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Abstract

A Hamiltonian formulation of classes of distributed-parameter systems is presented, which incor-
porates the energy flow through the boundary of the spatial domain of the system, and which allows
to represent the system as a boundary control Hamiltonian system. The system is Hamiltonian with
respect to an infinite-dimensional Dirac structure associated with the exterior derivative and based
on Stokes’ theorem. The theory is applied to the telegraph equations for an ideal transmission line,
Maxwell's equations on a bounded domain with non-zero Poynting vector at its boundary, and a
vibrating string with traction forces at its ends. Furthermore, the framework is extended to cover
Euler's equations for an ideal fluid on a domain with permeable boundary. Finally, some prop-
erties of the Stokes—Dirac structure are investigated, including the analysis of conservation laws.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Hamiltonian formulation of classes of distributed-parameter systems has been a
challenging and fruitful area of research for quite some time. (A nice introduction, especially
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with respect to systems stemming from fluid dynamics, can be found in [24], where also a
historical account is provided.) The identification of the underlying Hamiltonian structure
of sets of PDEs has been instrumental in proving all sorts of results on integrability, the
existence of soliton solutions, stability, reduction, etc. and in unifying existing results, see
e.g.[1,9,13,14,22,23].

Recently, there has been also a surge of interest idésgnandcontrol of non-linear
distributed-parameter systems, motivated by various applications. At the same time, it is
well-known fromfinite-dimensionahon-linear control systems [7,19,25,26,29-31,33] that
the (generalized) Hamiltonian formulation may be very helpful in the control design, and
even more is to be expected in the distributed-parameter case. However, in extending the
Hamiltonian theory as for instance exposed in [24] to distributed-parameter control systems
a fundamental difficulty arises in the treatmentofundary conditionsindeed, the treat-
ment of infinite-dimensional Hamiltonian systems in the literature seems mostly focused on
systems with infinite spatial domain, where the variables go to zero for the spatial variables
tending to infinity, or on systems with boundary conditions such that the energy exchange
through the boundary ®mera On the other hand, from a control and interconnection point
of view it is essential to be able to describe a distributed-parameter system with varying
boundary conditions inducingnergy exchange through the boundasince in many ap-
plications, interaction with the environment (e.g. actuation or measurement) takes place
through the boundary of the system. Clear examples are the telegraph equations (describing
the dynamics of a transmission line), where the boundary of the system is described by the
behavior of the voltages and currents at both ends of the transmission line, or a vibrating
string (or, more generally, a flexible beam), where it is natural to consider the evolution of
the forces and velocities at the ends of the string. Furthermore, in both examples itis obvious
that in general the boundary exchange of power (voltage times current in the transmission
line example, and force times velocity for the vibrating string) will be non-zero, and that
in fact one would like to consider the voltages and currents or forces and velocities as ad-
ditional boundary variable®f the system, which can be interconnected to other systems.
Also for numerical integration angimulationof complex distributed-parameter systems it
is essential to be able to describe the complex system as the interconnection or coupling of
its subsystems via their boundary variables; for example in the case of coupled fluid—solid
dynamics.

From a mathematical point of view, it is not obvious how to incorporate non-zero energy
flow through the boundary in the existing Hamiltonian framework for distributed-parameter
systems. The problem is already illustrated by the Hamiltonian formulation of e.g. the
Korteweg-de Vries equation (see e.g. [24]). Here for zero boundary conditiBasson
bracketcan be formulated with the use of the differential operator(jj&ince by integration
by parts this operator is obviously skew-symmetric. However, for boundary conditions
corresponding to non-zero energy flow the differential operator is not skew-symmetric
anymore (since after integrating by parts the remainders are not zero). Also the interesting
paper [12] does not really solve this problem, since it is concerned with the modification of
the Poisson bracket in case of a free boundary.

In the present paper we provide a framework to overcome this fundamental problem by
using the notion of @irac structure extending and generalizing a preliminary and par-
tial treatment of this framework in [20,21]. Dirac structures were originally introduced in
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[6,8] as a geometric structure generalizing bsyimplecticand Poissonstructures. Later

on (see e.g. [2,7,18,31]) it was realized that in the finite-dimensional case Dirac structures
can be naturally employed to formalize Hamiltonian systems agtistraintsasimplicit
Hamiltonian systems. It will turn out that in order to allow the inclusion of boundary vari-
ables in distributed-parameter systems the concept of Dirac structure again provides the
right type of generalization with respect to the existing framework using Poisson structures.
(In fact, already in [8] Dirac structures were employed for the Hamiltonian representation
of certain evolution equations. However, this treatment did not involve the inclusion of
boundary variables, and, in fact, the employed Dirac structures are equivalent to Poisson
structures.)

The Dirac structure for distributed-parameter systems used in this paper has a specific
form by being defined on certain spaces of differential forms on the spatial domain of the
system and its boundary, and making use of Stokes’ theorem. Its construction emphasizes
the geometrical content of the physical variables involved, by identifying them as differential
k-forms, for appropriaté. This interpretation is rather well-known (see e.g. [11]) in the case
of Maxwell's equations (and actually directly follows from Faraday’s law and Ampére’s
law), but seems less well-known for the telegraph equations and the description of the
Euler’s equations for an ideal isentropic fluid. (Although, very much related formulations
of systems of partial differential equations have been studied within the general context of
conservation laws.)

From the systems and control point of view, the present paper can be seen as providing
the extension of the generalized Hamiltonian framework established for lumped-parameter
systems in [4,7,26,28-31] to the distributed-parameter case. In the lumped-parameter case
this Hamiltonian framework has been successfully employed in the consistent (modular)
modeling and simulation of complérterconnectedumped-parameter physical systems,
including (actuated) multi-body systems with kinematic constraints and electro-mechanical
systems [7,18,30,31], and in the design andtrol of such systems, exploiting the Hamil-
tonian and passivity structure in a crucial way [19,25,26,29,30,33]. Similar developments
can be pursued in the distributed-parameter case; see already [27,32] for some initial ideas
in this direction.

The present paper is organized as follows. The main framework is established in Sec-
tion 2. After a general introduction to Dirac structures in Section 2.1 the definition of
a Stokes—Dirac structure is treated in Section 2.2. This paves the way for the Hamil-
tonian formulation of distributed-parameter systems with boundary variables in Section
2.3. In Section 3 this is applied to Maxwell's equations on a bounded domain (Section
3.1), the telegraph equations for an ideal transmission line (Section 3.2), and the vi-
brating string (Section 3.3). Furthermore, by modifying the Stokes—Dirac structure with
an additional term corresponding to three-dimensional convection, Euler’'s equations for
an ideal isentropic fluid are treated in Section 3.4. Finally, in Section 4 the properties
of Stokes—Dirac structures are further analyzed: Section 4.1 deals with the pseudo-
Poisson bracket associated to the Stokes—Dirac structure, Section 4.2 sets up the basic
notions of conservation laws and Casimir functions captured by the Stokes—
Dirac structure, while Section 4.3 deals with a covariant definition of Stokes—Dirac
structures and the resulting Hamiltonian systems. Finally, Section 5 contains the
conclusions.
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2. Hamiltonian formulation of distributed-parameter systems
with boundary energy flow

2.1. Dirac structures

The notion of a Dirac structure was originally introduced in [6,8] as a geometric structure
generalizing botlsymplectiandPoissonstructures. In [2,4,7,18,28-31], it was employed
as the geometrical notion formalizing gengualver-conserving interconnectigribereby
allowing the Hamiltonian formulation of interconnected and constrained mechanical and
electrical systems.

A definition of Dirac structures (which is actually slightly more general than the one in
[6,8]) can be given as follows. L&t and& be linear spaces, equipped with a pairing, that
is, a bilinear operation:

FxE—L 1)

with L a linear space. The pairing will be denoted yf) € L, f € F,e € £. By
symmetrizing the pairing we obtain a symmetric bilinear fgxa) on F x &, with values
in L, defined as

(((f1,e1), (f2,€2))) i= (ealf2) + (e2l f1), (fi.e)) € FxE @)

Definition 2.1. Let F and€ be linear spaces with a pairirig. A Dirac structure is a linear
subspaceD C F x £ such thatD = D+, with L denoting the orthogonal complement
with respect to the bilinear forri-)).

Example 2.1. Let F be a linear space ov&®. Let £ be given asF* (the space of linear
functionals onF), with pairing(|) the duality producte| f) € R.

(a) LetJ : £ — F be askew-symmetric map. Then graplt F x £ is a Dirac structure.

(b) Letw : F — & be a skew-symmetric map. Then graplc F x £ is a Dirac structure.

(c) LetV c F be afinite-dimensional linear subspace. Thier Vo™  F x £ is a Dirac
structure, wherd ™ £ is the annihilating subspace f The same holds if is a
topological vector spacé, is the space of linear continuous functionals®nandV
is aclosedsubspace of-.

Example 2.2. Let M be a finite-dimensional manifold. L& = V(M) denote the Lie
algebra of smooth vector fields o, and let€ = $21(M) be the linear space of smooth
one-forms onV. Consider the usual pairing|X) = ixa between one-forme and vector
fields X; implying thatL is the linear space of smooth functions &

(@) LetJ be aPoisson structure @i, defining a skew-symmetric mappidg. 21(M) —
V(M). Then graphV c V(M) x 21(M) is a Dirac structure.

(b) Let w be a presymplectic structure avl, defining a skew-symmetric mappinrg:
V(M) — 2Y(M). Then graphw c V(M) x 2Y(M) is a Dirac structure.

(c) LetV be a constant-dimensional distribution #fy and let anr¥ be its annihilating
co-distribution. TherV/ x annV is a Dirac structure.
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Remark 2.1. Usually in Example 2.2 an additional integrability condition is imposed on
the Dirac structure, cf. [6,8]. In part (a) this condition is equivalent toJdmobi-identity

for the Poisson structure; in part (b) it is equivalent to¢lesednessf the presymplectic
structure, while in part (c) itis equivalent to timeolutivity of the distributionD. Integrability

is equivalent to the existence of canonical coordinates, cf. [6—8]. Various formulations of
integrability of Dirac structures and their implications have been worked out in [7]. For the
developments of the current paper the notion of integrability is not crucial; see however the
conclusions section for some comments in this direction.

From the defining propert{p) = D+ of a Dirac structure it directly follows that for any
(f,e) e D

0={{(fe), (f.e))) = 2el f) ®3)

Thus, if (f, ) is a pair ofpower variablege.g. currents and voltages in an electric circuit
context, or forces and velocities in a mechanical context), then the condjtien € D
implies power-conservatiorfe| f) = 0 (as do Kirchhoff's laws or Newton’s third law).
This is the starting point for the geometric formulation of general power-conserving inter-
connections in physical systems by Dirac structures as alluded to above.

2.2. Stokes—Dirac structures

In this subsection we treat the underlying geometric framework for the Hamiltonian
formulation of distributed-parameter systems on a bounded spatial domain, with non-zero
energy flow through the boundary. The key concept is the introduction of a special type
of Dirac structure on suitable spaces of differential forms on the spatial domain and its
boundary, making use of Stokes’ theorem. A preliminary treatment of this Dirac structure
has been given in [20,21].

Throughout, leZ be am-dimensional smooth manifold with smodih—1)-dimensional
boundaryd Z, representing the space sfatial variables

Denote byQ"(Z), k=0,1,...,n,the space of exterid-forms onZ, and by2*(32),
k=0,1,...,n—1, the space of-forms ond Z. (Note that2°(Z), respectively2°(3 2),
is the space of smooth functions @n respectivelyp Z.) Clearly, 2%(Z) and2%(82) are
(infinite-dimensional) linear spaces (oW, Furthermore, there is a natural pairing between
2k(z) and2"*(Z) given by

WWN=LﬂA% €R) @)

with o € 2%(2), B € 2"%(Z), wheren is the usual wedge product of differential forms
yielding thern-form g A «. In fact, the pairing (4) is\on-degeneratén the sense that if
(Bla) = 0O for all «, respectively, for alB, theng = 0, respectivelyr = 0.

Similarly, there is a pairing betweed® (9 Z2) and2"~1-*%(32) given by

wmwzﬁzﬁAa 5)
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with o € 2%(82), B € 2"~17%(3Z). Now let us define the linear space

Fpqi=R2P(Z) x 29(Z) x 2" P(HZ) (6)
for any pairp, ¢ of positive integers satisfying

p+gq=n+1 @)
and correspondingly let us define

Epgi=R"P(Z) x 2"9(Z) x 2"71(02Z) (8)

Then the pairing (4) and (5) yields a (non-degenerate) pairing betwgerand&,, , (note
that by Eq. (7Xn — p) + (n — q) = n — 1). As before (see Eqg. (2)), symmetrization of this
pairing yields the following bilinear form o), , x £, , with values inR:

(L fE fr e egep). (f7. f2. f2 €5, €5, ed))
= /Z[e},/\f5+el}qu2+ef,/\fj+e§/\fq1] +/az[e,}/\fb2+e§/\fb1] (9)
where fori =1, 2
flerrz),  fleri(2)
e e Q"P(2), €, eR"U(Z) (10)
fi e R P@OZ), e €"10Z)

The spaces of differential form@”(Z) and £29(Z) will represent the energy variables

of two different physical energy domains interacting with each other, while?(8Z2)
and2"~1(aZ) will denote the boundary variables whose (wedge) product represents the
boundary energy flow. For example, in Maxwell's equations (Section 3.1) we will have
n=3andp = g = 2; with 27(Z) = 2?(Z), respectively2?(Z) = 24(Z), being the
space of electric field inductions, respectively magnetic field inductions2ind (0 Z) =
21(87) denoting the electric and magnetic field intensities at the boundary, with product
the Poynting vector.

Theorem 2.1. ConsiderF, , and€, , giveninEgs. (6) and (8)vith p, ¢ satisfyingEq. (7),
and bilinear form((-)) given byEq. (9).Define the following linear subspadeof 7, , x
gp,q

For oo f e | f 0 (=1D"d ep
- ) ) ,€p, €4, € f X E = ,
D p»Jq» Jbs €p>€q, €D P4 P.q ; d 0 ¢

D P s
ep 0 —(=D" 1 || eqaz

where|, denotes restriction to the boundady, andr := pg+ 1. ThenD = D, thatis
D is a Dirac structure
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Proof. Firstwe showD c D+, and secondiyp+ ¢ D.

() D c D :let(fL fL £l eb. ek, e)) € D,and consideranyf?, f2, f2,¢3, €2, e?) €
D. By substitution of Eq. (11) into Eq. (9) the right-hand S|de of Eq. (9) becomes

1 2 1 2 2 1 2 1
/Z[(—l)’ep AdeZ +eg Aded + (—1) e5 A dey + e A dey]
- 1 2 2 1
—(=1n"1 /az[eq ney,+eg el (12)

By the properties of the exterior derivative:

2 1y _ 4,2 1 —-q ,2 1
d(eq ney) = deq Aep+ (=D eg A dep

13)
1A ,2y — dol A 02 n—q,1 2
d(eq ney) = deq Nep+ (-1 "eq A de[,
and by the properties of the wedge product:
1 2 __ n—p)(n—qg+1 2 1
ey Ndeg = (=1 =P =g+ )deq Ney, 14

2 1 _ (_1\(n—p)(n—g+Dg,l 2
ep/\deq—( 1)\n=pin—q deq/\ep
Hence, the first and fourth term in tife integral in Eq. (12) can be rewritten as
(—1)’@117 A des + eg A dell,
= (—1)r+("_p)(”_q+1)de§ A ell, + es A dell7
= (—1)""de] A ey + €2 Adey = (—1)"d(eZ A eh) (15)

sincebyp+qg =n+landr =pg+1,r+n—p)(n—qg+1)=r+(q—1)p =2pg—
p+ land(—1)@4rtl = (—pl=r = (-1,
Similarly, the second term together with third term can be written as

ey /\de +(=D"e /\de = (D" qd(e /\ez) (16)

Substitution of Egs. (15) and (16) in thfe integral in Eq. (12) then yields by Stokes’
theorem that this integral is equal to

(-1 /Z d(eZ A eb)+d(el ned) = (=1 /az[ej nepegne]l (A7)
showing that Eq (12)is zero and thilsc D+.

(i) Dt c D:let(f;, f. f;. e5. e}, ej) € D+ implyingthatfor allelementsf?, f2, f2,
e§ e eb) € D the right-hand side of Eq. (9) is zero, and hence by substitution of
Eqg. (11)

/[(—1)rel A de2 + eéIL A delz, + 612, A f[} + efl A fql]

/[eb/\e — (=" qe /\f]—O (18)
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for all €2, 2. Now, consider first2, 2 which are zero on the boundady, implying
that

/Z[(_l)re},Ade§+e,}Ade§,+e§,Afp+e Af1=0 (19)
for all €2, e2 with €|y = ¢2]5z = 0. By the first line of Egs. (13) and (14)
(—l)’ell) A des = (—1)’+("—1’)(”—4+1)de§ A e}, = (—1)”_qde§ A ell)
= (—1)”_qd(e§ A ell,) — 63 A de,l, (20)

Similarly, by the second line of Egs. (13) and (14)
1 2 _ n— 1,2 —q4dpl A 2
eg N dep = (-1 qd(eq ney) — (=" qdeq Aes, 21)
AN fr=(DIPP LA S

Sinceef,laz = e§|az = 0, substitution of Egs. (20) and (21) into Eqg. (19) then yields
by Stokes’ theorem
/[—ej Adel — (=1)"9de neh + (=D PP frnel +ei A f1]1=0 (22)
z
for all ef,, eg with ef,|az = e§|az = 0. Clearly, this implies

fql — del

23
(_1)(n—p)pfpl = (—l)(”_‘I)de; (23)
where the last equality is easily seen to be equivalent to
fr=(=1de} (24)
Finally, substitute Egs. (23) and (24) into Eqg. (18) to obtain
/ [(— 1)rel/\de —l—e /\de + e, /\de2 + (= 1)re A det 2l
+/ [e} A ep — (—1)”—‘1eq AfH=0 (25)
Y/

for all elzj, e(f. Substituting again Eg. (20) and the first line of Eq. (21), noting that
(—D)""de} A €3 = (—=1)"e% A del, this yields

/Z [(—D"9d(ef A ep) + (—D)"d(e; A €5)]
+ /a Z[e,} Ned— (=192 A f}]1=0 (26)
and hence by Stokes’ theorem

/[( "= qe /\e — (="~ qe /\fb + (="~ qe ne, +€b/\€2]=0
(27)
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for all €2, ¢2, implying that

fr=eblaz
f. " n—q,1 (28)
ey = —(=D"eglyz
showing that indeeds?, f1, fi1.el. ek e}) € D. O

Remark 2.2. The spatiatompositionalityproperties of the Stokes—Dirac structure imme-
diately follow from its definition. Indeed, l6t1, Z> be twon-dimensional manifolds with
boundarie®Z1, 3Z2, such that

0Z1=ruly, I'nlh=¢

(29)
0Zo=TUly, I'NI»=¢

for certain(n — 1)-dimensional manifoldg”, I'1, I> (that is,Z1 and Z; have boundary”

in common). Then the Stokes—Dirac structufgs D, on Z1, respectivelyZ,, compose to

the Stokes—Dirac structure on the manif@gdu Z, with boundaryly U I» if we equate

on I the boundary variable;%gl (corresponding td;) with — sz (corresponding tao),

or if we reverse orientation. (Note that a minus sign is inserted in order to ensure that the
power flowinginto Z; via I" is equal to the power flowingutof Z, via I".)

2.3. Distributed-parameter port-Hamiltonian systems

The definition of a distributed-parameter Hamiltonian system with respect to a Stokes—
Dirac structure can now be stated as follows. EZebe ann-dimensional manifold with
boundary Z, and letD be a Stokes—Dirac structure as in Section 2.2. Consider furthermore
aHamiltonian densitfenergy per volume element)

H:RP(Z) x RUZ) x Z — 2"(Z) (30)

resulting in the total energy
H = / HeR (31)
z

Recall, see Eq. (4), that there exists a non-degenerate pairing be®de¢gnand2”" 7 (Z2),
respectively betweese?(Z) and£2"~9(Z). This means thaQ”"—?(Z) and$2"~9(Z) can
be regarded adual spacedo 27 (Z), respectively2?(Z) (although strictly contained in
their functional analytic duals). Let naw,, do,, € 2°(Z), oy, da, € $29(Z). Then under
weak smoothness conditions &h

H(ap + dap, oy + dorg) :/ H(ap + dap, ag + doy, 2)
z

=f H(ap,ozq,z)+/[6,,H/\8a,,+5qH/\8(xq]
z z

+ higher order terms ifir ,, 3t (32)
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for certain differential forms
§,H € 2"P(Z)

(33)
S,H € 2"9(Z)
Furthermore, from the non-degeneracity of the pairing betweénZ) and 2" 7 (Z),
respectively betweef?(Z) and$2"~4(Z), it immediately follows that these differential
forms are uniquely determined. This means W8tH, 5, H) € 2" 7(Z) x 2" 1(Z)
can be regarded as the (partiefjriational derivativeqsee e.g. [24]) off at (v, o) €
2P(Z) x 29(Z). Throughout this paper we shall assume that the HamiltoRiadmits
variational derivatives satisfying Eq.(32).
Now consider a time-function

(op(t), 0q(1)) € 2P(Z) x 29(Z), teR (34)

and the HamiltoniarH (a, (¢), () evaluated along this trajectory. It follows that at any
timet

dH o oo,
— = S,HA —L +8,HA—2 35
dr Z[” o % 8t:| (35)

The differential formsd«, /¢, da, /9t represent the generalized velocities of the energy
variablesy,, ;. They are connected to the Stokes—Dirac struciuigy setting

o
o==%
(36)
P
Y

(again the minus sign is included to have a consistent energy flow description). Since the
right-hand side of Eqg. (35) is the rate of increase of the stored eneéfgy
we set
e, =38pH
(37)
eq =0,H

(In network modeling terminolog¥, H ands, H are called theo-energyariables, which

are set equal to the effort variableg, ¢;.) Now we come to the general Hamiltonian
description of a distributed-parameter system with boundary energy flow. In order to em-
phasize that the boundary variables are regardedesonnection variablesvhich can be
interconnected to other systems and whose product reprgsamés we call these mod-

els port-Hamiltonian systems. (This terminology comes from network modeling, see e.g.
[16,31,30].)

Definition 2.2. The distributed-parameter port-Hamiltonian systemith »-dimensional
manifold of spatial variable¥, state spac&2”(Z) x £29(Z) (with p + g = n + 1),
Stokes—Dirac structureD given by Eqg. (11), and HamiltoniarH, is given as
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(with » = pg+ 1)

- 9,
e 0 (=)'d\[8,H
_day [d 0 M%H}’
L ot 4
_fh:| [1 0 ]|:8pH|8Z]
= (38)
L ep L0 —(=D" 7 ] é;Hlsz

By the power-conserving property (3) of any Dirac structure it immediately follows that
forany (fy. f4, /b, €p, €4, €p) in the Stokes—Dirac structure

/[e,,/\f,,+eq/\fq]+/ es AN fp=0 (39)
VA Z
Hence, by substitution of Eqgs. (36) and (37) and using Eq. (35) we obtain

Proposition 2.1. Consider the distributed-parameter port-Hamiltonian system (38).
Then

dH
- , 40

™ e fb (40)
expressing that the increase in energy on the donzais equal to the power supplied to
the system through the bound&¥.

The system (38) can be called a (non-lindajindary controbystem in the sense of e.g.
[10]. Indeed, we could interpref, as the boundary control inputs to the system, anads
the measured outputs (or the other way around). In Section 3 we shall further elaborate on
this point of view.

Energy exchange through the boundary is notthe only way a distributed-parameter system
may interact with its environment. An example of this is provided by Maxwell's equations
(Section 3.1), where interaction may also take place via the current déngihich directly
affects the electric charge distribution in the dom4irin order to cope with this situation
we augment the spacés, 4, £, 4 as defined in Egs. (6) and (8) to

Fo = Fpg x 24)

(41)
E8 = Ep g x 27U(S)

for somem-dimensional manifoldS and somed € {0,1,...,m}, with f¢ e £4(S)
denoting the externally supplied distributed control flow, ah@ $2"~¢(S) the conjugate
distributed quantity, corresponding to an energy exchange

AﬂAﬂ (42)
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The Stokes—Dirac structure (11) is now extended to

1 o valfe,

e T
o . 1 0 eplaz _ x| P

|:eb:|_|:o _(_1)nqj||:eq|82:|’ eq =—G |:€q:| (43)

with G denoting a linear map

G = (g”> 248 > 2P(Z) x 29(Z) (44)
q

with dual map (again we consid&” 7 (Z) and2"~4(Z) as dual spaces t@7(Z), re-
spectively$2"~4(Z))

G* = (G5, G 1 2"7P(2) x 2"79(Z) - 2"7(S) (45)
satisfying
[ tes 7 Gyt + e 7 Guthid = [ [Gtep) +Gitepl n fa (46)

foralle, € 2"P(Z), e, € 2"9(Z), f4 € 2US).
The following proposition can be easily checked.

Proposition 2.2. Eq. (43)determine a Dirac structur®® C Fy , x £  with respect to
the augmented bilinear form aft; , x £ , which is obtained by adding to the bilinear
form(9)onF, 4 x &, 4 the term

/ [eh A f2 42 A 1 (47)
S

By making now the substitutions (36) and (37) i given by Eq. (43) we obtain a
port-Hamiltonian system with external variablg, 14, ey, eq), With £}, e, theboundary
external variables angl;, e; the distributedexternal variables. Furthermore, the energy
balance (40) extends to

dH

dr
with the first term on the right-hand side denoting the power flow through the boundary,
and the second term denoting the distributed power flow.

Finally,energy dissipationan be incorporated in the framework of distributed-parameter
port-Hamiltonian systems ktgrminatingsome of the ports (boundary or distributed) with
aresistive relationFor example, for distributed dissipation, ket £27~%(S) — 29(S) be
a map satisfying

= eb/\fh-i-/ed/\fd (48)
Z S

/ eq AR(eg) >0, Vey e 24(S) (49)
S
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Then by adding the relation
fa = —R(eq) (50)

to the port-Hamiltonian system defined with respect to the Dirac struéifireve obtain a
port-Hamiltonian systerwith dissipation satisfying the energy inequality

dH

— = eb/\fh—/edAR(ed)S/ ep A fo (51)
dr RY4 N 9Z

3. Examples

In this section we show how the framework of distributed-parameter port-Hamiltonian
systems admits the representation of Maxwell's equations, the telegraph equations of an
ideal transmission line, the vibrating string, and the Euler equations of an ideal isentropic
fluid.

3.1. Maxwell's equations

We closely follow the formulation of Maxwell’'s equations in terms of differential forms as
presentedin[11], and show how this directly leads to the formulation as a distributed-parameter
port-Hamiltonian system.

Let Z c R3 be a three-dimensional manifold with boundarg, defining the spatial
domain, and consider the electromagnetic fiel&@inrhe energy variables are teéectric
field inductiontwo-forma, = D € 22(Z):

D = 1Dj(r,2)de Adz/ (52)
and themagnetic field inductiotwo-formo, = B € R2%(2):
B= %Bij (t,z)dz' Adz/ (53)
The corresponding Stokes—Dirac structure= 3, p = 2, ¢ = 2) is given as (cf. Eq. (11))
I P P B
fq d O ey ep 0 1 eq13z

Usually in this case one doest start with the definition of the total energy (Hamiltonian)
H, but instead with the co-energy variablks, 6, H, given, respectively, as the electric
field intensity€ € 21(2):

E=E z)d (55)
and the magnetic field intensi®y € £21(2):

H = H(t,z)d (56)
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They are related to the energy variables through the constitutive relations of the medium
(or material equations)

*D = €&

57
*B=uH ®7)

with the scalar functions(z, z) andu (¢, z) denoting the electric permittivity, respectively
magnetic permeability, anddenoting the Hodge star operator (corresponding to a Rieman-
nian metric onz), converting two- into one-forms. Then odefinegdhe HamiltonianH as

H:/:—ZL(E/\D—F’H/\B) (58)
Z

and one immediately verifies théy H = SpH = &,8,H = 5pH = H.

Nevertheless there are other cases (correspondingao-déineartheory of the electro-
magnetic field, such as the Born-infield theory, see e.g. [11]) where one starts with a more
general Hamiltoniar = [, h, with the energy density(D, B) being a more general
expression than/R(e 1« D AD + u~ 1« B A B).

Assuming that there is no current in the medium Maxwell's equations can now be written
as (see [11])

gy
- (59)

Explicitly taking into account the behavior at the boundary, Maxwell's equations on a
domainZ c R3 are then represented as the port-Hamiltonian system with respect to the
Stokes—Dirac structure given by Eq. (54), as

oD 0 4
o - SpH SpH|;
z% _ pH | Jo _ | 9pHloz (60)
i d 0 opH ep dpHlyz
Note that the first line of Eq. (59) is nothing else than (the differential version of) Ampére’s
law, while the second line of Eq. (59) is Faraday’s law. Hence, the Stokes-Dirac structure

in Egs. (59) and (60) expresses the basic physical laws conndetiBgH and€.
The energy-balance equation (Eq. (40)) in the case of Maxwell's equations takes the form

dH

— = 5BH/\5]_)H=/ HAE=— EANH (61)
dr 9z 0Z 9z

with £ A H a two-form corresponding to tHeoynting vectolsee [11]).

In the case of a non-zerurrent densitywe have to modify the first matrix equation of
(60) to
aD
Y 0 —d||épH I
or | _ ey (62)
0B d 0 SpH 0

o
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with I denoting the identity operator froth e £22(Z) to £22(Z). (Thus, in the notation of
Eq. (44).fs = J, S = Z, and2¢(S) = £2%(Z).) Furthermore, we add the equation

|:8DH:|
I 0 =-£ (63)
épH

yielding the augmented energy balance

H
d—:—/ EAH—/EAJ (64)
dr 9Z z

which is known agoynting’s theorem )
Finally, in order to incorporate energy dissipation we wiite- J; + J, and we impose
Ohm’s law

xJg=0& (65)

with o (¢, z) the specific conductivity of the medium.

3.2. Telegraph equations

Consider an ideal lossless transmission line itk [0, 1] ¢ R. The energy variables
are the charge density one-fon= Q(z, z) dz € £21([0, 1]), and the flux density one-form
¢ = ¢(t,z)dz € 21([0, 1]); thusp = g = n = 1. The total energy stored at timén the
transmission line is given as

11/ 0%t.2) | ¢t 2)
= - d 66
He.w= [ 2( co | 1o > ¢ (©9)

with co-energy variables

SoH = o, 2) =V(,z), (voltage
03 (67)

SoH = (pL(’ ) =1I(t,z), (curren)

Z

whereC(z), L(z) are, respectively, the distributed capacitance and distributed inductance
of the line.
The resulting port-Hamiltonian system is given by the telegraph equations

00 ol
or  dz
b OV (68)
at 9z

together with the boundary variables

Lo =vwe,0, floy=vaed

(69)
Q) =—1(t,0), err)=—1(t1)
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The resulting energy-balance is

H
d— = evfo=—1¢,HV(E, 1+ 1, 0V(z,0), (70)
dr 3([0,1)

in accordance with Eq. (40).

3.3. Vibrating string

Consider an elastic string subject to traction forces at its ends. The spatial variable
belongs to the interva = [0, 1] C R. Let us denote by (s, z) the displacement of the
string. The elastic potential energy is a function of skrin given by the one-form

d
oy (t) = €(t,z)dz = a—':(t, 7)dz (71)
The associated co-energy variable is stressgiven by the zero-form
o=Tx*ay (72)

with T the elasticity modulus andthe Hodge star operator. Hence, the potential energy is
the quadratic function

1 1 1 au\?
U(aq)z/ aaq=/ T*aq/\aqz/ T<—> dz (73)

ando = 4,U.
The kinetic energyK is a function of the kinetiomomentumdefined as the one-
form

ap(t) = p(t,z)dz (74)
given by the quadratic function
1,2
K (ap) :/ —dz (75)
0o M
The associated co-energy variable iste&citygiven by the zero-form
1
v=—ko, =6,K 76
L For = 0p (76)

In this case the Dirac structure is the Stokes—Dirac structure ferp = ¢ = 1, with an
opposite sigrconvention leading to the equations (with:= U + K)

dap
O PR P B
ai —-d 0 5,H ep 01 8qH\yz

at

S
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or, in more down-to-earth notation

ap do d

=== (Te

Jt 0z 0z

de _ ov _ d (1

or 8z az\ut (78)
So =vlj0,1

ep = 0li0,1)

with boundary variables the velocity and stress at the ends of the string. Of course, by
substitutings = du/dz into the second equation of (78) one obt&ali8z(du/dt — p/u) =

0, implying that

ou
ot

for some functionf, which may be setto zero. Substitution of Eq. (79) into the first equation
of (78) then yields the wave equation

%u 9 (Tau) (80)

Hor oz \ 8z

p=wn +uf@) (79)

3.4. Ideal isentropic fluid

Consider anideal compressible isentropic fluid in three-dimensions, described in Eulerian
representation by the standard Euler equations

dp

i =V - (pv)

v 1 (81)
—=—-v-Vv—-—-Vp

ot 0

with p(z, 1) € R the mass density at the spatial positior R at timer, v(z, 1) € R3
the (Eulerian) velocity of the fluid at spatial positiorand timet, andp(z, t) the pressure
function, derivable from an internal energy functibiip) as

aU
pz. 1) = p?(z, N5, PG (82)

Much innovative work has been done regarding the Hamiltonian formulation of Eq.(81) and
more general cases; we refer in particular to [1,13,14,22,23]. However, in these treatments
only closedfluid dynamical systems are being considered with no energy exchange through
the boundary of the spatial domain. As a result, a formulation in terms of Poisson structures
canbe given, while as argued before, the general inclusion of boundary variables necessitates
the use of Dirac structures.

The formulation of Eq. (81) as a port-Hamiltonian system is given as followsDLetR3
be a given domain, filled with the fluid. We assume the existence of a Riemannian etric
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on D; usually the standard Euclidean metricBf. Let Z ¢ D be any three-dimensional
manifold with boundary Z.

We identify the mass-density with a three-form orZ (see e.g. [13,14]), that is, with
an element of23(Z). Furthermore, we identify the Eulerian vector fieldvith a one-form
on Z, that is, with an element aR1(Z). (By the existence of the Riemannian metric on
Z we can, by “index raising” or “index lowering”, identify vector fields with one-forms
and vice versa.) The precise motivation for this choice of variables will become clear
later on. As a result we consider as the carrier spaces for the port-Hamiltonian formu-
lation of Eq. (81) the linear spaceB,, and&,, forn = 3,p = 3,¢q = 1, that
is

Fpq=23%2) x 2Y(2) x 2°32) (83)
and
Epg = 2%2Z) x 2%(2) x 2%(32) (84)

Sincep + ¢ = n + 1 we can define the corresponding Stokes—Dirac strudduge/en by

Eq. (11) onF, , x &, 4. However, as will become clear later on, due to three-dimensional
convection we need tmodifythis Stokes—Dirac structure with an additional term into the
following modified Stokes—Dirac structure

D" = { (fps fos for €0 €vs ep) € 23(2) x 2Y(Z) x 2°32) x 2°(2) x 2%(2)

fp :| dev

x 2232), = 1
de, + E * ((xdv) A (xey))

v

JARES)
€p —€y|9Z

where x denotes the Hodge star operator (corresponding to the Riemannian metric on
Z), convertingk-forms onZ to (3 — k)-forms. A fundamental difference of the modified
Stokes—Dirac structur®™ with respect to the standard Stokes—Dirac struciris that
D™ explicitly depends on the energy variablesandv (via the termstp and d in the
additional term(1/ x p) * ((xdv) A (xey))).

Completely similar to the proof of Theorem 2.1 itis shown {2t (p, v))* = D™ (p, v)
for all p, v; the crucial additional observation is that the expression

€2 A x((xdv) A (xel)) (86)

is skew-symmetrim ¢, ¢2 € 22(Z).

v’V

Remark 3.1. In the standard Euclidean metric, identifying via the Hodge star operator
two-forms 8; with one-forms, and representing one-forms as vectors, we have in vector
calculus notation the equality

B2 A k(o A1) =a - (B1 X B2) (87)



184 A.J. van der Schaft, B.M. Maschke / Journal of Geometry and Physics 42 (2002) 166—194

for all two-forms 1, 82 and one-formsx. This shows clearly the skew-symmetry of
Eq. (86).

The Eulerian equations (81) for an ideal isentropic fluid are obtained in the port-controlled
Hamiltonian representation by considering the Hamiltonian

Hp v = [ 30590 + Utk (88)

with v the vector field corresponding to the one-forrffindex lowering”), andU (xp) the
internal energy. Indeed, by making the substitutions (36) and (3PY'inand noting that

1 0
gradH = (§,H,8,H) = <§<vﬁ, v?) + 35 PU @), i,;p) (89)
with o := *p, the port-Hamiltonian system takes the form
ap
—— =d(.-
” (iyzp)
d 1 1
_ov_ d <—(vj, vF) + w(*p)) + — ((*dv) A (*ivtp))
ot 2 *0 (90)
— |18 8
fo =305 08) +ueo)]
ep = —l,:09z
with
. o .
w(p) ‘= F(pU(p)) (91)
0

the enthalpy The expression, H = (1/2)(v*, v*) + w(p) is known as theBernoulli
function

The first two equations of (90) can be seen to represent the Eulerian equations (81). The
first equation corresponds to the basic lawnzfss-balance

d
— p=0 92
dr /w,(w 92)

whereV denotes an arbitrary volume iy andy; is the flow of the fluid (transforming the
material volumeV at: = 0 to the volumey, (V) at time¢). Indeed, Eq. (92) for any is
equivalent to

ad

P o Lp=0 (93)
ot
Since by Cartan’s magical formula,: p = d(i,:p) +i,:dp = d(i,:p) (Since ¢ = 0) this
yields the first line of Eq. (90). It also makes clear the interpretation a$ a three-form
onZz.

For the identification of the second equation of (90) with the second equation of (86) we

note the following (see [32] for further details). InterpRétin Eqg. (81) as the covariant



A.J. van der Schaft, B.M. Maschke / Journal of Geometry and Physics 42 (2002) 166—194185

derivative corresponding to the assumed Riemannian mgtri Z. For a vector field:
onZ, letu” denote the corresponding one-forfn:= i, (-) (“index raising”). The covariant
derivativeV is related to the Lie derivative by the following formula (see for a proof [1],
p. 202)

Ly’ = (Vyu)’ + 3 d{u, u) (94)

Since by Cartan’s magical formulg,u” = i,du” + d(i,u") = i, du’ + d{u, u), Eq. (94)
can be also written as

(V) =i, du’ + %d(u, u) (95)

(This is the coordinate-free analog of the well-known vector calculus formul&iu =
curlu x u + (1/2)V|u|2.) Furthermore, we have the identity

iypdv = i * ((xdv) A (xiy10)) (96)
*p

Finally, we have the following well-known relation between enthalpy and pressure (obtained
from Egs. (82) and (91))

1 .
;dp = d(w(p)) (97)
Hence, by Eq. (95)—(97) (with = v%), we may rewrite the second equation of (90) as
ov b 1
—— = (V,2f —d 98
or = (V') + o dp (98)

which is the coordinate-free formulation of the second equation of (81).

The boundary variables, ande, givenin Eq. (90) are respectively thiagnation pressure
at the boundary divided by, and the (incomingjnass flowthrough the boundary. The
energy-balance Eq. (40) can be written out as

dH .
o Y/ %Mo == /az fuf A [%wj’ V) + w(*p)]
= [ i [305. 900 + wspro]
Z
=—/ iy [%(vﬁ,vﬁ)ﬁ U(*p)p] —/ iy (p) (99)
Z Z

where for the last equality we have used the relation (following from Egs. (82) and (91))
w(xp)p = U(xp)p + *p (100)

The first term in the last line of Eq. (99) corresponds to the convected energy through the
boundaryd Z, while the second term is (minus) the external work (static pressure times
velocity).

Usually, the second line of the Euler equations (81) (or equivalently equation (98)) is
obtained from the basic conservation law of momentum-balance together with the first line
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of Eq. (81). Alternatively, emphasizing the interpretatiom @& a one-form, we may obtain
it from Kelvin's circulation theorem

d / v=0 (101)
dr Jy,0)

whereC denotes anglosedcontour. Indeed, Eq. (101) for any clos€ds equivalent to
the one-formdv/dr + L,:v beingclosed By Eq. (94) this is equivalent to requiring

v

o+ (Vyiv?) (102)
to be closed, that is

d

a_l; + (Vy?)’ = —dk (103)

for some (possibly locally defined): Z — R. Now additionally requiring that this function
k depends on throughp, that is

k(z) = w(p(2)) (104)

for some functionw, we recover Eq. (98) witkil/ x p) dp replaced by d@ (the differential
of the enthalpy).

Remark 3.2. In the case of a one- or two-dimensional fluid flow the extra term in the
Dirac structureD™ as compared with the standard Stokes—Dirac struckuneanishes,
and so in these cases we are back to the standard definition of a distributed-parameter
port-Hamiltonian system (witjp being a one-form, respectively, a two-form).

Furthermore, if in the three-dimensional case the two-fouiia)dhappens to be zero at a
certain time-instant = 1o (irrotational flow), then itcontinuedo be zero for all time > 1.
Hence, also in this case the extra term Eqg. (86) in the modified Stokes—Dirac stiDéture
vanishes, and the port-Hamiltonian system describing the Euler equations reduces to the
standard distributed-parameter port-Hamiltonian system given in Definition 2.2.

4. Propertiesof Stokes-Dirac structures
4.1. Poisson brackets associated to Stokes—Dirac structures

Although, Dirac structures strictly generalize Poisson structures we can associate a
pseudo-Poisson structure to any Dirac structure as defined in Section 2.1. Indéed; let
F x &€ be a Dirac structure as given in Definition 2.1. Then we can define a skew-symmetric
bilinear form on a subspace 6f basically following [6,8]. First, define the space of “ad-
missible efforts”

Eadm= {e € £]3f € Fsuchtha(f, e) € D} (105)
Then we define 0&agm the bilinear form
[e1, e2] 1= (e1l f2) € L (106)
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where f2 € F is such tha{ f2, e2) € D. This bilinear form is well-defined, since for any
other f; € F such that(f;, e2) € D we obtain by linearity( f> — f5,0) € D, and hence

0= (((f1, 1), (f2 = f2, 00)) = (eal f2) — (el f2) (107)
Furthermore, | is skew-symmetrisince for any( f1, e1), (f2, e2) € D
0= (((f1. e1), (f2, €2))) = (e1l f2) + (e2| f1) (108)

Now, let us define otf the set ofadmissible mappings

Kadgm=1{k : F — L|Va € F Fe(k,a) € Eadm,
suchthatforallda € F, k(a + da) = k(a) + {e(k, a)|da) + O(da)} (109)

Note thate(k, a) (if it exists) is uniquely defined modulo the following linear subspace
of &

So=1lec&llelf) =0 forallf e F) (110)

We calle(k, a) (in fact, its equivalence class) tiderivativeof k ata, and we denote it by
8k(a). We define ork 3gm the following bracket:

{k1, k2}p(a) := [6k1(a), Sk2(a)], ki, k2 € Kadm (111)

which is clearly independent from the choice of the represent@nt@:), skx(a). By
skew-symmetry of ] it immediately follows that alsq-} is skew-symmetricThe Jacobi-
identity for {-}p, however, is not automatically satisfied, and we call thereforg a
pseudo-Poisson bracket

For the Stokes—Dirac structufe of Theorem 2.1, given in Eq. (11), the bracket takes
the following form. The set of admissible functioksgm consists of those functions

k:RP(Z)x 29(Z) x 2" PBZ) - R (112)
whose derivatives

8k(z) = (8pk(2), 84k(2), pk(2)) € 2" P(Z) x "71(Z) x 2"71(0Z) (113)
satisfy (cf. the last line of Eq. (11))

Spk(z) = —(=1)""18,k(2) sz (114)

Furthermore, the bracket dti,gm is given as (leaving out the argumenjs
(kL k3 p = / [8,kY A (=1)" d(8,k?) 4+ (8,k™) A d(8,k?)]
z

— / (=" (8,kY) A (8,k?) (115)
0Z

It follows from the general considerations above that this bracket is skew-symmetric. (This
can be also directly checked using Stokes’ theorem.) Furthermore, in this case it is straight-
forward to check that-} p also satisfies the Jacobi-identity

(kY k2, Y p + (K2, K3 p, kN + {163, kN p, k%) p = 0 (116)

forall ki € Kadm.
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For the modified Stokes—Dirac structup& given in Eq. (85) the spad€,gmis the same,
but the resulting skew-symmetric bracket has an additional term:

k%, k> D™ = /Z [(8okY) A (=1)d(8,k2) + (8,kY) A d(8,k?)

+ 1 Skt A #((xdv) A (x8,k2))] — / (—1)"9(5,kY) A (8,k2)
*0 9z
(117)

(For the skew-symmetry of the additional term see Eq. (86) and Remark 3.1.)
4.2. Conservation laws of port-Hamiltonian systems

Let us consider the distributed-parameter port-Hamiltonian sy&teas defined in Defi-
nition 2.2, on am-dimensional spatial domain having state space” (Z) x £29(Z) (with
p + g = n + 1) and Stokes—Dirac structure given by Eq. (11).

Conservation law$or X', which areindependentrom the Hamiltonian#, are obtained
as follows. Let

C:RP(2Z)xR1(Z)xZ—R (118)
be a function satisfying
d@$,C) =0, d@©,C)=0 (119)

where ds,C), d(5,C) are defined similarly to Eq. (33). Then the time-derivativ€ @long
the trajectories of is given as (in view of Eq. (119), and using similar calculations as in
the proof of Theorem 2.1)

d
EczfzspcAa,,Jrfzschaq

=—/ §,C A (=1)"d(8,H) —/ 8,C ANd(5,H)
z z
= (=1 / dd,H A 8,C) — (=1)" 1 f d(8,C A8, H)
VA VA
=/ e,,Afbu/ & A fi (120)
Iz 5V
where we have denoted, in analogy with Eq. (11),
£ :=8,Claz, €& :=—(-1)""18,Claz (121)
In particular, if additionally to Eq. (119) the functiah satisfies
8,Claz =0, 8,Claz =0 (122)

then dC/dr = 0 along the system trajectories a&f for any HamiltonianH. Therefore,
a functionC satisfying Eqgs. (119) and (122) is calledCasimir function. If C satisfies
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Eqg. (119) but not Eq. (122) thanis called aconservation lawor X': its time-derivative is
determined by the boundary conditionsXf

Example4.1. In the case of the telegraph equations (Section 3.2) the total charge

1
Co =/ Q(t,z)dz
0

as well as the total magnetic flux

1
C(p:/ o(t,z)dz
0

are both conservation laws. Indeed
d o1

3C0=" i 5. =10 -1®)

d Lav

—C, = — —dz=V(0) —-V(@d
dr ¥ /o oz © =V

Similarly, in the case of the vibrating string (Section 3.3) conservation laws are
d/l (¢ )d—d((tl) (t,0) =v(, 1) —v(, 0
dt O € ’ Z Z - dt u E) u 1) =V ’ v ’

d 1
E/ p(t,2)dz=0(t,1) —0o(,0)
0

Conservation lawg’ for X which aredependentn the HamiltoniarH are obtained by
replacing Eq. (119) by the weaker condition

84H Ad(3,C) + (=1)8,H A d(8,C) =0 (123)

Indeed, it immediately follows from the computation in Eg. (120) that under this condition
(120) continues to hold.

Inthe case of the modified Stokes—Dirac structdfedefined in Eq. (85), for any function
C:2%2) x 2Y2) x Z — R satisfying

8yH Ad(8,C) +68,H Ad($,C) =0, pe 2%(2),v e 2%2) (124)
Eq. (120) takes the form

d 1
—C =/ 8,C ANd(8yH) +/ 8,C A [d(z?pH) + — % ((xdv) A (*8,,H))i|
dr z z *p0

1
:/ SpCASUH—i—/ SUCASpH+/ —38,C % ((xdv) A (%6, H)) (125)
9z 9z Z *p
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Hence, we conclude that in order to obtain a conservation law we need to impose an extra
condition eliminating the IasfZ integral. A specific example of a conservation law in this
case is théelicity

C :/ vAdy (126)
z
with time derivative
—C = / fp Adv (127)

A secondclass of conserved quantities corresponding to the Stokes—Dirac struzture
(Eg. (11)) is identified by noting that by Eqg. (38)

—d (%”) = (1)’ d(ds, H) = 0

—d (%) = d(ds, H) =0

and thus the differential formsog and dx, do not depend on time. Therefore, the com-
ponent functions ofd, and dx, are conserved quantities of any port-Hamiltonian system
corresponding td.

(128)

Example4.2. In the case of Maxwell's equations (Section 3.1) this yields tHaadd d3
are constant three-forms. The three-forf b the charge densitfGauss’ electric law),
while by Gauss’ magnetic lawflis actually zero.

In the case of an ideal isentropic fluid (Section 3.4) for which the vorticitid z) is
zeroat a certain timeg we obtain by the same reasoning (since the additional term in the
Stokes—Dirac structur®™ is zero forrg) that dv(z, z) is zerofor all t > 1y (irrotational
flow); cf. Remark 3.2.

4.3. Covariant formulation of port-Hamiltonian systems

A covariant formulation of distributed-parameter port-Hamiltonian systems can be ob-
tained following a construction which is well-known for Maxwell’s equations (see [11]),
and directly generalizes to port-Hamiltonian systems (38) defined with respect to a general
Stokes-Dirac structurB.

Define onZ x R with coordinategz, ¢) (that is, space—time) the-, respectively-form

Ypi=ap+ (=D"8;H A dt

(129)
Yg ' =0g +8,H Adt
Then the first part of the Eq. (38) can be equivalently stated as
La 9 a)/ =0
e (130)
Lysardy, =0

with d denoting the exterior derivative 6hix R (with respect ta; andt).
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Indeed, Eq. (130) means that, anddy, do not depend on that is,
an = Bp
qu =By

for certain(p + 1)- and(g + 1)-formsg,,, respectivelyg,, not depending on Writing out
Eq. (131) yields (with ‘d’ denoting the exterior derivative with respecf)to

(131)

2
dary + = A dr + (~1)d(8, H) Adr = B,

; (132)
dory + % Adt +d@,H) Adt = B,
resulting in the equations of a port-Hamiltonian system (38)
a
_% = (~1)'d(s, H)
(133)
_ %% _ s, m)
ar 0 F

together with the conserved quantities (cf. Section 4c2) € g, doy, = ;.
Furthermore, the boundary variables of the port-Hamiltonian system (38) can be re-
formulated as
(ajarvg) 1oz = Jo
o (134)
(aj0evpllaz = (=Dep

5. Conclusionsand final remarks

The main results of this paper concern the definition of a Dirac structure which allows
the Hamiltonian formulation of a large class of distributed-parameter systems with bound-
ary energy-flow, including the examples of the telegraph equations, Maxwell's equations,
vibrating strings and ideal isentropic fluids. It has been argued that in order to incorporate
boundary variables into this formulation the notion of a Dirac structure provides the appro-
priate generalization of the more commonly used notion of a Poisson structure for evolution
equations. The employed Dirac structure is based on Stokes’ theorem, and emphasizes the
geometrical content of the variables as being differeitfarms.

From a physical point of view the Stokes—Dirac structure capturedpdbance laws
inherent to the system, like Faraday’s and Ampére’s law (in Maxwell’s equations), or
mass-balance (in the case of an ideal fluid). This situation is quite similar to the lumped-
parameter case where the Dirac structure incorporates the topological interconnection laws
(Kirchhoff's laws, Newton’s third law) and other interconnection constraints (see e.g.
[18,17,31]).

Hence, the starting point for the Hamiltonian description in this paper is different from
the more common approachdaérivingHamiltonian equations from a variational principle
and its resulting Lagrangian equations, or (very much related) a Hamiltonian formulation
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starting from a state space being a co-tangent bundle endowed with its natural symplectic
structure. In the case of Maxwell’s equations this results in the use of the basic physical
variablesD and B (the electric and magnetic field inductions), instead of the use of the
variable D (or E) together with thevector potentialA (with dA = B) in the symplectic
formulation of Maxwell's equations. It should be of interest to compare both approaches
more closely, also in the context of the natural multi-symplectic structures which have been
formulated for the Hamiltonian formulation of Lagrangian field equations; see e.g. [5,15].
Another related issue in this context is tlianonicity” of the Stokes—Dirac structure (as
compared with the canonicity of the symplectic structure on cotangent bundles and the
multi-symplectic structures). Indeed, the Stokes—Dirac structure as defined in Theorem 2.1
satisfies the usual integrability condition for Dirac structures [6-8], since it is a constant
Dirac structure. Thus, one could expect to be able to find “canonical coordinates” for the
Stokes—Dirac structure, in which it takes (almost) the form of a canonical symplectic form.
(The modified Stokes—Dirac structubg" defined in Eq. (85) is not constant anymore, but
still is conjectured to be integrable.)

A very prominent and favorable property of Dirac structures is that thegiased under
power-conserving interconnectiohhis has been formally proven in the finite-dimensional
case in [18,29], but the result should carry through to the infinite-dimensional case as well.
It is a property of fundamental importance since it enables to link port-Hamiltonian sys-
tems (lumped- or distributed-parameter) to each other to obtain an interconnected port-
Hamiltonian system with total energy being the sum of the Hamiltonians of its constituent
parts. Clearly, this is very important in modeling (coupling e.g. solid components with fluid
components, or finite-dimensional electric components with transmission lines), aswell asin
control. First of all, it enables to formulate directly distributed-parameter systemsavith
straintsas (implicit) Hamiltonian systems, like this has been done in the finite-dimensional
case for mechanical systems with kinematic constraints [7,31], multi-body systems [3,18],
and general electrical networks [2,31]. Secondly, from the control perspective the notion of
feedback control can be understood on its most basic level as the coupling of given physical
components with additional control components (being themselves physical systems, or
software components linked to sensors and actuators). A preliminary study from this point
of view of a control scheme involving transmission lines has been provided in [27]. Among
others, this opens up the way for the application of passivity-based control techniques,
which have been proven to be very effective for the control of lumped-parameter physical
systems modeled as port-Hamiltonian systems.
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