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Abstract. In recent years, many new methods have been proposed for
extracting curve skeletons of 3D shapes, using a mesh-contraction princi-
ple. However, it is still unclear how these methods perform with respect
to each other, and with respect to earlier voxel-based skeletonization
methods, from the viewpoint of certain quality criteria known from the
literature. In this study, we compare six recent contraction-based curve-
skeletonization methods that use a mesh representation against six ac-
cepted quality criteria, on a set of complex 3D shapes. Our results reveal
previously unknown limitations of the compared methods, and link these
limitations to algorithmic aspects of the studied methods.

Keywords: Curve skeletons, shape analysis, shape representation.

1 Introduction

Curve skeletons are among the most well-known, and widest used, descriptors
for 3D shapes. They have been extensively used in applications such as shape
matching and recognition, computer animation, virtual navigation, and shape
processing [8127].

Earlier methods for computing curve skeletons used mainly voxel-based 3D
shapes. In recent years, several methods have been proposed to compute curve
skeletons from meshed 3D shapes, using a contraction principle, where the input
mesh is iteratively shrunk towards its local center. Such methods are highly com-
putationally scalable, and can easily handle mesh shapes with considerable more
details than voxel-based methods. However, their algorithmic complexity makes
it harder to reason analytically about the properties of the produced skeletons.
In particular, it is not fully clear how their results relate to desirable skeleton
properties. Moreover, since such methods are typically compared with methods
in the same class (mesh-based), it is unclear whether mesh-based methods are
indeed always superior to voxel-based methods.

In this paper, we compare six mesh-contraction-based curve-skeletonization
methods, all which are based on a collapse principle, against six accepted quality
criteria: centeredness, homotopy to the input shape, invariance under isometric
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transformations, detail preservation, smoothness, and independence from the
input shape’s sampling. Our work extends the earlier survey of Cornea et al. [§]
by studying six mesh-based curve-skeletonization algorithms published after that
survey was done. Our results reveal several limitations of the studied methods
which, to our knowledge, have not been highlighted in the literature, and link
these to algorithmic aspects of the studied methods.

The structure of this paper is as follows. Section [ overviews related work
in curve skeletonization, with a focus on contraction-based methods. Section [3]
details the quality criteria used for the comparison. Section M presents the com-
parison results. Section [{] discusses our findings. Section [l concludes the paper
with future work directions.

2 Related Work

For a shape 2 C R? with boundary 92, we first define its distance transform
DT(‘)Q : RS — RT

DT 2) = mi -yl 1

b(x € £2) = min |x—y]| (1)

The surface skeleton of 2 is next defined as
S(2)={xe |3y, £, € 02, §1 # Lo, ||x—f1|| = ||x — f2|| = DTrn(x)} (2)

where f; and fy are the contact points with 92 of the maximally-inscribed
ball in {2 centered at x [1224], also called feature transform (FT) points [15].
Surface skeletons consist of several manifolds with boundaries which meet along
a set of Y-intersection curves [QUI7[7]. They can be computed by voxel-based or
mesh-based methods [2TS28TA3IT4]. A recent comparison of surface-skeleton
extraction methods is given in [I5].

In contrast to surface skeletons, curve skeletons are loosely defined as 1D
structures “locally centered” within the input shape (2. The lack of a unani-
mously accepted formal definition has led to many methods which compute curve
skeletons following not necessarily identical definitions. This makes it hard to
analytically compare, and reason about, the properties of the produced curve
skeletons.

Tools from mathematical morphology [25] were among the first used to com-
pute curve skeletons: The residue of openings, based on Lantuéjoul’s formula
[16], usually leads to disconnected skeleton branches, whereas methods based
on homotopic thinning transformations [I6T94I2T] yield connected skeletons.
Combining such techniques with distance-driven thinning further ensures the
extraction of centered surface and curve skeletons [I].

Dey and Sun propose one of the first analytic definitions of curve skeletons
based on the medial geodesic function (MGF), where the curve skeleton is defined
as the locus of points having at least two equal-length shortest geodesics on 942
between their feature points [I0J23]. Reniers et al. extend the MGF to regularize
curve skeletons by assigning each skeleton point an importance equal to the area
bounded by such geodesics, in a voxel setting [24], inspired by the so-called 2D
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collapse metric [20032]. A GPU implementation of the above metric for mesh
models is presented in [I5].

Voxel-based methods typically require significant resources to store and pro-
cess the large voxel volumes required to capture the fine details of complex 3D
shapes. To be used on 3D meshes, such methods require a costly voxelization
step. Mesh-based methods address these cost issues by working directly on a
mesh representation of 9f2. In recent years, several such mesh-based methods
have been proposed based on a contraction principle, which shrinks the input
mesh until the 1D curve-skeleton structure is reached, as follows. Au et al. shrink
the mesh via Laplacian smoothing until its volume gets close to zero, followed
by an edge-collapse (to extract the 1D curve skeleton) and a re-centering step
(to correct shrinking errors) [2]. Cao et al. extend this idea to extract curve
skeletons from incomplete point clouds [6]. The ROSA method defines, and ex-
tracts, curve skeletons using rotational, rather than positional, symmetry: 92
is cut with planes, and curve-skeleton points are found as the centers of planes
which minimize the variance between the plane’s normal and 92 normals along
the cut curve [30]. Sharf et al. reverse the contraction direction: They find the
curve skeleton as the centers of a set of competing fronts which evolve to ap-
proximate the input surface [26]. A similar method is presented by Hassouna and
Farag [13]. Telea and Jalba define, and extract, curve-skeletons by contracting
the surface skeleton S(£2) (computed as in [I8]) inwards, along the gradient of
the 2D distance transform of 95(£2), i.e. define the curve-skeleton as the result
of a two-step skeletonization [31].

Mesh-contraction methods are currently deemed to be the state-of-the-art
for extracting detailed curve skeletons from high-resolution shapes [29]. As 3D
models become more complex, it is arguable that such methods will dominate
the more costly voxel-based methods. Conceptually, such methods work very
similarly to voxel-based thinning. However, there are few, if any, comparisons
of contraction-based methods based on the accepted skeleton desirable crite-
ria used for earlier voxel-based methods. Also, the algorithmic complexity of
mesh-contraction methods makes a formal analysis thereof more complex than
for voxel-based methods. All in all, it is not clear if mesh-contraction methods
are indeed always superior to voxel-based methods, and if not, which are their
specific weak points with respect to desirable skeleton criteria.

3 Comparison Criteria

The literature knows a well-accepted set of quality criteria that curve skeletons
should conform to. For curve-skeletonization methods, such criteria are signifi-
cantly more important than for surface skeletonization methods: While the latter
can be rigorously checked against the formal surface skeleton definition (Eqn.[2),
the former do not use a single curve-skeleton definition. As such, the only com-
parison available for curve skeletons is a qualitative one, from the perspective of
desirable quality criteria. Following [SIT527], we focus on the following generally-
accepted quality criteria for a curve skeleton:
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Homotopy: The curve skeleton is topologically-equivalent with the input shape,
i.e. has the same number of connected components and tunnels.

Invariant: The curve skeleton should be invariant under isometric transforma-
tions of the input shape.

Thin: The curve skeleton should be as thin as the sampling model used allows it.
Voxel-based curve skeletons should be one voxel thick. Mesh-based curve skele-
tons should contain only lines, and not polygons or loose points. Point-cloud
based curve skeletons should ideally have zero local thickness in any direction

orthogonal to the largest eigenvector of the covariance matrix of point neighbor-
hoods.

Centered: This is the hardest criterion to quantify, since it is not uniquely de-
fined when a curve is centered within a 3D shape. However, several weak forms
of curve-skeleton centeredness exist: The curve skeleton should be a subset of
the surface skeleton (since the latter is by definition centered within the shape);
and in no case should the curve-skeleton exit the input shape.

Smoothness: As centeredness, smoothness is also hard to formally define. Sur-
face skeleton manifolds are known to be at least C? continuous [22127]. Curve-
skeletons are centered subsets thereof [29/31]. Hence, it is arguable that curve
skeletons should be also piecewise, 4.e. per branch, C2. In any case, curve skele-
tons should not exhibit curvature discontinuities induced by the sampling of
either the input surface or curve skeleton representation.

Detail Preserving: Curve skeletons should be able to capture fine-scale de-
tails, such as bumps, of the input shape, in a user-controlled manner. In other
words, the user should be able to select the scale of input shape details which
the curve skeleton should capture (being significant) and the scale of details to
ignore (being regarded as noise).

Sampling Robustness: Given two different samplings of an input shape (e.g.
two different level-of-detail meshes), the difference between the two correspond-
ing curve skeletons should be proportional with the difference of the two input
meshes. In other words, small input-sampling differences should not cause large
differences in the curve skeleton.

4 Comparison

Given our core question on how curve-skeletonization methods perform, we com-
pared six such methods (further denoted in the paper by the abbreviations
listed below):
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Au et al. (AU) [2]: We included this method as it is arguably the best-known
mesh-based skeletonization technique in existence [I3J29/15].

Tagliasacchi et al. (ROSA) [30]: We chose this method given its advocated
noise-resistance and since it works on point clouds, which is a different type of
input than the other methods.

Cao et al. (CAO) [6]: We chose this method since it uses a contraction similar
to [2], but works on point clouds, like [30].

Telea and Jalba (TJ) [31]: In contrast to all other curve-skeletonization
methods, this technique contracts the surface skeleton, rather than the input
mesh, to compute the curve skeleton. It produces a point cloud rather than a
polyline curve-skeleton. For comparison fairness, we postprocessed the produced
point cloud using the polyline reconstruction proposed in [2].

We also developed and tested two extensions of [2], as follows.

Au et al. Improved (AUI): A well-known limitation of Au et al. is its skeleton
re-centering step [29]. As the input mesh is contracted, it can go off-center due to
numerical and discretization inaccuracies of the Laplacian smoothing. To address
this issue, we proceed as follows. During the Laplacian contraction and edge-
collapse steps of the method, we maintain a backwards, skeleton-node-to-mesh-
vertex mapping I : S — 0f2, which can be used to identify those mesh vertices
v € 912 that ’collapsed’ into a given skeleton node s € S(£2). The re-centering
step uses IT to compute the final position of each node s as a weighted average of
the vertices in I1(s), with weights given by the areas of the input-mesh triangles
with vertices in I1(s).

Au et al. Using Surface Skeletons (AUS): The improved re-centering out-
lined above cannot fully correct errors accumulated during the iterative contrac-
tion. To further reduce these, we start the Laplacian contraction from the surface
skeleton, which is closer to the final target (curve skeleton) than the input mesh,
along the idea proposed in [31].

Global Considerations: In our method choice, we focused on recent contraction-
based techniques, not studied in the survey of Cornea et al. [8], proven by their
authors on complex shapes, and which use different curve-skeleton detection
principles. All studied methods satisfy the invariance criterion by construction,
since they work in 3D vector space. All methods also directly satisfy the thinness
criterion, since they model the curve-skeleton as a polyline. We used the original
implementations provided by their authors, all running on a Windows PC with
4 GB RAM. Since not all studied methods claim computational efficiency, we
excluded timings from the comparison.

Comparison Material: For comparison, we used a set of 21 3D shapes which
are frequently encountered in the curve-skeleton literature (for details, see [34]).
Figures [ 2, Bl and @ and show relevant samples from this set, within space
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limitations. The models have between 20K and 300K vertices. We used Mesh-
Lab [33] to clean mesh models for normal orientation consistency, T-vertices,
and duplicate vertices. To factor our parameter settings, we ran each method for
uniformly-sampled values of all its documented parameters, and retained in our
final comparisons the best results with respect to the quality criteria mentioned

in Sec.

bird: 46K points, fertility: 25K points, horse: 193K points, neptune: 28K points,
93K faces 50K faces . 387K faces 56K faces

Au et al.
Au et al.
(surf. skeleton) > Q ‘x

Au et al.

e n H i

Tagliasacchi
etal.

Fig. 1. Overview comparison of skeletonization methods
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4.1 Overview

Figure[Ilshows an overview of several curve skeletons extracted by the compared
methods. Even at this level, we quickly notice that not all skeletons are equally
well centered, equally smooth, and have the same number of terminal (detail)
branches. We next zoom-in on each criterion and discuss our findings with respect
to the studied methods.

4.2 Homotopy

For relatively simple shapes of genus 0 or higher, all studied methods behaved
equally well, i.e. produced curve skeletons homotopic with the input shape
(Fig. ). This is due to the fact that all these methods start by contracting
the input shape and change only the geometry, but not the topology, of this
shape during the iterative contraction process. Still, detail differences exist be-
tween these methods. Skeleton junctions are not always identical, so the pro-
duced skeleton graph is different, see e.g. the marked limbs-to-body junctions of
the bird model in Fig. [ (left) and the horse model in Fig. B] (right). Differences
get larger for small-scale details, where curve skeleton terminal branches enter
saliencies of the input shape, see e.g. Fig. Bl (neptune, frog). An extreme case
happens when the input mesh has self-intersections, e.g. Fig.2l(frog). Here, CAO
and ROSA create curve skeletons whose topology is far from the input shape
(fake loops and branches).

4.3 Centeredness

The methods AU, AUI, and AUS produce similar, well centered, results. Among
these, AUS is the best: Since contraction starts from the surface skeleton, nodes
go less off-center, as the surface skeleton is already centered by definition and
closer to the curve skeleton than the input mesh. For mesh-based methods,
TJ produced the best centering. This is due to the fact that TJ contracts the
surface skeleton along the gradient field of its 2D distance transform, which is
by definition tangent to the surface skeleton itself, so the curve skeleton stays
inside the surface skeleton by construction. In contrast, AU, AUI, and AUS
contract in the direction of the shrunken surface’s normals. These are delicate to
estimate as the shape shrinks and develops singularities (creases). The different
re-centering steps performed by these methods alleviate, but cannot fully correct,
these problems.

ROSA’s results are quite poorly centered in several areas. As mentioned
in [30], orientation information is unreliable around junctions, where the input
shape has many points with diverse orientations. To overcome this, ROSA treats
junctions specially. This works well for junctions whose branches correspond to
tubular shape parts of similar size. However, we discovered that junctions where
shape parts of very different sizes and shapes meet create problems, see e.g. Fig.
for the bird model (wings joining rump) and neptune (arm-torso junction).
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bird: 46K points, 93K faces frog: 37K points, 74K faces  neptune: 28K points, 56K faces
A

Input models

Au et al.
(improved)

Au et al.
(surf. skeleton)

Au et al.

Telea and Jalba

Cao et al.

Tagliasacchi
etal.

Fig. 2. Centeredness comparison. Details show areas marked by red insets.

The frog model (Fig. ) reveals two other challenges. First, the model has
several very sharp bends around the leg joint. Secondly, in the same area, the
mesh has several self-intersections. Meshless methods (CAO, ROSA) generate
seriously erroneous skeletons here, and even skeleton disconnections. In these
areas, TJ still creates a smooth skeleton, but cannot handle centeredness per-
fectly. This is due to the fact that the surface skeleton it starts from has errors in
self-intersecting areas, since the technique used to compute it [I5] cannot handle
self-intersecting surfaces. In contrast, AU, AUI, and AUS generate very similar,
relatively well-centered, skeletons in these challenging areas.

The neptune model (Fig. [2) highlights the situation where a relatively thin
object part (arm) joins a thick one (torso). In such areas, curve (and surface)
skeletons exhibit so-called ligature branches which connect the skeleton branches
of the two parts [22]. If the two parts form an angle different from 90°, like in
our case, the ligature branch has to rapidly turn [27]. This turn is best captured
by AU. In contrast, all other methods emphasize smoothness too much, which
results in clearly off-centered skeletons close to the armpit.
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4.4 Detail Preservation

Detail preservation refers to the generation of separate curve-skeleton terminal
branches for all input shape bumps, or salient convexities, at a user-specified
scale. Detail preservation is important for applications such as shape matching,
retrieval, and reconstruction [8J24]. Large details, such as the limbs of shapes
in Fig. [l are well captured by skeleton branches by all studied methods. For
smaller-scale details, the situation is different, see Fig.[Blleft. The problem is that
all studied methods include explicit actions to smooth the computed skeletons.
Although desirable (see next Sec. LH), such smoothing will remove some small-
scale branches.

AU and AUI preserve small-scale, detail, branches best. In contrast, AUS and
TJ find detail branches of long protrusions (e.g. Fig.[Bl neptune and frog fingers)
quite well, but fail to find branches for shallower bumps, such as gargoyle’s wing-
tips. Upon closer analysis, we found that this is caused by the fact that the
surface skeletons that both AUS and TJ start from, fail to capture such details.
Hence, these details cannot appear further in the curve skeleton.

CAO and ROSA perform the worst for this criterium. These methods fail find-
ing most detail skeleton branches found by the other studied methods. Moreover,
when found, small-scale terminal skeleton branches seem to be arbitrary, as Fig. Bl
shows for all three models on the left.

Small-scale noise is ignored equally well by all methods. For all the studies
mesh-based methods, this is an effect to their built-in smoothing, which appears
to work well at small scale.

4.5 Smoothness

As outlined earlier, curve-skeleton branches should be at least C? continuous
curves (Sec. [J). Hence, skeletonization methods should follow this property as
well as possible. Voxel methods are inherently constrained here by the sampling
resolution. In contrast, mesh-based methods which model the curve skeleton as a
polyline should distribute the computed skeletal points, or sample the skeleton,
to optimally approximate the desired smooth curve. Hence, for these methods,
the issue of skeleton smoothness is implicitly connected to the skeletal curve
sampling.

Contraction-based methods, as the ones we studied, have an additional chal-
lenge here. As the input mesh is contracted, the local point density naturally
increases in convex areas and decreases in concave ones. This potentially leaves
too few nodes to approximate well the curve skeleton in concave areas. Liga-
ture branches are an extreme case hereof. An example are the ligature branches
that connect the horse’s leg-skeletons to its rump-skeleton (Fig. Bl right). Here,
CAO, ROSA, and up to some extent AU, clearly show a lower point density
— see branches meeting at the marked junctions. This in turn creates spuri-
ous kinks in the rump’s curve skeleton. In contrast, AUS, AUI, and TJ create
smoother skeletons. The skeletons of TJ and AUS follow the rump’s curvature
best. This is explained by the fact that their contraction is constrained to stay on
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Input models - detail preservation Input models - skeleton smoothness

neptune
gargoyle
fertility

IR MY 4

Au et al.
(improved)

Au et al.
(surf. skeleton)

Ay
o
§

Telea and Jalba

Cao et al.

P o A

Tagliasacchi
etal.

Fig. 3. Comparison for detail preservation comparison (left) and skeleton smoothness
(right)

the surface skeleton, whose shape already captures the input shape’s curvature.
AU and AUI both fail capturing the rump’s curvature, since they have no such
constraint. The same non-uniform skeletal point distribution is also observed for
the fertility model (Fig. Blright). Here, again, AUS and AUI yield the most uni-
form point distribution, and ROSA and AU the least uniform one (which leads
to unnatural kinks).

4.6 Sampling Robustness

Sampling robustness refers to the relation between the resolution of the input
shape and changes in its curve skeleton. Ideally, we would like that when the for-
mer changes slightly, the curve skeleton also changes only slightly. This property
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is closely related to the concept of regularization, which states that small changes
in the input shape §2 should only yield small changes in its skeleton [32124//15].

To study this, we produced three versions of the dragon model (see Fig. M),
using the Yams mesh resampling tool [I1]. Next, we ran the studied skeletoniza-
tion methods on these datasets, and analyzed the results. In the comparison, we
had to exclude CAO and ROSA, as the provided implementations of these meth-
ods were too slow to complete, even in several hours, for the largest-resolution
meshes.

Au et al. (improved)

Au et al. (surf. skeleton)

Telea and Jalba

small: 14K points, 25K faces medium: 58K points, 115K faces large: 231K points, 463K faces

Fig. 4. Sampling robustness comparison

The method AU is quite sensitive to the mesh sampling. Looking at Fig. [l
we see that, in the dragon head area, the small and large resolution models
produce relatively similar skeletons, but the medium-resolution model yields a
very different skeleton topology. Given that higher resolution can only potentially
add extra details, but not remove existing ones, we expect to get an increasingly
rich curve skeleton (in terms of terminal branches), but the core structure of this
skeleton should not change significantly. This is not the case, which hints to an
important instability of the method with respect to mesh resolution.

In contrast, AUS and AUI show a much stabler curve skeleton with respect to
mesh resolution. Although these methods do not produce identical skeletons for
the same resolution, the changes of their respective skeletons as the resolution
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changes, are quite small. Both methods find more terminal skeleton branches as
the resolution increases, which is expected since higher-resolution models capture
more surface details.

The TJ method is the most sensitive to sampling. For the low-resolution
model, the method simply fails to extract many significant branches. Although
more branches are found for the high resolution model, many significant surface
details, like the upper spikes on the back and tail, fail to generate branches. This
can be directly traced to the quality of the surface skeleton: The underlying
method used to compute it [I8] produces as many skeleton points as surface
points. To accurately capture the surface skeletal structure, very densely-sampled
models are required [15]. Less densely sampled surface skeletons will in turn
create a noisy distance-transform gradient, which will contract the skeleton mesh
in the wrong directions.

5 Discussion

Contrary to our initial belief, based on the studied contraction-based skeletoniza-
tion literature, all contraction methods studied here appeared to be much more
sensitive in terms of all studied quality criteria (except homotopy) than im-
plied by the examples in the literature. The CAO and ROSA methods per-
formed significantly under expectations. The AU method performed relatively
well for smooth shapes, but showed limitations for centeredness and smoothness
for more complex shapes. This is the main reason for us having designed the
two improved variants AUI and AUS. The trade-off between these variants is as
follows: While AUS yields smoother skeletons, AUI delivers a better centered-
ness. The TJ method dominates all others in terms of smoothness, but has clear
centeredness problems in ligature areas, and requires a very high input mesh
sampling to generate even moderately-detail skeleton branches, due to its usage
of the surface skeleton.

A key question is whether voxel-based skeletonization methods can overcome
the above limitations. Although answering this deserves a separate study, we
outline below several observations in this respect:

Homotopy: Voxel-based skeletonization methods are not, by definition, homo-
topy preserving. For example, Reniers et al. can occasionally create small dis-
connected components [24]. However, thinning methods can enforce homotopy
relatively easily [21UT].

Invariance: Like for homotopy, voxel methods are not invariant under isometric
transformations by construction, as mesh-based methods are. Using truly Eu-
clidean distance transforms helps invariance [14], but does not guarantee it [27].

Thinness: For voxel methods, this criterion translates to creating one-voxel-thin
skeletal manifolds and curve skeletons. Thinning methods are best suited to en-
force thinness [211], whereas general-field methods cannot guarantee it [14124].
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Applying a thinning postprocessing step (in line with the former methods) to
general-field methods appears to be the optimal combination.

Centeredness: Just as thinness, centeredness for voxel methods is limited by
sampling resolution. Using an Euclidean distance transform to drive thinning [I]
or, alternatively, to find the skeleton by directly applying Eqn. 2JT0/24], guaran-
tees thinness under this sampling limitation. In contrast, all contraction methods
studied here do not use a volumetric distance transform. Hence, their centered-
ness is subject to accumulated errors during the iterative contraction process,
which arguably makes them less accurate than voxel methods.

Detail preservation: This requirement is not fundamentally linked to the type
of object discretization (mesh or voxel-based). Using a global importance metric
can guarantee detail preservation for both mesh [15], voxel [24], or hybrid [10]
representations.

Smoothness: Voxel models can be preferable to mesh contraction models here.
Indeed, while the former typically treat each skeleton voxel separately, the latter
enforce local constraints on the surface and curve skeletons. This forces mesh-
based skeletons to be either smooth (but not well centered), or well centered
(but not smooth).

An additional desirable property of skeletons is reconstructability, i.e., the ability
to reconstruct the input shape from its skeleton. Surface skeletons should obey
this property, by definition, as the medial axis transform (MAT) is a dual of
the input shape [27]. Curve skeletons can obey this property only partially.
Although reconstructability is sometimes studied as a separate property [8/1], it
can be traced directly to a combination of centeredness and detail preservation.

The main challenge we find for voxel methods is, however, scalability: Vox-
elizing complex meshes to resolutions over 1000® voxels, and further processing
such volumes to extract curve or surface skeletons, is much slower, and more
memory demanding, than using mesh-based methods. For instance, a highly op-
timized parallel implementation of [24] processes the 700® dragon model (Fig. H)
in around 15 minutes; the equivalent mesh model (463K faces) is processed in
under a minute by all studied mesh-based methods. Moreover, the memory con-
sumption of voxel methods is at least an order of magnitude larger than for
mesh-based methods. If efficient data representation and GPU parallelization
schemes were designed to reduce this overhead, voxel-based methods may in the
end be a very strong competitor to mesh-based methods.

6 Conclusions

In this paper, we have presented a qualitative comparison of six contraction-
based curve-skeletonization methods that use a mesh representation of the input
shape to be skeletonized. The methods were compared from the perspective of
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several accepted quality criteria: homotopy, thinness, centeredness, detail preser-
vation, smoothness, and robustness to sampling. In contrast to recent insights
from the mesh skeletonization literature, the studied mesh-based methods ap-
peared to perform less optimal than expected.

Although our comparison is far from exhaustive, it raises a number of impor-
tant points about the current state of mesh-based curve skeletonization tech-
niques. First and foremost, the question is raised whether such methods can
outclass earlier voxel-based skeletonization methods (if we ignore computational
resources). A more critical more critical quantitative and qualitative evaluation
of such algorithms against each other and also against voxel-based skeletoniza-
tion methods is needed to answer this question. Finally, we believe that our
comparison will generate increased attention towards the development of effi-
cient algorithms that exploit the desirable properties of voxel-based skeletoniza-
tion techniques.
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