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Abstract

In this paper, it is shown that controllers for stabilizing linear port-controlled Hamiltonian (PCH) systems via inter-
connection and damping assignment can be obtained by solving a set of linear matrix inequalities (LMIs). Two sets of
(almost) equivalent LMIs are proposed. In the 9rst set, the interconnection and damping matrices do not appear explicitly,
which makes it more di;cult to directly manipulate those matrices. By requiring the system to have no uncontrollable
pole at s = 0, the second set of LMIs, explicitly containing the interconnection and damping matrices, can be obtained.
Taking into account the physical properties of the system, some prespeci9ed structures can be imposed directly on those
matrices. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The port-controlled Hamiltonian (PCH) approach has been proposed in [5] as a way for modelling of
physical systems. It originates from the network modelling of energy-conserving lumped-parameter physical
systems with independent storage elements. This kind of models encompasses a very large class of physical
systems, containing the class of Euler–Lagrange models. Readers are referred to [12, Chapter 4] for a survey
of results on this modelling approach.
Recently, stabilization of PCH systems via interconnection and damping assignment has been introduced in

[7–9,11,2]. In this method stabilization is approached by shaping the energy and damping of the system, by
also allowing for a modi9cation of the internal interconnection structure of the system. An important feature
of the method is that it stimulates a physical motivation and interpretation of the control action (insertion of
e.g. virtual springs, dampers and constraints). Furthermore, since the controlled system is still a Hamiltonian
system it enjoys some inherent robustness properties. Similar ideas have been expressed in the context of
robotics or general physical systems under the name of virtual model control (see e.g. [10]) or impedance
control [4].
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In this stabilization method of PCH systems, one starts by assigning some closed-loop system interconnection
and damping structures; and then obtains a closed-loop energy function and a feedback law by solving a system
of partial diIerential equations, which is governed by the choice of system interconnection and damping.
Until now, however, there has been no general rule on how one should assign the system interconnection
and damping, although physical considerations can usually be used in it. The procedure is made involved
by the fact that the assigned system interconnection and damping should be expressed in terms of several
undetermined parameters. Those parameters have to be determined later, in order to satisfy some conditions
such as the positive de9niteness of the Hessian of the closed-loop energy function (evaluated at the desired
equilibrium). In general, this accounts for solving a set of nonlinear inequalities. Obviously, this is not an easy
thing to do, especially for high-order systems. Some references that provide illustrations of this procedure are
[6,7].
The purpose of this paper is to show that for a special class of PCH systems, namely linear PCH systems,

the whole procedure described above can be combined into the process of solving systems of linear matrix
inequalities (LMIs). The system interconnection and damping, the closed-loop energy function, and the feed-
back law can then be directly computed from the solution of these LMIs, simply by performing some matrix
manipulations. For solving the LMIs, powerful algorithms (interior point methods [1]) implemented in several
software packages (such as the LMI Control Toolbox for Matlab [3]) are available. Hence, this approach is
numerically tractable and e;cient.
In the next section, a brief overview of linear PCH systems will be given. Section 3 will elaborate on the

stabilization of linear PCH systems by the usual, as well as by the LMI approach. In addition, su;cient and
necessary conditions for the solvability of the LMIs will also be given there. Finally, a worked example of a
mass-spring system (with negative spring constant) will be given in Section 4.

2. Linear port-controlled Hamiltonian systems

A port-controlled Hamiltonian (PCH) system is a representation of the form

ẋ = [J (x)− R(x)]
@H
@x
(x) + g(x)u; (1)

y = gT(x)
@H
@x
(x) (2)

with x∈Rn, u∈Rm and y∈Rm; respectively, the state, input, and output of the system; J (x)=−J T(x) :Rn→
Rn×n a skew-symmetric matrix which determines the interconnection structure of the system; R(x) = RT(x) :
Rn→Rn×n a symmetric positive semi-de9nite matrix which de9nes the dissipation; g(x) :Rn→Rn×m the port
matrix; and H (x) :Rn→R the Hamiltonian (which represents the energy of the system). The rate of energy
increase in the system is given by

dH
dt

= yTu− @TH
@x

(x)R(x)
@H
@x
(x): (3)

If H (x) is bounded from below, then the PCH system (1)–(2) is passive.
In this paper, we only consider linear PCH systems. These systems are represented by the following

equations:

ẋ = (J − R)
@H
@x
(x) + Bu= (J − R)Qx + Bu; (4)

y = BT
@H
@x
(x) = BTQx; (5)
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where J = −J T, R = RT, and B are constant matrices, and Q∈Rn×n is a symmetric matrix which de9nes
the Hamiltonian of the system, i.e., the Hamiltonian is given by H (x) = 1

2x
TQx. In line with general PCH

systems, the linear PCH system (4)–(5) is passive if Q is positive semi-de5nite.
It should be noted that the state equations of stable or asymptotically stable linear systems can be expressed

in the PCH form (4), with Q and R having some de9niteness properties. This fact is stated in the proposition
below.

Proposition 1. The state equation of a stable (or asymptotically stable) linear system; ẋ = Ax + Bu; can
be written in the PCH form (4); with a positive de5nite Q and a positive semi-de5nite (or; respectively;
positive de5nite) R.

Proof. Since the system under consideration is stable; there exists a Lyapunov function of the form V (x) =
1
2x
TQx with Q = QT¿0; such that V̇ (x) = 1

2x
T(ATQ + QA)x is nonpositive (that is; ATQ + QA6 0). De9ne

J = 1
2(AQ

−1−Q−1AT) and R=− 1
2 (AQ

−1 +Q−1AT). It is clear that J =−J T and R=RT. The state equation
of the system can now be rewritten as

ẋ = Ax + Bu= (J − R)Qx + Bu (6)

and since ATQ + QA6 0 it follows that

R¿ 0: (7)

For an asymptotically stable system, there exists a Lyapunov function V (x)= 1
2x
TQx with Q=QT¿0, such

that V̇ (x) = 1
2x
T(ATQ + QA)x is negative (ATQ + QA¡0), implying that in this case R¿0.

In the sequel, we shall assume that the full state of system (4)–(5) is available for feedback, thereby
allowing to change the internal interconnection structure of the system, as well as its internal energetic and
resistive structure, via a state feedback action along the input channels of the PCH system. Another, more
restricted, approach to stabilization of PCH systems by interconnecting its input and output channels to a
PCH controller system (that is, by dynamic output feedback) has been detailed in [6,7,9], where also the
connections between both methods are described.
Furthermore, we shall assume that B has full column rank (if this is not the case then we can simply

reduce the number of inputs), and we assume for clarity of presentation that m¡n, i.e., the number of inputs
is strictly less than the dimension of state. Indeed, as we shall see later, if m happens to be equal to n,
then the stabilization problem is trivial, since the interconnection, damping, and energy of the system can be
assigned and shaped as we wish.

Assumption 2. B has full column rank; and m¡n.

3. Stabilization via interconnection and damping assignment

Stabilization of general PCH systems via interconnection and damping assignment has been discussed exten-
sively in [7–9]. In this method, we shape the energy of the system by assigning some desired interconnection,
such that the closed-loop energy function will have a minimum at the desired equilibrium. Then damping is
added to the system to make the system asymptotically stable. The method is summarized in the following
proposition.

Proposition 3 (Ortega et al. [7–9]). Given J (x)=−J T(x); R(x)=RT(x); H (x); g(x) and a desired equilibrium
to be stabilized at x∗. If we can 5nd two n × n matrices Jd(x); Rd(x) and Hd(x) :Rn→R; �(x) :Rn→Rm
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such that

(i) [Jd(x)− Rd(x)](@Hd=@x)(x) = [J (x)− R(x)](@H=@x)(x) + g(x)�(x);
(ii) Jd(x) =−J Td (x); and Rd(x) = RTd (x)¿ 0;
(iii) (@Hd=@x)(x∗) = 0; (@2Hd=@x2)(x∗)¿0;

then the PCH system (1)–(2) in closed loop with u= �(x) + v will be a PCH system of the form: 2

ẋ = [Jd(x)− Rd(x)]
@Hd
@x
(x) + g(x)v; (8)

y′ = gT(x)
@Hd
@x
(x): (9)

Furthermore, the system will be stable if v = 0, and (locally) asymptotically stable if the largest invariant
set contained in {x|B∩[(@Hd=@x)(x)]TRd(x)[(@Hd=@x)(x)]=0} is equal to {x∗} (where B denotes a positively
invariant set of the system containing x∗).

Remark 4. We see that if the number of inputs is equal to the dimension of state; i.e.; m= n; then Condition
(i) can always be satis9ed for any Jd(x); Rd(x); Hd(x).

For linear PCH systems (4)–(5), the following corollary applies.

Corollary 5. Given J = −J T; R = RT; Q = QT; B and the equilibrium to be stabilized at x∗ = 0. If we can
5nd Jd ∈Rn×n; Rd ∈Rn×n; Qd ∈Rn×n and F ∈Rm×n such that

(i) [Jd − Rd]Qd = [J − R]Q + BF;
(ii) Jd =−J Td ; and Rd = RTd¿ 0;
(iii) Qd = QTd¿0;

then the linear PCH system (4)–(5) in closed loop with u= Fx + v will be a PCH system of the form

ẋ = [Jd − Rd]Qdx + Bv; (10)

y′ = BTQdx: (11)

Furthermore; the closed-loop system will be stable with respect to x∗=0 if v=0; and any trajectory of the
system will converge to the largest invariant set contained in U = {x|xTQdRdQdx = 0}.

Notice that if we have Rd¿0, then the closed-loop system will automatically be asymptotically stable. Even
if Rd is only positive semi-de9nite, we may still obtain asymptotic stability, provided the largest invariant set
contained in U is just the origin. As a matter of fact, if the system is asymptotically stable, then there exists
J̃ d =−J̃ Td , Q̃d = Q̃

T
d¿0, R̃d = R̃

T
d¿0 such that (Jd − Rd)Qd = (J̃ d − R̃d)Q̃d. This is because all asymptotically

stable closed-loop systems can be written in the PCH form with R¿0 and Q¿0 (cf. Proposition 1).
There are several ways to check if the closed-loop system (10)–(11) is asymptotically stable for v(t) = 0.

Two ways to do it are by computing the eigenvalues of (Jd − Rd)Qd, or by utilizing LMIs to compute a
quadratic Lyapunov function for the system. Yet still another way to check the asymptotic stability is provided
by the following proposition (which is actually quite similar to the eigenvalue test).

2 We use y′ as the new output in order to obtain a conjugate input–output pair. Notice that by doing this, we have dHd=dt=(y′)Tv−
(@THd=@x)(x)Rd(x)(@Hd=@x)(x).
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Proposition 6. Suppose that the closed-loop system (10)–(11) with v(t) = 0 is stable with Rd¿ 0; and the
kernel of Rd is spanned by {r1; r2; : : : ; rk}. This system is asymptotically stable i> [sI − QdJd][r1|r2| : : : |rk ]
has rank k for every s= j!; !∈R.

Proof. According to LaSalle’s invariance principle; any trajectory of the system will converge to the largest
invariant set contained in U = {x | xTQdRdQdx = 0}. We shall look 9rst at the set of all system trajectories
in U . Since Rd is a symmetric positive semi-de9nite matrix; the steady-state trajectory xss(t) must satisfy
RdQdxss(t) = 0; or in other words; Qdxss(t)∈ ker Rd ; for every t. Therefore Qdxss(t) can be written as

Qdxss(t) = r1c1(t) + · · ·+ rkck(t); (12)

for some periodic or constant scalar functions c1(t); . . . ; ck(t). Premultiplying the state equation ẋ=(Jd−Rd)Qdx
by Qd ; and substituting Qd ẋss(t) as well as Qdxss(t) into the equation; we get

r1ċ1(t) + · · ·+ rk ċk(t) =Qd(Jd − Rd)(r1c1(t) + · · ·+ rkck(t));

=QdJd(r1c1(t) + · · ·+ rkck(t)) (13)

Since c1(t); . . . ; ck(t) are bounded; the Laplace transform of (13) exists. After applying the Laplace transform
and rearranging the terms in the equation; we obtain

[sI − QdJd][r1|r2| : : : |rk ]



c1(s)
...

ck(s)


= 0: (14)

Since we are interested in periodic or constant c1(t); . . . ; ck(t); we just have to focus our attention on s∈ j!.
Eq. (14) has a unique solution c1(s); : : : ; ck(s) all equal to zero (which implies that c1(t) = · · · = ck(t) = 0)
iI [sI −QdJd][r1|r2| : : : |rk ] has rank k for every s∈ j!. It means that the invariant set contained in U is just
the origin; and hence the system is asymptotically stable; iI [sI − QdJd][r1|r2| : : : |rk ] has rank k for every
s∈ j!.

We are now ready to present the main results of this paper. That is, we shall look at ways to 9nd Jd ; Rd ; Qd ; F
satisfying all conditions mentioned in Corollary 5. They will be formulated in sets of LMIs.

Proposition 7. Denote by B⊥ a full row rank (n− m)× n matrix that annihilates B; i.e.; B⊥B = 0. Let us
also denote B⊥(J − R)Q by E⊥. There exist matrices Jd ; Rd ; Qd ; F that satisfy all conditions in Corollary 5
i> we can 5nd a solution X = X T ∈Rn×n of the following LMIs:

X¿0; (15)

− [E⊥XBT⊥ + B⊥XET⊥]¿ 0: (16)

Given such an X ; compute Sd as follows:

Sd =

[
B⊥
BT

]−1 [
E⊥X

−BTXET⊥(B⊥BT⊥)
−1B⊥

]
; (17)

then matrices Jd ; Rd ; Qd ; F that satisfy all conditions in Corollary 5 are; for instance; given by

Jd = 1
2 (Sd − STd ); (18)

Rd =− 1
2 (Sd + STd ); (19)
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Qd = X−1; (20)

F = (BTB)−1BT(SdX−1 − (J − R)Q): (21)

Proof. First; we de9ne Sd as follows:

Sd , Jd − Rd : (22)

Using this variable; it can be straightforwardly veri9ed that all conditions in Corollary 5 can be rewritten as

Qd = QTd¿0; (23)

2Rd = (Rd + RTd ) =−(Sd + STd )¿ 0; (24)

SdQd = (J − R)Q + BF: (25)

Hence; we only need to prove that there exist 3 Qd, Sd, and F which satisfy (23)–(25) if and only if there
exists X = X T such that the LMIs (15)–(16) are satis9ed.
To prove the “only if” part, we proceed as follows. Suppose that Qd, Sd, and F which satisfy (23)–(25)

exist. De9ne X , Q−1
d . Obviously X = X T and X¿0. Next, postmultiply Eq. (25) by X to obtain

Sd = (J − R)QX + BFX (26)

and substitute this equation into (24). As a result, we have

− [(J − R)QX + BFX + XQ(J − R)T + XFTBT]¿ 0: (27)

Finally, premultiply the last inequality by the full row rank matrix B⊥ and postmultiply by BT⊥ to obtain

− [B⊥(J − R)QXBT⊥ + B⊥XQ(J − R)TBT⊥]¿ 0; (28)

which is nothing but the LMI (16). Therefore, we conclude that there exists X = X T such that the LMIs
(15)–(16) are satis9ed.
Now we shall prove the “if” part. Suppose that the matrix X = X T which satis9es the LMIs (15)–(16)

exists. Use X−1 as Qd, then we immediately have Qd = QTd¿0. In addition, choose Sd as in Eq. (17). With
this choice of Sd, we obtain

−
[
B⊥
BT

]
[Sd + STd ]

[
B⊥
BT

]T
=−

[
E⊥XBT⊥ + B⊥XET⊥ 0

0 0

]
: (29)

Since −(E⊥XBT⊥ + B⊥XET⊥)¿ 0, it follows that

−
[
B⊥
BT

]
[Sd + STd ]

[
B⊥
BT

]T
¿ 0: (30)

Notice that since B and BT⊥ have full column rank, BTB and B⊥BT⊥ are invertible. Furthermore,[
B⊥
BT

]

3 This is equivalent to the existence of Jd, Rd, Qd, and F that satisfy all conditions in Corollary 5.
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is also an invertible matrix, with the inverse given by

[ BT⊥ B ]

[
B⊥BT⊥ 0

0 BTB

]−1
:

Inequality (30) and the invertibility of[
B⊥
BT

]

imply that −(Sd + STd )¿ 0. Hence, the only task left at this point is to show that Eq. (25) can be satis9ed
by a proper choice of F . For this purpose, choose F as in Eq. (21), and observe that[

B⊥
BT

]
[SdQd − (J − R)Q − BF] =

[
B⊥SdQd − B⊥(J − R)Q

BTSdQd − BT(J − R)Q − BTBF

]

=

[
E⊥XQd − B⊥(J − R)Q

BTSdQd − BT(J − R)Q − BTBF

]
= 0: (31)

Since [
B⊥
BT

]

is invertible, it immediately follows that SdQd − (J − R)Q − BF = 0, or in other words, Eq. (25) has been
satis9ed. This ends the proof of the “if” part.
Finally, from Eq. (22) and the proof of the “if” part, it is straightforward to see that Jd, Rd, Qd, and F as

in Eqs. (18)–(21) satisfy all conditions in Corollary 5.

Remark 8. If we want to enforce the asymptotic stability of the closed-loop system; then we can simply
replace the nonstrict inequality in (16) by a strict inequality and use for instance

Sd =

[
B⊥
BT

]−1 [
E⊥X

−BTXET⊥(B⊥BT⊥)
−1B⊥ − "BT

]
; (32)

where " is any positive constant. This will ensure that Rd = − 1
2 [Sd + STd ]¿0; which implies that the system

is asymptotically stable.

As an additional result, another necessary and su;cient condition for a solution of the LMIs (15)–(16) to
exist will be stated in the following proposition.

Proposition 9. The set of LMIs (15)–(16) is solvable i> the system ((J − R)Q; B) is (weakly) stabilizable;
in the sense that the uncontrollable part of ((J − R)Q; B) is stable.

Proof. The necessity part is apparent; i.e.; if ((J − R)Q; B) is not (weakly) stabilizable; then Jd ; Rd ; Qd ; F
which satisfy the conditions of Corollary 5 cannot exist; and obviously the LMIs (15)–(16) have no solution
(for if these LMIs have a solution; then Jd ; Rd ; Qd ; F exist—a contradiction).
To prove the su;ciency part, we use the fact that if ((J − R)Q; B) is (weakly) stabilizable, then there

exists F such that the closed-loop matrix Ã = (J − R)Q + BF is stable. This implies the existence of a



378 S. Prajna et al. / Systems & Control Letters 45 (2002) 371–385

symmetric positive de9nite matrix Qd, a skew-symmetric matrix Jd, and a symmetric matrix Rd¿ 0 such that
Ã= (Jd − Rd)Qd (cf. Proposition 1). Now de9ne Sd = (Jd − Rd). Obviously −(Sd + STd )¿ 0. In addition, we
have the equality Ã= SdQd = (J −R)Q+BF . All of these imply that there exist Qd, Sd, and F which satisfy
(23)–(25), or equivalently, the set of LMIs (15)–(16) is solvable.

Remark 10. If we use a strict inequality in (16); then the LMIs are solvable iI ((J −R)Q; B) is stabilizable;
in the usual sense that the uncontrollable part of ((J − R)Q; B) is asymptotically stable. The proof is similar
to the nonstrict inequality case; we only need to replace “stable” by “asymptotically stable” and nonstrict
inequalities by strict inequalities.

Although we can use Proposition 7 to obtain a stabilizing controller, notice that the matrix Sd does not appear
explicitly in the LMIs (15)–(16). This has a disadvantage of us not being able to directly determine which
part of the interconnection matrix should be modi9ed and where the damping should be added. Sometimes
we may want to enforce Sd to have certain properties. For example, we may want some entries in Sd to be
equal to zero. Hence, it may be of interest to see if we can 9nd a set of LMIs containing Sd explicitly, and
equivalent to (15)–(16). In case the system is controllable at s = 0 (has no uncontrollable pole at s = 0),
which is equivalent to [B (J − R)Q] having rank n, such LMIs can indeed be found. The following lemma
is useful in obtaining those LMIs.

Lemma 11. If the system ((J −R)Q; B) is controllable at s=0; then E⊥=B⊥(J −R)Q ∈R(n−m)×n has full
row rank.

Proof. Since the system is controllable at s=0; we know from the controllability rank test that rank [B sI −
(J − R)Q] = n for s= 0; or equivalently rank [B (J − R)Q] = n. Premultiply [B (J − R)Q] by the invertible
matrix[

B⊥
BT

]
:

This does not change the rank; i.e.;

rank

[
B⊥
BT

]
[B (J − R)Q] = rank

[
0 B⊥(J − R)Q

BTB BT(J − R)Q

]
= n: (33)

But BTB is an m × m invertible matrix; so rank[B⊥(J − R)Q] = n − m. Since E⊥ = B⊥(J − R)Q; we can
immediately conclude that E⊥ is a full row rank matrix.

Now, a set of LMIs explicitly containing Sd is provided by the following proposition.

Proposition 12. Suppose that the system ((J − R)Q; B) is controllable at s = 0. Denote by B⊥ a full row
rank (n−m)× n matrix that annihilates B; and also denote B⊥(J −R)Q by E⊥. Furthermore; let E ∈Rn×m

be a full column rank matrix that is annihilated by E⊥; i.e.; E⊥E=0. There exist matrices Jd ; Rd ; Qd ; and
F that satisfy all conditions in Corollary 5 i> we can 5nd a solution Sd ∈Rn×n of the following LMIs:

[B⊥SdET⊥ + E⊥STd B
T
⊥]¿0; (34)

− [Sd + STd ]¿ 0; (35)
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together with a linear constraint

B⊥SdET⊥ − E⊥STd B
T
⊥ = 0: (36)

Given such an Sd ; then matrices Jd ; Rd ; Qd ; F that satisfy all conditions in Corollary 5 are for instance
provided by

Jd = 1
2 (Sd − STd ); (37)

Rd =− 1
2 (Sd + STd ); (38)

Qd = X−1; (39)

F = (BTB)−1BT(SdX−1 − (J − R)Q); (40)

where X is

X =
1
2


[

E⊥
ET

]−1 [
B⊥Sd
Z

]
+

[
B⊥Sd
Z

]T [
E⊥
ET

]−T (41)

with

Z = [ET⊥(E⊥ET⊥)
−1(B⊥SdE) + "E]T: (42)

Here " is a positive constant; which has to be large enough in order to get a positive de5nite X (this will
be made clear in the proof of the proposition).

Proof. Since the system is controllable at s=0; by Lemma 11 we know that E⊥ is a full row rank (n−m)×m
matrix. This implies that[

E⊥
ET

]

is nonsingular. Following the same path as in the proof of Proposition 7; we shall show that there exist Qd ;
Sd ; and F which satisfy (23)–(25) if and only if there exists Sd such that (34)–(36) are satis9ed.
To prove the necessity part, we proceed as follows. Suppose that Qd, Sd, and F which satisfy (23)–(25)

exist. Automatically the LMI (35) is satis9ed. Now premultiply Eq. (25) by B⊥ to obtain

B⊥SdQd = B⊥(J − R)Q = E⊥: (43)

Since E⊥ has full row rank and Qd¿0, it follows that B⊥Sd also has full row rank. Furthermore, since Qd
is positive de9nite, we have Qd + QTd¿0, which in turn implies that B⊥Sd(Qd + QTd )S

T
d B

T
⊥¿0, or

B⊥SdET⊥ + E⊥STd B
T
⊥¿0: (44)

Hence, the LMI (34) is satis9ed. Finally, we only have to show that Eq. (36) is also ful9lled. Since Qd =QTd ,
we have

0 = B⊥Sd(Qd − QTd )S
T
d B

T
⊥ = B⊥SdET⊥ − E⊥STd B

T
⊥: (45)

In other words, the linear constraint (36) holds.
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We shall continue with proving the su;ciency part. Suppose that Sd which satis9es (34)–(36) exists. Then
(24) automatically holds. Next, de9ne Z and X as in Eqs. (42) and (41). For these choices of Z and X , we
have [

E⊥
ET

]
X

[
E⊥
ET

]T
=
1
2

[
B⊥SdET⊥ + E⊥STd B

T
⊥ B⊥SdE + E⊥ZT

ETSTd B
T
⊥ + ZET⊥ ZE + ETZT

]

=
1
2

[
B⊥SdET⊥ + E⊥STd B

T
⊥ 2B⊥SdE

2ETSTd B
T
⊥ 2"ETE

]
: (46)

Using the Schur complements, we know that (46) is positive de9nite iI the following two inequalities are
ful9lled:

B⊥SdET⊥ + E⊥STd B
T
⊥¿0; (47)

2"ETE − (2B⊥SdE)(B⊥SdET⊥ + E⊥STd B
T
⊥)

−1(2ETSTd B
T
⊥)¿0: (48)

The 9rst inequality already holds, because of (34). Moreover, since E has full column rank, we can make the
second inequality to be ful9lled by choosing " su;ciently large. Therefore (46) can be made positive de9nite.
This will further imply that X¿0. Use X−1 as Qd and obviously we have Qd = QTd¿0.
Next, we shall show that Eq. (25) can be satis9ed. For this purpose, choose F as in Eq. (40) and observe

that [
B⊥
BT

]
(Sd − (J − R)QX − BFX )

[
E⊥
ET

]T

=

[
B⊥Sd − E⊥X

0

][
E⊥
ET

]T

=

[
B⊥SdET⊥ − E⊥XET⊥ B⊥SdE − E⊥XE

0 0

]

=

[
1
2 (B⊥SdET⊥ − E⊥STd B

T
⊥)

1
2 (B⊥SdE − E⊥ZT)

0 0

]

= 0; (49)

where the last equality follows because of Eq. (36). Since[
B⊥
BT

]
and

[
E⊥
ET

]T

are invertible, we can conclude that Sd − (J − R)QX − BFX = 0. Postmultiply it by X−1 = Qd to obtain
SdQd − (J − R)Q − BF = 0, which is nothing but Eq. (25). This ends the proof of the su;ciency part.
At the end, it is straightforward to show that Jd, Rd, and Qd are given by Eqs. (37)–(39).

For a system that is controllable at s=0 (as required by Proposition 12), the LMIs (34)–(35) together with
the linear constraint (36) are equivalent to the set of LMIs (15)–(16). Hence, we can infer from Proposition
9 that the set of LMIs (34)–(35) with constraint (36) is solvable iI the system is stabilizable, in addition to
being controllable at s= 0. However, if we impose some conditions on Sd (e.g. by enforcing some entries to
be equal to zero), then those LMIs may no longer be solvable even if the system is stabilizable.
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In several software packages, it is often not possible to directly solve the LMIs (34)–(35) with the linear
constraint (36). To overcome this obstruction we can either parametrize Sd so that Eq. (36) is satis9ed, or
recast the problem as a generalized eigenvalue problem (GEVP, see [1]), which can be e;ciently solved. One
way to do it is summarized in the following remark.

Remark 13. The problem of 9nding Sd such that (34)–(36) are satis9ed can be recast as: 9nd Sd that
minimizes $; subject to

[B⊥SdET⊥ + E⊥STd B
T
⊥]¿0; (50)

− [Sd + STd ]¿ 0; (51)

[
I B⊥SdET⊥ − E⊥STd B

T
⊥

E⊥STd B
T
⊥ − B⊥SdET⊥ $I

]
¿0: (52)

Indeed; there exists a solution of (34)–(36) if and only if the GEVP of min $ over Sd subject to the above
LMIs has a solution $= 0.

4. An example: mass–spring system

Consider a system of three masses and two springs, connected in series, with one of the spring constants
being negative. The motion of such a system is governed by the following set of equations (in PCH form):

[
q̇

ṗ

]
=

[
0 I3

−I3 0

]

@H
@q
(q; p)

@H
@p
(q; p)


+

[
0

Bp

]
u; (53)

y = [0 BTp]



@H
@q
(q; p)

@H
@p
(q; p)


 ; (54)

where q= (q1; q2; q3)T is the vector of generalized coordinates, which corresponds to the position of Mass I,
Mass II, and Mass III; p = (p1; p2; p3)

T is the vector of generalized momenta; and I3 is the 3 × 3 identity
matrix. If we assume that the system is actuated by a force acting on Mass I, then the input u is a scalar (the
force), the conjugate output y is also a scalar (the velocity of Mass I), and Bp = [1 0 0]T. The Hamiltonian
of the system is given by

H (q; p) =
1
2

[
p21
m1

+
p22
m2

+
p23
m3

+ k1(q1 − q2)2 + k2(q2 − q3)2
]

(55)

with m1; m2; m3; respectively, the masses of Masses I, II, and III; and k1; k2 the spring constants of Springs I
and II. We assume that all m’s and k1 are positive, but k2 is negative.
To this end, we assign some numerical values as follow: m1=1, m2=2, m3=3, k1=1, k2=−2. Notice that

the Hessian Q of H (q; p) is not positive de9nite, which implies that the uncontrolled system is unstable. Also
notice that the system is controllable. Therefore, we may use either Proposition 7 or 12 in order to stabilize
the system with respect to the origin.
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First, we use Proposition 7. The following 5× 6 matrix is used as B⊥:

B⊥ =

[
I3 0 0

0 0 I2

]
: (56)

If we straightforwardly solve the LMIs (15)–(16), then we may obtain a matrix X that is close to singular.
Besides, it may also happen that the eigenvalues of X are quite large, such that in turn Qd is close to
singular. To prevent this, (15) should be slightly modi9ed. For example, we could set the following condition:
0:01× I6¡X¡50× I6. In addition, to obtain su;cient but not excessive damping, we could modify (16) to
0:001× I5¡− [E⊥XBT⊥ + B⊥XET⊥]¡10× I5.
The LMIs can be solved using the LMI Control Toolbox for Matlab [3]. After performing the neces-

sary manipulations mentioned in Proposition 7 and using Sd as in Eq. (32) with " = 1, we arrive at these
results:

Jd =




0 1:3502 1:1780 34:6667 3:2513 8:9287

−1:3502 0 0:2264 −1:5073 2:9098 5:5749

−1:1780 −0:2264 0 2:8204 3:9811 7:8331

−34:6667 1:5073 2:8204 0 −0:0473 3:2285

3:2513 −2:9098 −3:9811 0:0473 0 0:5891

8:9287 −5:5749 −7:8331 −3:2285 −0:5891 0



;

Rd =




2:0329 0:1782 0:0296 0 −0:2368 −0:4674
0:1782 0:8566 0:4636 0 −0:8139 0:3371

0:0296 0:4636 0:8690 0 0:4893 −0:3163
0 0 0 1:0000 0 0

−0:2368 −0:8139 0:4893 0 2:4778 −0:4845
−0:4674 0:3371 −0:3163 0 −0:4845 2:0895



;

Qd =




0:4049 −2:9896 2:5308 0:0883 −1:1969 0:6201

−2:9896 26:6066 −22:6899 −0:7271 10:9884 −5:5696
2:5308 −22:6899 19:4175 0:6181 −9:3946 4:7636

0:0883 −0:7271 0:6181 0:0521 −0:3032 0:1654

−1:1969 10:9884 −9:3946 −0:3032 4:9011 −2:4537
0:6201 −5:5696 4:7636 0:1654 −2:4537 1:2777



;

F = [− 8:4339 61:9730 − 52:9627 − 1:9163 23:7081 − 12:3810]:

The eigenvalues of Rd are 3:2016, 2:4738, 1:3594, 1:2860, 1:0000, and 0:0050; while the eigenvalues of Qd
are 52:0974, 0:3852, 0:0790, 0:0443, 0:0306, and 0:0234. These results indicate that we have managed to
asymptotically stabilize the system.
However, in the results above, we see that Jd and Rd have quite irregular structures. Suppose we want

to impose some prespeci9ed structures on Jd and Rd. Let us say that we shall give some coupling on the
lower-left and upper-right 3 × 3 submatrices of the interconnection matrix, and add damping only on the
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diagonal entries. This corresponds to Jd and Rd of the form (notice the skew-symmetry of Jd):

Jd =




0 0 0 ∗1 ∗2 0

0 0 0 ∗3 ∗4 ∗5
0 0 0 0 ∗6 ∗7

−∗1 −∗3 0 0 0 0

−∗2 −∗4 −∗6 0 0 0

0 −∗5 −∗7 0 0 0



; Rd =




∗8 0 0 0 0 0

0 ∗9 0 0 0 0

0 0 ∗10 0 0 0

0 0 0 ∗11 0 0

0 0 0 0 ∗12 0

0 0 0 0 0 ∗13



:

Here we use Proposition 12 to obtain a stabilizing feedback. We use the same B⊥ as in the previous
calculation, whereas E = [1 1 1 0 0 0]T. To ensure that we get some but not excessive damping, the LMI
(35) is slightly modi9ed to 0¡ − [Sd + STd ]¡I6. Furthermore, to prevent Qd and Q−1

d from being too close
to singular, we also change the LMI (34) to 0:01E⊥ET⊥¡[B⊥SdET⊥ + E⊥STd B

T
⊥]¡100E⊥ET⊥.

Since the LMI Control Toolbox for Matlab cannot solve (34)–(36) directly, we use the method described
in Remark 13 to obtain Sd. The resulting $ is 2:6836× 10−11, which is small enough to be considered equal
to zero. In addition, we choose " = 500 in order to get a positive de9nite X . At the end, we arrive at the
following Jd, Rd, Qd, and F :

Jd =




0 0 0 32:1066 2:1567 0

0 0 0 1:0783 5:0371 8:3407

0 0 0 0 5:5605 9:5192

−32:1066 −1:0783 0 0 0 0

−2:1567 −5:0371 −5:5605 0 0 0

0 −8:3407 −9:5192 0 0 0



;

Rd =




0:0000 0 0 0 0 0

0 0:0000 0 0 0 0

0 0 0:0000 0 0 0

0 0 0 25:0000 0 0

0 0 0 0 0:0000 0

0 0 0 0 0 0:0000



;

Qd =




0:5577 −3:7483 3:1792 0:0000 −0:0000 0:0000

−3:7483 29:7794 −25:8825 −0:0000 0:0004 −0:0002
3:1792 −25:8825 22:5730 0:0000 −0:0003 0:0002

0:0000 −0:0000 0:0000 0:0555 −0:3626 0:2118

−0:0000 0:0004 −0:0003 −0:3626 5:3975 −3:1528
0:0000 −0:0002 0:0002 0:2118 −3:1528 1:8767



;

F = [− 12:8652 88:2343− 75:1641 − 1:3876 9:0651 − 5:2952]:

We can immediately observe that the prespeci9ed structures have been successfully imposed on Jd and Rd.
The eigenvalues of Qd are 52:7709, 7:2725, 0:1373, 0:0312, 0:0259, and 0:0020. It can be veri9ed that the
closed-loop system is asymptotically stable. This is because the eigenvalues of SdQd are −0:5726± 3:3804i,
−0:0989± 0:6844i, and −0:0223± 0:1080i.
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5. Conclusions

In the preceeding sections, it has been shown that controllers for stabilizing linear PCH systems via inter-
connection and damping assignment can be obtained by solving a set of LMIs. Two sets of (almost) equivalent
LMIs have been proposed for this purpose. In the 9rst set, the interconnection and damping matrices do not
appear explicitly, which makes it di;cult to impose a prespeci9ed structure on those matrices, but on the
other hand allows for an easy manipulation of the shaped energy matrix. This set of LMIs is solvable iI
the system is stabilizable. By requiring the system to be controllable at s = 0, the second set of LMIs can
be obtained. In this alternative set, the interconnection and damping matrices appear explicitly, hence some
prespeci9ed structures can be imposed directly on those matrices.
An open problem, which we did not address in the current paper, is to fully characterize the “minimal”

change in the interconnection structure matrix J that is necessary to stabilize the PCH system (although
for a speci9c example this can be quite easily checked by substitution of the “required” Jd or Sd in the
LMIs of Proposition 12). This is of importance since the interconnection structure captures the “topology” of
the physical system under consideration [2,5,12,11], and in many cases we would like to remain as closely
as possible to the original topology of the system. For example, if the original interconnection structure
determines dynamical invariants for the original system, then it is certainly of interest to maintain these
dynamical invariants (which usually have a clear physical interpretation) as much as possible.
As remarked in Proposition 1, any stable linear dynamics ẋ=(A+BF)x for some feedback matrix F can be

written in the form ẋ = (Jd − Rd)Qdx for some positive de9nite symmetric matrix Qd, some skew-symmetric
matrix Jd and some positive semi-de9nite matrix Rd. Hence, the stabilization procedure via interconnection and
damping assignment for linear PCH systems can be also interpreted as an alternative way of pole-placement by
state feedback, in much the same way as other control methodologies (such as LQ-control or H∞-control) can
be seen as a way of parametrizing (a subset of) the class of stabilizing linear state feedbacks F . An advantage
of stabilization by interconnection and damping assignment is that we can keep track of the required changes
in the interconnection and damping structures, so that the closed-loop system still can be given a physical
interpretation and the stabilizing feedback does not completely “destroy” the physical characteristics of the
system.
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