dependent stimulation of P75 and adiponectin-dependent activation of AMPK can inhibit 

NF-kB signaling that promotes myofibroblast apoptosis [13,137]. Therefore, inhibiting 

this pathway can also be a promising therapy. Hedgehog signaling has been implicated in 

the activation of HSCs and EMT. Targeting this pathway attenuates liver fibrosis and in 

vivo studies are promising [138,139]. 

PPAR-γ expression in the HSC is associated with the quiescent phenotype. 

Activation of HSCs is accompanied by loss of PPAR-γ expression. A synthetic agonist of 

FXR induces the expression of PPAR-γ. Furthermore, synthetic agonists of PPAR-γ, such 

as pioglitazone and troglitazone, are already used as anti-diabetic drugs [83,140-142]. 
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HSC 

PPAR-γ agonist 

Pioglitazone 

Troglitazone 

Decrease HSC activation Limited effects [83,140-

142] 

HSC 

FXR agonist 

INT 747 Synthetic bile analog  Low expression of FXR in 

HSC. No data about toxicity 

yet  

[88] 

HSC 

HMG-CoA 

reductase inhibitor 

Atorvastatin (Lipitor) 

lowers cholesterol 

Decreses, expression of 

pro-fibrotic cytokine and 

HSC proliferation 

Limited effect on hepatic 

inflammation 

 

[143] 

Renin angiotensin 

system 

Losartan 

Telmisartan 

Reduced fibrosis in CCL4 

models. Decreases pro-

fibrogenic response 

 [144,145] 

HSC  

Hedgehog signaling  

GDC-0449 Prevents fibrosis in 

chronic model of fibrosis 

Not yet tested [138] 

Canabanoid 

receptor (CB)1 

inhibitor 

Rimonabant 

SR141716A 

lowers  TGFβ1 

 

Not yet tested [51,52] 
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Pirfenidone 
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TGFβ  receptors are 

ubiquitous 

 

 

[146] 

PDGF and VEGF Neutralizing, 

Antibodies, siRNA 

Sunitinib, Imatinib, 

mesylate 

Antifibrotic in in vivo Wide spread effects not 

effective in long term 

[125,130-

134] 

Endothelin A and 

Breceptor 

antagonist 

Bosentan Regulates wound 

contraction and blood flow 

Not yet tested [135] 
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 MMP 

Mab against TIMP 

 

MMP9 Mutant  

MMP1  

Induces apoptosis in HSC 

Scavanges TIMP1 

Degrades Matrix  

Not yet tested 

 

 

[147-149] 

MRPs inhibition MK571 (also LTD4 

receptor antagonist) 

Induces necrosis in HSC Potential risk of liver 

carcinogenesis 

[122] 

LTD4 receptors  Montelukast Decreased TIMP, VEGF,  

TGFβ, and induced MMP-

9   

No reported trial for Liver 

fibrosis 

[76] 

G
en

e 

th
er

a
p

y
 MicroRNA miR29 Reduces collagen express 

 

Gene therapy associated risk [150] 
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Bone marrow cells 

transplantation 

Induces expression of 

MMp9 

Degrade Matrix  [151] 

Macrophages Induces expression of 

MMp9 

Degrade Matrix Autoimmunity  [152] 

Table No. 1. Proposed therapeutic drug targets for fibrosis treatment 
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So far, these drugs showed limited anti-fibrotic efficacy that could be due to 

limited expression of PPAR-γ in activated HSCs. Drugs that positively regulate the 

expression of PPAR-γ may therefore be considered as co-therapy. Angiotensin II receptor 

inhibitors (Losartan and Telmisartan) showed antifibrotic effects in patients with 

Hepatitis C [144,145]. Cholesterol lowering drug (Atorvastatin) reduced HSCs 

proliferation in the bile duct ligation (BDL) model of liver fibrosis [143]. As these drugs 

are already used in clinic they have potential for immediate availability for the treatment 

of liver fibrosis. Short hairpin microRNAs are small regulatory RNAs that post-

transcriptionally control the expression of genes [153]. Recently, it has been shown that 

miRNA 29 represses the expression of collagen [150], however, the unavailability of the 

non-viral expression system and limited transfection efficiency are the main hurdles for 

their selection as therapeutic strategy. 

Matrix protein synthesis and degradation are balanced dynamic processes in the 

healthy liver. This process is under strict control of MMPs, which degrade matrix 

proteins. The activity of MMPs is counteracted by tissue inhibitors of metalloproteases 

(TIMPs). MMPs can be utilized for the degradation of ECM during fibrosis. Macrophages 

secrete MMP13 and mediate th e resolution of fibrosis in vivo. Therefore, cell-based 

therapy (macrophage and bone marrow cell transplantation) can be explored as a therapy, 

but has the inherent potential of exacerbating the inflammation [151,152]. On the other 

hand, TIMP1 has an anti- apoptotic effect on HSCs.Therefore, an inhibitor (monoclonal 

antibody) of TIMP1 is considered as a therapeutic option. 

Cysteinyl leukotrienes are also potential therapeutic targets for the regression of 

liver fibrosis [75,154]. Enhanced cellular levels of leukotrienes are associated with liver 

cirrhosis and lung fibrosis. In the liver, cysteinyl leukotrienes bind to LTD4/LTC4 

receptors and induce contraction of myofibroblasts and activated HSCs, increasing portal 

hypertension. Furthermore, leukotrienes increase intestinal permeability resulting in 

enhanced levels of endotoxins in the blood [155,156]. The LTD4 receptor antagonist 

montelukast is being assessed for its antifibrotic effects, but no data are available yet 

[57,157].  

Reversing the activation state of hepatic myofibroblasts would be the ideal 

therapeutic effect of an antifibrotic drug. However, also selective killing of these cells can 

be considered as long as a portion of the (quiescent) HSCs remain unaffected to 
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repopulate the recovering liver. MK571 was shown to lead to HSCs necrosis, even in the 

absence of any other cytotoxic trigger [122]. This may be the result of inhibiting the 

multidrug resistance associated proteins (Mrp1). MK571 also acts as an antagonist of the 

LTD4 receptor and may have off-target effects that cause necrosis. So, it first needs to be 

established which pathways are involved in MK571-mediated HSCs necrosis, before it 

can be further developed for a therapy to treat liver fibrosis. 

Scope of the thesis  

Chronic liver diseases lead to liver fibrosis, which may progress to cirrhosis and 

liver cancer and are associated with high morbidity and mortality. Liver hepatocytes die 

while hepatic stellate cells and myofibroblast become activated during liver disease. The 

aim of the work described in this thesis is to identify targets to develop therapies for liver 

fibrosis, specifically focusing on modulating the activation state of hepatic 

myofibroblasts.  

In Chapter 2, we analyzed the role of the multidrug resistance-associated protein 1 

(Mrp1/Abcc1) in the development of liver fibrosis in vitro and in vivo. Primary rat hepatic 

stellate cells (HSCs) and portal myofibroblasts (PMFs), as well as human LX-2 cells, 

were treated with pharmacological inhibitors of Mrp1 or Mrp1-specific RNA interference 

and their effects on the activation of these cell types were analyzed. Glutathione and 

leukotriene levels were manipulated to identify the Mrp1 substrate that modulates the 

activation of these cells. Finally, wild type and Abcc1
-/- 

mice were exposed for 12 weeks 

to CCl4 to establish the role of Mrp1 in liver fibrosis in vivo. 

In order to establish the potential use of pharmacological inhibitors of Mrp1 for 

the treatment of liver fibrosis, we compared in chapter 3 the cytotoxic effect MK571 and 

reversan on hepatocytes, HSCs and portal PMFs in an in vitro model of liver disease. The 

various liver cell types were exposed to oxidative stress in combination with MK571 or 

reversan and necrotic cell death was quantified. Moreover, we quantified the intra-cellular 

levels of reduced and oxidized glutathione under these conditions and studied the 

specificity of the inhibitor to inhibit Mrp1-mediated transport. 

In chapter 4, we analyzed the antioxidant defense mechanisms acquired by HSCs 

during the process of activation. Glutathione levels and expression of antioxidant 

enzymes were quantified in quiescent, activating and fully activated rat HSCs. 
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Glutathione depletion and repletion experiments, as well as inhibitors of anti-oxidant 

enzymes were used to determine their role in protecting HSCs from oxidative stress.  

In Chapter 5, we analyzed the role of an intracellular ABC transporter, 70 kDa 

peroxisomal membrane protein (PMP70) in HSCs and PMFs activation. We analyzed the 

expression and cellular distribution of peroxisomal proteins in the process of HSC/PMF 

activation using immunofluorescence microscopy. PMP70 expression was inhibited by 

RNA interference or induced by recombinant production of PMP70-GFP and the effect 

on the expression of markers of fibrosis, including collagen1a1 and alpha-SMA, were 

determined. 

In Chapter 6, we summarize the data presented in this thesis and discuss their 

relevance for liver fibrosis and the treatment of chronic liver diseases. 
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ABSTRACT 

Background & Aims: Liver fibrosis invariably develops during chronic liver disease and 

predisposes for cirrhosis and liver cancer. Fibrosis is caused by myofibroblasts that 

produce excessive amounts of extracellular matrix proteins (ECM), which impair liver 

function. Hepatic stellate cells (HSCs) and portal myofibroblasts (PMFs) are important 

contributors to liver fibrosis and are therefore prime targets to develop anti-fibrosis 

therapy. HSCs express high levels of the Multidrug resistance-associated Protein 1 

(Mrp1), a transporter of leukotriene C4 (LTC4) and glutathione, and this study aimed to 

determine its role in liver fibrosis.  

Methods: Mrp1 expression/activity was modulated in primary rat HSCs, PMFs and the 

human hepatic stellate cell line LX-2 and the effect on cell survival and fibrogenic 

markers (alpha-Sma, Collagen1a1) was determined. Wild type and Mrp1 (Abcc1) 

knockout mice were exposed to CCl4-induced liver fibrosis.  

Results: Both pharmacological (Reversan) as well as genetic (siRNA) inhibition of Mrp1, 

repressed α-Sma and Col1a1 expression in rat HSCs, PMFs and LX-2 cells, without 

inducing cell death. Transient expression of Mrp1-GFP induced α-Sma expression. 

Glutathione depletion or supplementation did not change the expression of fibrogenic 

markers in HSCs and the anti-fibrotic action of reversan remained under these conditions. 

Inhibition of leukotriene synthesis (AA861) in HSCs was equally anti-fibrotic as 

inhibiting Mrp1, the LTC4 transporter. α-Sma expression and Collagen deposition were 

induced in CCl4-treated wild type mice, which was significantly reduced in CCl4-treated 

Mrp1 knockout mice.  

Conclusion: Inhibition of Mrp1 leads to suppression of liver fibrosis, most likely by 

preventing leukotriene export from hepatic myofibroblasts. MRP1 is therefore a highly 

relevant target for the treatment of liver fibrosis. 

Key words; Hepatic stellate cells, Portal myofibroblasts, Fibrosis, MRP1, Leukotriene C4 
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INTRODUCTION 

Chronic liver diseases lead to a sustained healing process that causes liver fibrosis 

and may progress to cirrhosis and liver failure. The excessive production and deposition 

of extracellular matrix (ECM) proteins, including type I collagens and fibronectins, 

disturbs the architecture of the liver and impairs liver function. Currently, no effective 

therapy exists to treat liver fibrosis. 

Hepatic stellate cells (HSCs) are important contributors to the development of 

fibrosis [1-4]. In the healthy liver, HSCs regulate retinol homeostasis and produce 

balanced amounts of extracellular matrix proteins to create the functional environment for 

the other liver cells. Cytokines and reactive oxygen species released upon liver injury 

activate HSCs, which transdifferentiate into proliferative, mobile and contractile 

myofibroblasts that produce excessive amounts of ECM proteins, while losing their 

retinol content [1,3]. In addition, hepatic myofibroblasts may originate from resident 

fibroblasts (PMFs) in the portal areas, through epithelial mesenchyme transition (EMT) 

and/or the influx of bone marrow-derived cells [3,5]. Irrespective of the origin, hepatic 

myofibroblasts express high levels of type I collagen and develop an extensive 

intracellular cytoskeleton of alpha-smooth muscle actin (α-SMA) that supports mobility 

and contractility of these cells [2,6]. Theoretically, an antifibrotic effect can be achieved 

either by selectively killing activated myofibroblasts or reversing the activation process in 

the fibrotic liver. Therefore, hepatic myofibroblasts are the prime therapeutic target to 

treat liver fibrosis.  

Earlier, we showed that expression of the Multidrug resistance-associated protein 

type 1 (Mrp1) is induced upon activation of rat HSCs in vitro and in vivo [7]. MRP1 

expression is also most prominent in activated human HSCs when compared to MRP2-6 

and MDR1 [7]. MK571, a general inhibitor of MRP function, induced necrotic cell death 

in aHSCs and thus holds promise for future antifibrotic therapies [7]. MRP1 is an ATP-

binding cassette (ABC) transporter with broad substrate specificity and is well-known for 

its adverse effect in the treatment of cancer [8,9]. Cytostatic drugs are effectively 

exported by MRP1, thereby preventing killing of cancer cells in drug therapy. However, 
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MRP1 also transports endogenous substrates, including reduced and oxidized glutathione 

[10]. Moreover, it is a high affinity transporter for leukotriene C4 (LTC4) [11]. 

LTC4 is a proinflammatory signaling molecule that is produced by various cell 

types during liver injury, including Kupffer cells, infiltrating macrophages, hepatocytes 

and activated HSCs  [12-15]. LTC4 is synthesized from arachidonic acid (AA) through the 

sequential action of 5-LO-activating protein (FLAP), 5-lipoxygenase (5-LO), and LTC4 

synthase [16,17]. Like observed for MRP1, expression of 5-LO is induced upon HSCs 

activation and leads to the release of LTC4 into the culture medium [15]. Once exported 

by Mrp1, LTC4 is converted to LTD4, which activates cysteinyl leukotriene receptor type 

1 and/or 2 (cysLT(1)R and cysLT(2)R) [18,19]. Both endocrine and paracrine signaling 

lead to the activation of HSCs by LTC4, as also observed for lung and skin fibroblasts 

[19,20]. In line with these mechanisms, LTC4 treatment promotes collagen production in 

livers of monkeys and aggravates bile duct ligation-induced liver fibrosis [21]. The 

leukotriene synthesis and signaling pathway has therefore high potential to develop 

therapies to treat liver fibrosis. Indeed, pharmacological inhibition of 5-LO (using 

CJ13,610) reduced CCL4-induced fibrosis in mice [22]. Moreover, the cysLT receptor-

antagonist monteklast lowered BDL-induced fibrosis in rats [23] 

MK571 is a general inhibitor of Mrp transporters, including Mrp1-6 [7,24-26], but 

also antagonizes the CysLT receptors [20,27]. The induction of necrosis in activated 

HSCs as observed earlier may therefore be a result of multiple actions of this compound. 

Given the broad range inhibitory actions, MK571 is prone to cause adverse side effects 

when used in vivo. To establish whether Mrp1 is a relevant therapeutic target to treat liver 

fibrosis, we studied the effects of the novel Mrp1 inhibitor reversan [28] and Mrp1-

specific RNA interference on hepatic myofibroblasts in vitro. Moreover, we analyzed 

CCl4-induced liver fibrosis in Mrp1 knockout mice. 

MATERIALS AND METHODS 

Animal: Specified pathogen free FVB/Ntac (wild type) and FVB.129P2-Abcc1atm1Bor 

N12 (MRP1 -/-) were purchased from Taconic (Taconic Europe A/S, Denmark) and 

housed under standard laboratory conditions and with free access to standard laboratory 

chow and water. The experiments were approved by the institutional committee for care 

and use of laboratory animals. 
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Induction of liver fibrosis: Liver fibrosis was induced in mice by an established protocol 

[29] with minor modifications, mainly the length of the treatment period, as the FVB 

mice are relative resistant to CCl4-induced liver fibrosis. Mice were injected with intra-

peritoneal administration of CCl4 (Sigma) dissolved in corn oil (Sigma) for 12 weeks; first 

week 2 doses at a dose of 0.5 µl/gram of body weight (gbw), 2
nd

 week 2 doses at 0.75 

µl/gbw and for the last 10 weeks 2 doses per week at 1 µl/gbw dissolved in corn oil. 

Control animals were treated with corn oil only. Mice were terminated one day after the 

last injection. Blood was collected via cardiac puncture and liver specimens were put in 

paraformaldehyde (Sigma), snap frozen in isopentane and stored at -80ºC prior to use. 

Cell isolation and culture conditions: Hepatic stellate cells (HSCs) were isolated from 

male wistar rats (500-600 g) using (12% w/v Nycodenz gradient centrifugation method as 

described previously [30]. Portal myfibroblast (PMFs) were isolated from male wistar rats 

(200-300 g) following the procedure described in [31]. The human hepatic stellate cell 

line (LX-2) was kind gift from Scott Friedman [32]. All cells were cultured at standard 

condition [30-32] with a slight modification that the HSCs medium did not contained 

nystatin immediately after isolation. All treatments on cells were carried out after 

overnight serum starvation in the absence of serum. 

Experimental design: Culture-activated HSCs (passage 1-2) or PMFs (passage 2-5) were 

seeded at 80,000 cells per well of a 6-well plate or 40,000 cells/well of a 12-wells plate. 

For LX-2 cells (120,000/well or 50,000/well in 6- or 12-wells plate) were seeded at 

standard conditions [32]. LX-2 cells were activated in the presence of Tgf-β (100 pM) for 

24 hours followed by treatment with Mrp1 inhibitor “reversan” (Tocris Bioscience, 

Bristol, UK). For identification of the MRP substrate responsible for antifibrotic effects, 

glutathione status was manipulated by GSH monoethyl ester (GSH-MEE; Sigma) to 

enhance intracellular glutathione or by buthionine sulphoximine (BSO; Sigma) to reduce 

intracellular GSH levels. Leukotriene synthesis was inhibited by using the 5-Lipo-

oxygenase inhibitor, AA861 (Sigma). All the incubations were carried out for 24 hours, 

unless otherwise indicated for individual experiments. 

MRP1 overexpression in LX-2: Human hepatic stellate cell line (LX-2) was transfected 

with MRP1-GFP expression plasmid described in [33] using Fugene (Promega) as 

transfection reagent according to manufacturer’s instructions. EGFP-N1 (cytosolic GFP; 

BD Biosciences Clontech Palo Alto, CA) plasmid was used as control plasmid. 
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siRNA transfection:  Inhibition of Mrp1 in rHSCs and LX2 was carried out using Mrp1-

specific siRNA duplexes (sequence 5’ CUC CAC CAG UAC UUU CAU A55 3’;  

Invitrogen, The Netherlands) using Oligofactmine (Invitrogen) as transfection reagent 

according to manufacturer instructions. Luciferase-specific siRNA (sequence 5’ CGU 

ACG CGG AAU ACU UCG A55 3’; Invitrogen, The Netherlands) was used as 

oligonucleotide control.  

RNA isolation, reverse-transcription-PCR (rtPCR) and real time-PCR: RNA was 

isolated using Tri Reagent (Sigma ), reverse transcribed and analyzed for gene expression 

using real-time PCR system (7900HT Fast Real-time PCR system, Applied Biosystem) 

according to  procedure described in [34]. Primers and probes used for human and rat 

ABC transporters are described in [7], and for mouse alpha-Sma, collagen1a1 and ABC 

transporters are listed in supplementary Table S1. Relative gene expression of  the gene 

of interest was measured vs. control and normalized to18S using the ddCT method. 

Micro RNA analysis: miR-29A (ID002112, Life Technologies) levels were analyzed as 

described [35] using the Taqman micro Assay and normalized to SnoRNA202 

(ID001232, Life Technologies). 

Mrp1 export activity Assay: Inhibition of Mrp activity by Mrp inhibitor (reversan) was 

carried out according to the protocol described in [7] with minor modifications. In short, 

cells were incubated with the Mrp inhibitor for 30 minutes and then loaded with CMFDA 

at a final concentration of 5 µM. After 45-60 minutes, cells were washed and refreshed 

with PBS containing appropriate inhibitor and photographs of cells were taken 

immediately using an Olympus CKX41 microscope. Cells were snap frozen at -70ºC for 

10 minutes, followed by lysis in 1% triton X. 100 µl of the cell lysate was used to 

quantify the intracellular levels of CMFDA using excitation/ emission 480/535 on a Bio-

tek FL600 microplate fluorescence reader. 

Western blot: Following incubation with indicated reagents, cultured cells were harvested 

in cell lysis buffer as described in [34]. Liver tissue was homogenized in liquid nitrogen 

and lysed in buffer described in [34]. Proteins were quantified using the Bio-Rad Protein 

Assay system (Bio-Rad). Protein samples were separated by SDS-PAGE and analyzed by 

Western blotting according to established procedures [34]. Primary antibodies used are 

described in Supplementary Table S2. Respective HRP-conjugated secondary antibodies 
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were used. Protein signals were quantified using the chemidoc XRS system and band 

intensities were quantified using Imagelab software (Bio-Rad). 

Immunocytochemistry and Immunoflourescence microscopy: Αlpha-smooth muscle 

actin (α-SMA) immunostaining on mouse liver sections was carried out using the MOM 

kit (Vector labs) according to manufacturer protocol. Collagen 1a1 staining was carried 

out using goat anti-collagen1a1 according to the procedure described in [29]. Staining  of 

collagen 1a1 was quantified by image analysis using the Cell^D analysis program 

(Olympus, Zoetermeer, The Netherlands). For in vitro culture, cells were fixed with 4% 

paraformaldehyde, labelled and analysed as described previously [36]. Primary antibody 

dilutions are listed in supplementary Table S2. Images were captured using a 

Leica SP2/AOBS confocal microscope at the UMCG Microscopy and Imaging Center 

(UMIC). 

ALT and AST measurements: Liver damage markers ALT and AST were analyzed using 

standard protocol from the manufacture (SPINREACT, S.A. Santa Coloma, Spain).  

LDH and Sytox green staining: Cell necrosis was determined by measuring relative 

LDH release from necrotic cells according to protocol described in [37] with minor 

modifications. Briefly, 100 µl of medium was loaded in 96-well flat bottom plates 

(Greiner bio-one) followed by addition of pyruvate and NADH. The rate (kinetic curve) 

of disappearance of NADH was measured (decrease in absorbance of 340 nm) for 30 

minutes. LDH activity was measured using linear portion of the kinetic curve and 

compared to a standard curve of known concentrations of LDH. Necrosis was also 

determined by assessing Sytox Green (S-7020, Molecular probes) positive nuclei 

according to protocol described in [7]. 

Statistical analysis: Statistical analysis was performed using Prism5 software. Results are 

expressed as the mean value and standard deviation. Statistical significance was 

calculated using a Student’s t-test, or one-way ANOVA with Bonferroni post-hoc 

analysis for correction for multiple comparisons. A p-value of <0.05 was considered to be 

statistically significant. 
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Figure 1. Expression of HSCs activation markers is supressed by the Mrp1 inhibitor reversan. A-D) 

Culture-activated primary rat HSCs (between 7-14 days after isolation) were exposed to 20 µM reversan 

and analysed for A) LDH release (indicator of necrosis) to the medium 24 hours after treatemnt; B) 

intracellular accumulation of the fluorescent Mrp1 substrate CMFDA as indicator off effective inhibition of 

Mrp1 after 30 minute; C) relative mRNA levels of the HSCs activation markers (α SMA and Collagen 1a1, 

normalized to 18 S as internal control) after 24 hours; D) protein expression of α SMA (untreated=D-1 and 

reversan=D-2) and Collagen 1a1 (untreated=D-3 and reversan=D-4) after 48 hours treatment, E) human 

LX-2 cells were treated for 24h with 20 µM reversan in the presence or absence of TGF-β and relative 

mRNA levels of α-SMA and Collagen 1a1normalized to 18S as internal control. F-H) Freshly isolated 

primary rat HSCs were cultured in the presence or absence of 20 µM Reversan and analysed for F) cellular 

morphology at day 7 and the relative mRNA levels of α-Sma (G) and Collagen 1a1 (H) after 1, 4 and 7 days 

in culture. Data are represented mean+/- SD of three independent experiment. * Significant difference 

(P<0.05) when compared to untreated control and # Significantly different (P<0.05) when compared to 

HSC at day 1. 
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RESULTS 

The Mrp1 inhibitor reversan represses markers of liver fibrosis in activated primary rat 

HSC and human LX-2 cells  

In order to obtain additional evidence for the vital role of Mrp1 in hepatic stellate 

cells (HSC), we exposed culture-activated primary rat HSC to reversan, a recently 

described inhibitor of Mrp1 [28]. In contrast to MK571 [7], reversan (20 µM) did not 

induce cell death in rHSCs (Figure 1A), while export of the Mrp1 substrate 

carboxymethyl fluorescein (CMF) was inhibited at these concentrations (Figure 1B). 

However, mRNA and protein levels of α-Sma and Collagen 1a1 were strongly repressed 

in rHSCs that were treated with reversan (Figure 1C and D). Similar results were obtained 

from the human hepatic stellate cell line (LX-2) after treatment with reversan, both under 

unstimulated and Tgf-β-stimulated conditions (Figure 1E). Likewise, reversan almost 

completely blocked the time-dependent induction of activation markers when freshly 

isolated (quiescent) rHSCs were culture-activated. After 7 days, they largely showed a 

quiescent phenotype (Figure 1F) and α−Sma and collagen 1a1 mRNA levels were hardly 

elevated (Figure 1G and H). Thus, in contrast to MK571, reversan does not induce 

significant levels of necrosis in rHSCs, while it is a potent inhibitor/antagonist of HSCs 

activation in vitro. Next, we performed siRNA-mediated repression of Mrp1 in activated 

rHSCs. A maximum suppression of 75% (p<0.001) of Mrp1 mRNA levels were obtained, 

which were accompanied with a significant reduction in α-Sma (-40%; p<0.001) and 

collagen1a1 (-12%; p<0.001) mRNA levels (Figure 2A). RNAi-treatment was slightly 

more effective in human LX-2 cells with a 82% (p< 0.0001) reduction in MRP1 mRNA 

levels, and led to a more robust reduction of α SMA (-62%; p< 0.0001) and Collagen 1a1 

(-43% p<0.0001) (Figure 2B). 

Mrp1 overexpression in human hepatic stellate cell line induces fibrosis markers 

In a complementary approach, we transiently transfected LX-2 cells with a 

plasmid expressing GFP-tagged MRP1 [33] and studied the effect on fibrosis markers. 

LX-2 cells show an intermediate activation status and thus can be manipulated to become 

super-activated or suppressed. The expression of the various MRP-type transporters in 

LX-2 cells is highly comparable with primary rat and human HSCs (See Supplementary 

Figure S1 A). LX-2 cells were efficiently transfected (approximately 80%) and 72 h post-

* 
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transfection MRP1-GFP was readily detected by western blot analysis (Figure 3A, 

quantification in 3B) as  

 

 

 

 

 

Figure 2.  siRNA-mediated inhibition of Mrp1 leads to a decrease in markers of fibrosis in rat HSCs 

and human LX-2 cells. HSCs were isolated and culture-activated for 7 days. HSCs (A) or LX-2 cells (B) 

were treated with siRNA-Mrp1 and control cells were treated with siRNA-Luc, followed by determination 

of the relative mRNA levels of Mrp1, αSma and Collagen1a1 (normalized to 18 S). Data are presented as 

mean +/- SD of three different experiments. * Significantly different  (P< 0.05) vs siRNA-Luc treated cells. 

 

 

 

 

 

 

 

 

 

Figure 3.  Mrp1 overexpression elevates αSma protein expression. Human LX-2 cells were transiently 

transfected with an Mrp1-GFP expression plasmid and control cells were treated with EGFP-N1. 72 h post-

transfection, cells were analysed by Western blotting (A), and α-Sma protein levels were quantified in (B); 

GAPDH was used as a loading control) or (C) Fluorescence microscopy. A distinct membrane localization 

was detected for Mrp1-GFP in transfected LX-2 cell. 
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well as by fluorescence microscopy. MRP1-GFP staining was predominantly detected at 

the plasma membrane (Figure 3C). Overexpression of MRP1-GFP resulted in a 

significant induction of α-Sma expression compared to GFP-transfected control LX-2 

cells (Figure 3A and B). Taken together, these data show that Mrp1 controls the 

activation of HSCs. 

Reversan also represses fibrosis markers in portal myofibroblasts 

Portal myofibroblasts (PMFs) are increasingly recognized as important 

contributors to liver fibrosis, together with HSCs[38,39]. Morphologically, PMFs are 

similar to HSCs, but are devoid of vitamin A-containing lipid droplets [40]. In culture, 

PMFs are highly proliferative, whereas HSCs senesce after 2-3 cell divisions. Activated 

primary rat PMFs show a comparable Mrp-expression profile as HSCs with Mrp1 being 

most dominantly expressed (Supplementary Figure S1 B). We also treated PMFs with 

reversan to determine whether Mrp1 also controls PMFs activation. Reversan (20 uM) 

treatment led to the accumulation the fluorescent substrate CMF, indicative of efficient 

inhibition of Mrp1 activity (Figure 4A). Similar as observed for HSCs, expression of α-

SMA and Collagen 1a1 were reduced in reversan-treated PMFs (Figure 4B). These data 

imply that Mrp1 plays a substantial role in activation of various cell types that contribute 

to liver fibrosis. 

 

Figure 4. Reversan inhibits the expression of activation markers in primary rat portal  

myofibroblasts. Primary PMFs were isolated from rat liver and cultured-activated for at least 7 days. Fully-

activated PMFs were treated with 20 µM reversan for 24 h and analysed for A) intracellular accumulation 

of the fluorescent Mrp1 substrate CMFDA as indicator of effective inhibition of Mrp1. B) relative mRNA 

levels of the activation markers α-SMA and Collagen 1a1 (normalized to 18 S as internal control). Values 

are mean+/- SD of three different experiments. * Significant difference (P<0.05) from the untreated control. 
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A B 

Leukotriene synthesis and export is a basal characteristic of LX-2 cells 

High affinity substrates of Mrp1 are leukotriene C4 (LTC4) and glutathione (GSH) 

[41,42]. Earlier, we showed that GSH depletion did not affect the activation state of HSCs 

[34]. To establish whether endogenous production of cysteinyl leukotrienes induce HSCs 

activation, we inhibited LTC4 synthesis by AA861 and compared its effect to the 

inhibition of Mrp1with reversan. Exposure to reversan or AA861 resulted in a similar 

reduction of mRNA levels of α-Sma and Collagen 1a1, while co-exposure to AA861 and 

reversan had no added effect, indicating that they block a common pathway (Figure 5). 

This effect was independent of the GSH levels. GSH depletion (by BSO) and 

supplementation (by GSH- MEE) did not affect the reversan-mediated reduction in α-Sma 

and Collagen 1a1 expression (Fig. 5). These data indicate that leukotrienes, and most 

likely LTC4, is a crucial Mrp1-transported compound involved in HSCs/PMFs activation. 

 

  

 

 

Figure 5. Inhibition of leukotriene synthesis and transport similarly suppress the expression of 

fibrosis markers in rat HSCs. Fully-activated primary rat HSCs were exposed for 24 h to reversan or 

AA861 (LO-5 inhibitor, preventing leukotriene synthesis) or both. Moreover, reversan treatment was 

combined with BSO (GSH depletion) or GSH-MEE (GSH supplementation) to determine the contribution 

of Mrp1 substrate GSH in the suppression of HSCs activation. Cells were harvested and analysed for 

relative mRNA levels of Collagen 1a1 (A) and α-Sma (B) and normalized to 18S as internal control. 

Representative data of 3 independent experiments are shown. 

The absence of Mrp1 reduces CCl4-induced fibrosis in mice 

To establish the role of Mrp1 in liver fibrosis in vivo, wild type and Abcc1
-/-

 (Mrp1 knock 

out) mice were exposed to CCl4-induced fibrosis. Since the Abcc1 knock out mouse is 

only available in the FVB background (which is relatively resistant to CCl4-induced 

fibrosis), a 12-week treatment period was chosen. CCl4 treatment induced hepatic Mrp1 

expression in WT mice by 3.5-fold (Figure 6A). Compensatory induction of other hepatic  



  47 | P a g e  

 

Figure 6. The absence of Mrp1 attenuates CCl4-induced liver fibrosis in mice. Abcc1 (Mrp1)
 -/-

 and WT 

(FVB) littermates were treated with CCl4 for 12 weeks, sacrificed and analysed for A) hepatic Mrp1 mRNA 

expression, B,C) serum markers of liver damage ALT (B) and AST (C). Immunohistochemistry for 

Collagen1a1 (D) and α-Sma (E) was performed to compare the level of liver fibrosis in CCl4-treated WT 

(D-1 and E-1) and Abcc1
-/- 

mice (D-2 and E-2). α-Sma protein levels were also analysed by Western 

blotting (F) and G shows the quantification of the Collagen 1a1 staining. H) shows the relative levels of 

hepatic miRNA 29A in the 4 experimental groups (normalized to SnoRNA202). Results are represented as 

mean with +/-SEM. * Significant difference using student t-test (P<0.05).  
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Mrp’s due to the absence of Mrp1 was not observed. Moreover, the relative effect of CCl4 

on the expression of Mrp2-6 and Mdr1a/b was comparable in WT and Abcc1
-/- 

mice 

(Supplementary Figure S2). CCl4 induced an increase in serum ALT and AST levels in 

WT and Abcc1
-/- 

mice to a similar extent (Figure 6B and C). As expected, the CCl4 

treatment led to induction of collagen deposition in the CCl4-treated WT FVB mice 

(Figure 6D-1, quantification in G), and α-Sma protein compared to untreated control mice 

(Figure 6E-1 and F, upper blot). Collagen deposition (Figure 6, D-2, quantification in G) 

and αSma staining (Figure 6, E-2 ) and protein levels (Figure F, lower panel) were also 

increased in livers of CCl4-treated Abcc1
-/-

 mice, however, to a significant lower level 

compared to CCl4-treated WT mice. In addition, levels of miRNA29A, a miRNA that 

suppresses collagen 1A1 expression [43], are strongly reduced (>80%) in CCl4-treated 

FVB WT mice, whereas basal levels in Abcc1
-/-

 mice are significantly higher (2.5-fold) 

and were only slightly reduced (-20%) when these animals are treated with CCl4 (Figure 

6H). Taken together, these data show that Mrp1 promotes liver fibrosis in vivo.  

DISCUSSION 

In this study we show that the ABC-transporter Mrp1 (Abcc1) is required for the 

activation of rat hepatic stellate cells, portal myofibroblasts and human LX-2 cells. The 

absence of Mrp1 in CCl4-exposed mice represses liver fibrosis. The antifibrotic effect of 

blocking Mrp1 is independent of glutathione, one of the Mrp1 substrates that is 

dominantly present in HSCs [7]. Instead, preventing the synthesis of leukotriene C4, a 

high-affinity substrate of Mrp1, led to comparable antifibrotic effect on in vitro-cultured 

HSCs and PMFs. These data indicate that Mrp1 plays and direct role in endocrine 

activation of HSCs/PMFs leading to liver fibrosis. In a previous study, we already 

proposed that Mrp1 might have a crucial role in HSCs functioning, as the expression of 

this transporter is increased upon activation of HSCs in vitro and treating activated HSCs 

with the Mrp inhibitor MK571 induced necrotic cell death [7]. The selective killing of 

activated HSCs could potentially clear the fibrotic liver from activated myofibroblasts 

and aid in reversal of fibrosis. MK571 is often referred to as a “selective” Mrp inhibitor, 

but it also inhibits the transport activity of several other Mrps [7,24-26]. Moreover, it also 

antagonizes the cysteinyl leukotriene receptors 1 and 2 [20,27]. Though the expression of 

either of the cysLT receptors in HSCs and/or PMFs has not been established yet, it has 

been shown that LTC4 promotes liver fibrosis in vivo [21]. Moreover, lung myofibroblast 
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are activated by exogenously added LTC4 [19,20,44], indirectly proving their presence in 

fibrogenic cells. Thus, MK571 may act through non-Mrp1 pathways to induce HSCs 

necrosis. 

Reversan is a recently identified inhibitor of Mrp1, which does not inhibit Mrp2-5 

[28], suggesting that it may be a more selective inhibitor than MK571. At concentrations 

that inhibit the transport activity of Mrp1, reversan did not induce significant cell death in 

activated HSCs and PMFs. Instead, it strongly repressed the expression of collagen 1a1 

and α-Sma, the prototypical cellular markers of fibrosis. The different effects of MK571 

and reversan suggest that the MK571-induced necrosis of activated HSCs is not due to 

blocking Mrp1-mediated transport. In line, we found that RNA interference-mediated 

reduction of Mrp1 expression caused a decrease in collagen1a1 and α-Sma expression, 

even though only partial reduction of Mrp1 was achieved. Together, these data show that 

specifically Mrp1 is crucial for the activation HSCs and PMFs, and is not compensated by 

other Mrp’s, also because their expression in HSCs and PMFs is relative low compared to 

Mrp1. Off-target effects of MK571 cause HSCs necrosis. The expression level of Mrp1 

tightly controls the activation state of hepatic myofibroblasts as artificial under- and 

overexpression directly affects the expression of the fibrosis markers α-Sma and 

Collagen1a1. This feature makes Mrp1 an interesting target for therapeutic approaches to 

treat liver fibrosis. Manipulation of cellular glutathione levels did not affect the 

expression of α-Sma and Collagen 1a1 in activated HSCs and PMFs, implying that this 

major substrate of Mrp1 does not regulate the activation process. In contrast, blocking 

leukotriene synthesis resulted in a similar repression of HSCs and PMFs activation as 

inhibition of Mrp1. This suggests that endogenous production and secretion of LTC4 by 

hepatic myofibroblasts contributes to liver fibrosis via an endocrine signaling pathway. 

This is fully in line with the recent observation that HSCs express the key enzymes 

involved in LTC4 synthesis [15]. Several Mrp’s are able to transport LTC4, but Mrp1 has 

by far the highest transport activity for it [25,41,45,46]. Fibroblasts in other tissues, like 

lung and skin, also produce LTC4 [47]. While the presence of the LTC4 biosynthetic 

pathway has been established for these fibroblasts, Mrp1 expression has not been 

established yet in these cell types.  

Therapeutic targeting of Mrp1 may seem risky as it is expressed in various tissues, 

including lung, brain and intestine [48]. Still, whole body absence of Mrp1 does not lead 
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to a phenotype in mice under controlled laboratory conditions [8]. Only when animals are 

exposed to specific pro-inflammatory conditions, they may develop more severe 

symptoms [49]. In case of CCl4-induced liver fibrosis, the opposite is true. The whole 

body absence of Mrp1 represses the development of liver fibrosis in mice, while general 

markers for liver damage are similar to those in WT animals. Thus, it seems feasible to 

treat liver fibrosis in vivo/patients with systemic application of selective Mrp1 inhibitors. 

As partial inhibition of Mrp1 may already induce reversal of liver fibrosis, 

pharmacological inhibitors may be used at conservative dosing that do not completely 

block essential anti-inflammatory functions of Mrp1. Our study indicates that reversan is 

superior over MK571. In line, reversan did not cause adverse effects in mice in mouse 

models of neuroblastoma [28]. 

Remarkably, the absence of Mrp1 was associated with an increase in miRNA29A. 

This miRNA is an inhibitor of collagen1a1 expression and thus represses fibrosis. Very 

little is known about the regulation of miRNAs levels including miRNA29A [43]. Our 

data could unveil a role of Mrp1 substrates, maybe even leukotrienes, in the regulation of 

miRNA29A. 

Taken together, our results show that the ABC transporter Mrp1 promotes hepatic 

fibrogenesis, both in vitro and in vivo. Drug-targeted inhibition of Mrp1, for instance by 

reversan, may hold promise for therapeutic approaches to treat liver fibrosis in the future. 
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Figure S1. Expression of selected ABC transporters in rat HSCs, rat PMFs and human LX-2 cells. 

Fully activated primary HSCs and PMFs, as well as human LX-2 cells, were analysed for the relative 

mRNA levels of Mrp1-6, Mdr1a/b (MDR1 for LX-2), Mdr2 and Bsep (normalized to 18S). *Data for HSC 

are taken from Hannivoort et al., 2008 and are only shown for comparison. The values are representative of 

three different experiments. 
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Figure S2. Expression of ABC transporters in whole liver homogenate of Abcc1 (Mrp1)
 -/-

 and wild 

type after treatment with CCl4.  Abcc1 (Mrp1)
 -/-

 and WT (FVB) littermates were treated with CCl4 for 12 

weeks, sacrificed and analysed for  hepatic mRNA expression of Mrp2-7, Mdr1a/b and Mdr2. The 

expression in the untreated wild type group was set to 1 (18S/36 B4 were used as internal controls). Data 

represents the mean +/- SEM. * Significant difference using student t-test (P<0.05). 
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Supplementary Table S1. Sequence of primers and probes used in this study. 

 

 

 

 

 Forward 5’- 3’ Reverse 5’-3’ Probe 5’-3’ 

18S CGGCTACCACATCCAAGGA CCAATTACAGGGCCTCGAAA CGCGCAAATTACCCACTCCCGA 

36B4 GCT TCA TTG TGG GAG 

CAG ACA 

CAT GGT GTT CTT GCC CAT 

CAG 

TCC AAG CAG ATG CAG CAG ATC CGC 

Collagen 

1a1 

(human) 

GGC CCA GAA GAA CTG 

GTA CAT C 

CCG CCA TAC TCG AAC TGG 

AA 

CCCCAAGGACAAGAGGCATGTCTG 

Alpha Sma 

(human) 

GGG ACG ACA TGG AAA 

AGA TCT G 

CAG GGT GGG ATG CTC TTC A CACTCTTTCTACAATGAGCTTCGTGTTGCCC 

Collagen 

1a1 

(/mouse/rat) 

TGG TGA ACG TGG TGT 

ACA AGG T 

CAG TAT CAC CCT TGG CAC 

CAT 

TCC TGC TGG TCC CCG AGG AAA CA 

Alpha Sma 

(rat) 

GCC AGT CGC CAT CAG 

GAA C 

CAC ACC AGA GCT GTG CTG 

TCT T 

CTT CAC ACA TAG CTG GAG CAG CTT CTC 

GA 

Alpha Sma 

(mouse) 

TTCGTGTGGCCCCTGAAG GGACAGCACAGCCTGAATAGC TTGAGACCTTCAATGTCCCCGCCA 

Mrp1 

(mouse) 

TGA AAC AGA GAA GGA 

GGC TCC TT 

AGG CAG TAA TCC CGG AAC 

TCT A 

TGG CCC CAT TCA GGC CGT G 

Mrp2 

(mouse) 

GGA TGG TGA CTG TGG 

GCT GAT 

GGC TGT TCT CCC TTC TCA 

TGG 

AGC TGC ATC GTC AGG AAT TTC CTC CAC 

A 

Mrp3 

(mouse) 

TCC CAC TTT TCG GAG 

ACA GTA AC 

ACT GAG GAC CTT GAA GTC 

TTG GA 

CAC CAG TGT CAT TCG GGC CTA TGG C 

Mrp4 

(mouse) 

GCC GAC ATC TAC CTC 

CTT GAT G 

CGT GCA ACG CCT GAC AGA CCC ACT TCT GCA TCG ACA GCG CT 

Mrp5 

(mouse) 

CGG AGA ACA AGA TCG 

TTG GAA T 

CAG GGA AAG CCC CTC AAC 

TC 

CCA AGA TGC TCT CGA AAC AGC AGC CC 

Mrp6 

(mouse) 

CCA CAG GAT TGA CAG 

CAG AAG A 

CGC AGG TAG CTC AGG TAT 

ATG GT 

TCT TCA CCC GGC CAT ATC GCA CAC 

Mrp7 

(mouse) 

GGG GCC ACT TAC AGG 

TTT GA 

ATC GTG GCA TAG GAA GCA 

AAC T 

AAC CAG CGA CTC TTG GAG CTG AAC CA 

Mdr1a 

(mouse) 

GCA GGT TGG CTA GAC 

AGG TTG T 

GAG CGC CAC TCC ATG GAT 

AA 

AGC AGC CAG AGT TCC CAC CAG CAT G 

Mdr1b 

(mouse) 

GCT GGA CAA GCT GTG 

CAT GA 

TGG CAG AAT ACT GGC TTC 

TGC T 

CTT CCC CTC TTG ATG CTG GTG TTT GGA 

AAC 

Mdr2 

(mouse) 

GCA GCG AGA AAC GGA 

ACA G 

GGT TGC TGA TGC TGC CTA 

GTT 

AAA GTC GCC GTC TAG GCG CCG T 
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Supplementary Table S2. Antibody dilutions for protein analysis in this study. 

 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antibody Western 

Blot 

Immunofluorescence Company 

Mouse α  

Alpha -SMA 

1:2000 1:500 Sigma, St. Louis, MO, 

USA 

Goat  α 

Collagen type 1 

1:2000 1:500 Southern Biotech 

Birmingham, AL 

35260, USA 

Rat  

α Mrp1  

1:2000  SIGNETTM,  Dedham, 

MA, USA 

Mouse α  

 GAPDH 

1:10000  Calbiochem, La Jolla, 

CA, USA 
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In vitro analysis of the MRP1 inhibitors MK571 and 

reversan identifies reversan as potentially safest drug 
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ABSTRACT 

Introduction: Liver fibrosis is caused by chronic liver injury. It is associated with 

oxidative stress leading to hepatocyte death and activation of cells that produce the 

collagenous scar tissue, including hepatic stellate cells (HSCs) and portal myofibroblasts 

(PMFs). HSCs and PMFs express the multidrug resistance-associated protein 1 (Mrp1), 

which is essential for HSCs/PMF activation. MK571 and reversan are pharmacological 

inhibitors of Mrp’s. MK571 is toxic for activated HSCs, while reversan suppresses HSCs 

activation without inducing cell death. Thus, liver fibrosis may be treated by 

pharmacological inhibition of Mrp1, but should avoid adverse effects on hepatocytes that 

express Mrp2-4 and Mrp6. Here, we analyzed the cytotoxicity of MK571 and reversan on 

HSCs, PMFs and hepatocytes exposed to oxidative stress. 

Material and Methods: Primary rat HSCs, PMFs and hepatocytes were (co-)exposed to 

non-toxic concentrations of the superoxide anion donor menadione, MK571/Reversan and 

glutathione-monoethyl esther (GSH-MEE). The ratio oxidized-GSSG: reduced-GSH was 

determined and cell viability was analyzed by Sytox green nuclear staining and LDH 

leakage. Inhibition of MRP-mediated transport was studied using 5-

chloromethylfluorescein diacetate (CMFDA) and cholyl-lysyl-fluorescein (CLF).  

Results: Co-treatment of HSCs/PMFs with reversan and menadione led to cellular 

accumulation of oxidized GSSG and induced necrosis, which was prevented by GSH-

MEE. Reversan with or without menadione, did not induce necrosis in hepatocytes. In 

contrast, MK571 induced hepatocyte necrosis that was further enhanced by co-exposure 

with menadione, which led to the cellular accumulation of GSSG, and was suppressed by 

GSH-MEE. MK571 inhibited the export of CMFDA and CLF from hepatocytes, while 

reversan did not. 

Conclusion: MK571 blocks vital MRP-mediated export of oxidized glutathione from 

hepatocytes. Reversan did not affect hepatocyte viability, but only reduced HSCs/PMFs 

viability under oxidative stress conditions. Reversan may thus be applicable as drug to 

treat liver fibrosis, with less chance of adverse effects compared to MK571.  
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INTRODUCTION 

Liver injury is followed by a wound-healing process, where hepatic myofibroblasts 

migrate to the site of tissue damage and produce new extracellular matrix (ECM) to 

promote liver regeneration [1,2]. Upon repair, the ECM is remodeled and the scar tissue 

is resolved [3-5]. However, in chronic liver disease the hepatic myofibroblasts produce 

excessive ECM leading to fibrosis, which may progress to cirrhosis where the liver 

architecture is irreversibly disrupted and can cause liver failure [6,7]. Moreover, cirrhosis 

predisposes for the development of liver cancer. Cytokines and growth factors induce the 

activation of hepatic stellate cells (HSCs) that transdifferentiate into hepatic 

myofibroblasts and become mobile, proliferative and secrete excessive amounts of ECM 

[8]. Hepatic myofibroblasts may also originate from the portal areas (PMFs), bone 

marrow, and endothelial cells through epithelial-mesenchym transition (EMT) [9-13]. 

The hepatic myofibroblasts survive and proliferate under pathological conditions where 

the functional liver cells (hepatocytes and cholangiocytes) are prone to apoptotic or 

necrotic death [6]. A variety of factors have been shown to stimulate myofibroblasts 

activation and/or transdifferentiation, including transforming growth factor beta (TGF-β), 

platelet derived growth factor (PDGF), various cytokines and reactive oxygen species 

[6,8]. No therapeutic drugs to treat liver fibrosis are available yet. 

The Multidrug Resistance-associated Protein 1 (MRP1) is an ATP Binding 

Cassette (ABC)-transporter which is well-known for its adverse effect in cancer therapy 

[14,15]. It transports a wide array of cytostatic drugs. Therefore cancer cells expressing 

MRP1 are resistant against such drugs [15,16]. Mrp1 also has an important role in normal 

cells. Hepatic expression of MRP1 is low, but is induced upon CCL4-induced liver injury 

in rats [17] and mice (Rehman et al., chapter 2). Mrp1 expression is predominantly found 

in myofibroblasts with very low levels in hepatocytes [17]. Also, MRP1 expression is 

strongly induced upon activation of HSCs in vitro [17]. Both pharmacological inhibition 

of Mrp1 (using reversan) and siRNA-mediated silencing of Mrp1 reduced the expression 

of activation markers, like collagen1a1 and alpha-smooth muscle actin (α-Sma), in HSCs 

and PMFs in vitro (Rehman et al., Chapter 2). Moreover, CCl4-treated Abcc1(Mrp1)
-/- 

mice showed significantly lower amounts of collagen deposition compared to CCL4-

treated wild type mice, while serum transaminases (AST and ALT) were similar in both 

groups (Rehman et al., Chapter 2).  
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Thus, whole body absence of Mrp1 represses the development of liver fibrosis, 

while parenchymal liver damage is not aggravated. These finding suggest that 

pharmacological inhibition of Mrp1 may by feasible to treat liver fibrosis, without major 

adverse effects. Several pharmacological inhibitors of Mrp1 activity are available, 

including MK571 and the more recently described reversan [14,18]. MK571 inhibits not 

only Mrp1, but also other close homologs like Mrp2, Mrp3 and Mrp4 [19,20]. Moreover, 

it is also known as an antagonist of the leukotriene D4 receptor [21]. Reversan seems a 

more selective inhibitor of Mrp1 as it does not inhibit Mrp2, Mrp3, Mrp4 and Mrp5 in 

overexpressing MCDK cells [14]. Both inhibitors have been given to laboratory animals 

without causing major complications [14,22]. However, the potential adverse effects have 

not been studied with respect to the pathological conditions associated with liver disease. 

Therefore, we studied the cytotoxic effects of MK571 and reversan on rat 

hepatocytes, HSCs and PMFs in the presence and absence of oxidative stress. We show 

that MK571 induces necrotic cell death in hepatocytes, especially when they are exposed 

to oxidative stress. In contrast, hepatocytes were unaffected by reversan even in the 

presence of menadione. Both inhibitors induced necrosis in menadione-treated HSCs and 

PMF. Our in vitro data support the notion that MK571 will potentially aggravate liver 

damage when used as drug therapy to treat liver fibrosis in vivo. In contrast, Reversan 

targets HSCs/PMFs and is tolerated by hepatocytes, which is an important prerequisite for 

further testing of this drug for the treatment of liver fibrosis in vivo. 

MATERIALS AND METHODS 

Animals: Specified pathogen-free male Wistar rats (220–250 g for hepatocytes and PMFs 

isolations and 400-500 g for HSCs isolations) were purchased from Charles River 

Laboratories Inc. (Wilmington, MA, USA). They were housed under standard laboratory 

conditions with free access to standard laboratory chow and water. Experiments were 

performed following the guidelines of the local committee for care and use of laboratory 

animals. 

Isolation and culture of rat hepatocytes, hepatic stellate cells and portal myofibroblasts: 

Primary rat hepatocytes [23] HSCs [24] and PMF [25] were isolated and cultured as 

described previously. Hepatocyte viability and purity were always more than 90%. Cells 

were cultured in a humidified atmosphere containing 5% CO2 at 37 °C. 
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Experimental Design: Freshly-isolated primary hepatocytes, HSCs or PMFs were seeded 

in multi-well plastic culture plates (Greiner bio-one) and incubated overnight for 

attachment. HSCs and PMFs were treated with reversan (20µM; Tocris Bioscience, 

Bristol UK), while primary hepatocytes were treated with MK571 (50µM; cat No. RA-

109; Enzo life sciences) and reversan alone or in combination with 20 µM menadione 

(Sigma). Cells were harvested after 18 to 20 hours treatment and processed for analysis. 

For glutathione supplementation, cells were loaded with 500 µM Glutathione monoethyl 

ester (GSH-MEE, Calbiochem) simultaneously with other treatments as indicated above. 

Each experimental condition was performed in duplicate and each experiment was 

repeated at least three time using cells from different isolations. 

Quantification of necrosis: Cell necrosis was determined by Sytox green nuclear staining 

performed as described before [17] and by quantifying the relative amounts of LDH 

released to the culture medium according to procedure described before [26] with minor 

changes. In short, 20 to 50 µl of medium was taken in transparent 96-well flat bottom 

plates (Greiner bio-one). LDH buffer (0.08 M Tris and 0.2 M NaCl in distilled water 

adjusted to pH 7.0) was added to make up the volume to 100 µl followed by addition 100 

µl of 3.24 mM pyruvate (Sigma) dissolved in LDH buffer and 100 µl of 0.68 mM NADH 

(sigma) dissolved in LDH buffer. The plate was scanned for absorption of 340 nm at 37
o
C 

for 30 min at intervals of 1 min. The linear part of the kinetic curve was selected to 

determine the rate of disappearance of NADH, which is directly related to the LDH 

activity in the sample. The absolute units of LDH were then calculated from the standard 

curve of known concentration of LDH (Roche Diagnostics, Germany). For the total 

amount of LDH per well, cells were lysed in the cell lyses buffer containing HEPES 25 

mM, MgCl2 5 mM, EDTA 5 mM, PMSF 2 mM, Pepstatine 10 ng/µl and Leupeptine 10 

ng/µl and adjusted to pH 7. After three cycles of snap freezing and thawing, cell were 

centrifuged to pellet the cell debris. Cell necrosis was presented as a percent of total 

(medium and cellular) LDH released in the medium. 

Quantification of reduced glutathione (GSH) and oxidized glutathione (GSSG): GSH 

and GSSG were quantified as described before [27] with minor modifications. Briefly, 20 

to 50 µl of the supernatant (prepared as mentioned for LDH assay) was added to buffer A 

(125 mM NaH2PO4.H20 and 6.3 mM NaEDTA adjusted to pH 7.5 with NaOH) to a total 

volume of  100 µl in a transparent flat bottom 96-well plate. Next, 20 µl of 6 mM 5-5’-
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dithiobis-2-nitrobenate (Sigma) dissolved in buffer A, 42 µl of 0.3 mM NADPH (Roche 

Diagnostics, Germany) dissolved in buffer A and 38 µl of glutathione reductase (Roche 

Diagnostics) dissolved to an enzyme activity of 5 units/ml in Buffer A. In order to 

measure GSSG, vinyl pyridine (Sigma) was added to the supernatant to block the reduced 

GSH. Cell lysates were always kept on ice and used for GSH and GSSG analysis directly. 

A curve of standard concentrations GSH and GSSG was used to quantify the cellular 

concentrations.  

Intracellular accumulation of CMFDA and CLF:  Intracellular accumulation of 5-

chloromethylfluorescein diacetate (CMFDA) and cholyl-lysyl-fluorescein (CLF) was 

determined as described previously (Rehman et al., Chapter 2) with minor modification. 

Briefly, primary hepatocytes were incubated for 10 min with 50 µM MK571 or 20 µM 

reversan, after which they were loaded with 5 nM CMFDA (Invitrogen, Molecular 

probes, Oregon ,USA) or 2 nM CLF -a fluorescent bile salt [28]- and incubated for 

another 30 minutes. Medium was replaced by fresh medium that contained Mrp inhibitors 

and live cells were immediately analyzed for intra cellular fluorescence using an Olympus 

CKX41or Lieca DMI6000B microscope. 

Statistical analysis: Statistical analysis was performed using Prism5 software. Results are 

expressed as the mean value with standard deviation. Statistical significance was 

calculated using a Student’s t-test, or an one-way ANOVA with Bonferroni post-hoc 

analysis for correction for multiple comparisons. A corrected p value <0.05 was 

considered to be statistically significant.  

RESULTS 

Reversan induces necrosis in menadione-treated HSCs 

As a model of oxidative stress-induced liver damage, we exposed cultured rat HSCs, 

PMFs and hepatocytes to menadione. Earlier, we showed that MK571 induces necrosis in 

HSCs even under unstimulated conditions [17], but this is unrelated to the inhibition of 

Mrp1 (Rehman et al., Chapter 2). In contrast, reversan suppresses the activation of HSCs 

and PMFs, while it did not induce necrosis in culture-activated HSCs within a time frame 

of 18 to 24 hours (Rehman et al., Chapter 2)  and  (Figure 1A ). Co-treatment of primary 

rat HSCs with menadione and reversan led to significant detachment of the HSCs and 

increased the number of sytox green-positive cells (Figure 1A). While LDH release was 
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not increased in cells treated only with menadione or reversan, co-treatment led to a 

significant release of LDH to the medium (Figure 1B). Similar results were obtained for 

culture-activated PMFs (Supplementary Figure S1A and B). Previously, we showed that 

reversan reduces the expression of the activation markers Collagen 1a1 and α−SMA in 

culture-activated HSCs and PMFs (Rehman et al., Chapter 2). The new data imply that 

pharmacological inhibition of Mrp1 in a fibrotic liver, which is likely exposed to 

oxidative stress, also induces necrosis of HSCs and PMFs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Co-treatment with reversan and menadione induces HSCs necrosis and the effect is 

reversible by GSH-MEE supplementation. Freshly–isolated HSCs were culture-activated for 7 days and, 

subsequently, treated for 18 to 24 hours with reversan (20 µM) with or without menadione (20µM) and with 

or without GSH-MEE (0.5 mM). A) Sytox green-positive nuclei identify necrotic HSC under the indicated 

conditions. Insets show the corresponding bright field images. (B) LDH activity was measured in total HSC 

protein extracts and the culture medium and the relative amount of LDH in the medium is given as a 

measure of necrosis. (C) Total glutathione and oxidized glutathione (GSSG) were quantified in total HSC 

extracts and the relative amount of GSSG over total-GSH is presented. * significantly different (p<0.001) 

from untreated and reversan treated cells. 

A 
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MK571, but not reversan, induces necrosis in menadione-treated hepatocytes 

MK571 is a pan-MRP inhibitor, whereas reversan is supposedly a more specific 

inhibitor of Mrp1 [14]. Hepatocytes constitute the functional liver tissue and a 

pharmaceutical therapy for liver fibrosis should prevent damage to these cells. Thus, we 

analyzed the toxic effects of MK571 and reversan on cultured rat hepatocytes in the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Differential effects of the Mrp1 inhibitors MK571 and Reversan on the viability primary rat 

hepatocytes exposed to menadione. Primary rat hepatocytes were treated for 18 to 24 hours with MK571 

(50µM) or Reversan (20 µM) with or without menadione (20 µM) and with or without GSH-MEE (0.5 

mM). A) Sytox green-positive nuclei identify necrotic hepatocytes under the indicated conditions. The 

green fluorescent signal is combined with the bright field images that reveal the presence of cells. 

Hepatocytes treated with digitonin are shown as positive control of necrosis. The pictures are representative 

of three independent experiments. (B) Total glutathione and oxidized glutathione (GSSG) were quantified 

in total hepatocyte extracts and the relative amount of GSSG over total-GSH is presented. * Significantly 

different (p<0.001) from the all other treatments. 

Digitonin 
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absence and presence of oxidative stress. An 18 to 24 h exposure to 50 µM MK571 

induced significant necrosis in rat hepatocytes, even in the absence of oxidative stress 

(Figure 2A). When co-treated with 20 µM menadione, almost all hepatocytes showed 

Sytox green-positive nuclei (Figure 2A), indicating massive necrosis under these 

conditions. In contrast, almost no necrosis was detected when hepatocytes were exposed 

to menadione alone. Moreover, co-treatment with 20 µM reversan did not lead to a 

significant increase in sytox green-positive nuclei in rat hepatocytes, nor in the absence or 

the presence of menadione (Figure 2A). 

Differential effects of MK571 and reversan on the accumulation of oxidized 

glutathione in menadione-treated hepatocytes and HSCs 

Reduced and oxidized glutathione (GSH and GSSG, respectively) are natural 

substrates for Mrp1 and Mrp2. Activated HSCs/PMFs typically express Mrp1, while rat 

hepatocytes express Mrp2. We analyzed the intracellular cellular %  of  GSSG versus 

total GSH of menadione-treated hepatocytes to determine whether blocking Mrp1/2 

transporter function leads to the accumulation of GSSG (Figure 2B). Approximately 10% 

of the total glutathione pool exists in the oxidized (GSSG) form in cultured rat 

hepatocytes and HSCs. Treatment with MK571 or reversan alone did not increase the 

relative amount of GSSG. Also the treatment with menadione alone did not change the 

relative cellular amounts of GSSG versus total glutathione. However, when hepatocytes 

were co-treated with menadione and MK571, the relative amount of GSSG was 

dramatically increased amounting more than half of the total glutathione pool. Co-

treatment with menadione and reversan did not cause a significant shift in the intracellular 

GSSG versus GSH in rat hepatocytes. In contrast, these conditions (menadione+reversan) 

led to an increase in GSSG levels in menadione-treated HSCs and PMFs (Figure 1C and 

Figure S1-C). 

Glutathione supplementation reduces menadione-induced cell death when Mrp activity 

is blocked  

We hypothesize that the intracellular accumulation of GSSG disturbs the 

intracellular redox potential following oxidative stress and reduced the viability of the 

cells. To examine this, we supplemented menadione/MK571- and menadione/reversan-

treated cells with membrane-permeable glutathione mono ethyl ester (GSH-MEE) and 
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found that it largely prevented necrotic cell death of HSCs (Figure. 1A), hepatocytes 

(Figure 2A) and PMFs (Figure S1A) that were exposed to menadione and Mrp inhibitors. 

This direct comparison of MK571 and reversan shows that the latter is much less toxic 

towards hepatocytes under oxidative stress.  

MK571, but not Reversan, blocks the export of CMFDA and CLF from hepatocytes 

To obtain independent evidence for the higher selectivity of reversan towards 

Mrp1, we analyzed the accumulation of fluorescent substrates for Mrp1 and Mrp2 in rat 

hepatocytes exposed to either MK571 or reversan. Earlier, we showed that both MK571 

and reversan block the export of the fluorescent substrate 5-chloro-methyl fluorescein 

diacetate (CMFDA) from activated HSCs and PMFs (Rehman et al., Chapter 2). CMFDA 

is transported by several Mrp transporters, including Mrp1-3 and 5. Since Mrp1 is the 

most prominently expressed MRP-type transporter in HSCs and PMFs, we related the 

intracellular accumulation of CMFDA to inhibition of this transporter. To confirm that 

reversan is truly selective for Mrp1, we exposed primary hepatocytes, which lack Mrp1 

and express Mrp2, 3 and 4, to CMFDA in combination with MK571 or reversan (Fig. 3). 

Untreated hepatocytes hardly accumulate CMFDA indicative of efficient efflux of this 

substrate from these cells. MK571 treatment led to a strong accumulation of fluorescent 

CMFDA in primary rat hepatocytes, whereas reversan-treated hepatocytes showed very 

little amount of CMFDA-related fluorescence (Fig. 3). Notably, no significant amounts of 

CMFDA were detected in canalicular vacuoles that are formed between hepatocytes, 

indicating that CMFDA is predominantly transported by Mrp’s present on the basolateral 

membrane, such as Mrp3 and/or 4. Recently, it was shown that the fluorescent bile acid 

cholyl-L-lysyl-fluorescein (CLF) is a high affinity substrate for Mrp2 (and not of the bile 

salt export pump-BSEP) [28,29]. In untreated cells, CLF accumulated in the canalicular 

region between adjacent hepatocytes. MK571 largely prevented the canalicular 

accumulation of CLF and led to a significant increase in the cytosolic accumulation of 

CLF. In contrast, reversan did not prevent the canalicular accumulation of CLF and only a 

minor increase in intracellular CLF accumulation was observed (Fig. 4). These results 

confirm that reversan does not inhibit the activity of canalicular Mrp2 and basolateral 

Mrp3/4. 
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Figure 3. MK571 

leads to the 

intracellular 

accumulation of 

CMFDA in 

primary rat 

hepatocytes, while 

reversan does not. 

(A) Primary rat 

hepatocytes were 

treated with MK571 

(50µM) or Reversan 

(20 µM) for 10 minutes after which the cells were loaded with 2 µM CMFDA (fluorescent Mrp substrate) 

and incubated for an additional 30 minutes. Fluorescent images (top row) were taken using a Leica 

DMI6000B microscope. The bottom row shows the corresponding bright filed images. Each experiment 

was performed in duplicate. The pictures are representative of three independent experiments. 

 

 

Figure 4. MK571 

prevents 

hapatocanalicular 

transport of CLF, 

which accumulates 

intracellular while 

reversan does not. 

(A) Primary rat 

hepatocytes were 

treated with MK571 

(50µM) or Reversan 

(20 µM) for 10 

minutes after which the cells were loaded with 2 µM CLF (fluorescent Mrp2 substrate) and incubated for an 

additional 30 minutes. Fluorescent images (top row) were taken using a Leica DMI6000B microscope. The 

bottom row shows the corresponding bright filed images. Arrows point to canalicular vacuoles formed 

between hepatocytes. Each experiment was performed in duplicate. The pictures are representative of three 

independent experiments. 
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DISCUSSION 

In this study, we show that the Mrp1 inhibitor reversan has no cytotoxic effect on 

menadione-exposed hepatocytes. This treatment induces necrosis in HSCs and PMFs that 

may enhance the anti-fibrotic action of reversan. In contrast, the pan-MRP inhibitor 

MK571 alone induces necrosis in hepatocytes, which is further enhanced by co-exposure 

to menadione. We show that reversan allows efficient efflux of endogenous (GSSG) and 

fluorescent MRP substrates from hepatocytes, while this is blocked by MK571. 

Collectively, these in vitro data indicate that MK571 is likely to aggravate oxidative 

stress-associated liver damage in vivo, while reversan may prevent adverse effects and 

specifically target fibrosis. 

Previously, we found that reversan effectively blocked MRP1-mediated transport in 

HSCs and PMFs and reversed the activation process, as indicated by suppression of 

Collagen 1a1 and α-Sma expression (Rehman et al., chapter 2, submitted). Similar results 

were obtained with Mrp1-specific RNA interference in vitro and CCl4-induced fibrosis 

was reduced in Abcc1
-/-

 (Mrp1) mice (Rehman et al., Chapter 2). Thus, Mrp1 is a 

potential target for the treatment of liver fibrosis. This observation paves the way for the 

use of pharmacological inhibitors of Mrp1 in the treatment of liver fibrosis, but requires a 

detailed analysis of potential adverse effects of such compounds, both in vitro and in vivo. 

Systemic application of Mrp1 inhibitors will block its function in all tissues. Mrp1 is 

ubiquitously expressed throughout the body, with relatively high expression levels in 

heart, lung, brain kidney and lymphocytes and minor amounts in the liver [30,31]. 

However, inflammation induces the expression of Mrp1, amongst others in the liver and 

intestine [32-34].  Mrp1 is a high-affinity transporter of the inflammatory signaling 

molecule leukotriene C4 and, as a consequence, blocking or absence of Mrp1 reduces 

inflammation [35]. On the other hand, absence of Mrp1 may enhance tissue damage  

under inflammatory conditions as it aggravates dextran sodium sulfate (DSS)-induced 

colitis in mice [36], which is most likely the result of a cytoprotective role of Mrp1 in the 

intestinal epithelium [37]. Mrp1 also prevents passage of a variety of drugs through the 

blood-brain barrier and has been implicated in the clearance of neurotoxic lipid  

peroxidation products that characteristically accumulate in the brain and augments the 

onset of Alzheimer`s disease [38]. Abcc1
-/-

 mice that lack Mrp1 do not have an evident 

phenotype though they are hyper sensitive to a variety of anticancer drugs [35,39].  
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Abcc1
-/-

 mice developed significantly less liver fibrosis upon CCL4 treatment compared to 

WT mice, while no adverse effects were observed (Rehman et al., chapter 2 ). These data 

indicate that systemic inhibition of Mrp1 by drugs may be feasible as long it is not 

combined with other drugs that are Mrp1-substrates. Alternatively, inhibitors of Mrp1 

may be targeted specifically to hepatic myofibroblasts  in order to prevent extra-hepatic 

adverse effects [40,41].  

It is crucial that the inhibition of Mrp1 is highly specific. In a comparative 

analysis of MK571 and reversan-induced toxic effects, we found that reversan did not 

induce significant necrosis or apoptosis in HSCs, however, reversan treatment sensitized 

the HSCs and PMFs in the presence of menadione and induced necrosis. Interestingly, 

reversan did not induced necrosis in primary hepatocytes in the absence or presence of 

menadione at same doses that were toxic for HSCs. Earlier, we showed that MK571 

induces necrosis in HSCs [17]. While this may attenuate fibrosis, we show in this study 

that MK571 also induced necrosis in hepatocytes, especially in combination with 

menadione. These observations can be explained in the light of the specificity of MK571 

and reversan, in combination with the specific Mrp-expression profile of HSCs and 

hepatocytes. MK571 inhibits the transport activity of various Mrp’s, including Mrp1-5 

[19,20,42], We confirm in this chapter that reversan [14] is a more specific inhibitor of  

Mrp1. Mrp1 is predominantly expressed in HSCs and PMFs, while Mrp2-4 and 6 are 

expressed in (cultured) hepatocytes. MK571 blocks the vital export of oxidized GSSG 

from menadione-exposed hepatocytes leading to necrotic cell death. Reversan did not 

change the cellular GSSG:GSH ratio in menadione-exposed hepatocytes, but did so in 

HSCs and PMFs. While the MK571 effect is likely to aggravate oxidative stress-inflicted 

liver damage, the antifibrotic action of reversan may actually be enhanced since it is 

selectively targeted the myofibroblasts. These results are in accordance with the earlier 

findings by Takahashi et al., 2009 [43], who showed that Mrp1 inhibition enhanced 

menadione-induced necrosis in endothelial cells. In our study we confirmed that the 

induced sensitivity of the stressed cells is dependent upon glutathione status as it is 

reversed by the supplementation with glutathione (GSH-MEE), thus, strengthening our 

hypothesis that GSSG export is of vital importance for hepatocytes, HSCs and PMFs. 

In the past, MK571 was selected as a candidate drug for the treatment of asthma 

due to its inhibitory effect on LTD4 receptor. However, it was discontinued from clinical 
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trials at phase 2 due to the suspicion of inducing liver cancer [44,45]. Our result obtained 

with hepatocytes may explain this observation as prolonged use of MK571 my cause 

persistent damage to hepatocytes due to inhibition of MRPs present in this cell type.  

In conclusion, our data show that reversan selectively targets fibrogenic cells in 

the liver, without adverse effects on hepatocytes. Further experiments need to show 

whether this inhibitor of Mrp1 can indeed repress liver fibrosis in vivo and is safer than 

MK571, which is toxic for hepatocytes.  
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Supplementary Data 

 

Figure S1. Co-treatment with reversan and menadione induces PMFs necrosis and the effect is reversible 

by GSH-MEE supplementation. Freshly–isolated PMFs were culture-activated for 7 days and, 

subsequently, treated for 18 to 24 hours with reversan (20 μM) with or without menadione (20μM) and 

with or without GSH-MEE (0.5 mM). A) Sytox green-positive nuclei identify necrotic PMFs under the 

indicated conditions. Insets show the corresponding bright field images. (B) LDH activity was measured in 

total PMFs protein extracts and the culture medium and the relative amount of LDH in the medium is 

given as a measure of necrosis. (C) Total glutathione and oxidized glutathione (GSSG) were quantified in 

total PMFs extracts and the relative amount of GSSG over total-GSH is presented. * significantly different 

(p<0.001) from untreated and reversan treated cells. 
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ABSTRACT 

Background: In chronic liver disease, hepatic stellate cells (HSCs) are activated, highly 

proliferative and produce excessive amounts of extracellular matrix, leading to liver 

fibrosis. Elevated levels of toxic reactive oxygen species (ROS) produced during chronic 

liver injury have been implicated in this activation process. Therefore, activated hepatic 

stellate cells need to harbor highly effective anti-oxidants to protect against the toxic 

effects of ROS.  

Aim: To investigate the protective mechanisms of activated HSCs against ROS-induced 

toxicity. 

Methods: Culture-activated rat HSCs were exposed to hydrogen peroxide. Necrosis and 

apoptosis were determined by Sytox Green or acridine orange staining, respectively. The 

hydrogen peroxide detoxifying enzymes catalase and glutathione-peroxidase (GPx) were 

inhibited using 3-amino-1,2,4-triazole and mercaptosuccinic acid, respectively. The anti-

oxidant glutathione was depleted by L-buthionine-sulfoximine and repleted with the 

GSH-analogue GSH-monoethylester (GSH-MEE). 

Results: Upon activation, HSCs increase their cellular glutathione content and GPx 

expression, while MnSOD (both at mRNA and protein level) and catalase (at the protein 

level, but not at the mRNA level) decreased. Hydrogen peroxide did not induce cell death 

in activated HSCs. Glutathione depletion increased the sensitivity of HSCs to hydrogen 

peroxide, resulting in 35% and 75% necrotic cells at 0.2 and 1 mmol/L hydrogen 

peroxide, respectively. The sensitizing effect was abolished by GSH-MEE. Inhibition of 

catalase or GPx significantly increased hydrogen peroxide-induced apoptosis, which was 

not reversed by GSH-MEE.  

Conclusion: Activated HSCs have increased ROS-detoxifying capacity compared to 

quiescent HSCs. Glutathione levels increase during HSC activation and protect against 

ROS-induced necrosis, whereas hydrogen peroxide-detoxifying enzymes protect against 

apoptotic cell death.  
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ABBREVIATIONS 

3AT, 3-amino-1,2,4-triazole; BSO, L-buthionine-sulfoximine; dNTP, deoxynucleoside 

triphosphates; EDTA, ethylenediaminetetraacetic acid; FCS, fetal calf serum; GCL, 

glutamate cysteine ligase; GPx, glutathione peroxidase; GSH, reduced glutathione; GSH-

MEE, GSH-monoethylester; GSSG, oxidized glutathione; HEPES, N-2-

hydroxyethylpiperazine-N-2-ethanesulfonic acid; HO-1, heme-oxygenase-1; HSC, 

hepatic stellate cell; MS, mercaptosuccinic acid; NADPH-oxidase, nicotinamide adenine 

dinucleotide phosphate-oxidase; PBS, phosphate-buffered saline; PCR, polymerase chain 

reaction; PMSF, phenylmethanesulphonylfluoride; PPAR-γ, peroxisome proliferator-

activated receptor gamma; RNA, ribonucleic acid; ROS, reactive oxygen species; α-

SMA, α-smooth muscle actin ; SOD, super oxide dismutase; TGF-β, Transforming 

growth factor beta  
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INTRODUCTION 

Oxidative stress is defined as the imbalance between pro-oxidants and anti-

oxidants [1,2]. Under normal conditions, reactive oxygen species are detoxified by 

various enzymatic and non-enzymatic antioxidants. When pro-oxidants exceed the 

antioxidant capacity of the cell, oxidative stress is the result [1,2]. Prolonged oxidative 

stress in the liver is associated with liver fibrosis and cirrhosis [3-7]. Liver fibrosis is 

characterized by the loss of hepatocytes and the activation of hepatic stellate cells (HSCs) 

[3-5]. During the activation process quiescent HSCs transform into proliferating 

myofibroblast-like cells. Unlike quiescent HSCs, these activated cells lack retinoid-

storing capacity, produce excessive amounts of connective tissue and proliferate  [4,5]. 

Although generation of reactive oxygen species has been implicated in the 

activation of stellate cells and liver fibrosis [6-16], little is known about the role of the 

different antioxidant systems in activated HSCs. Several enzymes are able to generate 

hydrogen peroxide, e.g.  NADPH-oxidases and xanthine oxidase [1,2]. In addition, 

hydrogen peroxide is generated in the detoxification of superoxide anions by superoxide 

dismutases like the cytosolic CuZn-SOD (SOD1) and the mitochondrial Mn-SOD 

(SOD2) [1,2]. Pathophysiological conditions often lead to increased hydrogen peroxide 

levels produced by inflammatory cells, e.g. neutrophils [1]. Hydrogen peroxide is 

detoxified by catalase that resides in peroxisomes or by cytosolic glutathione peroxidase. 

Glutathione peroxidase converts reduced glutathione (GSH) into oxidized glutathione 

(GSSG) [1,2]. To control the hydrogen peroxide level within the cell, the cell has to 

balance the activity of catalase and glutathione peroxidases relative to SODs. The aim of 

this study was to investigate the role of antioxidant systems in the resistance of stellate 

cells to hydrogen peroxide-induced toxicity.  

MATERIAL AND METHODS 

Animals: Specified pathogen-free male Wistar rats were purchased from Harlan (Zeist, 

the Netherlands). They were housed under standard laboratory conditions and had free 

access to standard laboratory chow and water. Each experiment was performed following 

the guidelines of the local committee for care and use of laboratory animals. 

Hepatic stellate cell isolation and culture: Hepatic stellate cells (HSCs) were isolated 

from male Wistar rats (500-600 g) by pronase (Merck, Amsterdam, the Netherlands) and 
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collagenase-P (Roche, Almere, the Netherlands) perfusion of the liver, followed by 

Nycodenz (Axis-Shield POC, Oslo, Norway) gradient (12% w/v) centrifugation as 

described previously [17]. Cells were then cultured in Iscove’s Modified Dulbecco’s 

Medium with Glutamax (Invitrogen, Breda, the Netherlands) supplemented with 20% 

heat-inactivated fetal calf serum (Invitrogen), 1 mM sodium pyruvate (Invitrogen), 1x 

MEM non-essential amino acids (Invitrogen), 50 µg/mL gentamycin (Invitrogen), 100 

U/mL penicillin (Lonza, Vervier, Belgium), 10 µg/mL streptomycin (Lonza), 250 ng/mL 

fungizone (Lonza) and 250 U/mL Nystatin (Sanofi-Synthelabo, Maassluis, the 

Netherlands) in a humidified atmosphere containing 5% CO2 at 37°C. For studying 

activation of hepatic stellate cells, cells were seeded, grown to confluency and harvested 

at the indicated time points. Primary HSC cultures were passaged via trypsinization, and 

then cultured in Iscove’s medium with supplements as described above, except Nystatin. 

Prior to experiments, HSCs were serum-starved for 24 hours, unless indicated otherwise.   

Experimental design: HSCs were culture-activated on tissue culture plastic for at least 7 

days. The activated rat HSCs were exposed to oxidative stress induced by 0.2 or 1 mM 

hydrogen peroxide (Merck) or 20 or 50 µM menadione (Sigma-Aldrich, the Netherlands). 

The glutathione depleting compound L-buthionine-sulfoximine (BSO, Sigma-Aldrich, the 

Netherland) was used at 200 µM. The cell permeable glutathione donor GSH-

monoethylester (GSH-MEE, Calbiochem, VWR, The Netherlands) was used at 5 mM. 

The glutathione peroxidase inhibitor mercaptosuccinic acid (MS, Sigma-Aldrich) was 

used at 10 mM and the catalase inhibitor 3-amino-1,2,4-triazole (3AT, Sigma-Aldrich) 

was used at 20 mM. The caspase-3 inhibitor (Z-DEVD-FMK004R & D Systems, 

Abingdon UK) was used at 0.05 µM. Inhibitors were added 30 minutes prior to exposure 

to hydrogen peroxide, with the exception of BSO, which was added 17-20 hours prior to 

exposure to hydrogen peroxide. 

Glutathione assay: Glutathione and glutathione disulfide content were determined using 

a spectrophotometry-based assay as described previously [18,19]. HSCs were harvested 

in a lysis buffer composed of 25 mM HEPES, 5 mM MgCl2, 5 mM EDTA, 2 mM PMSF, 

10 µg/µL pepstatin and 10 µg/µL leupeptin and then lysed by 3 cycles of snap-freezing in 

liquid nitrogen and thawing. Values were corrected for protein concentration, determined 

by the BioRad DC protein assay (Veenendaal, the Netherlands) according to the 

manufacturer’s instructions. 
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RNA isolation: RNA was isolated using Tri-reagent (Sigma-Aldrich) according to the 

manufacturer’s instructions. Reverse transcription was performed on total RNA using 

random nonamers (Sigma-Aldrich) in a final volume of 50 µl. Reverse transcription was 

performed in three steps: 10 minutes at 25°C, 1 hour at 37°C and 5 minutes at 95°C. 

Quantitative Real-Time PCR: Real time detection was performed on the ABI PRISM 

7700 (PE Applied Biosystems, the Netherlands) initialized by 10 min at 95 °C, followed 

by 40 cycles (15 seconds at 95°C,  and 1 minute at 60°C). Each sample was analyzed in 

duplicate. mRNA levels of 18S were used as an internal control. Reaction mixture 

contained qPCR mastermix plus-dTTP (Eurogentec, Maastricht, the Netherlands) 

supplemented with 900 nM sense and anti-sense primer and 200 nM labeled probe. The 

primers (Invitrogen) and probe (Eurogentec) used are listed in data Table 1. Relative gene 

expressions were calculated using the ∆∆Ct method. 

Western blot analysis: Western blot analysis was performed as described previously [19]. 

Equal amounts of protein were loaded on SDS-PAGE gels. Proteins were transferred 

using semi-dry electrophoretic transfer. Specific proteins were detected using primary 

antibodies: mouse anti-GAPDH (1:10,000, Calbiochem, VWR, the Netherlands CB1001), 

mouse anti-α-smooth muscle actin (1:2,000, Sigma Aldrich), rabbit polyclonal anti-Mn-

superoxide dismutase (1:1,000, Stressgen, Enzo life Sciences, Antwerpen, Belgium, 

SOD-111), polyclonal rabbit anti-catalase (1:2,000, Calbiochem 219010), polyclonal 

rabbit anti-Pex-14 (1:2000, generous gift of Dr. M. Fransen, Leuven, Belgium), and 

polyclonal rabbit anti-β-actin (1:2000, Sigma-Aldrich A2066). Protein bands were 

detected using a Chemidoc XRS system (Bio-Rad).  

Apoptosis and necrosis determination by Acridine orange and Sytox green/Hoechst 

33342 nuclear staining: Cells were seeded in 12-well plates and treated as indicated. 

Apoptosis was determined by assessment of nuclear condensation using Acridine orange 

staining (Sigma-Aldrich) at 2.5 µg/mL. After 6 hours, the percentage of apoptotic cells 

was determined by dividing the number of condensed nuclei by the total number of nuclei 

per field, amplified with 100. Percentages are the mean of two randomly chosen fields per 

condition (magnification 200 x; 15 nuclei per field). To determine necrosis, HSCs were 

incubated with Sytox green nucleic acid staining (Invitrogen, Breda ,The Netherland) at 

125 nM in combination with Hoechst 33342 (Roche, Almere, the Netherlands) at 5 

µg/mL. Sytox green penetrates cells with leaky plasma membranes, a hallmark of necrotic 
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cells, but does not cross the plasma membranes of viable or apoptotic cells and has been 

validated before [19]. Hoechst 33342 crosses the plasma membrane of all cells. After 3 

hours, the percentage of necrotic cells was determined by dividing the number of Sytox 

green positive nuclei by the number of Hoechst 33342 positive nuclei of the same field, 

amplified by 100. Two randomly-chosen fields were used to determine the average per 

condition (magnification200x; 15 nuclei per field). Cells were monitored using an 

Olympus CKX41 microscope at 450-490 nm.  

Table 1. Oligonucleotide Primers and probes used for Real time-PCR 

Immunofluorescence microscopy: Cells were fixed with 4% paraformaldehyde, labeled 

and analyzed as described previously [20]. Rabbit polyclonal antibodies against catalase 

(dilution 1:200; Calbiochem) or MnSOD (dilution 1:100, Stressgen) were use as primary 

antibodies, followed by secondary antibodies labeled with Alexa Fluor 568 or Alexa 

Fluor 488 (Invitrogen), respectively.  Images were captured with a Leica TCS SP2-AOBS 

confocal laser scanning microscope (Leica, Heidelberg, Germany).  

Proliferation assay: Proliferation of HSCs was determined using the Cell Proliferation 

ELISA kit (Roche, Almere, the Netherlands), a chemiluminescent ELISA-based detection 

of BrdU incorporation, according to the manufacturer’s instructions.  

Statistical analysis: Statistical analyses of data were performed using SPSS 14. Data are 

presented as mean ± standard deviation, unless otherwise indicated. Statistical differences 

between groups were calculated using the non-parametric Kruskal-Wallis test, followed 

by a Mann-Whitney-U-test. p-values below 0.05 were considered significant. 

 Forward 5’- 3’ Reverse 5’-3’ Probe 5’-3’ 

18S Cggctaccacatccaagga Ccaattacagggcctcgaaa cgcgcaaattacccactcccga 

α-SMA Gccagtcgccatcaggaac Cacaccagagctgtgctgtctt cttcacacatagctggagcagcttctcga 

Catalase Ggattatggcctccgagatct Accttggtcaggtcaaatggat atgccatcgccagtggcaattacc 

Collagen type 1 Tggtgaacgtggtgtacaaggt Cagtatcacccttggcaccat tcctgctggtccccgaggaaaca 

GCL Gcccaattgttatggctttgagt Cctcccgtgttctatcatctacaga actccccagcgacaatcaatgtctgacac 

Gpx1 Ggacatcaggagaatggcaaga Cgcacttctcaaacaatgtaaagttg ttccctcaagtatgtccgacccggtg 

HO-1 cacagggtgacagaagaggctaa Ctggtctttgtgttcctctgtcag cagctcctcaaacagctcaatgttgagc 

CuZnSOD SOD1) Caggacctcattttaatcctcactc Gtctccaacatgcctctcttca ccgctggaccgccatgtttctt 

MnSOD (SOD2) Caccgaggagaagtaccacga Gaacttcagtgcaggctgaaga cctgagttgtaacatctcccttggccag 

TGF-β Gggctaccatgccaacttctg Gagggcaaggaccttgctgta cctgcccctacatttggagcctgga 
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Figure 1. Expression of ROS-detoxifying enzymes during hepatic stellate cell activation. Primary rat 

HSC were culture-activated for 1, 3, 7 and 14 days and mRNA (A-G) and protein (H) levels of activation 

markers and anti-oxidant enzymes were quantified by RT-Q-PCR and western blotting, respectively. Alpha-

SMA mRNA (A) and protein (H) levels progressively increased during HSC activation. Catalase mRNA 

levels (B) transiently increased, while the corresponding protein rapidly declined in total cell extracts after 

day 1 (H).  Expression of Mn-SOD progressively decreased during HSC activation, both at mRNA (C) and 

protein (H) level, while CuZn-SOD levels did not change (D).  The expression of GPx1 increased (E), while 

the expression of GCL did not change (F, H). The expression of HO-1 was low and not significantly 

changed during HSC activation (G). Pex14p was used as loading control for Western blot analysis, since β-

actin and Gapdh protein levels strongly increased upon HSC activation (H),  The Western blots are 

representative of four independent experiments. mRNA data was corrected for 18S and is presented as 

means ± SD. *Significant difference compared to quiescent HSCs at day 1, p<0.05. 
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RESULTS 

Glutathione peroxidase 1 expression is induced during activation of hepatic stellate 

cells 

Marked changes in gene expression occur when quiescent HSCs transform into activated 

HSCs. Therefore, we first investigated the expression of various genes involved in the 

detoxification of reactive oxygen species during the activation process. As expected, 

alpha-smooth muscle actin (α-SMA), a marker for HSC activation, was strongly induced 

upon activation (Fig. 1A). mRNA levels of catalase were significantly induced after two 

days of culture, but decreased upon complete activation of stellate cells (Fig. 1B). 

Manganese superoxide dismutase (Mn-SOD) mRNA levels progressively declined upon 

activation (Fig. 1C), while the copper-zinc superoxide dismutase (CuZn-SOD) expression 

remained unaltered (Fig. 1D). Interestingly, mRNA expression of glutathione peroxidase 

1 (GPx1) increased during activation of HSCs (Fig. 1E), while glutamate-cysteine ligase 

(GCL), the rate-limiting enzyme in glutathione synthesis, was not altered upon HSC 

activation (Fig. 1F). HO-1 expression in HSCs was very low and not altered upon HSC 

activation (Fig. 1F). HO-1 expression in HSCs was very low and although a trend towards 

reduced heme oxygenase-1 (HO-1) expression was observed, this did not reach statistical 

significance (Fig. 1G). The mRNA data were confirmed by analyzing the levels of the 

corresponding proteins by Western blotting (Fig. 1H). Alpha-smooth muscle actin, β-

actin and Gapdh protein expression all increased upon HSC activation. In contrast, Mn-

SOD protein levels sharply decreased during activation of HSC. Similarly, also catalase 

protein levels dropped immediately after day 1, which was not observed for the catalase 

mRNA levels. Despite the low protein levels of catalase and MnSOD as detected by 

Western blotting, both proteins remained detectable using immunocytochemistry and 

revealed a typical peroxisomal and mitochondrial location, respectively (Fig. 2). Given 

the large and unexpected difference in β-actin and Gapdh levels in quiescent versus 

activated HSC, we searched for alternative proteins to use as loading control for Western 

blot analysis. Pex14p, a protein involved in translocating proteins into peroxisomes, 

showed a stable signal relative to 18S mRNA level and total protein loaded for Western 

blot analysis (Figure 1H, bottom panel). 
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Activated hepatic stellate cells have a higher glutathione content than quiescent 

hepatic stellate cells 

Total glutathione levels were determined in quiescent (1 day after isolation) HSCs and in 

fully activated (>7 days after isolation) HSCs. The total cellular glutathione content was 

increased 5.6-times upon activation of HSC from 0.18 µmol/µg protein in quiescent HSC  

 

 

 

 

 

 

 

Figure 2. Catalase and Mn-SOD protein is still detectable in activated HSC. Fully activated HSC were 

analyzed for the presence and subcellular location of catalase (A) and MnSOD (B) using 

immunofluorescence microscopy. A punctate staining typical for a peroxisomal location was observed for 

catalase (red stain), while MnSOD staining (green) was restricted to mitochondria. 

 

 

 

 

 

 

 

Figure 3. Total glutathione content is increased upon hepatic stellate cell activation. Total glutathione 

levels were quantified in quiescent (qHSC, 1 day in culture) and fully activated (aHSC, > 7 days in culture) 

HSC. Activated HSCs have approximately 5.6-fold higher glutathione levels than quiescent HSCs. Results 

are shown as mean ± S.E.M of four independent experiments, * significantly different from quiescent 

stellate cells, p<0.05. 

to 1.0 µmol/µg protein in activated HSC (Fig. 3), despite unchanged GCL mRNA and 

protein levels, the rate-limiting enzyme in the synthesis of glutathione (Fig. 1). 

Subsequent analysis revealed that 88% of the total glutathione content was in the reduced 

(GSH) form (mean of 3 different isolates of HSCs). 
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Glutathione depletion moderately increases oxidative stress in activated hepatic 

stellate cells 

Pre-incubation of activated, serum-starved HSCs with BSO reduced total 

glutathione levels by 87% (Fig. 4A). No increase was observed in either necrotic or 

apoptotic cell death (data not shown) as well as no gross changes in cellular morphology 

was observed in BSO-treated HSC. Likewise, BSO treatment also reduced glutathione 

content by 88% in activated HSCs cultured in medium containing 20% FCS (data not 

shown), without visible morphological changes. To investigate whether glutathione 

depletion leads to increased oxidative stress in HSCs, we determined the mRNA level of 

the oxidative stress-responsive gene heme-oxygenase-1 (HO-1). Depletion of glutathione 

increased HO-1 mRNA levels 2.3-fold (Fig. 4B), which is only minor when compared to 

the induction of HO-1 by menadione or hydrogen peroxide (5-50 fold) [6,19]. In addition, 

mRNA expression of GCL, the rate-limiting enzyme in glutathione synthesis, was 

increased only 1.6-fold (Fig. 4B). In contrast, glutathione depletion had no effect on the 

 

 

 

 

 

 

 

 

Figure 4. Glutathione depletion moderately increases oxidative stress in activated hepatic stellate 

cells. Fully-activated HSC were treated with BSO for 20 h and analyzed for total glutathione content (A) 

and mRNA levels of anti-oxidant enzymes (B,C) and activation markers (D). Pre-treating HSCs with BSO 

depleted cellular glutathione content by 87% in serum-starved HSCs (A). BSO treatment moderately 

induced HO-1 and GCL and had no effect on GPx1 (B)  nor on the expression of the anti-oxidant enzymes 

catalase, Mn-SOD, and CuZn-SOD (C) or the expression of the HSC activation markers, α-SMA, collagen 

type 1 and TGF-β (D). Results are shown as mean ± st. dev. of at least four independent experiments, * 

significantly different from controls; p<0.05. 
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expression of the hydrogen peroxide-detoxifying enzymes GPx1 and catalase and the 

superoxide dismutases Mn-SOD, and CuZn-SOD (Fig. 4B,C). These data indicate that 

glutathione depletion alone only minimally induces markers of oxidative stress. 

Furthermore, glutathione depletion did not change the expression of the known markers 

of stellate cell activation α-smooth muscle actin (α-SMA), collagen type 1, and TGF-β 

(Fig. 4D). Finally, glutathione depletion or glutathione supplementation, using GSH-MEE 

did not alter stellate cell proliferation (data not shown). Next, we analyzed whether 

glutathione depletion sensitizes HSCs for oxidative stress. 

Depletion of glutathione increases sensitivity to hydrogen peroxide-induced necrosis 

After depletion of glutathione with BSO, 35% and 75% of the cells became 

necrotic after a 3 hour exposure to 0.2 or 1 mM hydrogen peroxide, respectively (Fig. 5). 

This indicates that glutathione depletion greatly enhanced sensitivity to hydrogen 

peroxide-induced necrosis. Restoration of glutathione content, using GSH-MEE, almost 

completely reversed hydrogen peroxide-induced necrosis in BSO-treated HSCs (Fig. 5). 

 

 

 

 

 

 

Figure 5. Glutathione depletion increases sensitivity of hepatic stellate cells to  hydrogen peroxide-

induced necrosis. Fully-activated HSCs were exposed for 3 h to H2O2 in the absence or presence of BSO 

and/or GSH-MEE and analyzed for necrotic cell death by Sytox green nuclear staining. BSO treatment 

followed by exposure to 0.2 mM or 1 mM hydrogen peroxide (H2O2) induced necrosis in 35% and 75% of 

the cells, respectively. Co-treatment with GSH-MEE almost completely prevented the induction of HSC 

necrosis by BSO+H2O2. Results are shown as mean ± st. dev. of four independent experiments. *Significant 

difference compared to control, p<0.05; # Significant difference compared to 0.2 mM hydrogen peroxide, 

p<0.05; •Significant difference compared to 0.2 mM hydrogen peroxide + BSO, p<0.05; †Significant 

difference compared to 1 mM hydrogen peroxide, p<0.05; ‡Significant difference compared to 1 mM 

hydrogen peroxide + BSO, p<0.05. 
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Glutathione peroxidase and catalase protect against oxidative stress-induced 

apoptosis 

The importance of the antioxidant enzyme GPx in the protection of activated 

HSCs against oxidative stress was investigated using the GPx inhibitor mercaptosuccinic 

acid (MS). Inhibition of GPx using mercaptosuccinic acid increased apoptosis in the 

absence of hydrogen peroxide and in the presence of 0.2 mM and 1 mM hydrogen 

peroxide (Fig. 6A).  No effects on necrosis were observed under these conditions (data 

not shown). The importance of the antioxidant enzyme catalase in the protection of 

activated HSCs against oxidative stress was investigated using the catalase inhibitor 3-

amino-1,2,4-triazole (3-AT). This inhibitor significantly induced apoptotic cell death 

(18%) in HSCs after 6 hours, even in the absence of exogenous hydrogen peroxide (Fig. 

6A). Cells treated with 0.2 or 1 mM hydrogen peroxide in the presence of the inhibitor 

catalase showed even higher levels of apoptosis, 22% an 44% respectively (Fig. 6A). No 

effects on necrosis were detected at this time point. 

To investigate the importance of the hydrogen peroxide detoxifying enzymes 

catalase and GPx in the protection against superoxide anions that are converted into 

hydrogen peroxide by superoxide dismutases, we exposed activated stellate cells to the 

superoxide anion generator menadione. As described previously, menadione at 20 µM 

induced predominantly apoptotic cell death, which was reduced by the glutathione donor 

GSH-MEE [19]. Inhibition of catalase in the presence of menadione had no effect on 

apoptotic cell death, but slightly increased necrotic cell death, whereas inhibition of GPx 

did neither modulate apoptotic nor necrotic cell death (Fig. 6C). Prior reduction of 

cellular glutathione levels by BSO did not aggravate apoptotic cell death induced by 20 

µM menadione. Menadione at 50µM resulted in detachment of cells and massive necrotic 

cell death.    

Combined inhibition of glutathione peroxidase and catalase elevates apoptosis of 

HSCs 

Inhibiting both GPx and catalase by cotreatment with MS and 3AT resulted in 

22% apoptotic cells after 6 hours even in the absence of exogenous hydrogen peroxide 

(Fig. 6A). Exposing these cells to hydrogen peroxide induced apoptosis even further: to 

49% in co-treatment with 0.2 mM hydrogen peroxide and to 62 % in co-treatment with 1  
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Figure 6. 

Inhibition of glutathione peroxidase and/or catalase induces apoptosis in activated hepatic stellate 

cells. Fully-activated HSCs were exposed for 6 h to H2O2 in the presence or absence of the catalase 

inhibitor 3-AT and/or GPx inhibitor MS (A), as well as in the presence or absence of GSH-MEE or the 

caspase-3 inhibitor Z-DEVD-FMK (B) and analyzed for apoptotic cell death by acridine orange staining. 

Values are given as percentage apoptotic nuclei. 3-AT and MS treatment alone significantly increased the 

number of apoptotic HSC, which was further enhanced by cotreatment with H2O2 (A). Apoptosis induced 

by treatment with H2O2 in the presence of inhibitors of GPx and catalase is inhibited by a blocker of 

caspase-3 activity, but not by supplementing glutathione through GSH-MEE (B). Results are shown as 

mean ± stdev of at least four independent experiments. *Significant difference compared to control, p<0.05; 

^Significant difference compared to MS, p<0.05; §Significant difference compared to 3AT, p<0.05; † 

Significant difference compared to 1 mM hydrogen peroxide, p<0.05; °Significant difference compared to 

MS + 3AT, p<0.05; #Significant difference compared to 0.2 mM hydrogen peroxide, p<0.05; •Significant 

difference compared to 0.2 mM hydrogen peroxide + 3-AT + MS, p<0.05; ‡Significant difference from 0.2 

mmol/L hydrogen peroxide + 3-AT + MS, p<0.05; ⁿSignificant difference from 1 mmol/L hydrogen 

peroxide + 3-AT + MS, p<0.05. (C). Fully-activated HSCs were exposed for 9 h to 20µM menadione in the 

presence or absence of the catalase inhibitor 3-AT, the GPx inhibitor MS, as well as the glutathione 

depleting agent BSO analyzed for apoptotic cell death by acridine orange staining. Values are given as 

percentage apoptotic nuclei. Menadione induced apotptocu cell death at 20 µM. 3-AT and MS did not 

significantly modulate apoptotic cell death by menadione. Moreover, depletion of glutathione using BSO 

did not aggravate menadione-induced apoptotic cell death. Results are shown as mean ± st. dev. of at least 

four independent experiments. 
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mM hydrogen peroxide (Fig. 6A). Increasing the glutathione content using the 

glutathione donor GSH-MEE did not change the cell viability under these conditions (Fig. 

6B). Inhibition of caspase-3 partially decreased apoptosis of HSCs (Fig. 6B). Necrotic 

cell death was not significantly enhanced in the described conditions (data not shown). 

DISCUSSION 

Chronic liver injury is almost invariably accompanied by increased oxidative 

stress, activation of stellate cells and fibrogenesis [3-7]. Activated HSCs must be well 

protected against oxidative stress, since they survive and proliferate in the chronically 

injured liver. The oxidative stress in chronically injured liver is composed of several 

reactive oxygen species, including hydrogen peroxide and superoxide anions. In this 

study, we have investigated the resistance of hepatic stellate cells to hydrogen peroxide-

induced injury. We demonstrate that this resistance is to a large extent due to a high 

intracellular glutathione content and increased expression of glutathione peroxidase in 

activated stellate cells. Although an increased glutathione content in activated stellate 

cells has been reported before [21], the implications have never been investigated in the 

context of oxidative stress-induced cell death.  

Maher et al. showed, in addition to increased glutathione levels upon activation, 

an increase in the activity and mRNA level of glutamate-cysteine ligase (GCL), the rate-

limiting enzyme in glutathione synthesis [21]. We did not observe an induction of GCL 

mRNA upon stellate cell activation in our experiments. The increased cellular glutathione 

content is most likely due to a higher activity of GCL, especially since GCL activity is 

known to be regulated by the glutathione content [22]. It is unlikely that the increased 

glutathione content is due to reduced activity of the GSSG export pump Mrp1, since we 

have previously shown that the expression of this transporter is increased in activated 

stellate cells and contributes significantly to the survival of activated stellate cells. [23]    

Upon HSC activation, the expression of the hydrogen peroxide detoxifying 

enzyme glutathione peroxidase 1 (GPx1) is increased. This increase may be an adaptive 

response to oxidative stress. Indeed, mice over-expressing GPx1 are better protected 

against oxidative stress and they survive concentrations of the oxidant paraquat that are 

lethal in wild type mice and even more harmful in GPx1 knockout mice [24,25]. Mice 

that overexpress GPx1 are also more resistant to oxidative stress due to myocardial 
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ischemia-reperfusion injury [26]. It should be noted that glutathione is essential for the 

activity of GPx, since GPx converts reduced glutathione into oxidized glutathione. This 

might explain the coordinated increase in cellular glutathione content and GPx expression 

during the activation process of hepatic stellate cells. Therefore, our data suggest that 

activated hepatic stellate cells may be more resistant against oxidative stress than 

quiescent stellate cells. Interestingly, upon activation the mRNA expression level of the 

mitochondrial superoxide anion converting enzyme Mn-SOD is reduced, both at the 

mRNA and at the protein level. This finding is partially at variance with previous reports 

that revealed an initial increase in MnSOD mRNA expression, followed by a steady 

decrease of MnSOD mRNA expression [27]. Disruption of the Mn-SOD gene, a known 

tumor suppressor gene, is lethal in mice, which is a direct result of mitochondrial 

dysfunction, leading to metabolic acidosis, ketosis and accumulation of lipids in the liver 

and skeletal muscle [28,29]. Characterization of the heterozygous Mn-SOD knockout 

mice revealed no compensatory increase in other ROS-detoxifying enzymes, like 

glutathione peroxidase, CuZn-SOD or catalase [30]. Since Mn-SOD is restricted to the 

mitochondria, changes in its activity may not affect other components of the antioxidant 

defense system in other cellular compartment like the cytoplasm[30]. At present it is not 

known how the activated stellate cells detoxify the reactive oxygen species generated in 

mitochondria. One possibility is that the residual MnSOD protein content, as determined 

by Western-blotting and immunofluorescence, is sufficient to detoxify ROS generated in 

mitochondria. The reduction in Mn-SOD mRNA expression during activation could be 

due to the strong reduction of the transcription factor peroxisome proliferator-activated 

receptor-γ (PPAR-γ) that occurs during stellate cell activation (data not shown) and [31]. 

MnSOD expression is controlled by PPAR-γ: in PPAR-γ  knockout mice, the expression 

of Mn-SOD is also reduced [32] and activation of PPAR-γ with the agonists rosiglitazone 

or rosuvastatin enhanced MnSOD activity and expression [33,34].   

The catalase mRNA levels transiently increased during the activation process of 

HSC, which is largely in line which observations made by De Bleser et al. who analyzed 

catalase regulation during HSC activation by Northern blot analysis [27].  However, in 

contrast to the mRNA levels, the cellular catalase protein content sharply dropped 1 day 

after plating HSC. A typical peroxisomal staining of catalase remained detectable in fully 

activated HSC, indicating that some residual catalase protein was present in these cells. 

However, clearly, the catalase protein level was not an accurate reflection of the catalase 
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mRNA content. At present it is unclear why the catalase protein disappears from activated 

stellate cells, but this may be a result of a rapid and selective degradation of this 

antioxidant protein. The low catalase levels did not sensitize activated HSCs to acute 

H2O2-induced necrosis, indicating the presence of an alternative H2O2 scavenging 

mechanism(s) in activated HSCs. However, blocking catalase activity by 3-AT made 

HSCs highly sensitive for apoptotic cell death, which was further enhanced by exposure 

to 0.2 or 1.0 mM H2O2.  A similar effect was observed after blocking GPx activity, 

indicating that these 2 proteins play a key role in regulating apoptotic cell death in HSCs.  

HSCs increase their glutathione levels upon activation. However, glutathione 

depletion has no direct effect on stellate cell morphology [35] and in this study, we show 

that glutathione depletion also has no effect on the expression of markers of stellate cell 

activation, such as collagen type I, α-SMA and TGF-β or anti-oxidant genes like catalase, 

Mn-SOD, CuZn-SOD, and GPx1. Additionally, glutathione depletion did not affect the 

proliferation of hepatic stellate cells. The glutathione levels per se do not seem to be a key 

mechanism in developing the activated phenotype.  

Although increased mRNA levels of GCL and HO-1 were observed after 

glutathione depletion, these increases were modest, indicating that depletion of 

glutathione alone does not exert significant oxidative stress on stellate cells. Induction of 

GCL mRNA levels after glutathione depletion has also been shown in lung epithelial cells 

[36], endothelial cells [37], and in rat liver in vivo [38]. Although HO-1 has been reported 

to inhibit HSC proliferation via p38 activation [39], we did not find an alteration in the 

proliferation rate of stellate cells after HO-1 induction due to glutathione depletion. 

Possibly, the induction of HO-1 by glutathione depletion in our study is too modest to 

have an effect on p38 phosphorylation and subsequent HSC proliferation. The induction 

of HO-1 by glutathione depletion was only 2.3-fold, whereas Li et al showed at least a 10-

fold induction of HO-1 expression using 15-deoxy-delta-12,14-prostaglandin J2 [39,40]. 

Although glutathione depletion per sé had no effect on stellate cell viability, 

glutathione depletion increased the sensitivity of the cells to hydrogen peroxide-induced 

necrosis. Replenishing glutathione reduced necrotic cell death, without a shift towards 

apoptosis. Inhibition of the hydrogen peroxide-detoxifying activity by inhibitors of 

glutathione peroxidase or catalase induced HSC apoptosis, both in the absence and in the 

presence of exogenous hydrogen peroxide. Apoptotic cell death as a result of combined 
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inhibition of glutathione peroxidase and catalase was shown to be independent of 

glutathione content, but partially dependent on caspase-3 activity. The superoxide anion 

donor menadione dose-dependently induces apoptotic cell death in activated HSCs [19]. 

Inhibition of hydrogen peroxide detoxifying enzymes did not significantly modulate 

menadione-induced cell death, indicating that increased superoxide generation did not 

lead to a massive, superoxide dismutase-mediated, increase in hydrogen peroxide. 

The observed difference in mode of cell death, necrosis after glutathione depletion 

and apoptosis after inhibition of hydrogen peroxide detoxifying enzymes, may be 

explained by the cellular redox state. Glutathione is the most important regulator of the 

cellular redox state [41,42]. Changes in the glutathione content will affect redox status 

and is known to influence activation of MAP-kinases, transcription factors and caspases 

[41-43]. In the presence of glutathione, caspases that require reduced cysteine-sulfhydryl 

groups in their catalytic site, can still be activated when the enzymes GPx and catalase are 

inhibited, because this inhibition is not likely to change the redox state of the cell. In 

contrast, in the absence of glutathione, e.g. after glutathione depletion, cells exposed to 

hydrogen peroxide cannot activate caspases and the apoptotic program and cell death is 

shifted towards necrosis. Such a shift from apoptotic to necrotic cell death has been 

reported before in hepatocytes exposed to superoxide anions [44].  

In summary, our study reveals important changes in the defense against oxidative 

stress of hepatic stellate cells during activation. These changes are characterized by 

increased cellular glutathione content and GPx1 mRNA expression. Furthermore, we 

demonstrate that both glutathione and the hydrogen peroxide-converting enzymes GPx 

and catalase are important in the resistance against hydrogen peroxide-induced cell death. 

Our data suggests that activated hepatic stellate cells in vivo may acquire increased 

resistance to necrotic cell death, while remaining sensitive to apoptosis, providing an 

explanation for their survival in the fibrotic liver and their apoptotic clearance during 

reversal of fibrosis.  
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Microscopy Center (UMIC). 
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ABSTRACT 

Background: Liver fibrosis is a result of an exaggerated healing response to liver injury 

where proliferative, motile and contractile hepatic myofibroblasts produced excessive 

amounts of extracellular matrix proteins. These myofibroblasts may arise from difference 

cellular sources, including hepatic stellate cells (HSCs) and portal myofibroblasts (PMFs) 

that undergo drastic morphological and functional differentiation. Peroxisomes are 

multifunctional organelles that may adapt their number and specific function to the 

metabolic needs of the cell. We studied the expression, subcellular location and function 

of peroxisomal proteins in transdifferentiating HSCs and PMFs with emphasis on the 

ATP-binding cassette transporter 70 kDa peroxisomal membrane protein (PMP70). 

Methods: Primary rat HSCs were analyzed after a 4 h-attachment period (quiescent-

qHSCs) and after 1, 3, 7 and 14 days in culture (activated-aHSCs), as well as culture-

activated PMFs and the human stellate cell line LX-2. Messenger RNA levels, protein 

expression and subcellular location of selected proteins were analyzed by quantitative 

PCR, western blotting and immunofluorescence microscopy, respectively. RNA 

interference and plasmid-encoded GFP-PMP70 were used to reduce and overproduce 

PMP70, respectively. 

Results: HSCs harbour peroxisomes containing the peroxisomal markers Pex14p and  

catalase, expression of which do not strongly change during transdifferentiation. PMP70, 

a typical marker for peroxisomes in hepatocytes, resides in tubular strands that parallel 

the alpha-smooth muscle actin (αSMA) polymers in HSCs and PMFs. Silencing PMP70 

strongly reduced the expression of αSMA and desmin, without affecting the expression of 

Collagen 1A1. GFP-PMP70 also localized to the tubular strands and stimulated αSMA 

expression in HSC, PMF and LX-2 cells. 

Conclusions: PMP70 stimulates the production of the αSMA cytoskeleton in hepatic 

myofibroblasts, which renders these cells highly motile and contractile in the fibrotic 

liver.  
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INTRODUCTION 

Liver fibrosis is the result of the excessive secretion of extracellular matrix 

proteins (ECM) by myofibroblasts, such as type I collagens and fibronectins [1]. The 

myofibroblasts start secreting increased levels of ECM in a healing response to liver 

injury, but with persistent inflammatory conditions the excessive ECM disturbs the 

architecture of the liver and compromises its function. Myofibroblasts may originate from 

various cell types that undergo drastic morphological and biochemical differentiation in 

response to liver injury. For long, hepatic stellate cells were considered the source of 

myofibroblasts in the fibrotic liver [2,3]. In the healthy liver, hepatic stellate cells are 

considered quiescent, reside in the space of Disse and contain large cytoplasmic liver 

lipid droplets that harbour the body reserves of vitamin A, stored as retinal palmitate [4]. 

In response to liver injury, the vitamin A-containing lipid droplets disappear and the cells 

become proliferative, contractile, motile and ECM overproducers [5]. There are also 

precursors of myofibroblasts residing in the portal areas [2,6,7]. While these portal 

myofibroblasts do not contain vitamin A, upon liver injury they do rapidly 

transdifferentiate into activated myofibroblasts with largely similar characteristics as 

activated HSCs [8]. Recent data suggest that also liver epithelial cells, e.g. hepatocytes 

and/or cholangiocytes, as well as bone marrow-derived cells may transdifferentiate into 

myofibroblasts and contribute to fibrosis progression [9-12]. Irrespective of the cellular 

origin, activated myofibroblasts have undergone drastic cellular and metabolic 

reprogramming. Hepatic stellate cells change from oxidative phosphorylation to 

glycolysis upon activation [13]. Besides increased ECM production, activated 

myofibroblasts contain a characteristic cytoskeletal network consisting of alpha-smooth 

muscle actin (α-SMA) that renders these cells motile and highly contractile [14]. 

Peroxisomes are versatile cellular organelles present in almost every eukaryotic 

cell that adapt their function and numbers upon the cellular needs. Peroxisomal enzymes 

play crucial roles in over 50 different metabolic pathways [15-18]. A common 

peroxisomal function shared by many eukaryotic organisms is the metabolism of lipids 

through α- or β-oxidation of either long chain fatty acids (LCFAs) or very LCFAs 

(VLCFAs) [19]. H2O2 is formed during these metabolic processes, which is detoxified by 

the peroxisomal enzyme catalase [20]. Peroxisomes are particularly enriched in the liver 

and kidney. Most of our knowledge about mammalian peroxisomes stems from research 
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on the liver, where peroxisomes are abundantly present in hepatocytes [17,21-23] and are, 

amongst others, involved in bile acid synthesis and fatty acid catabolism. The high 

metabolic activity of peroxisomes requires efficient metabolite transport across the 

peroxisomal membrane. The ATP-binding cassette (ABC) transporters 

Adrenoleukodystrophy protein (ALDP/ABCD1 [24] and the 70 kDa Peroxisomal 

Membrane Protein (PMP70/ABCD3 [25]) are such substrate transporters and supposedly 

transport VLCFAs and LCFAs into peroxisomes, respectively.  

In contrast to hepatocyte peroxisomes, almost nothing is known about peroxisome 

function in liver myofibroblasts and how they may change their function and/or number 

during the transdifferentiation process. Peroxisomal function in HSCs is of particular 

interest, since activation of HSCs leads to the rapid loss of a large pool of fatty acids that 

may be metabolized through peroxisomal β-oxidation. Here, we analysed the expression 

of peroxisomal markers proteins in quiescent and transdifferentiating HSCs and studied 

their subcellular location in these cells. We specifically focussed on a novel function for 

PMP70 in establishing the αSMA network in activated myofibrobalasts.  

MATERIALS AND METHODS 

Animals: Specified pathogen-free male Wistar rats (220–250 g for hepatocyte isolations 

and 400-500 g for HSC isolations) were purchased from Charles River Laboratories Inc. 

(Wilmington, MA, USA). They were housed under standard laboratory conditions with 

free access to standard laboratory chow and water. Experiments were performed 

following the guidelines of the local Committee for Care and Use of laboratory animals. 

Isolation and culture of rat hepatocytes, hepatic stellate cells and portal myofibroblasts: 

Hepatocytes[26], HSCs [27] and PMFs [6] were isolated and cultured as described 

previously. Hepatocyte viability and purity were always more than 90%. Cells were 

cultured in a humidified atmosphere containing 5% CO2 at 37 °C. 

LX2: The immortalized human hepatic stellate cell line LX2 was a kind gift of Dr. Scott 

L. Friedman [28]. Cells were cultured as described in [28]. 

Plasmids: pEGFP-C1 (cytosolic GFP; BD Biosciences Clontech Palo Alto, CA), 

pDsRed-SKL [29] and PMP70-GFP [30] were used for transient transfections.  
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Transient transfections: Culture-activated HSC, PMF and LX-2 cells were transiently 

transfected using lipofectamine
TM

 2000 (Invitrogen), Amaxa
TM

 Cell Line Nucleofector® 

Kit L (Lonza Cologne GmbH, Germany) and FuGENE® HD Transfection Reagent 

(Promega Madison, WI, USA), respectively. Cells were fixed for immunofluorescence 48 

h after transfection. 

PMP70 RNA interference (RNAi): Culture-activated HSC (t=7 days) or PMF were 

trypsinized and plated at a density of 1,500 cells/cm
2
 in IMDM with Glutamax 

supplemented with 1% heat-inactivated fetal calf serum, 1 mmol/L sodium-pyruvate and 

1x MEM non essential amino acids. Four hours after plating, cells were transfected with 

double-stranded siRNA duplexes (see supplementary Table S1) to silence PMP70 

(siRNA-PMP70, Invitrogen). Control cells were transfected with oligonucleotides 

directed against luciferase (siRNA-luc, Invitrogen). Oligofectamine (Invitrogen) was used 

as a transfection reagent according to the manufacturer’s instructions. PMF were 

harvested after 72 h for analysis. HSC were re-transfected with either siRNA-PMP70 or 

siRNA-luc after 3 days and 6 days. After 9 days, cell viability was measured in a cell 

viability assay. In parallel experiments, cells were either lysed for Q-PCR mRNA analysis 

or Western blot analysis or fixed with 4% paraformaldehyde for immunofluorescence. 

Cell Viability Assay: The cell viability of siRNA-luc and siRNA-PMP70 transfected 

HSCs was determined by measuring cellular adenosine triphosphate (ATP) levels with 

the Cell Titer Glow assay (Promega) according to the manufacturer’s instructions. In each 

experiment, measured ATP levels were corrected for the number of cells. 

RNA isolation and Quantitative Polymerase Chain Reaction (Q-PCR): The isolation of 

total RNA, its conversion to cDNA and its analysis by Q-PCR was carried out as 

described previously [31]. Primers and probes used in this study are listed in 

supplementary Table S2. The expression of each gene of interest was normalized with 

respect to the endogenous control, 18S (∆∆Ct method). 

SDS-PAGE and western blotting: Protein samples were separated by SDS-PAGE and 

analyzed by Western blotting according to established procedures [29]. Protein 

concentrations were determined using the Bio-Rad Protein Assay system (Bio-Rad 

Hercules, CA, USA) using bovine serum albumin as standard. All primary antibodies 

used are listed in supplementary Table S3. Horse radish peroxidase-conjugated secondary 
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antibodies (HRP-conjugated swine-anti rabbit, rabbit anti-goat and rabbit anti-mouse, 

Dako A/S, Glostrup, Denmark) and the Phototope®-HRP Western Blot Detection System 

(Cell Signalling technology Inc, Danvers, MA) were used for detection according to the 

manufacturers’ protocols. The blots were exposed in a ChemiDoc XRS system (Bio-Rad).  

Immunofluorescence microscopy: Cells were fixed with 4% paraformaldehyde, labeled 

and analyzed as described previously [29]. Primary antibody dilutions are listed in 

supplementary Table S3. Images were captured using Leica SP2/AOBS confocal 

microscope at the UMCG Microscopy and Imaging Center (UMIC). 

Statistical analysis: All numerical results are reported as the mean of at least 3 

independent experiments ± standard error of the mean (S.E.M). A Mann-Whitney U test 

was used to determine the significance of differences between experimental groups. A p-

value smaller than 0.05 was considered to be statistically significant. 

RESULTS 

mRNA expression of peroxisomal genes in hepatocytes and transdifferentiating 

HSCs 

We first compared the relative mRNA (Fig. 1A) and protein (Fig. 1B) levels of the 

peroxisomal markers Pex14p, catalase, PMP70 and ALDP in rat hepatocytes and fully 

activated hepatic stellate cells (aHSCs). Bile acid-CoA:amino acid N-acyltransferase 

(Baat), a peroxisomal protein required for bile salt synthesis [29], and alpha-smooth 

muscle actin (αSMA) were used as markers for hepatocytes and aHSCs, respectively. 

Pex14 transcript and protein levels, a protein involved in peroxisome biogenesis, were 

similar in hepatocytes and aHSCs, while catalase levels were much lower (10-fold) in 

aHSCs. ALDP transcript levels were 3.0-fold higher in aHSCs compared to hepatocytes, 

but ALDP protein levels appeared comparable in these cell types. PMP70 mRNA was 

predominant in hepatocytes, but significant levels (2.5-fold lower than in hepatocytes) 

were detected in aHSCs. Transcripts of genes involved in β-oxidation of VLCFAs (Acyl 

CoA Oxidase and MultiFunctional Protein) and peroxisome proliferation (Pex11a) were 

much lower in aHSCs compared to hepatocytes (Supplementary Fig. S1). We next 

determined the expression of peroxisomal marker genes during HSCs transdifferentiation 

(Fig. 1C). HSCs were analysed immediately after a 4h attachment period and 1, 3, 7 and 

14 days after in vitro cultivation. αSMA expression became detectable after 1 day in 
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culture and steadily increased up to day 7, after which it did not further increase. 

Expression of PPARγ, a marker for quiescent HSCs, sharply dropped when the HSCs 

were culture-activated and remained low over 2 weeks. Pex14p levels slightly increased 

during transdifferentiation and returned to quiescent levels after 14 days. Catalase first 

dropped sharply in the first day of culture, then transiently increased during 

transdifferentiation after which levels dropped to approximately 25% of qHSCs. The 

expression of ALDP and PMP70 transiently increased during HSC activation. However, 

this increase was not significant. 

Subcellular location of peroxisomal proteins in transdifferentiating HSCs 

Immunofluorescence microscopy was used to analyse the subcellular location of Pex14p, 

catalase, ALDP and PMP70 in rat hepatocytes and aHSCs (Fig. 2). As expected, all 4 

proteins showed a typical peroxisomal staining pattern in hepatocytes indicated by many 

discrete dots in the cytoplasm (Fig. 2, A1-A4). A clear dotted staining was also observed 

for Pex14p and catalase in aHSCs (Fig. 2, B1, B2; higher magnifications in C1 and C2), 

which were identified as peroxisomes in aHSC transfected with DsRed containing a 

peroxisomal targeting signal (DsRed-SKL; Supplementary Figure S2). In addition, a 

nuclear staining for these proteins was also detected. ALDP and PMP70 were 

predominantly detected in tubular strands diverting from the nucleus with variable 

amounts associated with peroxisomes (Fig. 2, B3, B4; higher magnifications in C3 and 

C4). Peroxisome-like dots were most evident after staining for ALDP, while the presence 

of PMP70-positive peroxisomes was highly heterogeneous between individual HSC 

(compare B-4 and D-1 and Suppl. Figure S2) and the tubular PMP70 staining was always 

observed. The morphological appearance of the ALDP- and PMP70-positive strands was 

different. Co-staining experiments revealed only partial co-localization of these proteins 

in these structures in aHSCs (Supplementary Fig. S3 D-F). This in sharp contrast to 

hepatocytes, where they strongly co-localize in peroxisomes (Supplementary Fig. S3 A-

C). ALDP largely co-localized with calnexin, a marker for the ER (Supplementary Fig 

S4). The most remarkable finding of these experiments was that the PMP70-positive 

tubules paralleled the αSMA fibers (Fig. 2D1-D3). An identical location of PMP70 was 

detected in activated portal myofibroblasts (Fig 2, E1-E3), showing that this is a common 

feature of hepatic myofibroblasts that cause fibrosis. 
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Figure 1. mRNA and protein expression of peroxisomal markers in hepatocytes and HSCs. 

Hepatocytes and HSCs were isolated using standard protocols. HSCs were activated in the presence of 

serum for 14 days (aHSCs). A) The relative mRNA expression (normalized to 18S) of the indicated genes 

was normalized to its expression in hepatocytes, except for αSMA, which was normalized to its expression 

in aHSCs (*Significant difference ( p<0.05) when compared to hepatocytes, 
#
significant difference ( 

p<0.05) when compared to aHSCs). B) Equal protein amounts from hepatocytes and aHSCs were analyzed 

by western blotting using specific antibodies against the hepatocyte marker Baat, the activated stellate cell 

marker αSMA, and the peroxisomal proteins Pex14p, catalase, ALDP and PMP70. Gapdh expression was 

analyzed as a control for equal protein loading. C) Freshly isolated HSCs were cultured in the presence of 

serum for 4 hours, 1 day, 3 days, 7 days or 14 days. The relative mRNA expression (normalized to 18S) of 

each gene was normalized to its expression in aHSCs (t=14 days). *Significant difference (p<0.05) when 

compared to qHSCs (t= 4 hours).  
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Figure 2. Subcellular location of peroxisomal proteins in hepatocytes, HSCs and PMF. Freshly isolated 

rat hepatocytes were fixed after a 4-hour attachment period (A) and freshly isolated HSCs were activated as 

described in Fig. 1 (B, zoomed images in C) followed by immunofluorescence microscopy to determine the 

subcellular location of Pex14p (column 1), catalase (column 2), ALDP (column 3), PMP70 (column 4) an 

αSMA (column 5). Co-immunofluorescent staining was performed for PMP70 (D-1, E-2) and the activation 

marker αSMA (D-2, E-2) in aHSC (D) and PMF (E). The merged images in D-3 and E-3 (higher 

magnification of box in E-1/E-2), show that the PMP70-tubules and the αSMA fibers run parallel through 

aHSCs, but do not exactly co-localize. 



 

 

108 | P a g e  

 

RNA interference-mediated silencing of PMP70 inhibits αSMA expression 

The intimate association between the PMP70-positive tubules and the αSMA 

network prompted us determine the effect of down-regulating PMP70 on HSCs and PMFs 

activation. By applying RNA interference, PMP70 mRNA levels were reduced up to 80% 

in αHSCs (Fig. 3A), which was accompanied by similarly reduced PMP70 protein levels 

(Fig. 3C). Only minor effects were detected on the transcript levels of genes encoding 

other peroxisomal proteins (Fig. 3A) and the corresponding protein levels (Fig. 3C) and 

their subcellular location appeared unchanged  (shown for Pex14p in Supplementary Fig. 

S5). Moreover, PMP70 silencing did not alter the viability of αHSCs (Fig 3D). In 

contrast, a strong (approximately 60%) reduction of αSMA mRNA and protein levels 

were detected in siRNA-PMP70-treated aHSCs (Fig. 3B and C). Also desmin mRNA and 

protein expression were significantly reduced, but less pronounced (approximately 40%). 

The mRNA levels of TGF-β and collagen-1a1 were not significantly changed in siRNA-

PMP70-treated αHSCs (Fig. 3B). Essentially the same results were obtained when 

PMP70 expression was inhibited in PMFs (Supplementary Fig. S6). Immunofluorescence  
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Figure 3. RNA interference-mediated silencing of PMP70 leads to a reduced expression of the 

activation markers αSMA and desmin in HSC. Primary rat HSCs were transiently transfected to silence 

PMP70 expression (siRNA-PMP70). Control cells were transfected with oligonucleotides directed against 

luciferase (siRNA-luc). After 3 and 6 days, HSCs were re-transfected with either siRNA-PMP70 or siRNA-

luc. After 9 days, mRNA levels of PMP70, ALDP, catalase, Pex11p and Pex14p (A) or αSMA, desmin, 

TGF-β and collagen 1a1 (B) were analyzed by Q-PCR. The relative mRNA expression (normalized to 18S) 

of each gene was normalized to its expression after siRNA-luc transfection. Levels of selected proteins 

were analyzed by Western blotting, using antibodies against PMP70, ALDP, catalase, Pex14p, calnexin, 

αSMA and desmin. As a loading control, Gapdh expression was analyzed (C). The cell viability of siRNA-

luc and siRNA-PMP70 transfected HSCs was determined by measuring cellular adenosine triphosphate 

(ATP) levels. In each experiment, measured ATP levels were corrected for the amount of cells and 

normalized to corrected ATP levels in siRNA-luc transfected cells (D). (E) The subcellular location of 

PMP70 (siRNA-luc: E-a, E-d and E-e; siRNA-PMP70: E-h, E-k and E-l) and the HSC activation marker 

αSMA (siRNA-luc: E-b and E-f; siRNA-PMP70: E-i and E-m) were analyzed by immunofluorescence 

microscopy. The merged images are shown in E-c and E-g (siRNA-luc) and E-j and E-n (siRNA-PMP70), 

respectively. * Significant difference ( p<0.05) when compared to siRNA-luc treated control. 

microscopy revealed a strong reduction in the number of αSMA-positive HSCs after 

silencing of PMP70 (Fig. 3E), which dropped from 92% in control-transfected (siRNA-

LUC) HSCs (Fig. 3E a-c) to 38% in siRNA-PMP70 transfected HSCs (Fig. 3E h-j). The 

characteristic staining of PMP70 in tubular strands was absent in siRNA-PMP70-treated 

HSCs (compare Fig 3E d-g to 3E k-n) and coincided with the absence of αSMA staining.  



 

 

110 | P a g e  

 

 

Figure 4. Recombinant PMP70-GFP accumulates in tubular structures and enhances aSma 

expression. HSC (A-C) and PMF (D-G) were transiently transfected with plasmids that encode cytosolic 

GFP (A), peroxisomal DsRed-SKL (B) or PMP70-GFP (C,D, E-F). Co-staining for PMP70-GFP (E) and 

aSma (F, overlay in G) reveals increased aSMA intensity in PMP70-GFP-positive PMF. H) Westernblot 

analysis of LX-2 cells transiently transfected with plasmids encoding GFP or PMP70-GFP and the effect on 

αSMA levels. 

Transient expression of GFP-PMP70 stimulates αSMA expression 

Complementary to these experiments, we performed overexpression of GFP-

tagged PMP70 in HSC, PMF and LX-2 cells (Fig. 4). Similar to endogenous PMP70, 

transiently expressed GFP-PMP70 was predominantly detected in tubular strands in HSC 

and PMF (Fig. 4C and D, respectively; compare to cytosolic GFP (A) and peroxisomal 

DsRed-SKL (B)). The GFP-PMP70-transfected PMF showed an increased αSMA 

staining intensity compared to surrounding untransfected cells (Fig. 4 E-G). The 

transfection efficiency of primary HSCs and PMFs is low (<10%), which precluded 

confirmation of this effect by Western blot analysis. However, transfection efficiencies 

were much higher for the  human stellate cell line LX-2 (>50%) and overexpression of 

GFP-PMP70 in these cells was accompanied by a significant increase in αSMA protein 

levels compared to control (GFP alone) transfected cells (Fig. 4H). 
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DISCUSSION 

In this study, we show that the intracellular ABC transporters PMP70 is required 

for the production of the αSMA cytoskeleton in liver myofibroblasts, which is a 

characteristic feature of these cells causing liver fibrosis. PMP70 resides primarily in 

tubular strands that parallel the alpha-smooth muscle actin (αSMA) network. Suppression 

of PMP70 strongly decreased the expression of αSMA as well as desmin, while 

overproduction of GFP-PMP70 stimulated αSMA production. In contrast, other activation 

markers of activated myofibroblasts (TGF-β and collagen-1a1) did not respond to 

manipulation of PMP70 expression.  

Peroxisomes are functionally and morphologically highly dynamic organelles and 

their function is cell- and condition-dependent. Moreover, the population of peroxisomes 

within one cell may be heterogeneous based on size and/or protein composition 

[23,32,33]. Peroxisomes may exist as individual spheres, but may also be interconnected 

forming a peroxisome reticulum [22,34]. The PMP70-containing tubular strands in 

hepatic myofibroblasts, however, seem to be an unprecedented morphological variation of 

a peroxisome, while the characteristic spherical peroxisomes were also present and 

contain catalase, Pex14p and ALDP. Small amounts of these typical peroxisomal markers 

were also found to colocalize with PMP70 in the tubular strands. Conversely, variable 

amounts of PMP70 were detected in the typical spherical peroxisomes containing Pex14p, 

catalase and ALDP, suggesting that the tubular strands are a specialized form of the 

peroxisome. At present, it is unknown how the cellular pools of the various 

“peroxisomal” proteins like PMP70, ALDP, Pex14p and catalase are differentially 

distributed among the spherical peroxisomes and the tubular strands. The PMP70-

containing tubules have not been observed in other cell types, including skin fibroblasts, 

where both endogenous PMP70 and artificially expressed PMP70 reside in spherical 

peroxisomes [35]. We show that artificial expression of GFP-tagged PMP70 also 

accumulates in tubular strands in hepatic myofibroblasts, whereas this hybrid protein 

appears in peroxisomes in CHO [30] and HepG2 cells (data not shown). This 

demonstrates that the tubular strands are the genuine subcellular location of PMP70 in the 

hepatic myofibroblasts. We initiated subcellular fractionation experiments of cultured 

hepatic myofibroblasts to biochemically characterize the PMP70-containing tubules. 

However, it appears that organellar markers for peroxisomes, mitochondria, endoplasmic 
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reticulum as well as PMP70 all appear in the low-speed (500g) centrifugation step after 

osmotically-stabilized lysis of these cells (data not shown). The organelles are most likely 

attached to the cytoskeletal proteins preventing their purification from hepatic 

myofibroblasts by standard cell fractionation protocols.  

Exogenous added arachidonic acid induces the formation of tubular peroxisomes 

in HepG2 cells [22]. Interestingly, it has recently been shown that hepatic stellate cells 

efficiently absorb exogenous arachidonic acid when culture-activated in vitro [36] and 

this may be (one of) the mechanism(s) that causes the formation of the PMP70-containing 

tubular strands. Arachidonic acid is the substrate for the synthesis of prostaglandins and 

leukotrienes by hepatic myofibroblasts and both have profound effects on activation of 

stellate cells in vitro and liver fibrosis in vivo. Prostaglandins, in particular prostaglandin 

E2, represses HSC activation [37], while leukotrienes promote fibrosis both in liver and 

lung [38,39]. Peroxisomes are involved in the degradation of prostaglandins [40,41] and 

leukotrienes [42]. Patients with Zellweger syndrome, a congenital disorder characterized 

by the absence of intact peroxisomes, secrete high levels of metabolic intermediates of 

prostaglandins [43] as well as leukotriene B4 and E4 [44-46] in the urine compared to 

healthy controls. Inhibition of PMP70 expression in HSC/PMF led to a specific reduction 

of αSMA and desmin, but not of collagen 1a1 or TGF-β. Such a selective reduction of 

αSma expression was also observed when prostaglandin synthesis was inhibited in human 

hepatic cell lines using the COX-2 inhibitor, NS-398, while collagen IV levels did not 

change [47] and Collagen 1a1 expression was actually increased [37]. These data suggest 

that stimulation of intracellular prostaglandin production may activate hepatic 

myofibroblasts. On the contrary, exogenously added PGE2 has a potent antifibrotic action 

[37]. Thus, the profibrotic effect of PGE2  is largely determined by the balance between 

its synthesis, cellular export and intracellular degradation. Earlier studies suggest that 

PMP70 transports long chain fatty acids and bile salt intermediates into peroxisomes to 

become metabolized through beta-oxidation, though solid evidence for these activities is 

not yet available [48,49]. Given the role of peroxisomes in prostaglandin and leukotriene 

breakdown and the selective effect of PMP70 expression on αSMA levels, it is now 

interesting to determine the possible role of PMP70 in balancing intracellular 

prostaglandin and/or leukotriene levels.  
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The PMP70-containing tubular strands lay parallel to the αSMA network. PMP70-

containing peroxisomes have previously been shown to associate with microtubules [50], 

but this has only been studied in relation to peroxisome movement and division. Our data 

imply a direct role for PMP70 in the development of the αSMA cytoskeleton in hepatic 

myofibroblasts. Given its presumed role in substrate transport, this is most likely related 

to a role of PMP70 in PG and/or LT metabolism as described above. However, this 

remains to be established and alternative functions of PMP70 on the assembly of the 

αSMA network may be involved.  

Our study does not provide evidence that peroxisomal activities are involved in 

the metabolism of fatty acids that are associated with the activation of hepatic stellate 

cells, as the activation process was not accompanied by increased expression of genes 

involved in β-oxidation, such as AOX and MFP (see also Supplemental Figure S7). This 

is in line with the recent observation that in vitro-activated HSCs specifically lose retinyl 

esters, but in fact increase the triacylglycerol species containing polyunsaturated fatty 

acids [36]. This implies that the initial stages of HSCs activation does not require 

increased metabolism of (very-)long chain fatty acids.  

Taken together, our data show that the ABC transporter PMP70 controls the 

development of the αSMA cytoskeleton in hepatic myofibroblasts and is therefore a 

contributing factor in liver fibrosis. PMP70 is present in tubular strands that parallel the 

αSMA fibers. 
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Figure S1. mRNA expression of the 

peroxisomal markers AOX, Pex11p 

and MFP in hepatocytes and aHSCs. 

Hepatocytes and HSCs were isolated 

using standard protocols (see materials 

and methods). HSCs were cultured in 

the presence of serum for 14 days 

(aHSCs). The relative mRNA 

expression (normalized to 18S) of each 

gene was normalized to its expression 

in hepatocytes (hepa). * Significant 

difference (p<0.05) when compared to 

hepatocytes. 
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Figure S2. Co-localization studies of peroxisomal proteins with the peroxisomal marker DSRed-SKL 

in aHSCs. Activated HSCs were transfected with 4µg DSRed-SKL. Forty eight (48) hours after 

transfection, stellate cells were fixed and subjected to immunofluorescence microscopy to determine co-

localization of αSMA (A), Pex14p (B), catalase (C), ALDP (D) and PMP70 (E)) with DSRed-SKL (row A-

2 to E-2). Merged images are displayed in row A-3 to E-3 and higher magnifications or the regions of 

interest are shown in row A-4 to E-4.  

 

 

 

 

 

 

 

Figure S3. Subcellular location of ALDP and PMP70 in hepatocytes and aHSCs. Freshly isolated rat 

hepatocytes (A-C) were fixed after a 4h-attachment period and HSCs (D-F) after 14-day culture activation 

followed by immunofluorescence microscopy to determine the subcellular location of ALDP (A,D) and 

PMP70 (B,E). Merged images are shown in C and F. 

A 

D E F 
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Figure S4. ALDP resides partly in the endoplasmic reticulum in aHSCs. Activated HSCs were 

processed for immunofluorescence microscopy to determine the co-localization of ALDP with calnexin 

(upper panels A-D). To determine co-localization between the (endogenous) ER marker calnexin and the 

(transfected) peroxisomal marker DSRed-SKL, aHSCs were transfected with 4µg DSRed-SKL, similarly as 

in Figure S2.  

 

 

 

 

 

 

 

 

 

 

Figure S5. RNA interference-mediated silencing of PMP70 does not affect the sorting of the 

peroxisomal marker Pex14p. PMP70 expression was silenced as described in Fig. 3.  The subcellular 

location of Pex14p (siRNA-luc: A-C; siRNA-PMP70: D-F) was analyzed by immunofluorescence 

microscopy. The zoomed images are shown in C (siRNA-luc) and F (siRNA-PMP70) respectively, showing 

that the subcellular location of Pex14p is not affected by RNA interference-mediated silencing of PMP70. 
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Figure S6. RNA interference-mediated silencing of PMP70 leads to a reduced expression of the 

activation markers αSMA and desmin in PMF. 

Primary rat PMF were transiently transfected to silence PMP70 expression (siRNA-PMP70). Control cells 

were transfected with oligonucleotides directed against luciferase (siRNA-luc). After 72 h, mRNA levels of 

PMP70, ALDP, catalase, Pex11p and Pex14p (A) or αSMA, desmin, TGF-β and collagen 1a1 (B) were 

analyzed by Q-PCR. The relative mRNA expression (normalized to 18S) of each gene was normalized to its 

expression after siRNA-luc transfection. 

 

Figure S7. Transdifferentiating HSC do not show an (transient) increase in the expression of enzymes 

of LCFA ββββ-oxidation. Freshly isolated HSC were cultured in the presence of serum for 4 hours, 1 day, 3 

days, 7 days or 14 days. The relative mRNA expression (normalized to 18S) of Acyl CoA oxidae (AOX) 

and the Multifunctional Protein (MFP) was normalized to its expression in aHSCs (t=14 days). *Significant 

difference (p<0.05) when compared to qHSCs (t= 4 hours). 

 

 

 

 

* * * 
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SUPPLEMNTARY TABLES 

 

Table S1: Primers used for PMP70 RNA interference 

RNA Sense  Antisense 

luciferase 5'-cuu acg cug agu acu ucg auu-3' 5'-ucg aag uac uca gcg uaa guu-3' 

PMP70 5’-gag aca ggg uac uuc aua c-3’ 
 

5-gua uca agu acc cug ucu c-3’ 
 

 

Table S2: Sequences of Primers and Probes used for Real-time Quantitative PCR 

Analysis 

 

Gene Sense  Antisense Probe 

18S 5'-cgg cta cca cat cca agg a 
-3' 

5'-cca att aca ggg cct cga aa-3' 5'FAM-cgc gca aat tac cca ctc ccg a-TAMRA3' 

ALDP 5’-cat ctg gcc tgc tca tgg ta -
3’ 

5’-ttc atg gct tct gag tct gac tct-3’ 5’FAM-ccc cat cat cac agc cac tgg ct-
TAMRA3’ 

AOX 5´-gcc acg gaa ctc atc ttc 
ga-3´ 
 

5´-cca ggc cac cac tta atg ga-3´ 
 

5´FAM-cca ctg cca cat atg acc cca aga ccc-
TAMRA3´ 
 

Baat 5´-tgt aga gtt tct cct gag aca 
tcc taa-3´ 
 

5´-gtc caa tct ctg ctc caa tgc-3´ 
 

5´FAM-tgc caa ccc ctg ggc cca g-TAMRA3´ 
 

catalase 5’-gga tta tgg cct cc gaga 
tct-3’ 
 

5-acc ttg gtc agg tca aat gga t-3’ 
 

5’FAM-atg cca tcg cca gtg gca att acc-
TAMRA3’  
 

collagen 
1a1 

5’-tgg tga acg tgg tgt aca 
agg-3’ 
 

5’-cag tat cac cct tgg cac cat-3’ 
 

5’FAM-tcc tgc tgg tcc ccg agg aaa ca-
TAMRA3’ 
 

desmin 5-tgg tac aag tcc aag gtt tca 
gac t-3’ 
 

5’-ctg gtg tcg gta ttc cat cat ct-3’ 
 

5’FAM-aag aac aac gat gcg ctg cgc c-
TAMRA3’ 
 

MFP 5’-agg ttg gag cag gat gga 
ttg-3’ 
 

5’-ctt gct ggc att gct gaa gtc-3’ 
 

5’FAM-cgg aat cag ccc atg act ccc ga-
TAMRA3’ 
 

Pex14p 5’-gct acc aca tca acc aac 
tgg at-3’ 
 

5’-gga act gtc tcc gat tca gaa ga-
3’ 
 

5´FAM-tga gct caagtc aga aat caa ctc tct gaa 
agg ac-TAMRA3´ 
 

Pex11p 5´-gcc cgc cac tact ac tat ttc 
ct-3´ 
 

5´-tct gtc gcg tgc aac ttg tc-3´ 
 

5´FAM-cat atg cag caa gac ctc ata cag atc ccg 
-TAMRA3´ 
 

PMP70 5’-ctg gtg ctg gag aaa tca 
tca at-3’ 

5’-cca gat cga act tca aaa cta 
agg t-3’ 

5’FAM-tga tca tgt tcc ttt agc aac acc aaa tgg-
TAMRA3’ 

PPARα 5´-cac cct ctc tcc agc ttc ca-
3´ 
 

5´-gcc ttg tcc cca cat att cg-3´ 5´FAM-tcc cca cca gta cag atg agt ccc ctg-
TAMRA3´ 
 

PPARγ 5´-cac aat gcc atc agg ttt 
gg-3´ 
 

5´-gct ggt cga tat cac tgg aga tc-
3´ 
 

5´FAM-cca aca gct tct cct tct cgg cct g-
TAMRA3´ 
 

αSMA 5´-gcc agt cgc cat cag gaa 
c-3´ 
 

5´-cac acc aga gct gtg ctg tct t-3´ 
 

5´FAM-ctt cac aca tag ctg gag cag ctt ctc ga-
TAMRA3´ 
 

TGF-β 5’-ggg cta cca tgc caa ctt 
ctg-3’ 
 

5’-gag ggc aag gac ctt gct gta-3’ 
 

5’FAM-cct gcc cct aca ttt gga gcc tgg a-
TAMRA3’ 
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Table S3: Antibody dilutions for protein analysis 

Antibody Western 

Blotting 

Immunofluorescence Company 

Mouse 

α-ALDP 

 

 

 1:1000 

 

1:100 

Clone 1D6, Euromedex, Mundolsheim 

France 

Rabbit 

α-Baat 

 

 

1:2000 

 Generous gift of Prof. C. Falany, 

Birmingham, AL, USA [51] 

Rabbit 

α-calnexin 

 

 

1:2000 

 

1:200 

 

SPA 860D, Stressgen, MI, USA 

Rabbit 

α-catalase 

 

 

1:2000 

 

1:200 

 

Calbiochem, La Jolla, CA, USA 

Mouse 

α-Cytochrome C 

 

 

1:2000 

  

BD Biosciences, Franklin Lakes, NJ, USA 

Mouse 

α-desmin 

 

1:1000 

  

Sigma-Aldrich, St. Louis, MO, USA 

Mouse 

α-Gapdh 

 

 

1:10.000 

  

Calbiochem, La Jolla, CA, USA 

Rabbit 

α-Pex14p 

 

 

1:2000 

 

1:200 

Generous gift of Dr. M. Fransen, 

Leuven, Belgium [52] 

Rabbit 

α-PMP70 

 

 

1:1000 

 

1:200 

 

Sigma-Aldrich, St. Louis, MO, USA 

Mouse 

α-alphaSMA 

 

 

 

1:2000 

 

1:500 

 

Sigma-Aldrich, St. Louis, MO, USA 
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Chronic liver diseases generally result in liver fibrosis [1-3]. Hepatic stellate cells 

(HSCs) and portal myofibroblasts (PMFs) are the key players in fibrogenesis. In response 

to inflammatory cytokines and oxidative stress, HSCs and PMFs become activated and 

transdifferentiate into proliferative motile myofibroblasts that produce excessive amounts 

of extracellular matrix proteins, such as collagens and fibronectins [2,4]. Liver fibrosis 

may progresses into cirrhosis, which strongly increases the risk for liver cancer. So far, 

there is no effective therapy for the treatment of liver fibrosis [5]. In this thesis we 

investigated the role of ABC-transporters in the development of liver fibrosis and their 

potential for being therapeutic targets. 

In Chapter 2, we demonstrate that the multidrug resistance-associated protein 1 

(Mrp1) is required for the activation of HSCs and PMFs and promotes CCl4-induced liver 

fibrosis in mice. In chapter 3, we show that the Mrp1 inhibitor reversan has no cytotoxic 

effects on hepatocytes exposed to oxidative stress, while MK571 induces hepatocyte 

necrosis. We conclude that reversan is likely a safer drug to treat liver fibrosis in vivo. In 

Chapter 4, we show that glutathione and antioxidant enzymes serve complementary roles 

in protecting HSCs against oxidative stress. Finally in chapter 5, we show that the 

intracellular ABC transporter Peroxisomal Membrane Protein (PMP70) is required for the 

generation of the characteristic alpha-smooth muscle actin (αSma) network in HSCs and 

PMFs and thus plays a role in the activation of hepatic myofibroblasts. 

The multidrug resistance-associated protein 1 is a transporter for glutathione, both 

reduced (GSH) and oxidized (GSSG), as well as for cysteinyl leukotriene C4 (CysLTC4) 

[6,7]. Previously, we have shown that the expression of Mrp1 is induced upon activation 

of HSCs and that treatment of activated HSCs with the Mrp-inhibitor MK571 rapidly 

induced necrosis in these cells [8]. Since Mrp1 is the most prominently expressed Mrp-

type transporter on HSCs [8], this suggested that Mrp1 is essential for the viability of 

HSCs. Since MK571 inhibits several Mrps, as well as cysteinyl leukotriene receptors, it 

was essential to determine in more detail the role of Mrp1 in HSCs biology. Using a more 

specific inhibitor of Mrp1, reversan [9], as well as Mrp1-specific RNA interference and 

recombinant overexpression of Mrp1, we show in chapter 2 that Mrp1 is required for the 

activation of HSCs and PMFs and not so much for viability. In line with the in vitro data, 

we found that liver fibrosis is attenuated in CCl4-treated Mrp1 (Abcc1) knockout mice 

compared to wild type mice receiving the same treatment. Reversan did not induce 

significant HSCs necrosis, but reduced the expression of αSma and collagen1a1 with no 
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apparent effect on cell morphology, which is in sharp contrast to the effects of MK571 

[8]. The different effects of these two inhibitors of Mrp1 must be due to the off-target 

effects of MK571. MK571 has been shown to inhibit the transport activity of several 

Mrp’s, including Mrp1-6 [8,10-12], while reversan does not block the export activity of 

Mrp2-5 [9]. However, the expression of Mrp2-5 is very low in HSCs and PMFs (chapter 

2), so it is unlikely that one of the other Mrp transporters is crucial for the viability of 

HSCs. MK571 is also known to antagonize the LTD4 receptor [10,11,13] that has been 

reported to promote activation of HSCs and fibrosis [14]. Moreover, exogenously added 

LTC4 induced activation of HSCs and the use of an LTD4 receptor antagonist led to 

reversal of fibrosis in vivo [15-17]. Thus, the MK571-induced necrosis of HSCs may be 

linked to inhibition of the LTD4 receptor although this would need further experimental 

proof.  

GSH and GSSG are natural substrates for Mrp1 and intracellular accumulation of 

one of these compounds may have a direct effect on HSCs activation. However, earlier 

studies already showed that manipulation of glutathione levels in HSCs did not affect 

markers of fibrosis [18,19]. Alternatively, Mrp1 may transport leukotriene C4 (LTC4) as it 

was previously shown that HSCs contain all the enzymes for leukotriene synthesis [20]. 

We showed that inhibitions of leukotriene synthesis had a similar inhibitory effect on 

fibrosis markers as the Mrp1 inhibitor reversan or Mrp1-targeted RNA interference. This 

suggests that the profibrotic effect of Mrp1 is due to the export of leukotrienes. This is in 

line with recent observations that exogenously added LTC4 promotes collagen production 

by HSCs [20]. Moreover, HSCs efficiently accumulate arachidonic acid (AA) during the 

transdifferentiation phase [21]. AA is the precursor for leukotriene synthesis and it is now 

highly relevant to determine whether blocking Mrp1 indeed results in the intracellular 

accumulation of LTC4. Our data show that Mrp1 is a potential drug target for the 

treatment of liver fibrosis, however, a potential drawback of pharmaceutical inhibitors of 

Mrp1 may be expression of Mrp1 in extrahepatic tissues, such as lung, brain and intestine 

[22]. Mrp1 knockout mice have no phenotype under controlled laboratory conditions 

[23], and we showed that in response to CCl4, damage markers like ALT and AST were 

not different between Mrp1-ko and wild type mice. The absence of Mrp1 apparently does 

not lead to increased sensitivity towards inflammatory conditions as it is observed for 

DSS-induced colitis [24]. Moreover, Mrp1 levels are very low in hepatocytes, which 

make up over 80% of the liver, and Mrp1 also does not seem to play a protective role 
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during CCl4-induced hepatocyte damage. Thus, pharmacological inhibition of Mrp1 may 

have great potential in the treatment of liver fibrosis. 

In chapter 3 we addressed the issue of toxicities associated with Mrp1 inhibitors in 

greater detail. We compared the cytotoxic effects of two inhibitors of Mrp1, MK571 and 

reversan, on hepatocytes and HSCs in the absence and presence of oxidative stress. We 

found that reversan induced cell death in HSCs only in the presence of menadione. 

Previously, we showed that MK571 induces necrosis in activated HSCs even without 

further exposure to reactive oxygen species (ROS) [8]. Primary hepatocytes were also 

sensitive to MK571 treatment alone, but massive necrosis was induced when these cells 

were co-exposed to menadione. In sharp contrast, reversan did not induce detectable 

levels of cell death in hepatocytes, even if they were co-exposed to menadione. We 

confirmed that reversan is a more specific inhibitor of Mrp1 than MK571. Reversan did 

not block the Mrp-mediated export of CMFDA and fluorescent bile salts from primary rat 

hepatocytes, while it did prevent the Mrp1-mediated export of CMFDA from HSCs 

(Chapter 2). In contrast, MK571 prevented the export of CMFDA from both HSCs and 

primary rat hepatocytes. We also found that export of GSSG from cells is crucial for 

cellular resistance against oxidative stress. Enhanced expression of Mrp1 in activated 

HSCs may thus serve a dual role, namely 1) LTC4 export to promote liver fibrosis in an 

autocrine signalling pathway and 2) GSSG export to protect HSCs from oxidative 

damage. Taken together, these data show that reversan has no adverse effects on 

hepatocytes, even under oxidative stress conditions, while MK571 has potent cytotoxic 

effects on these cells. Thus, for therapeutically targeting Mrp1 to treat liver fibrosis in 

vivo, reversan is likely a safer option than MK571. 

In chapter 4, we showed that intracellular glutathione (GSH) levels (without 

proportional increase in oxidized glutathione (GSSG)) and the expression of the hydrogen 

peroxide neutralizing enzyme-glutathione peroxidase 1 (GPx1) are increased during 

HSCs activation. The sharp increase in reduced glutathione levels are surprizing as 

expression of Mrp1 is also increased during HSCs activation (chapter 2 of this thesis). 

Mrp1 transports GSSG much more efficiently than GSH [25,26] and the accumulation of 

GSH may be a result of strongly increased GSH synthesis, while concomitant produced 

GSSG is exported. However, the expression of glutamate-cysteine ligase (GCL), the rate-

limiting enzyme in glutathione synthesis, does not change during activation. Therefore, it 

is highly interesting whether HSCs express GSH importers. Such transporters have been 
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described for kidney, alveolar and intestinal epithelial cells and [27-30]. Alternatively, 

Mrp1 activity in activated HSCs may be predominantly consumed by high affinity 

substrates like leukotrienes, prostaglandins and/or GSSG and limits export of GSH [25]. 

A remarkable finding was the sharp decrease in mitochondrial superoxide 

dismutase (MnSOD) and peroxisomal catalase during activation of HSCs. Both proteins 

remained detectable by immunofluorescence microscopy, but still the levels of these 

antioxidant enzymes are probably 5-10 fold higher in quiescent HSCs. In contrast, GPx 

expression was significantly induced in  activated HSCs. Both Gpx1 and catalase were 

found to be crucial for the protection of HSCs against H2O2- and menadione-induced 

oxidative stress. Chronic liver injury is almost invariably accompanied by increased 

oxidative stress, activation of stellate cells and fibrogenesis [31-34]. Activated HSCs 

must be well protected against oxidative stress, since they survive and proliferate in the 

chronically injured liver. The oxidative stress in chronically injured liver is composed of 

several reactive oxygen species, including hydrogen peroxide and superoxide anions. 

Mice overexpressing Gpx1 are better protected against oxidative stress, e.g. against 

chemical or myocardial ischemia-reperfusion induced injury and, conversely, GPx1 

deficient mice are more prone to oxidative stress-induced injury [35,36].  Since GSH is 

required for the activity of Gpx1, the observed increase in total GSH and Gpx1 in 

activated HSCs may be a coordinated and adaptive response to oxidative stress. 

Superoxide dismutases like Mn-SOD and Cu,Zn-SOD prevent the toxicity induced by 

superoxide anions by converting them into H2O2. MnSOD is a known tumour suppressor 

gene and its disruption in mice is lethal due to mitochondrial dysfunction [37]. 

Surprisingly, MnSOD is decreased during activation of HSCs, both at the mRNA and 

protein level. This appears to be inconsistent with the described protective effects of Mn-

SOD. MnSOD expression is under control of PPAR-γ [38] and PPAR-γ agonists 

enhances MnSOD activity [39]. Since PPAR-γ expression is strongly suppressed during 

HSCs activation, MnSOD levels may drop as a result of this. At present, it is not known 

whether the reduced levels of Mn-SOD in the activated HSCs are sufficient to detoxify 

reactive oxygen species generated in mitochondria or whether alternative mechanisms  

take over. 

Catalase is a H2O2-neutralizing enzyme and resides in peroxisomes. While mRNA 

levels for catalase do not drop during HSCs activation, the corresponding protein  became 

almost undetectable by Westernblotting. Only immunofluorence microscopy revealed a 
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typical peroxisomal staining of catalase. At present it is unclear how the catalase protein 

disappears from activated HSCs. One possibility is a rapid and selective intra peroxisomal 

degradation of this antioxidant protein. Peroxisomes contain a Lon protease that may be 

involved in this [40,41]. The expression of this protease in HSCs has not been studied yet. 

An alternative, and more provocative possibility would be that catalase is exported into 

the surrounding medium. Catalase activity is enhanced in plasma of patients suffering 

from fatty liver, acute alcoholic hepatitis and cardiac failure [42,43], but the source of 

catalase release is unknown. One could presume that plasma catalase originates from 

broken red blood cells (RBCs), but fatty liver and acute alcoholic hepatitis are not 

associated with RBCs disorders. Still, an export pathway for catalase is highly 

hypothetical. First experiments could be aimed at measuring the catalase activity in the 

medium harvested from transdifferentiating HSCs. Finally, we observed that glutathione 

depletion in HSCs sensitizes these cells to H2O2-induced cell death and replenishing 

glutathione reduces this effect. GSH is an important redox regulator in the cell and reacts 

with H2O2 to produce water and glutathione disulfide (GSSG). Therefore, we assume that 

oxidative stress changes the redox state of the cell in the absence of excess GSH, leading 

to cell death.   

The Peroxisomal Membrane Protein 70 (PMP70) belongs to the D subfamily of 

ABC transporters that is traditionally called the peroxisomal ABC transporters  [44]. The 

first identified member was PMP70 (ABCD3), which is highly abundant in liver and 

kidney, but is present in many different tissues and cell lines. The most intensively 

studied member of this subfamily is the Adrenoleukodystrophy protein (ALDP/ABCD1), 

mutations in which cause X-linked Adrenoleukodystrophy [45]. X-ALD leads to 

Progressive neurodegenerative decline, leading to a vegetative state without treatment. 

Biochemically, it is characterized by the impairment in breakdown of very-long chain 

fatty acids that accumulate in serum and other body fluids. The ABCD subfamily further 

contains ALD-related protein (ALDRP/ABCD2) and PMP70-related protein 

(P70R/ABCD4), the latter of which was recently shown not to reside in peroxisomes, but 

in lysosomes [46]. Mutations in ABCD4 cause impairment in vitamin B12 metabolism. 

Thus, designating the ABCD subfamily as “peroxisomal” ABC transporters may need 

revision. This may be even more urgent as in chapter 5, we showed that PMP70 is 

predominantly localized in tubular structures that lay parallel to αSMA and is required for 

the expression of αSMA in HSCs and PMFs. Only low amounts of peroxisomal PMP70 
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were also observed, while the PMP70-stained tubules were consistently detected. siRNA-

based suppression of PMP70 led to the disappearance of the tubular PMP70 staining and 

concomitant loss of the αSma network. Recombinant GFP-PMP70 was almost 

exclusively detected in tubular structures and increased αSma expression. Interestingly, 

other peroxisomal proteins like catalase and Pex14p were mainly observed in 

peroxisomes. ALDP expression is as least as high in HSCs as in hepatocytes and 

significant amounts were found in the endoplasmic reticulum. This staining pattern was 

clearly distinct from the PMP70 tubules. The PMP70 transporter is usually localized on 

the membrane of peroxisomes [44]. Though direct evidence is still lacking, PMP70 is 

thought to be involved in the import of long chain fatty acids into the peroxisomes. 

Moreover, a role in transport of bile acid intermediates into peroxisomes has been 

proposed for PMP70 [47,48]. Peroxisomes are also reported to be involved in the β- and 

ω-oxidation of leukotrienes and prostaglandins that play an important role in 

inflammation and allergy [49,50]. Metabolism of these molecules may be an additional 

pathway controlling HSC activation, as we found in chapter 2 that leukotriene synthesis 

and transport are important for autocrine signalling in these cells to promote liver fibrosis. 

So far, the import mechanism(s) of leukotrienes and prostaglandins into the peroxisome 

is/are unknown. The fact that PMP70 and ALDP show a largely non-peroxisomal 

localisation (Chapter 5), as well as the fact that catalase protein rapidly disappears from 

activated HSCs while transcription of the corresponding gene remains intact (Chapter 4), 

indicate that peroxisome biogenesis and/or function may be abnormal in these cells. 

PPARα is a nuclear receptor involved in the development of peroxisomes. HSCs express 

at best minor amounts of PPARα [51,52]. In line, we found that the PPARα agonist 

fenofibric acid did not induce the expression of peroxisomal proteins like AOX, MFP and 

Pex11p (data not shown). The presence of peroxisomal membrane proteins in the ER has 

been documented before [53] and accumulating evidence support that the ER may be the 

primary insertion site for peroxisomal membrane proteins from where they are sorted to 

peroxisomes [54]. The presence of ALDP may therefore be a result of a lower sorting 

efficiency of ALDP in HSCs as compared to hepatocytes, where an ER-location of ALDP 

is not evident. The presence of PMP70 in the tubular strands seems to be a truly different 

subcellular location than ever observed before. Pmp70 has been found in tubular 

peroxisomes [55,56], but these remain spherical in shape and do not extend throughout 

the cytoplasm. Unfortunately, subcellular fractionation experiments were unsuccessful to 
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further purify the PMP70-containing tubules for further characterisation. It would be 

interesting the analyse the effect of the overexpression of PPARα in HSCs on the 

subcellular location of ALDP and PMP70, which could show that PPARα-targets are 

insufficiently expressed in HSCs for normal peroxisome biogenesis as well as the effect 

on the αSma network. Such an experiment could also reveal whether leukotriene turnover 

in HSCs is effected when peroxisome biogenesis is manipulated in HSCs. 

Future perspectives and concluding remarks 

The research described in this thesis reveals that at least 2 ABC transporters play a 

role in hepatic myofibroblasts that cause liver fibrosis. Mrp1 expression is induced upon 

HSCs/PMFs activation and promotes expression of αSma and collagen 1a1. The absence 

of Mrp1 does not lead to adverse effects in mice, while chemically-induced fibrosis is 

attenuated. This paves way for the systemic application of Mrp1 antagonists as 

antifibrotic therapy. The pharmaceutical Mrp1 inhibitor Reversan is good candidate drug 

to test in animal models of liver fibrosis. Alternatively, Mrp1-specific antibodies that 

could bind the extracellular epitope of Mrp1 and inhibit its transport activity could be 

tested. The presence of HSCs in the space of Disse where they are in direct contact with 

the blood circulation may allow effective inhibition of Mrp1 by such antibodies.  

 The fact that partial inhibition of Mrp1 already leads to suppression of 

HSCs/PMFs activation may allow the use of low doses of such inhibitors while 

preserving Mrp1 function in other tissues, like lung, intestine and brain. Still, if higher 

levels are required for an anti-fibrotic effect, HSCs-specific targeting strategies may be 

explored to reduce the risk for adverse effects [57,58]. All in all, our data identify Mrp1 

as an interesting target for the treatment of liver fibrosis, a condition that cannot be cured 

at this moment.  

The role of PMP70 in liver fibrosis is less straight forward. PMP70-mediated 

RNA interference clearly inhibited αSma expression in HSCs and PMFs, but had no 

effect on the fibrogenic markers collagen1a1 and TGF-β. It remains to be tested what the 

effect of the absence of PMP70 would be on liver fibrosis in vivo. Though reported at 

scientific meetings, no details are known yet about the phenotype of the pmp70 knock out 

mouse. Such a mouse strain would be instrumental to analyse the role of PMP70 in liver 

fibrosis. Besides the potential clinical relevance of PMP70 in liver fibrosis, it is of high 
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interest to further characterize the tubular structures in HSCs to which it colocalizes. This 

will provide clues about its potential relationship with genuine peroxisomes in HSCs and 

how this affects the production of the αSma cytoskeleton. 

In conclusion, the ABCs of liver fibrosis are beginning to emerge and hold 

promise for a better understanding and treatment of liver fibrosis.  
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Summary 

Chronic liver diseases are a major health problem worldwide and include viral hepatitis, 

alcoholic liver disease, metabolic (fatty) liver disease, autoimmune (primary biliary cirrhosis, 

primary sclerosing cholangitis) liver diseases. Chronic liver diseases are characterized by liver 

fibrosis that is the result of an overactive healing response to liver injury. This leads to the 

accumulation of extracellular matrix proteins, predominantly collagen 1a1, that disrupts the liver 

architecture and impairs liver function. Liver fibrosis may progress to liver cirrhosis, which is an 

irreversible state of fibrosis and predisposes the patients to liver cancer and liver failure. Drug 

treatment for liver fibrosis is not available yet and liver transplantation is the only therapeutic 

option for patients with hepatic failure due to liver cirrhosis. Unfortunately, liver donors are 

scarce and many patients die before a suitable liver becomes available for transplantation. Thus, 

there is an urgent need for drug therapies to treat liver fibrosis.  

Hepatic myofibroblasts (HMF) are responsible for the production of too much 

extracellular matrix proteins in the liver. HMF may originate from different intra- and 

extrahepatic cell types, but hepatic stellate cells (HSC) are believed to be the major source. In the 

healthy liver, HSC are the main storage site for vitamin A and they maintain stable blood levels of 

this vitamin for its function in a variety of processes in the body. Upon liver injury, HSC become 

activated and transdifferentiate to proliferative and mobile myofibroblasts that produce excessive 

amounts of extracellular matrix proteins, while losing their vitamin A stores. Thus, under disease 

conditions where the functional liver cells (hepatocytes) die, the HSC survive and in fact are 

stimulated to proliferate. 

Multidrug resistance-associated proteins (Mrp’s) belong to the super family of ATP-

binding cassette (ABC) transporters and are well-documented for their role in protecting cancer 

cells to cytostatic drugs. However, these transporters also serve physiological functions and 

transport endogenously produced substances like glutathione and leukotrienes. Earlier, our group 

found that the expression of Mrp1 is strongly induced upon activation of HSC, both in vitro as 

well as in rats that were exposed to experimentally-induced liver fibrosis. In this thesis, we aimed 

to determine whether Mrp1 is important for the activation and/or survival of activated HSC and 

therefore may be a therapeutic target for the treatment of liver fibrosis. 

In chapter 2 and 3, we show that pharmacological inhibition of Mrp1 with the highly 

specific inhibitor reversan reversed expression of fibrosis markers in HSC and had no toxic effect 

on the viability of hepatocytes. These results were also supported by in vivo studies, which 

showed that reduced amounts of extracellular matrix were produced in livers of Mrp1 knockout 

mice than in livers of WT mice, when treated with the fibrosis-inducing agent carbon tetrachloride 
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(CCL4). Importantly, serum markers for liver injury were not different between the Mrp1-ko and 

WT mice after treatment with CCL4, indicating that the fibrotic response to liver injury is truly 

suppressed in the absence of Mrp1. These observations suggest that Mrp1 is a potential target for 

treatment of liver fibrosis. 

We also showed that the export of leukotrienes by Mrp1 may be the crucial activity of this 

transporter to induce activation in HSC. In contrast, glutathione does not seem to affect the 

activation and viability of HSC directly. During activation of HSC, cellular glutathione levels and 

glutathione peroxidase (GPx) expression are increased, while other antioxidant enzymes, e.g. 

catalase and Cu, Zn-superoxide dismutase (CuZnSOD), are largely unchanged (Chapter 4). 

Inhibition of glutathione synthesis or activity of GPx increased the sensitivity HSC for oxidative 

stress-induced necrosis and apoptosis, respectively. These data suggest that GSH levels do not 

directly control activation of HSC, but are important for the cytoprotection of HSC against 

reactive oxygen species. 

Mrp-dependent export of GSH has been implicated in the regulation of intracellular redox 

environment, however, whether this plays a direct role in protecting HSC and/or hepatocytes 

against cell death is largely unknown. We found that inhibition of Mrp1 activity by reversan in 

HSC does not change the intracellular redox environment in the absence of reactive oxygen 

species. However, inhibition of Mrp1 in combination with exposure to reactive oxygen species 

inhibited the export of oxidized glutathione from HSC, leading to the intracellular accumulation 

of GSSG, ultimately causing HSC death. Hepatocytes do not express Mrp1 and the treatment of 

hepatocytes with reversan did therefore not reduce the viability of these functional liver cells 

either in the presence or absence of reactive oxygen species. In contrast, hepatocytes were highly 

sensitive to the general inhibitor of Mrp’s, MK571, even in the absence of oxidative stress, most 

likely because it blocks Mrp2–mediated export of GSSG (chapter 3). Taken together, these data 

suggest that Mrp1 is a drug target for the treatment of liver fibrosis and the specific Mrp1 

inhibitor reversan may be considered for further studies on its antifibrotic potential in chronic 

liver disease.  

In chapter 5, we studied the function of another ABC transporter, the peroxisomal 

membrane protein (Pmp70), in HSC biology. Pmp70 is highly expressed in liver, but its function 

is still not well defined. It has been suggested to transport long chain fatty acids into peroxisomes 

for their breakdown through beta-oxidation. In addition, it may be involved in bile acid 

metabolism. Until now, its hepatic function has only been studied in hepatocytes, where it is 

localized to the peroxisome membrane. There is very little knowledge about the presence and 

function of peroxisomes in HSC. We found that HSC contain typical peroxisomes containing 

catalase and Pex14p, a protein involved in peroxisome biogenesis. Also Pmp70 is expressed in 
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HSC, albeit to a significant lower level than in hepatocytes. Using immunofluorescence 

microscopy, we found to our surprise that most of the Pmp70 in activated HSC was not present in 

peroxisomes, but rather in tubular structures that lay parallel to the characteristic alpha-smooth 

muscle actin (αSma) fibers. Artificially overexpressed Pmp70 resulted in enhanced expression of 

αSma, while siRNA-based inhibition of Pmp70 led to the disappearance of the αSma 

cytoskeleton. Manipulation of Pmp70 levels did not directly affect the production of collagen1a1. 

These data provide evidence for a novel function of Pmp70 in HSC where it is required for the 

generation of the αSma cytoskeleton and may therefore control the contractility and mobility of 

these cells in a fibrotic liver.  

In conclusion, the studies presented in this thesis show that two ABC transporters, Mrp1 

and Pmp70, serve different roles in the activation of HSC and are therefore potential drug targets 

for the treatment of liver fibrosis. 

Samenvatting 

Chronische leverziekten zoals virale hepatitis, alcoholisch leverziekten, 

stofwisselingziekten en auto-immuun leverziekten (primaire biliaire cirrose, primaire 

scleroserende cholangitis) zijn wereldwijd een groot gezondheidsprobleem. Chronische 

leverziekten worden gekarakteriseerd door leverfibrose als resultaat van een overactief 

helingsproces als respons op leverschade. Dit leidt tot accumulatie van extra cellulaire matrix 

eiwitten, voornamelijk collageen 1a1, wat de lever structuur vernielt en de lever functie schaadt. 

Leverfibrose kan zich ontwikkelen tot levercirrose, een onomkeerbare vorm van leverfibrose, wat 

lijdt tot leverkanker en leverfalen. Medicijnen voor leverfibrose zijn nog niet beschikbaar en 

levertransplantatie is de enige therapeutisch optie voor patiënten met leverfalen als gevolg van 

cirrose. Doordat er helaas te weinig leverdonoren zijn, sterven veel patiënten voordat er een 

geschikte lever beschikbaar komt voor transplantatie. Er zijn dus dringend therapieën nodig om 

leverfibrose te behandelen. 

Hepatische myofibroblasten (HMF) zijn verantwoordelijk voor de productie van teveel 

extracellulaire matrix eiwitten in de lever. HMF kunnen afkomstig zijn van verschillende intra- en 

extrahepatische celtypes, maar er wordt verondersteld dat hepatische stellaat cellen (HSC) de 

belangrijkste bron is. In een gezonde lever, wordt de meeste vitamine A opgeslagen in de HSC, en 

zij zorgen voor stabiele bloed waardes van vitamine A voor de verschillende functies in het 

lichaam. Tijdens leverschade, worden HSC geactiveerd en differentiëren ze tot proliferatieve en 

mobiele myofibroblasten die grote hoeveelheden extracellulaire matrix eiwitten produceren 

terwijl ze hun vitamine A verliezen. Dus tijdens ziekte condities wanneer de functionele lever 

cellen (hepatocyten) dood gaan, overleven de HSC en worden zelfs gestimuleerd tot proliferatie. 
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Multidrug resistance-associated proteins (Mrp’s) behoren tot de super familie van ATP-

binding cassette (ABC) transporters en zijn goed beschreven voor hun rol in het beschermen van 

kanker cellen tegen cytostatica. Maar deze transporters hebben ook fysiologische functies en 

transporteren endogeen geproduceerde stoffen zoals glutathion en leukotrienen. Eerder heeft onze 

groep gevonden dat de expressie van Mrp1 sterk verhoogd is tijdens activatie van HSC, zowel in 

vitro als in ratten die blootgesteld zijn aan experimenteel geïnduceerde leverfibrose. In dit 

proefschrift wilden wij bepalen of Mrp1 belangrijk is voor de activatie of het overleven van 

geactiveerde HSC en daardoor een therapeutisch doelwit voor de behandeling van leverfibrose. 

In hoofdstuk 2 en 3 laten we zien dat farmacologische remming van Mrp1 met de 

specifieke remmer, reversan, de expressie van fibrose markers in HSC omdraait en dat het geen 

toxisch effect heeft op de vitaliteit van hepatocyten. Deze resultaten worden ondersteund door in 

vivo studies die laten zien dat de productie van extracellulaire matrix is verminderd in levers van 

Mrp1 knockout muizen ten opzichte van wild type muizen als ze behandeld worden met het 

fibrose inducerende stof koolstof tetrachloride (CCL4). Belangrijk om te weten is dat serum 

markers voor leverschade niet verschillen tussen Mrp1-ko en WT muizen na behandeling met 

CCL4 wat betekent dat de fibrotische response op leverschade onderdrukt wordt als Mrp1 afwezig 

is. Deze observaties suggereren dat Mrp1 een potentieel doel is voor de behandeling van 

leverfibrose. 

We laten ook zien dat de export van leuketrienen door Mrp1 een cruciale activiteit kan 

zijn van deze transporter om de activiteit van HSC te induceren. In tegenstelling lijkt glutathion 

geen direct effect te hebben op de activiteit en vitaliteit van HSC. Tijdens activatie van HSC is het 

cellulaire glutathion niveau en de glutathion peroxidase (GPx) expressie verhoogd terwijl andere 

antioxidant-enzymen zoals catalase en koper, zink-superoxide dismutase (CuZnSOD) 

onveranderd blijven (hoofdstuk 4). Het remmen van de glutathion synthese of activiteit van GPx 

verhoogt de gevoeligheid van HSC voor oxidatieve stress-geïnduceerde necrose en apoptose, 

respectievelijk. Deze gegevens suggereren dat het GSH niveau niet direct betrokken is bij de 

activatie van HSC maar belangrijk is voor het cyto-beschermende effect van HSC tegen reactive 

oxygen species. 

Hoewel de Mrp afhankelijke export van GSH betrokken is bij de regulatie van de 

intracellulaire redox omgeving, is onbekend of dit een directe rol speelt in de bescherming van 

HSC en/of hepatocyten tegen celdood. We hebben gevonden dat remming van de Mrp1 activiteit 

door reversan in de afwezigheid van reactive oxygen species in HSC de intracellulaire redox 

status niet veranderd. Hoewel, de remming van Mrp1 in combinatie met het blootstellen aan 

reactive species oxygen remt de export van geoxideerd glutathion vanuit HSC wat leidt tot de 

intracellulaire ophoping van GSSG en uiteindelijk tot HSC dood. Mrp1 komt niet tot expressie in 
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hepatocyten en daardoor leidt de behandeling van hepatocyten met reversan niet tot een reductie 

in de vitaliteit van deze functionele lever cellen, zowel in de aanwezigheid als afwezigheid van 

reactive oxigen species. Hepatocyten zijn in tegenstelling erg gevoelig voor de algemene remmer 

van Mrp’s, MK571, ook in de afwezigheid van oxidatieve stress, waarschijnlijk omdat het de 

Mrp2-gemedieerde export van GSSG blokkeert (hoofdstuk 3). Tezamen suggereert deze data dat 

Mrp1 een doel is voor de behandeling van leverfibrose en specifiek de Mrp1 remmer, reversan, 

kan worden gebruikt voor verder onderzoek naar zijn anti-fibrotische eigenschappen in chronische 

leverziekten. 

In hoofdstuk 5 hebben we gekeken naar de functie van een andere ABC transporter, nl het 

peroxisomale membraan eiwit (Pmp70) in HSC. Pmp70 komt hoog tot expressie in de lever maar 

zijn functie is nog steeds niet bekend. Er wordt gesuggereerd dat het lange keten vetzuren 

transporteert de peroxisoom in voor hun afbraak door beta-oxidatie. Daarbij komt dat ze 

misschien betrokken zijn bij het galzuur metabolisme. Tot nu toe is alleen de hepatische functie 

van Pmp70 bestudeerd in hepatocyten, waar het gelokaliseerd is in de peroxisoom membraan. Er 

is weinig bekend over de aanwezigheid en functie van peroxisomen in HSC. Wij hebben 

gevonden dat HSC peroxisomen bevatten, die catalase en Pex14p, een eiwit betrokken bij 

peroxisomale biogenese, bevatten. Ook Pmp70 komt tot expressie in HSC, ofschoon in een 

significant lager niveau dan in hepatocyten. Met behulp van immunofluorescentie microscopie 

hebben we gevonden dat, tot onze verbazing, de meeste Pmp70 in geactiveerde HSC niet in de 

peroxisoom zit maar in tubulaire structuren die parallel liggen met de karakteristieke alpha-

smooth muscle actine (αSma) strengen. Kunstmatige overexpressie van Pmp70 leidt tot 

verhoogde expressie van αSma, terwijl remming van Pmp70 door siRNA leidt tot de verdwijning 

van het αSma cytoskelet. Het manipuleren van Pmp70 levels had geen direct effect op de 

productie van collageen 1a1. Deze data levert bewijs voor een nieuwe functie van Pmp70 in HSC 

waar het nodig is voor het maken van het αSMA cytoskelet en daarmee zorgt voor de 

contractiliteit en mobiliteit van deze cellen in een fibrotische lever. 

Tot slot, de studies gepresenteerd in dit proefschrift laten zien dat 2 ABC transporters, 

Mrp1 en Pmp70, verschillende rollen hebben in de activatie van HSC en daardoor mogelijke 

toepassing hebben in de behandeling van leverfibrose. 
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