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ON REPRESENTATIONS AND INTEGRABILITY OF
MATHEMATICAL STRUCTURES IN ENERGY-CONSERVING

PHYSICAL SYSTEMS∗

MORTEN DALSMO† AND ARJAN VAN DER SCHAFT‡

SIAM J. CONTROL OPTIM. c© 1998 Society for Industrial and Applied Mathematics
Vol. 37, No. 1, pp. 54–91

Abstract. In the present paper we elaborate on the underlying Hamiltonian structure of inter-
connected energy-conserving physical systems. It is shown that a power-conserving interconnection
of port-controlled generalized Hamiltonian systems leads to an implicit generalized Hamiltonian
system, and a power-conserving partial interconnection to an implicit port-controlled Hamiltonian
system. The crucial concept is the notion of a (generalized) Dirac structure, defined on the space of
energy-variables or on the product of the space of energy-variables and the space of flow-variables in
the port-controlled case. Three natural representations of generalized Dirac structures are treated.
Necessary and sufficient conditions for closedness (or integrability) of Dirac structures in all three
representations are obtained. The theory is applied to implicit port-controlled generalized Hamilto-
nian systems, and it is shown that the closedness condition for the Dirac structure leads to strong
conditions on the input vector fields.

Key words. Hamiltonian systems, Dirac structures, implicit systems, external variables, inte-
grability, actuated mechanical systems, kinematic constraints, interconnections
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1. Introduction. Most of the current modelling and simulation approaches to
(complex) physical systems (e.g., multibody systems) are based on some sort of net-
work representation, where the physical system under consideration is seen as the
interconnection of a (possible large) number of simple subsystems. This way of mod-
elling has several advantages. From a physical point of view it is usually natural to
regard the system as composed of subsystems, possibly from different domains (me-
chanical, electrical, and so on). The knowledge about subsystems can be stored in
libraries, and is reusable for later occasions. Because of the modularity the modelling
process can be performed in an “iterative” manner, gradually refining—if necessary—
the model by adding other subsystems. Further, the approach is suited to general
control design where the overall behavior of the system is sought to be improved by
the addition of other subsystems or controlling devices. From a system-theoretic point
of view this modular approach naturally emphasizes the need for models of systems
with external variables, e.g., inputs and outputs.

In this paper we concentrate on the mathematical description of network repre-
sentations of (lumped-parameter) energy-conserving physical systems. In our previous
work we have shown how energy-conserving physical systems with independent energy
variables can be naturally described as generalized Hamiltonian systems (with exter-
nal variables). However, a general power-conserving interconnection of such systems
will lead to a system described by differential and algebraic equations, that is, an
implicit dynamical system, which can no longer be directly described as an explicit
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generalized Hamiltonian system. This motivates the definition of implicit generalized
Hamiltonian systems, as introduced in [SM2, SM3]. The main ingredient in this defi-
nition is that of a (generalized) Dirac structure. The relevance of Dirac structures in
the Hamiltonian modelling of electrical LC-circuits with dependent storage elements
(a clear example of interconnected energy-conserving systems) was already recognized
in [C2].

The notion of Dirac structures was introduced by Courant and Weinstein [CW]
and further investigated by Courant in [C1] as a generalization of Poisson and (pre)-
symplectic structures. Dorfman [D1, D2] developed an algebraic theory of Dirac struc-
tures in the context of the study of completely integrable systems of partial differential
equations, with the aim of describing within a Hamiltonian framework certain sets of
PDEs which do not admit an easy Hamiltonian formulation in terms of Poisson or
symplectic structures, due to nonlocality of the involved operators. The conceptual
novelty in the approach initiated in [C2, SM2, SM3] is to use Dirac structures for the
direct Hamiltonian description of differential-algebraic equations resulting from the in-
terconnection of energy-conserving systems, including constrained systems. Although
the terminology Dirac structure is derived from the “Dirac bracket” introduced by
Dirac in his study of constrained Hamiltonian systems arising from degenerate La-
grangians [D3], our use of Dirac structures determining, together with the stored
energy (Hamiltonian), the algebraic constraints as well as the dynamical equations of
motion seems to be new. Furthermore, we stress the “physical” relevance of Dirac
structures as naturally capturing the geometric structure of the system as arising from
the interconnection of subsystems (see e.g., Proposition 2.2).

In Courant and Dorfman [C1, D2] the definition of a Dirac structure includes
a closedness (or integrability) condition generalizing the Jacobi-identity for Poisson
brackets or the closedness of two-forms defining symplectic structures. This condition
is naturally satisfied for constant Dirac structures (as in the case of LC-circuits) and for
Dirac structures arising from holonomic kinematic constraints in mechanical systems,
but not for the generalized Dirac structures arising from nonholonomic kinematic
constraints [SM1, SM3] or from general kinematic pairs in multibody systems [M2].

The structure of this paper is as follows. In section 2 we will recall the defini-
tions of a (generalized) Dirac structure and of an implicit Hamiltonian system, and
we will show how the power-conserving interconnection of port-controlled (explicit)
Hamiltonian systems leads to such an implicit Hamiltonian system. In section 3 we
will investigate various useful ways of representing generalized Dirac structures and
consequently of representing implicit Hamiltonian systems, and we will study their
relationship. Then in section 4 the closedness (or integrability) condition for Dirac
structures will be worked out for the three different representations obtained. Both
sections 3 and 4 use extensively techniques and results from the work of Courant and
Dorfman, although the emphasis is rather different. The results of sections 3 and 4
are applied in section 5 to Dirac structures as arising in implicit generalized Hamil-
tonian systems with external variables. In particular it is shown that the closedness
condition translates into strong conditions on the input vector fields.

A main motivation for the Hamiltonian modelling of interconnected energy-conser-
ving physical systems is, apart from the clear motivation from a general modelling
and simulation point of view, the generalization of the theory of “passivity-based con-
trol” to complex interconnected physical systems. Key concepts in this theory (see,
e.g., [TA, OS, S]) are the use of the internal energy as candidate Lyapunov function,
the shaping of the internal energy via state feedback, and the injection of “damping”
in order to achieve asymptotic stability. This approach has shown to be very powerful
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in the robust and/or adaptive control of physical systems described by Euler–Lagrange
or Hamiltonian equations of motion (such as robot manipulators, mobile robots, and
electrical machines) and can be expected to be equally powerful for interconnected
physical systems. Although it is not the topic of the present paper to demonstrate
this, we indicate at the end of section 4 how the usual stability theory of Hamiltonian
systems based on the Hessian matrix of the Hamiltonian can be naturally extended
to implicit Hamiltonian systems. Moreover, at the end of section 5 we show the link
between results in this paper and “passivity-based control” of actuated mechanical
systems with kinematic constraints.

In the control design of interconnected physical systems also the system-theoretic
properties (such as controllability and observability) of implicit port-controlled Hamil-
tonian systems will prove to be instrumental (e.g., in the analysis how much damping
injection is needed for asymptotic stabilization). For explicit port-controlled gener-
alized Hamiltonian systems some of these topics already have been studied in our
previous work [SM2, MS1, MS2]. Section 5 provides only a basic framework for a
study of these issues. Apart from “passivity-based control”, the further exploitation
of the structure of symmetries and conservation laws also has a great potential (see,
e.g., [BKMM] for related developments). All this is a large area for further research.

2. Generalized Hamiltonian modelling of interconnected systems. In
our previous work [MS1, MS2, MBS, MSB1, MSB2, SM1, SM2, SM3] we have ar-
gued that the basic dynamic building blocks in the network representation of energy-
conserving physical systems are systems of the form

ẋ = J(x)∂H∂x (x) + g(x)f,

e = gT (x)∂H∂x (x).
(2.1)

Here x = (x1, . . . , xn) denotes the vector of (independent) energy variables, defining
local coordinates for the state space manifold X , H(x1, . . . , xn) is the total stored
energy in the system, with ∂H

∂x (x) denoting the column-vector of partial derivatives
of H, and the n × n skew-symmetric structure matrix J(x) is associated with the
network topology of the system. The columns gj(x), j = 1, . . . ,m, of the matrix g(x)
define the (state modulated) transformers describing the influence of the external flow
sources (or inputs) fj , j = 1, . . . ,m. The components ej of e are the corresponding
conjugated (with respect to the power) efforts (or outputs). Since the matrix J(x) is
skew-symmetric we immediately obtain the energy balance

d

dt
H = eT f(2.2)

expressing that the increase in energy equals the externally supplied power (ejfj is the
power of the jth source). Thus (2.1) describes an energy-conserving physical system
with internal variables x1, . . . , xn (associated with energy storage) and external (or
port) variables f1, . . . , fm, e1, . . . , em (associated with power), which can be regarded,
respectively, as input and output variables.

The system (2.1) is called a port-controlled generalized Hamiltonian system be-
cause of the following. We may define a generalized Poisson bracket operation on the
real functions on X as

{F,G}(x) =

[
∂F

∂x
(x)

]T
J(x)

∂G

∂x
(x), F,G : X → R,(2.3)
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Clearly, this bracket is skew-symmetric and satisfies the Leibniz identity

{F,G1G2}(x) = {F,G1}(x)G2(x) +G1(x){F,G2}(x) for all F,G1, G2 : X → R
(2.4)

and thus ẋ = J(x)∂H∂x (x) can be seen as the generalized Hamiltonian vector field
corresponding toH and the generalized Poisson bracket { , }. This generalized Poisson
bracket is a true Poisson bracket if additionally the Jacobi-identity is satisfied, that
is,

{F, {G,K}}+ {G, {K,F}}+ {K, {F,G}} = 0 for all F,G,K : X → R.(2.5)

If (and only if) the Jacobi-identity holds, there exist in a neighborhood of every
point x0 ∈ X where J(x) has constant rank local canonical coordinates (q, p, r) =
(q1, . . . , qk, p1, . . . , pk, r1, . . . , rl) for X in which J(x) takes the form (see e.g., [O])

J(q, p, r) =

 0 Ik 0
−Ik 0 0

0 0 0

 ,(2.6)

implying that the Hamiltonian vector field ẋ = J(x)∂H∂x (x) takes the form

q̇ = ∂H
∂p (q, p, r),

ṗ = −∂H∂q (q, p, r),

ṙ = 0

(2.7)

which are almost the standard Hamiltonian equations of motion except for the ap-
pearance of the conserved quantities r1, . . . , rl. Although in many cases of interest
the Jacobi-identity is satisfied, there are clear examples where it is not satisfied (e.g.,
mechanical systems with nonholonomic kinematic constraints; see [SM1]).

The overall energy-conserving physical system is now obtained by interconnecting
the various port-controlled generalized Hamiltonian subsystems as above in a power-
continuous fashion (e.g., by using Kirchhoff’s laws). In general this will result in a
mixed set of differential and algebraic equations, which nevertheless is expected to
be again Hamiltonian in some sense. Indeed, it can be seen that it is an implicit
generalized Hamiltonian system, as defined in [SM2, SM3]. The key concept in the
definition of an implicit generalized Hamiltonian system is the notion of a generalized
Dirac structure, as introduced (in a rather different context) in [C1, D2].

First we concentrate on interconnected energy-conserving physical systems with-
out any remaining external sources; see section 5 for the general case. In this case
the Dirac structure for the interconnected system is defined solely on the space of
energy-variables. Let X be an n-dimensional manifold with tangent bundle TX and
cotangent bundle T ∗X . We define TX ⊕ T ∗X as the smooth vector bundle over X
with fiber at each x ∈ X given by TxX ×T ∗xX . Let X be a smooth vector field and α
a smooth one-form on X respectively. Then we say that the pair (X,α) belongs to a
smooth vector subbundle D ⊂ TX⊕T ∗X (denoted (X,α) ∈ D) if (X(x), α(x)) ∈ D(x)
for every x ∈ X . Furthermore for a smooth vector subbundle D ⊂ TX ⊕ T ∗X we
define the smooth vector subbundle D⊥ ⊂ TX ⊕ T ∗X as

D⊥ = {(X,α) ∈ TX ⊕ T ∗X | 〈α | X̂〉+ 〈α̂ |X〉 = 0, for all (X̂, α̂) ∈ D}(2.8)
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with 〈 | 〉 denoting the natural pairing between a one-form and a vector field. In
(2.8) and throughout in the sequel the pairs (X,α), (X̂, α̂) are assumed to be pairs of
smooth vector fields and smooth one-forms.

Definition 2.1 (see [C1, D2]). A generalized Dirac structure on an n-dimen-
sional manifold X is a smooth vector subbundle D ⊂ TX ⊕ T ∗X such that D⊥ = D.

If D satisfies an additional closedness (or integrability) condition, then D defines
a Dirac structure; see section 4. Later on we will see that the dimension of the fibers
of a generalized Dirac structure on an n-dimensional manifold is equal to n. By taking
α̂ = α, X̂ = X in (2.8) we obtain

〈α |X〉 = 0 for all (X,α) ∈ D.(2.9)

Conversely, if (2.9) holds, then for every (X,α), (X̂, α̂) ∈ D
0 = 〈α+ α̂ |X + X̂〉 = 〈α |X〉+ 〈α | X̂〉+ 〈α̂ |X〉+ 〈α̂ | X̂〉

= 〈α | X̂〉+ 〈α̂ |X〉,(2.10)

and thus D ⊂ D⊥. Hence a Dirac structure is a smooth vector subbundle of TX⊕T ∗X
which is maximal with respect to property (2.10) or (2.9).

Let now X be an n-dimensional manifold with a generalized Dirac structure D,
and let H : X → R be a Hamiltonian (energy function). Then the implicit generalized
Hamiltonian system on X corresponding to D and H is given by the specification (see
[SM2]) (

ẋ,
∂H

∂x
(x)

)
∈ D(x).(2.11)

By (2.9) we immediately obtain the energy conservation property dH
dt =〈∂H∂x (x)|ẋ〉

= 0. Note that in general the specification (2.11) puts algebraic constraints on X ,
since in general there will not exist for every x ∈ X a tangent vector ẋ ∈ TxX such
that (2.11) is satisfied. Thus (2.11) is in general a set of differential algebraic equations
(DAEs). It can be seen that (2.11) generalizes the notion of an (explicit) generalized
Hamiltonian system

ẋ = J(x)
∂H

∂x
(x), J(x) = −JT (x),(2.12)

by noting that

D = {(X,α) ∈ TX ⊕ T ∗X |X(x) = J(x)α(x), x ∈ X}
defines a generalized Dirac structure. (If αT (x)J(x)α̂(x) + α̂T (x)X(x) = 0 for all α̂,
then X(x) = J(x)α(x).)

A special case of a Dirac structure is that of a constant Dirac structure on a linear
space.

Definition 2.2. A constant Dirac structure on a linear n-dimensional space V
is a linear subspace D ⊂ V × V∗ with the property that D⊥ = D, where

D⊥ = {(v, v∗) ∈ V × V∗ | 〈v∗ | v̂〉+ 〈v̂∗ | v〉 = 0 for all (v̂, v̂∗) ∈ D}
where 〈 | 〉 denotes the natural pairing between V and V∗.

The following proposition is derived straightforwardly.
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Proposition 2.1. Let V be an n-dimensional linear space. A linear subspace
D ⊂ V × V∗ defines a constant Dirac structure if and only if dimD = n and

〈v∗ | v〉 = 0 for all (v, v∗) ∈ D.(2.13)

Proof. (Sketch; see [SM3] for details.) As in (2.9) and (2.10) we see that if
D defines a constant Dirac structure, then (2.13) holds, while if (2.13) holds, then
equivalently

〈v∗ | v̂〉+ 〈v̂∗ | v〉 = 0 for all (v̂, v̂∗) ∈ D.(2.14)

Furthermore, a subspace D of V × V∗ defines a Dirac structure if it is maximal
with respect to property (2.14), which is equivalent (see [C1]) to the property dimD
= n.

Now let us consider k port-controlled generalized Hamiltonian systems as in (2.1),
i.e., for i = 1, . . . , k

ẋi = Ji(xi)
∂Hi
∂xi

(xi) + gi(xi)fi,

ei = gTi (xi)
∂Hi
∂xi

(xi),

xi ∈ Xi, fi ∈ Fi := Rmi , ei ∈ Ei := F∗i = Rmi ,

(2.15)

with Xi an ni-dimensional state space. Consider a general power-conserving intercon-
nection of these systems given by an (m1 + . . .+mk)-dimensional subspace (possibly
parametrized by x1, . . . , xk)

I(x1, . . . , xk) ⊂ F1 × · · · × Fk × E1 × · · · × Ek(2.16)

with the property

(f1, . . . , fk, e1, . . . , ek) ∈ I(x1, . . . , xk) ⇒
k∑
i=1

eTi fi = 0.(2.17)

Remark 2.1. By Proposition 2.1 it follows that I(x1, . . . , xk) defines a constant
Dirac structure on F1 × . . .×Fk, parameterized by (x1, . . . , xk).

Proposition 2.2. Consider k port-controlled generalized Hamiltonian systems
(2.15) subject to an interconnection (2.16) satisfying (2.17). Then the resulting in-
terconnected system is an implicit generalized Hamiltonian system with state space
X := X1 × · · · × Xk, Hamiltonian H(x1, . . . , xk) := H1(x1) + · · · + Hk(xk), and
generalized Dirac structure D on X given as

(X,α) = (X1, . . . , Xk, α1, . . . , αk) ∈ D ⇐⇒

for all xi ∈ Xi, i = 1, . . . , k, ∃(f1, . . . , fk, e1, . . . , ek) ∈ I(x1, . . . , xk) such that

Xi(xi) = Ji(xi)αi(xi) + gi(xi)fi,

ei = gTi (xi)αi(xi).

(2.18)
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Proof. The main point is in proving that D given by (2.18) defines a generalized
Dirac structure. Let (X,α) = (X1, . . . , Xk, α1, . . . , αk) be in D⊥, that is, 〈α̂ |X〉 +
〈α | X̂〉 = 0 for all (X̂, α̂) = (X̂1, . . . , X̂k, α̂1, . . . , α̂k) satisfying (2.18). This means

0 =

k∑
i=1

[
α̂Ti (xi)Xi(xi) + αTi (xi)X̂i(xi)

]
=

k∑
i=1

[
α̂Ti (xi)Xi(xi) + αTi (xi)Ji(xi)α̂i(xi) + αTi (xi)gi(xi)f̂i

]
=

k∑
i=1

(
α̂Ti (xi) [Xi(xi)− Ji(xi)αi(xi)] + αTi (xi)gi(xi)f̂i

)
(2.19)

for all α̂i, f̂i such that êi = gTi (xi)α̂i(xi) satisfies (f̂1, . . . , f̂k, ê1, . . . , êk) ∈ I(x1,

. . . , xk). Letting first f̂i = 0 and êi = 0, we obtain

k∑
i=1

α̂Ti (xi) [Xi(xi)− Ji(xi)αi(xi)] = 0(2.20)

for all α̂i(xi) such that gTi (xi)α̂i(xi) = 0. This means that there exist vectors
f1, . . . , fk such that

Xi(xi) = Ji(xi)αi(xi) + gi(xi)fi.(2.21)

Substitution into (2.19) yields

0 =

k∑
i=1

(
α̂Ti (xi)gi(xi)fi + αTi (xi)gi(xi)f̂i

)
=

k∑
i=1

(
êTi fi + eTi f̂i

)
(2.22)

for all f̂i and êi = gTi (xi)α̂i(xi) satisfying (f̂1, . . . , f̂k, ê1, . . . , êk) ∈ I(x1, . . . , xk).
If gTi (xi) is surjective for all i = 1, . . . , k, this means that (2.22) is satisfied for all

(f̂1, . . . , f̂k, ê1, . . . , êk) ∈ I(x1, . . . , xk), and by Proposition 2.1 and Remark 2.1 this
implies that (f1, . . . , fk, e1, . . . , ek) ∈ I(x1, . . . , xk) and thus (X,α) ∈ D. In general
we proceed as follows. Define the space of achievable flows and efforts

C(x1, . . . , xk) := {(f̂1, . . . , f̂k, ê1, . . . , êk) | f̂i ∈ Fi, êi ∈ Im gTi (xi), i = 1, . . . , k}.
Then (2.22) implies that

(f1, . . . , fk, e1, . . . , ek) ∈ (I(x1, . . . , xk) ∩ C(x1, . . . , xk))⊥

= I⊥(x1, . . . , xk) + C⊥(x1, . . . , xk)

where ⊥ denotes orthogonal complement with respect to property (2.22). By Propo-
sition 2.1 it follows that I⊥(x1, . . . , xk) = I(x1, . . . , xk), while C⊥(x1, . . . , xk) is seen
to be given as

C⊥(x1, . . . , xk) = {(f1, . . . , fk, e1, . . . , ek) | fi ∈ ker gi(xi), ei = 0, i = 1, . . . , k}.
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Thus there exist flow vectors f ′1, . . . , f
′
k such that (f ′1, . . . , f

′
k, e1, . . . , ek) ∈ I(x1,

. . . , xk), with Xi(xi) = Ji(xi)αi(xi) + gi(xi)f
′
i , ei = gTi (xi)αi(xi), showing that

(X,α) ∈ D. Hence D⊥ ⊂ D. Since it is easily seen that D ⊂ D⊥, this shows that D
defines a Dirac structure.

We note that the definition of a power-conserving interconnection is very general
and for example includes Kirchhoff’s laws for electrical systems, the interconnection
relations for generalized velocities and forces for interconnected mechanical systems
(Newton’s third law), as well as transformers in electrical circuits and kinematic pairs
in multibody systems.

From a classical control point of view an important example of a power-conserving
interconnection is the standard feedback interconnection.

Example 2.1. Consider two input-state-output systems (“plant” and “con-
troller”)

ẋi = gi(xi, ui),
yi = hi(xi), ui, yi ∈ Rm, i = 1, 2,

(2.23)

and impose the (negative) feedback interconnection

u2 = y1,
u1 = −y2,

(2.24)

leading to the explicit system

ẋ1 = g1(x1,−h2(x2)),
ẋ2 = g2(x2, h1(x1)).

(2.25)

If we equate the input vectors ui with flow vectors, and the output vectors yi with effort
vectors, then (2.24) is a power-conserving interconnection. Proposition 2.2 applied to
this particular case says that if both systems in (2.23) are Hamiltonian, then also
(2.25) is Hamiltonian. This can be regarded as a special instance of the passivity
theorem in input-output stability theory.

3. Representations of generalized Dirac structures and implicit gener-
alized Hamiltonian systems. There are different ways of representing generalized
Dirac structures, and consequently of writing the equations of an implicit generalized
Hamiltonian system. These representations each have their own advantages and are
connected to different but equivalent ways of mathematically modelling the energy-
conserving physical systems.

Before going into these representations we first note that a generalized Dirac
structure D on an n-dimensional manifold X defines the smooth distributions

G0 = {X ∈ TX | (X, 0) ∈ D},

G1 = {X ∈ TX | ∃α ∈ T ∗X s.t. (X,α) ∈ D}
(3.1)

and the smooth codistributions

P0 = {α ∈ T ∗X | (0, α) ∈ D},

P1 = {α ∈ T ∗X | ∃X ∈ TX s.t. (X,α) ∈ D}.
(3.2)

Define for any smooth distribution G the smooth codistribution annG as

annG = {α ∈ T ∗X | 〈α |X〉 = 0 for all X ∈ G}(3.3)



62 MORTEN DALSMO AND ARJAN VAN DER SCHAFT

and for any smooth codistribution P the smooth distribution ker P as

ker P = {X ∈ TX | 〈α |X〉 = 0 for all α ∈ P}.(3.4)

The smooth (co)distributions G0, G1 and P0, P1 are related as follows.
Proposition 3.1. Let D be a generalized Dirac structure on X and define G0,

G1, P0, P1 as in (3.1), (3.2). Then
1. G0 = ker P1, P0 = ann G1;
2. P1 ⊂ ann G0, G1 ⊂ ker P0, with equality if G1, respectively, P1, is constant-

dimensional.
Proof.
1. Z ∈ G0 if and only if (Z, 0) ∈ D, if and only if

〈0 |X〉+ 〈α |Z〉 = 0 for all (X,α) ∈ D
or equivalently 〈α |Z〉 = 0 for all α ∈ P1. Thus G0 = ker P1. Similarly
β ∈ P0 if and only if (0, β) ∈ D, if and only if 〈β |X〉 = 0 for all X ∈ G1,
which implies P0 = annG1.

2. This follows from property 1 and the inequalities P ⊂ ann ker P , G ⊂
ker annG, for any smooth (co)distribution P and G, with equality if P and
G are constant-dimensional [NS].

Remark 3.1. The distribution G1 and the co-distribution P1 have the following
interpretation. Consider the implicit generalized Hamiltonian system (2.11) corre-
sponding to a generalized Dirac structure D and a Hamiltonian H. Then the distri-
bution G1 describes the set of admissible flows ẋ. In particular, if G1 is constant-
dimensional and involutive then there are (n− dimG1) independent conserved quan-
tities for (2.11). Dually the codistribution P1 describes the set of algebraic constraints
of (2.11), i.e.,

∂H

∂x
(x) ∈ P1(x).(3.5)

Definition 3.1. A point x ∈ X is a regular point for the Dirac structure D on X
if the dimension of G1 and P1 (and hence, see Proposition 3.1, of G0, P0) is constant
in a neighborhood of x.

At every regular point x ∈ X we have

D⊥(x) = {(v, v∗) ∈ TxX × T ∗xX | 〈v∗ | v̂〉+ 〈v̂∗ | v〉 = 0 for all (v̂, v̂∗) ∈ D(x)},(3.6)

and since D⊥(x) = D(x), we may regard D(x) ⊂ TxX × T ∗xX as a constant Dirac
structure on TxX (see Definition 2.2). Invoking Proposition 2.1 we deduce that
dimD(x) = n for every regular point x ∈ X . Since the set of regular points is
open and dense in X , and D is a vector subbundle, it thus follows that

dimD(x) = n for all x ∈ X ,(3.7)

and therefore we may regard D(x) ⊂ TxX×T ∗xX as a constant Dirac structure on TxX
for every x ∈ X . In particular it follows, since D is a smooth vector subbundle, that
locally about every point in X we may find n×n matrices E(x) and F (x), depending
smoothly on x, such that locally

D(x) = {(v, v∗) ∈ TxX × T ∗xX |F (x)v = E(x)v∗},

rank[F (x) : −E(x)] = n.
(3.8)
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Furthermore, because D = D⊥ necessarily (see [SM2])

E(x)FT (x) + F (x)ET (x) = 0.(3.9)

We will refer to this local representation (3.8), (3.9) of a Dirac structure as repre-
sentation I. Given a Hamiltonian H : X → R the corresponding implicit generalized
Hamiltonian system in representation I is locally given as

F (x)ẋ = E(x)
∂H

∂x
(x).(3.10)

Example 3.1 ([SM2]; see also [MSB2]). An LC-circuit is composed of a set of
(multiport ) inductors and capacitors interconnected through their ports by the network
graph. An n-port inductor is defined by flux linkage variables φ ∈ Rn (the energy
variables) and an energy function HL(φ). The port variables are the voltages vL ∈ Rn
and the currents iL ∈ Rn defined as

vL = φ̇, iL =
∂HL

∂φ
.(3.11)

Similarly, an n-port capacitor is defined by charge variables q ∈ Rn and energy func-
tion HC(q), with port variables the currents iC ∈ Rn and voltages vC ∈ Rn defined as

iC = q̇, vC =
∂HC

∂q
.(3.12)

By Kirchhoff’s laws we obtain nL + nC independent equations

FCiC + ECiL = 0, FLvL + ELvC = 0(3.13)

for certain matrices FC , FL, EC , and EL satisfying (Tellegen’s theorem)

ECF
T
L + FCE

T
L = 0.(3.14)

Using (3.11), (3.12) and defining the total energy H(q, φ) = HL(φ) +HC(q), we may
rewrite (3.13) as the implicit generalized Hamiltonian system[

FC 0
0 FL

]
︸ ︷︷ ︸

F

[
q̇

φ̇

]
=

[
0 −EC
−EL 0

]
︸ ︷︷ ︸

E

[
∂H
∂q

∂H
∂φ

]
,(3.15)

where EFT + FET = 0 by (3.14).
Two other useful types of representations of generalized Dirac structures, which

admit a global and coordinate-free definition, can be given provided an extra regularity
condition is satisfied. We will denote them as representation II and representation III,
respectively.

Theorem 3.1 (representation II). Let X be an n-dimensional manifold. Let G
be a constant-dimensional distribution on X , and J(x) : T ∗xX → TxX , x ∈ X , a
skew-symmetric vector bundle map. Then

D = {(X,α) ∈ TX ⊕ T ∗X |X(x)− J(x)α(x) ∈ G(x), x ∈ X , α ∈ ann G}(3.16)

defines a generalized Dirac structure. Conversely, let D be any generalized Dirac struc-
ture having the property that the codistribution P1 (see (3.2)) is constant-dimensional.
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Then there exists a skew-symmetric vector bundle map J(x) : P1(x) → (P1(x))∗,
x ∈ X , which locally can be extended to a skew-symmetric vector bundle map J(x) :
T ∗xX → TxX , x ∈ X , such that D is given by (3.16) with G := ker P1.

Proof (see also [C1] for the constant case). Let D be given by (3.16). We have to
show that D⊥ = D.

1. Take (X,α) = (Jα + Z,α) ∈ D, with Z ∈ G. Then for all (X̂, α̂) = (Jα̂ +
Ẑ, α̂) ∈ D, Ẑ ∈ G

〈α | X̂〉+ 〈α̂ |X〉 = 〈α |Jα̂〉+ 〈α̂ |Jα〉+ 〈α | Ẑ〉+ 〈α̂ |Z〉 = 0

because J(x) is skew-symmetric, and α, α̂ ∈ annG.
2. Take (X,α) ∈ D⊥, that is for all (X̂, α̂) = (Jα̂+Ẑ, α̂) ∈ D, Ẑ ∈ G, α̂ ∈ annG

0 = 〈α | X̂〉+ 〈α̂ |X〉 = 〈α |Jα̂〉+ 〈α | Ẑ〉+ 〈α̂ |X〉

First let Ẑ = 0. Then

0 = 〈α |Jα̂〉+ 〈α̂ |X〉 = 〈α̂ |X − Jα〉

for all α̂ ∈ annG, implying that X−Jα ∈ ker annG = G, since G is constant-
dimensional. Now let α̂ = 0. Then

0 = 〈α | Ẑ〉

for all Ẑ ∈ G, implying that α ∈ annG.
Conversely, letD be a generalized Dirac structure on X , with P1 constant-dimensional.
Then we define for every x ∈ X a linear map

J(x) : P1(x) ⊂ T ∗xX → (P1(x))∗ ⊂ TxX

as follows. Let v∗ ∈ P1(x), that is, there exists v ∈ TxX such that (v, v∗) ∈ D(x).
Then define

J(x)v∗ = v ∈ (P1(x))∗.(3.17)

To see that J(x) is well-defined, let also (v̂, v∗) ∈ D(x). Then (v− v̂, 0) ∈ D(x), which
means v − v̂ ∈ G0(x) = ker P1(x), and thus v and v̂ define the same linear function
on P1(x). Skew-symmetry of the map J(x) : P1(x)→ (P1(x))∗ follows from

〈v̂∗ | v〉+ 〈v∗ | v̂〉 = 0.

for all (v, v∗), (v̂, v̂∗) ∈ D(x). Finally we may locally extend J(x) to a skew-symmetric
map from TxX to T ∗xX . Now, let (v, v∗) ∈ D(x). Then by (3.17) v = J(x)v∗ modulo
G(x) := ker P1(x), while v∗ ∈ P1(x), and thus D is indeed given by (3.16).

Remark 3.2. Note (see (3.17)) that the kernel of J(x) : P1(x) → (P1(x))∗ is
given by P0(x).

Given a Hamiltonian H : X → R the equations of the implicit generalized Hamil-
tonian system corresponding to representation II now take the form

ẋ = J(x)∂H∂x (x) + g(x)λ,

0 = gT (x)∂H∂x (x),
(3.18)
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where g(x) is any full rank matrix such that Im g(x) = G(x). The variables λ can be
seen as Lagrange multipliers, required to keep the constraint equations gT (x)∂H∂x (x) =
0 to be satisfied for all time. Note that (3.18) can be also interpreted as a port-
controlled generalized Hamiltonian system (see section 2) with the efforts (or outputs)
e set equal to zero.

“Dualizing” representation II we obtain the following.

Theorem 3.2 (representation III). Let X be an n-dimensional manifold. Let P
be a constant-dimensional codistribution on X , and ω(x) : TxX → T ∗xX , x ∈ X , a
skew-symmetric vector bundle map. Then

D = {(X,α) ∈ TX ⊕ T ∗X |α(x)− ω(x)X(x) ∈ P (x), x ∈ X , X ∈ ker P}(3.19)

defines a generalized Dirac structure. Conversely, let D be any generalized Dirac struc-
ture having the property that the distribution G1 (see (3.1)) is constant-dimensional.
Then there exists a skew-symmetric vector bundle map ω(x) : G1(x) → (G1(x))∗,
x ∈ X , which locally can be extended to a skew-symmetric vector bundle map ω(x) :
TxX → T ∗xX , x ∈ X , such that D is given by (3.19) with P := ann G1.

Proof. The proof is completely dual to the proof of Theorem 3.1

Remark 3.3 (see Remark 3.2). The kernel of ω(x) : G1(x)→ (G1(x))∗ is given
by G0(x).

The equations of an implicit generalized Hamiltonian system corresponding to
Representation III and a Hamiltonian H take the form

∂H
∂x (x) = ω(x)ẋ+ pT (x)λ,

0 = p(x)ẋ,
(3.20)

where p(x) is any full rank matrix such that Im p(x) = P (x). A main feature of (3.20)
in comparison with (3.18) is that in (3.20) the flow constraints pT (x)ẋ = 0 are made
explicit, while in (3.18) the algebraic constraints gT (x)∂H∂x (x) = 0 are distinguished.

Example 3.2. Let Q be an n-dimensional configuration manifold of a mechan-
ical system. Classical (kinematic) constraints are given in local coordinates q =
(q1, . . . , qn) for Q as

AT (q)q̇ = 0(3.21)

with A(q) an n × k matrix, k ≤ n, with entries depending smoothly on q. We will
assume that A(q) has rank equal to k everywhere. The constrained Hamiltonian equa-
tions on T ∗Q are classically given as (see, e.g., [SM1])

[
q̇
ṗ

]
=

[
0 In
−In 0

]
︸ ︷︷ ︸

J

[
∂H
∂q (q, p)

∂H
∂p (q, p)

]
+

[
0

A(q)

]
λ,

0 =
[

0 AT (q)
] [ ∂H

∂q (q, p)

∂H
∂p (q, p)

]
.

(3.22)

Here the constraint forces A(q)λ, with λ ∈ Rk, are uniquely determined by the require-
ment that the constraints (3.21) have to be satisfied for all time. It is straightforward
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to see that an equivalent description of the equations (3.22) is given as follows[
∂H
∂q (q, p)

∂H
∂p (q, p)

]
=

[
0 −In
In 0

]
︸ ︷︷ ︸

ω

[
q̇
ṗ

]
+

[
A(q)

0

]
λ,

0 =
[
AT (q) 0

] [ q̇
ṗ

]
.

(3.23)

Let G and P be the distribution and the codistribution, respectively, on T ∗Q spanned

by the columns of the matrix [ 0
A(q) ] and the rows of the matrix [AT (q) 0], respec-

tively. Then, since both J and ω are skew-symmetric, it follows from Theorems 3.1
and 3.2 that the pairs (J,G) and (ω, P ) define representation II and representation III,
respectively, of the same generalized Dirac structure. We will refer to this generalized
Dirac structure as DA.

As the last part of this section we will now briefly show how we can directly go
from representation I to a local version of representation II or III, and vice versa. This
is particularly useful in analysis, where some aspects may be more easily studied in one
representation, while others are easier to address in a different representation. The
transformation from representation II or III to I is direct and consists of eliminating
the Lagrange multipliers λ. Indeed, consider the implicit generalized Hamiltonian
system (3.18) corresponding to representation II. Since rank g(x) = k for all x ∈ X ,
we can locally find an (n − k) × n matrix s(x) of constant rank n − k such that
s(x)g(x) = 0. Premultiplying the first n equations of (3.18) by s(x) then transforms
(3.18) into the following n equations:[

s(x)
0

]
ẋ =

[
s(x)J(x)
gT (x)

]
∂H

∂x
(x),(3.24)

which is easily seen to be of the form (3.10) with F (x) = [ s(x)
0

] and E(x) =

[ s(x)J(x)
gT (x)

] satisfying (3.8), (3.9). The transformation from Representation III to

I is completely similar.
Example 3.3. Consider again the mechanical system with kinematic constraints

in Example 3.2. Since rankA(q) = k for all q ∈ Q, we can locally find an (n− k)× n
matrix S(q) of constant rank n − k such that S(q)A(q) = 0. Premultiplying the first
2n equations of (3.22) by the (2n− k)× 2n matrix[

In 0
0 S(q)

]
(3.25)

of constant rank 2n− k then transforms (3.22) into the following 2n equations:In 0
0 S(q)
0 0

[ q̇
ṗ

]
=

 0 In
−S(q) 0

0 AT (q)

[∂H∂q (q, p)

∂H
∂p (q, p)

]
.(3.26)

The transformation from representation I to II or III is more substantial. Consider
representation I as given by (3.8), (3.9). Since

ker [F (x) : −E(x)] = Im

[
ET (x)
−FT (x)

]
(3.27)
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we deduce that locally

G1(x) = ImET (x), P1(x) = ImFT (x)(3.28)

(while G0(x) = ker F (x), P0(x) = ker E(x) if F (x) (respectively, E(x)) has constant
rank). In order to obtain representation II we need to assume that P1 has constant
dimension (see Theorem 3.1), or equivalently by (3.28), F (x) has constant rank. Then
we may always locally transform the equations F (x)v = E(x)v∗ into the form[

F1(x)
0

]
v =

[
E1(x)
E2(x)

]
v∗,(3.29)

where F1(x) has full row rank for every x in this neighborhood. Since

0 = E(x)FT (x) + F (x)ET (x) =

[
E1(x)FT1 (x) + F1(x)ET1 (x) F1(x)ET2 (x)

E2(x)FT1 (x) 0

]
(3.30)

it follows that

E1(x)FT1 (x) + F1(x)ET1 (x) = 0(3.31)

and ET2 (x)F1(x) = 0, or actually since rank [F (x) : −E(x)] = n

ker F1(x) = ImET2 (x).(3.32)

By injectivity of FT1 (x) it follows that there exists an n × n matrix J(x) satisfying
J(x)FT1 (x) = −ET1 (x), which is by (3.31) skew-symmetric on ImFT1 (x), and extend-
able to a skew-symmetric matrix on Rn. Thus the equations (3.29) can be written as

v − J(x)v∗ ∈ kerF1(x) = ImET2 (x),
0 = E2(x)v∗(3.33)

or equivalently, defining the constant rank matrix g(x) := ET2 (x),

v = J(x)v∗ + g(x)λ,
0 = gT (x)v∗(3.34)

which is representation II. Representation III can be obtained similarly by manipu-
lating instead of F (x) the constant rank matrix E(x).

4. Closedness of generalized Dirac structures. The Dirac structures D of
Definition 2.1 are called generalized because they do not necessarily satisfy the fol-
lowing closedness (or integrability) condition.

Definition 4.1 (see [D2]). A generalized Dirac structure D on X is called closed
(or simply a Dirac structure) if for arbitrary (X1, α1), (X2, α2), and (X3, α3) ∈ D
there holds

〈LX1α2 |X3〉+ 〈LX2α3 |X1〉+ 〈LX3α1 |X2〉 = 0.(4.1)

The following theorem gives a very useful characterization of closedness of a gen-
eralized Dirac structure.

Theorem 4.1 (cf. [D2, Theorem 2.1]; see also [C1]). D is closed if and only if

([X1, X2], iX1
dα2 − iX2

dα1 + d〈α2 |X1〉) ∈ D for all (X1, α1), (X2, α2) ∈ D.(4.2)
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Proof. First note that the identities (see, e.g., [AMR])

LXα = diXα+ iXdα,(4.3)

i[X,Y ]α = LX iY α− iY LXα(4.4)

are satisfied for all vector fields X,Y and k-forms α on X . (The formula (4.3) is also
known as Cartan’s magic formula.) Hence,

〈LXα |Y 〉 = 〈d〈α |X〉 |Y 〉+ dα(X,Y ),(4.5)

〈α | [X,Y ]〉 = −〈d〈α |X〉 |Y 〉+ 〈LY α |X〉(4.6)

for all vector fields X,Y and one-forms α on X .
Now take arbitrary (X1, α1), (X2, α2), (X3, α3) ∈ D. Then

〈iX1
dα2 − iX2

dα1 + d〈α2 |X1〉 |X3〉+ 〈α3 | [X1, X2]〉
= 〈iX1

dα2 |X3〉 − 〈iX2
dα1 |X3〉+ 〈d〈α2 |X1〉 |X3〉+ 〈α3 | [X1, X2]〉

= dα2(X1, X3) + 〈d〈α2 |X1〉 |X3〉 − dα1(X2, X3) + 〈α3 | [X1, X2]〉
= 〈LX1

α2 |X3〉+ dα1(X3, X2) + 〈LX2
α3 |X1〉 − 〈d〈α3 |X1〉 |X2〉

= 〈LX1
α2 |X3〉+ 〈LX2

α3 |X1〉+ 〈LX3
α1 |X2〉(4.7)

since dα1(X2, X3) = −dα1(X3, X2), and d〈α3 |X1〉+d〈α1 |X3〉 = 0 because (X1, α1),
(X3, α3) ∈ D. Thus,

D is closed
m

〈LX1α2 |X3〉+ 〈LX2
α3 |X1〉+ 〈LX3

α1 |X2〉 = 0
for all (X1, α1), (X2, α2), (X3, α3) ∈ D

m
〈iX1

dα2 − iX2
dα1 + d〈α2 |X1〉 |X3〉+ 〈α3 | [X1, X2]〉 = 0

for all (X1, α1), (X2, α2), (X3, α3) ∈ D
m

([X1, X2], iX1
dα2 − iX2

dα1 + d〈α2 |X1〉) ∈ D
for all (X1, α1), (X2, α2) ∈ D,

where the last equivalence follows from the fact that D = D⊥.
Remark 4.1. Courant [C1] uses property (4.2) as the definition of closedness (or

integrability) of a generalized Dirac structure.
Closedness needs only to be checked on a set of pairs (Xi, αi) which span the

generalized Dirac structure D, as follows from the following lemma.
Lemma 4.1. Consider a generalized Dirac structure D on a manifold X . Let

(X1, α1), . . . , (Xn, αn) ∈ D
and suppose that(

[Xi, Xj ], iXidαj − iXjdαi + d〈αj |Xi〉
) ∈ D, i, j = 1, . . . , n.(4.8)

Then also ([X,Y ], iXdβ − iY dα+ d〈β |X〉) ∈ D, where

(X,α) =

n∑
i=1

ζi(Xi, αi), (Y, β) =

n∑
i=1

ηi(Xi, αi)(4.9)

for arbitrary ζi, ηi ∈ C∞(X ), i = 1, . . . , n.
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Proof. Let γ = iXdβ− iY dα+ d〈β |X〉. A straightforward calculation then gives

[X,Y ] =

n∑
i,j=1

[ζiXi(ηj)Xj + ζiηj [Xi, Xj ]− ηjXj(ζi)Xi],

(4.10)

γ =

n∑
i,j=1

[ζiXi(ηj)αj + ζiηj(iXidαj − iXjdαi + d〈αj |Xi〉)− ηjXj(ζi)αi].(4.11)

Thus, from (4.8) it follows that ([X,Y ], γ) ∈ D.
A smooth function H ∈ C∞(X ) is said to be admissible (see [C1]) if there ex-

ists a (smooth) vector field X such that (X,dH) ∈ D. From the definition of the
codistribution P1 in (3.2) we see that the space of all admissible functions is given by

AD = {H ∈ C∞(X ) |dH ∈ P1}.(4.12)

There is a well-defined generalized Poisson bracket on AD given by the formula

{H1, H2}D = 〈dH1 |X2〉 = −〈dH2 |X1〉,(4.13)

where (X1,dH1), (X2,dH2) ∈ D. To show that { , }D as defined in (4.13) is a gen-
eralized Poisson bracket is straightforward. Bilinearity of { , }D follows from bilin-
earity of 〈 | 〉. Skew-symmetry is a consequence of (4.13). Finally, take arbitrary
(X1,dH1), (X2,dH2), (X3,dH3) ∈ D. Then

(4.14) {H1, H2H3}D = −〈d(H2H3) |X1〉 = −〈H3dH2 +H2dH3 |X1〉
= H3{H1, H2}D +H2{H1, H3}D

so { , }D also satisfies the Leibniz identity. For a Dirac structure given by represen-
tation II (see Theorem 3.1), { , }D is given as follows:

{H1, H2}D(x) =

[
∂H1

∂x
(x)

]T
J(x)

∂H2

∂x
(x), H1, H2 ∈ AD.(4.15)

We will now characterize closedness of a generalized Dirac structure D in terms of the
bracket { , }D and the admissible functions AD. The following necessary conditions
for closedness follow from Theorem 4.1.

Corollary 4.1 (cf. [C1, D2]). If D is closed, then
1. G0 and G1 are involutive distributions;
2. {H1, H2}D ∈ AD;
3. {H1, {H2, H3}D}D + {H2, {H3, H1}D}D + {H3, {H1, H2}D}D = 0

for all H1, H2, H3 ∈ AD.
Proof.
1. Let X1, X2 ∈ G0, i.e., (X1, 0), (X2, 0) ∈ D. Then by Theorem 4.1 ([X1, X2], 0)
∈ D, which means that [X1, X2] ∈ G0. Involutivity of G1 also follows directly
from Theorem 4.1.

2. Take H1, H2∈AD so that (X1,dH1), (X2,dH2)∈D. Then we have ([X1, X2],
d〈dH2 |X1〉) ∈ D, which means that

d〈dH2 |X1〉 = d{H2, H1}D ∈ P1 ⇒ {H1, H2}D ∈ AD.(4.16)
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3. Take H1, H2, H3 ∈ AD so that (X1,dH1), (X2,dH2), (X3,dH3) ∈ D. Then

0 = 〈LX1
dH2 |X3〉+ 〈LX2

dH3 |X1〉+ 〈LX3
dH1 |X2〉

= 〈d〈dH2 |X1〉 |X3〉+ 〈d〈dH3 |X2〉 |X1〉+ 〈d〈dH1 |X3〉 |X2〉
= 〈d{H2, H1}D |X3〉+ 〈d{H3, H2}D |X1〉+ 〈d{H1, H3}D |X2〉(4.17)

= {{H2, H1}D, H3}D + {{H3, H2}D, H1}D + {{H1, H3}D, H2}D
= {H1, {H2, H3}D}D + {H2, {H3, H1}D}D + {H3, {H1, H2}D}D.

If in addition the codistribution P1 (see (3.2)) is constant-dimensional, the follow-
ing theorem gives necessary and sufficient conditions for closedness in terms of { , }D
and AD.

Theorem 4.2. Consider a generalized Dirac structure D on a manifold X . Let
P1 denote the codistribution on X defined by (3.2). Assume that P1 is constant-
dimensional. Then D is closed if and only if the following three conditions are satisfied:

1. G0 = ker P1 is involutive;
2. {H1, H2}D ∈ AD;
3. {H1, {H2, H3}D}D + {H2, {H3, H1}D}D + {H3, {H1, H2}D}D = 0

for all H1, H2, H3 ∈ AD.
Proof. The necessity of these three conditions follows from Corollary 4.1 so we

have to show only the sufficiency part here. First note that by using Proposition
3.1 we have that P1 = annG0. Since G0 = ker P1 is involutive and P1 is constant-
dimensional, by Frobenius’s theorem in a neighborhood of any point x0 ∈ X there
exist local coordinates x = (x1, . . . , xn) such that

P1 = annG0 = span {dx1, . . . ,dxn−m},(4.18)

where m = dim ker P1 (= dimG0). In the following, every computation is done in
such a neighborhood using local coordinates.

Take now arbitrary (X1, α1), (X2, α2) ∈ D. Then, since α1, α2 ∈ P1, we have that

α1 =
n−m∑
i=1

ζidxi,(4.19)

α2 =

n−m∑
i=1

ηidxi,(4.20)

where ζi, ηi are smooth functions. Now, let the vector fields Y1, . . . , Yn−m be such
that

(Yi,dxi) ∈ D, 1 ≤ i ≤ n−m.(4.21)

Since also (X1, α1) ∈ D it follows that

〈dxk |X1〉+

〈
n−m∑
i=1

ζidxi |Yk
〉

= 0(4.22)

so

〈dxk |X1〉 = −
n−m∑
i=1

ζi{xi, xk}D(4.23)
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for 1 ≤ k ≤ n−m. Define the vector fields Z1, Z2 as

Z1 = X1 −
n−m∑
i=1

ζiYi,(4.24)

Z2 = X2 −
n−m∑
i=1

ηiYi.(4.25)

Then

〈dxk |Z1〉 =

〈
dxk

∣∣∣∣X1 −
n−m∑
i=1

ζiYi

〉

= −
n−m∑
i=1

ζi{xi, xk}D −
n−m∑
i=1

ζi{xk, xi}D

= 0(4.26)

for all 1 ≤ k ≤ n−m since {xi, xk}D = −{xk, xi}D. This means that Z1 ∈ kerP1 = G0

and

X1 =
n−m∑
i=1

ζiYi + Z1,(4.27)

X2 =

n−m∑
i=1

ηiYi + Z2,(4.28)

where Z1, Z2 ∈ G0.
Now we want to calculate the term

α12 = iX1dα2 − iX2dα1 + d〈α2 |X1〉.(4.29)

We have dα2 = d(
∑n−m
i=1 ηidxi) =

∑n−m
i=1 dηi ∧ dxi, so

iX1
dα2 = iX1

(n−m∑
i=1

dηi ∧ dxi

)

=

n−m∑
i=1

[iX1
dηi ∧ dxi − dηi ∧ iX1

dxi]

=

n−m∑
i=1

[〈
dηi

∣∣∣∣ n−m∑
j=1

ζjYj + Z1

〉
dxi −

〈
dxi

∣∣∣∣ n−m∑
j=1

ζjYj + Z1

〉
dηi

]

=

n−m∑
i,j=1

[
ζjYj(ηi)dxi − ζj{xi, xj}Ddηi

]
+

n−m∑
i=1

Z1(ηi)dxi,(4.30)

where we used the fact that 〈dxi |Z1〉 = 0 since dxi ∈ annG0. Similarly we obtain

iX2dα1 =
n−m∑
i,j=1

[ηjYj(ζi)dxi − ηj{xi, xj}Ddζi] +
n−m∑
i=1

Z2(ζi)dxi.(4.31)
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Moreover,

d〈α2 |X1〉 = d

〈
n−m∑
i=1

ηidxi

∣∣∣∣ n−m∑
j=1

ζjYj + Z1

〉

= d

n−m∑
i,j=1

ηiζj

〈
dxi |Yj

〉
= d

n−m∑
i,j=1

ηiζj{xi, xj}D


=

n−m∑
i,j=1

[ηiζjd{xi, xj}D + {xi, xj}D(ζjdηi + ηidζj)]

=

n−m∑
i,j=1

[ηiζjd{xi, xj}D + {xi, xj}D(ζjdηi − ηjdζi)],(4.32)

where the last equation follows from skew-symmetry of { , }D. Inserting (4.30), (4.31),
and (4.32) in (4.29) gives

α12 = iX1
dα2 − iX2dα1 + d〈α2 |X1〉

=

n−m∑
i,j=1

[(ζjYj(ηi)− ηjYj(ζi))dxi + ηiζjd{xi, xj}D]

+

n−m∑
i=1

(Z1(ηi)− Z2(ζi))dxi.(4.33)

From (4.33) we immediately see that α12 ∈ P1 since d{xi, xj}D ∈ P1 when 1 ≤ i, j ≤
n−m.

Now we have to take a closer look at the term [X1, X2]. A direct calculation
yields

(4.34) [X1, X2] =

n−m∑
i=1

ζiYi + Z1,
n−m∑
j=1

ηjYj + Z2


=

n−m∑
i,j=1

{(ζjYj(ηi)− ηjYj(ζi))Yi + ηiζj [Yj , Yi]}+
n−m∑
i=1

(Z1(ηi)− Z2(ζi))Yi + Z12,

where the vector field Z12 is given by

Z12 =
n−m∑
i=1

(ζi[Yi, Z2]− ηi[Yi, Z1]) + [Z1, Z2].(4.35)

Now take arbitrary Z ∈ G0 and consider d{xi, xj}D ∈ annG0 for 1 ≤ i, j ≤ n −m.
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Then

0 = 〈d{xi, xj}D |Z〉
= −Z({xj , xi}D)

= −Z(Yi(xj))

= −Yi(Z(xj)) + [Yi, Z](xj)

= 〈dxj | [Yi, Z]〉(4.36)

for all 1 ≤ i, j ≤ n−m, which means that [Yi, Z] ∈ ker P1 = G0 for all 1 ≤ i ≤ n−m.
Since G0 is involutive we immediately see from (4.35) that also Z12 ∈ G0.

Now we want to show that ([Yj , Yi],d{xi, xj}D) ∈ D. We know that {xi, xj}D ∈
AD, which means that there exist vector fields Yij such that (Yij ,d{xi, xj}D) ∈ D,
i, j = 1, . . . , n−m. Then

〈dxk | [Yj , Yi]− Yij〉 = [Yj , Yi](xk)− Yij(xk)

= Yj(〈dxk |Yi〉)− Yi(〈dxk |Yj〉)− 〈dxk |Yij〉
= 〈d{xk, xi}D |Yj〉 − 〈d{xk, xj}D |Yi〉 − {xk, {xi, xj}D}D
= {{xk, xi}D, xj}D − {{xk, xj}D, xi}D − {xk, {xi, xj}D}D
= {xj , {xi, xk}D}D + {xi, {xk, xj}D}D + {xk, {xj , xi}D}D
= 0(4.37)

when 1 ≤ i, j, k ≤ n−m, which means that [Yj , Yi]− Yij ∈ ker P1 = G0. Thus,

([Yj , Yi],d{xi, xj}) ∈ D, i, j = 1, . . . , n−m,(4.38)

and by inspection of (4.33) and (4.34) we see that ([X1, X2], α12) ∈ D, and closedness
of D follows from Theorem 4.1.

In the following we will explicitly characterize closedness in the three different
representations of a Dirac structure.

Theorem 4.3 (representation I). Consider a generalized Dirac structure D on a
manifold X given locally in representation I (see (3.8), (3.9)). Define (Xi, αi) ∈ D in
local coordinates by

Xi = ETi (x),(4.39)

αi = −FTi (x),(4.40)

where ETi (x) and FTi (x) denote the ith column of the matrices ET (x) and FT (x),
respectively. Then D is closed if and only if

(4.41)
(
[Xi, Xj ], iXidαj − iXjdαi + d〈αj |Xi〉

) ∈ D(x)

for all x ∈ X , i, j = 1, . . . , n.

Proof. The proof follows from (3.27), Theorem 4.1, and Lemma 4.1.
Theorem 4.4 (representation II). Let X be an n-dimensional manifold. Let

G be a constant-dimensional distribution on X , and J(x) : T ∗xX → TxX , x ∈ X ,
be a skew-symmetric vector bundle map. Moreover, let { , } denote the generalized
Poisson bracket corresponding to J . Then the generalized Dirac structure given by
(see Theorem 3.1)

D = {(X,α) ∈ TX ⊕ T ∗X |X(x)− J(x)α(x) ∈ G(x), x ∈ X , α ∈ ann G}(4.42)

is closed if and only if



74 MORTEN DALSMO AND ARJAN VAN DER SCHAFT

1. G is involutive;
2. {H1, H2} ∈ AD;
3. {H1, {H2, H3}}+ {H2, {H3, H1}}+ {H3, {H1, H2}} = 0

for all H1, H2, H3 ∈ AD = {H ∈ C∞(X ) |dH ∈ ann G}.
Proof. The result follows from Theorem 4.2 using the facts that G0 = G and that

{H1, H2}D = {H1, H2} for all H1, H2 ∈ AD.
Theorem 4.5 (representation III). Let X be an n-dimensional manifold. Let P

be a constant-dimensional codistribution on X , and ω(x) : TxX → T ∗xX , x ∈ X , be
a skew-symmetric vector bundle map. Then the generalized Dirac structure given by
(see Theorem 3.2)

D = {(X,α) ∈ TX ⊕ T ∗X |α(x)− ω(x)X(x) ∈ P (x), x ∈ X , X ∈ ker P}(4.43)

is closed if and only if
1. kerP is involutive;
2. dω(X1, X2, X3) = 0 for all X1, X2, X3 ∈ kerP .

Proof. Let (X1, α1), (X2, α2) ∈ D, i.e.,

αi = iXiω + pi, pi ∈ P, Xi ∈ kerP, i = 1, 2.(4.44)

Define as in (4.29) the one-form α12 = iX1
dα2 − iX2

dα1 + d〈α2 |X1〉. Now, using
Cartan’s magic formula, we get

diX1
ω = LX1

ω − iX1
dω,(4.45)

diX1
iX2

ω = LX1
iX2

ω − iX1
LX2

ω + iX1
iX2

dω(4.46)

for all vector fields X1, X2 on X . Hence

α12 = iX1
dα2 − iX2

dα1 + d〈α2 |X1〉
= iX1

d(iX2
ω + p2)− iX2

d(iX1
ω + p1) + diX1

(iX2
ω + p2)

= iX1
diX2

ω + iX1
dp2 − iX2

diX1
ω − iX2

dp1 + diX1
iX2

ω + diX1
p2

= −iX2
LX1

ω + LX1
iX2

ω + iX1
dp2 − iX2

dp1 + iX2
iX1

dω

= i[X1,X2]ω + iX1
dp2 − iX2

dp1 + iX2
iX1

dω(4.47)

since i[X1,X2]ω = LX1
iX2

ω− iX2
LX1

ω. Thus, using Theorem 4.1 and the definition of
D, we have that

D is closed

m
([X1, X2], i[X1,X2]ω + iX1

dp2 − iX2
dp1 + iX2

iX1
dω) ∈ D

for all p1, p2 ∈ P, for all X1, X2 ∈ kerP.

m
[X1, X2] ∈ kerP
iX1

dp2 − iX2
dp1 + iX2

iX1
dω ∈ P

}
for all p1, p2 ∈ P, for all X1, X2 ∈ kerP.

Now, if P is a constant-dimensional codistribution and kerP is involutive, it follows
that for every p ∈ P there exists p̄ ∈ P and a one-form η such that dp = η ∧ p̄. Thus,
iXdp = η(X)p̄ ∈ P for all X ∈ kerP . Moreover, iX2

iX1
dω(X3) = dω(X1, X2, X3)

which means that iX2
iX1

dω ∈ P if and only if dω(X1, X2, X3) = 0 for all X3 ∈ ker P
since P is constant-dimensional.
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Remark 4.2. In [C1] it is shown that closedness of D implies condition 2 in
Theorem 4.5.

We will now apply the above theory to mechanical systems with kinematic con-
straints (see Example 3.2).

Proposition 4.1. Consider the mechanical system with kinematic constraints
AT (q)q̇ = 0 as given in Example 3.2. Let { , } denote the Poisson bracket defined
(locally) by the structure matrix J . Then the following statements are equivalent:

1. DA is closed;
2. the constraints (3.21) are holonomic;
3. d{H1, H2} ∈ ann G for all H1, H2 such that dH1,dH2 ∈ ann G.

Proof. 1⇔ 2: From Theorem 4.5 it follows that DA is closed if and only if ker P is
involutive which is equivalent to the constraints (3.21) being holonomic. 1⇔ 3: This
follows from Theorem 4.4 since G is involutive and { , } satisfies the Jacobi identity
in this case.

The next proposition gives an interesting interpretation of closedness of general-
ized Dirac structures that come up in connection with Lie-Poisson structures.

Proposition 4.2. Let G be any n-dimensional Lie group (e.g., SE(3)), with Lie
algebra g, and the dual Lie algebra g∗ with the Lie-Poisson bracket { , }. Consider
a constant distribution on g∗, that is a linear subspace V ⊂ g∗. Define the Dirac
structure D on g∗ as

D = {(X,α) ∈ Tg∗ ⊕ T ∗g∗ |X(x)− J(x)α(x) ∈ V, α(x) ∈ V⊥, x ∈ g∗},(4.48)

where J(x) is the structure matrix of the Lie-Poisson bracket { , }. Then D is closed
if and only if V⊥ ⊂ g is a subalgebra.

Proof. The proof follows more or less directly from results obtained in
[MR, p. 287].

Example 4.1 (X = se∗(3) w R6). The motion of a rigid body with respect to a
body-fixed rotation reference frame in the center of mass is given (in the absence of
gravity) by

Mω̇ + ω ×Mω = τ,(4.49)

mv̇ + ω ×mv = F,(4.50)

where v, ω ∈ R3 are, respectively, the linear and the angular velocities, M is the
inertia tensor, and τ, F ∈ R3 are, respectively, the torques and the forces. By defining
Π, p ∈ R3 as

Π = Mω, Π = [Πx,Πy,Πz]
T ,(4.51)

p = mv, p = [px, py, pz]
T(4.52)

and the Hamiltonian H(Π, p) as

H(Π, p) =
1

2
ΠTM−1Π +

1

2m
pT p,(4.53)

it follows that (4.49) and (4.50) can be written as[
Π̇

ṗ

]
=

[
S(Π) S(p)

S(p) 0

]
︸ ︷︷ ︸

J(Π,p)

[
∂H
∂Π
∂H
∂p

]
+

[
τ

F

]
.(4.54)
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Here Π = [Πx,Πy,Πz]
T and p = [px, py, pz]

T are the body angular and linear mo-
mentum, respectively. S( · ) is defined by S(a)b = a × b for a, b ∈ R3. J(Π, p) is the
structure matrix of the Lie-Poisson bracket on X = se∗(3) w R6.

Assume that the following constraints are imposed on the system:

py = pz = 0.(4.55)

Let ex = [1 0 0]T , ey = [0 1 0]T , ez = [0 0 1]T . Then

V⊥ = ker

[
0 0
ey ez

]
,(4.56)

which is not a subalgebra of se(3) w R6 (see, e.g., [MR]). Hence, the corresponding
generalized Dirac structure is not closed in this case. However, if the additional con-
straint px = 0 is imposed on the system (fixed center of mass), it is easy to see that
closedness of the corresponding generalized Dirac structure follows.

Similarly to the case when the Jacobi-identity is satisfied for a generalized Pois-
son structure, one can show that if the closedness condition (4.1) is satisfied for a
generalized Dirac structure then there exist local canonical coordinates around any
regular point in which the geometric picture simplifies considerably (see Proposition
4.1.2 in [C1]). In our context (i.e., for generalized Dirac structures arising from phys-
ical systems) constant-dimensionality of the codistribution P1 is often a reasonable
assumption. Thus, in the next proposition we will draw attention to the existence
and construction of canonical coordinates for Dirac structures that may be given in
representation II (cf. Theorem 3.1). In essence, the proof of this proposition comes
down to using Frobenius’s theorem and a generalized version of Darboux’s theorem
and proceeds along the same general line as the proof of Proposition 4.1.2 in [C1].
However, we show directly how local canonical coordinates may be found for a Dirac
structure in representation II. In addition, we show more explicitly where the three
necessary conditions in Corollary 4.1 come into play which is interesting in itself.

Proposition 4.3. Let D be a generalized Dirac structure on an n-dimensional
manifold X . Assume that the codistribution P1 (see (3.2)) is constant-dimensional so
that D can always be given in representation II as follows:

D = {(X,α) ∈ TX ⊕ T ∗X |X(x)− J(x)α(x) ∈ G0(x), x ∈ X , α ∈ ann G0},(4.57)

where J(x) : T ∗xX → TxX , x ∈ X , is a skew-symmetric vector bundle map. Then, if
D is closed, there exist around every regular point x0 ∈ X local canonical coordinates

(q, p, r, s) = (q1, . . . , qk, p1, . . . , pk, r1, . . . , rl, s1, . . . , sm), 2k + l +m = n

for X in which J(x) and G0 take the simple form

J(x) =


0 Ik 0 ∗
−Ik 0 0 ∗

0 0 0 ∗
∗ ∗ ∗ ∗

 , G0 = span

{
∂

∂s1
, . . . ,

∂

∂sm

}
,(4.58)

where ∗ denotes unspecified elements, m = n− dimP1 and l = n− dimG1(x0).
Conversely, if D is given by (4.57), (4.58) in a neighborhood of x0 ∈ X , then D

is closed in this neighborhood.
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Proof. If D is closed, it follows from condition 1 in Corollary 4.1 that G0 is in-
volutive. Since P1 = annG0 is constant-dimensional, also G0 is constant-dimensional
with dimension equal to m. Thus, by Frobenius’ theorem in a neighborhood Nx0

of
any point x0 ∈ X there exist local coordinates (y, s) = (y1, . . . , yn−m, s1, . . . , sm),
such that

G0 = span

{
∂

∂s1
, . . . ,

∂

∂sm

}
(4.59)

and

P1 = annG0 = span {dy1, . . . ,dyn−m} .(4.60)

Now, { , }D is given in terms of J(x) as follows:

{F,G}D(x) =

[
∂F

∂x
(x)

]T
J(x)

∂G

∂x
(x)(4.61)

for all F,G ∈ C∞(X ) such that dF,dG ∈ annG0. Moreover, since D is closed, it
follows from condition 2 in Corollary 4.1 that

d{yi, yj}D ∈ annG0, i, j = 1, . . . , n−m,(4.62)

which means that

∂{yi, yj}D
∂sk

= 0, k = 1, . . . ,m, i, j = 1, . . . , n−m.(4.63)

Hence, J(x) takes the following form in the local coordinates (y, s):

J(y, s) =

[
J̄(y) ∗
∗ ∗

]
(4.64)

where J̄(y) = [{yi, yj}D] is the (n−m)× (n−m) upper-left submatrix of J(y, s). In
addition, the distribution G1 is given locally in the coordinates (y, s) as

G1(y, s) = Im

[
J̄(y) 0

0 Im

]
.(4.65)

If x0 ∈ X is a regular point, then G1 is by definition constant-dimensional in a
neighborhood of x0 which implies that J̄(y) has constant rank 2k = n− (l +m) in a
neighborhood N̂x0 ⊂ Nx0 of x0. Define (without loss of generality) the submanifold
Y ⊂ X as

Y = {(y, s) ∈ N̂x0 | s = s(x0)}.(4.66)

y = (y1, . . . , yn−m) are local coordinates for Y around y0 = y(x0). Since D is closed,
it follows from condition 3 in Corollary 4.1 that { , }D defines a Poisson structure
on Y with structure matrix J̄(y). Now, using the fact that J̄(y) has constant rank
2k ≤ n−m for all y ∈ Y, it follows from Theorem 6.22 in [O] (called the generalized
Darboux’s theorem; see also [W]), that around y0 ∈ Y there exist local coordinates
(q, p, r) = (q1, . . . , qk, p1, . . . , pk, r1, . . . , rl) in which J̄(y) takes the form

J̄(p, q, r) =

 0 Ik 0
−Ik 0 0

0 0 0

 .(4.67)
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Now (q, p, r, s) are local coordinates for X around x0 ∈ X in which J(x) and G0 take
the simple form (4.58).

Conversely, it is easy to check that a generalized Dirac structure given by (4.57),
(4.58) in a neighborhood of x0 ∈ X , satisfies the sufficient conditions for closedness
as given in Theorem 4.2 in this neighborhood.

The equations of an implicit generalized Hamiltonian system corresponding to
the local representation (4.57), (4.58) and a Hamiltonian H take the form

q̇ = ∂H
∂p (q, p, r, s),

ṗ = −∂H∂q (q, p, r, s),

ṙ = 0,
0 = ∂H

∂s (q, p, r, s).

(4.68)

Comparing (4.68) with (2.7) we see that while (2.7) makes explicit the conserved
quantities, (4.68) also makes explicit the algebraic constraints

0 = ∂H
∂s1

(q, p, r, s),
...

0 = ∂H
∂sm

(q, p, r, s).

(4.69)

If H is nondegenerate in the energy-variables s1, . . . , sm, that is,

rank

[
∂2H

∂si∂sj

]
= m,(4.70)

then by the implicit function theorem one may locally express the variables s1, . . . , sm
as functions of q, p, r, i.e., si = si(q, p, r), i = 1, . . . ,m. Defining the constrained
Hamiltonian

Hc(q, p, r) := H(q, p, r, s(q, p, r))(4.71)

it follows that (4.68) reduces to the same format as (2.7):

q̇ = ∂Hc
∂p (q, p, r),

ṗ = −∂Hc∂q (q, p, r),

ṙ = 0,

(4.72)

which is an explicit Hamiltonian dynamics on the constrained state space Xc =
{(q, p, r, s) | ∂H∂si (q, p, r, s) = 0, i = 1, · · · ,m}. Also note that while under the as-
sumption (4.70) the variables s1, . . . , sm together with the Hamiltonian H define a
(constraint) submanifold Xc of X , dually the level sets of the variables r1, . . . , r` define
a foliation of X . Both the constraint submanifold Xc and the foliation are invariant
for the Hamiltonian dynamics. However, as shown in this section, there are cases of
interest where the generalized Dirac structure does not satisfy the closedness condition
(e.g., mechanical systems with nonholonomic constraints). Furthermore, also if the
closedness condition is satisfied the actual construction of the canonical coordinates
qi, pi, ri, si, may be very involved, and preferably should be avoided.

We remark that the representation (4.68) of an implicit Hamiltonian system with
regard to a closed Dirac structure is quite amenable for stability analysis, at least
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when the nondegeneracy condition (4.70) is satisfied. Indeed, let (q0, p0, r0, s0) be an
equilibrium of (4.68), that is,

∂H

∂q
(q0, p0, r0, s0) = 0,

∂H

∂p
(q0, p0, r0, s0) = 0,

∂H

∂s
(q0, p0, r0, s0) = 0,(4.73)

and let us also assume that ∂H
∂r (q0, p0, r0, s0) = 0 (see later). Under the nondegeneracy

condition (4.70) the implicit function theorem allows us to express the variables s
locally around q0, p0, r0, s0 as functions of q, p, r leading as above to the explicit
Hamiltonian dynamics (4.72). Note that in general the implicit function theorem only
provides an existence result, and that finding the actual expression of s as function
of q, p, r is in general not possible or preferably should be avoided.

Now, if the Hessian matrix of Hc at (q0, p0, r0) is positive (or negative) definite it
follows that (q0, p0, r0) is a stable equilibrium of (4.72) (see, e.g., [MR]). On the other
hand, this Hessian matrix of Hc can be easily expressed in the original Hamiltonian
H as 

∂2H
∂q2

∂2H
∂q∂p

∂2H
∂q∂r

∂2H
∂p∂q

∂2H
∂p2

∂2H
∂p∂r

∂2H
∂r∂q

∂2H
∂r∂p

∂2H
∂r2

−


∂2H
∂q∂s

∂2H
∂p∂s

∂2H
∂r∂s

[∂2H

∂s2

]−1 [
∂2H
∂s∂q

∂2H
∂s∂p

∂2H
∂s∂r

]
(4.74)

evaluated at (q0, p0, r0, s0). Thus this way of checking stability can be performed
without the actual computation of Hc. Furthermore, note that for checking definite-
ness of (4.74) only the variables s need to be explicitly computed; we may use other
coordinates instead of q, p, r.

Since the variables r1, . . . , rl are invariants (or Casimirs) we may also replace in
the stability analysis the constrained Hamiltonian Hc by Hc(q, p, r) + Φ(r), with Φ
any function of r = (r1, . . . , rl). Hence we may also replace H(q, p, r, s) with

H̄Φ(q, p, r, s) := H(q, p, r, s) + Φ(r)(4.75)

and substitute H̄Φ into (4.74) in order to check definiteness. (The addition of a
function Φ(r) to Hc when checking the definiteness of the Hessian is known as the
energy-Casimir method; see, e.g., [MR].)

5. Implicit port-controlled generalized Hamiltonian systems. As already
alluded to in section 2, if we interconnect port-controlled Hamiltonian systems (2.1)
in such a way that some of the external variables remain free port variables, then we
will end up with an implicit generalized Hamiltonian system with external (or port)
variables. In order to make this precise we give the following definition (see [SM2]).

Definition 5.1. Let X be an n-dimensional manifold of energy variables, and let
H : X → R be a Hamiltonian. Furthermore, let F be the linear space Rm of external
flows f, with dual the space F∗ of external efforts e. Consider a Dirac structure on
the product space X ×F , only depending on x. The implicit port-controlled generalized
Hamiltonian system corresponding to X , H, D, and F is defined by the specification(

ẋ, f,
∂H

∂x
(x),−e

)
∈ D(x).(5.1)

Remark 5.1. The minus sign in front of the effort e comes from the natural
identification (α, e) ∈ T ∗X × F∗ → (α,−e) ∈ (TX × F)∗. Physically this means that
the ingoing power is counted positively.
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Since by definition of a Dirac structure (cf. (2.9)) 〈α |X〉 − 〈e | f〉 = 0 for all
(X, f, α,−e) ∈ D, it follows that an implicit port-controlled Hamiltonian system sat-
isfies the energy balance

dH

dt
= eT f.(5.2)

Definition 5.1 generalizes the notion of an (explicit) port-controlled generalized Hamil-
tonian system (2.1) by noting that in this case the Dirac structure D on X × F is
given by the specification (X, f, α,−e) ∈ D iff

X(x) = J(x)α(x) + g(x)f,

e = gT (x)α(x), x ∈ X .
(5.3)

Indeed, let (X, f, α,−e) ∈ D⊥; that is,

〈α̂ |X〉+ 〈α | X̂〉 − 〈ê | f〉 − 〈e | f̂〉 = 0(5.4)

for all (X̂, f̂ , α̂,−ê) satisfying (5.3). By first taking f̂ = 0 we obtain

α̂T (x)X(x) + αT (x)J(x)α̂(x)− α̂T (x)g(x)f = 0(5.5)

for all α̂, and thus X(x) = J(x)α(x) + g(x)f , and substitution in (5.4) yields

α̂T (x)g(x)f + αT (x)g(x)f̂ − α̂T (x)g(x)f − eT f̂ = 0(5.6)

for all f̂ , implying that e = gT (x)α(x), and thus that (X, f, α,−e) ∈ D.
Now let us consider, as in section 2, k port-controlled generalized Hamiltonian

systems, see (2.15), with Ej = F∗j , j = 1, . . . , k. A power-conserving partial intercon-
nection is obtained by writing a direct sum decomposition

F1 × · · · × Fk = F i ⊕Fp(5.7)

with the subspace F i denoting the flows to be interconnected, and Fp the remaining
flows at the external ports of the partially interconnected system. By defining E i :=
(Fp)⊥ and Ep := (F i)⊥ we obtain the dual direct sum decomposition

E1 × · · · × Ek = E i ⊕ Ep.(5.8)

Proposition 5.1. Consider as in (2.15) k port-controlled generalized Hamilto-
nian systems, with direct sum decomposition (5.7), (5.8). Consider a power-conserving
partial interconnection given by a subspace (possibly parametrized by x1, . . . , xk)

I(x1, . . . , xk) ⊂ F i × E i(5.9)

with dim I(x1, . . . , xk) = dim F i, having the property

(f i, ei) ∈ I(x1, . . . , xk) ⇒ 〈ei | f i〉 = 0.(5.10)

Then the resulting partially interconnected system is an implicit port-controlled gener-
alized Hamiltonian system with state space X := X1 × · · · × Xk, Hamiltonian
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H(x1, . . . , xk) := H1(x1) + · · ·+Hk(xk), and generalized Dirac structure on X × Fp
given as

(X, fp, α,−ep) = (X1, . . . , Xk, f
p, α1, . . . , αk,−ep) ∈ D ⇐⇒

Xj(xj) = Jj(xj)αj(xj) + gj(xj)fj ,

ej = gTj (xj)αj(xj), xj ∈ Xj , j = 1, . . . , k,

(f1, . . . , fk, e1, . . . , ek) = (f i, fp, ei, ep) such that (f i, ei) ∈ I(x1, . . . , xk).

(5.11)

Proof. The proof is very similar to the proof of Proposition 2.2. Let (X, fp, α,−ep)
be in D⊥, that is,

〈α̂ |X〉+ 〈α | X̂〉 − 〈êp | fp〉 − 〈ep | f̂p〉 = 0(5.12)

for all (X̂, f̂p, α̂,−êp) satisfying (5.11). First, letting f̂j = êj = 0 for all j = 1, . . . , k
we obtain (2.21), and by substitution in (5.12) we obtain, similar to (2.22),

0 =

k∑
j=1

(
êTj fj + eTj f̂j

)
− 〈êp | fp〉 − 〈ep | f̂p〉 = 〈êi | f i〉+ 〈ei | f̂ i〉(5.13)

for all f̂ i, êi. By definition of I(x1, . . . , xk) in (5.10) this implies, as in Proposi-
tion 2.2 (adding if necessary flow vectors in the kernel of gj(xi)) that (f i, ei) ∈
I(x1, . . . , xk), and thus (X, fp, α,−ep) ∈ D. Since it is readily seen that D ⊂ D⊥ it
follows that D defines a Dirac structure.

Remark 5.2. An interesting open problem is the variational interpretation of
Proposition 5.1 (and Proposition 2.2). Indeed, if all the Hamiltonian subsystems ad-
mit a variational characterization (as Euler–Lagrange equations) one could conjec-
ture that also the (partially) interconnected Hamiltonian system admits “some kind
of ” variational characterization. It is to be expected, however, that the closedness
conditions as treated in this and the previous section will play an important role in
such a characterization, since already for classical mechanical systems with kinematic
constraints it is known (see e.g., [AKN, BC]) that they cannot be formulated as stan-
dard Euler–Lagrange equations in case the constraints are nonholonomic. Also, the
formulation (4.68) of an implicit Hamiltonian system satisfying the closedness condi-
tion suggests a connection with variational principles via the first-order condition of
Pontryagin’s maximum principle. In the case of electrical circuits, where the inter-
connections are defined by Kirchhoff’s laws and the closedness conditions are trivially
satisfied (see Example 3.1), some important work concerning a variational formulation
of Kirchhoff’s laws and the resulting variational characterization of the overall circuit
has been done (see, e.g., [JE, M1]), and it seems of interest to extend these ideas to
the general situation considered in Proposition 5.1.

In the rest of this section we will not elaborate on general implicit port-controlled
Hamiltonian systems and their different representations, but instead concentrate on a
special subclass which arises naturally in the control of mechanical systems. Consider
the following port-controlled generalized Hamiltonian system with constraints given
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by

ẋ = J(x)∂H∂x (x) + g(x)f + b(x)λ,

e = gT (x)∂H∂x (x),

0 = bT (x)∂H∂x (x),

(5.14)

where x ∈ X , f ∈ F := Rm and g(x) = [g1(x) . . . gm(x)] is the n×m matrix of input
vector fields gj . b(x) = [b1(x) . . . bk(x)] is the n× k matrix of constraint vector fields.
Throughout this section we will assume that b(x) has rank equal to k everywhere.
It is easily seen that, e.g., an actuated mechanical system with kinematic constraints
will fit into the description (5.14). By rewriting (5.14) as[

ẋ
f

]
=

[
J(x) 0

0 0

]
︸ ︷︷ ︸

J̃(x)

[
∂H
∂x (x)
−e

]
+

[
g(x) b(x)
Im 0

]
λ̃,

0 =

[
gT (x) Im
bT (x) 0

] [
∂H
∂x (x)
−e

]
,

(5.15)

where λ̃ ∈ Rm+k, it follows from Theorem 3.1 that (5.15) defines representation II of
a generalized Dirac structure D on X ×F . Thus (5.14) is an implicit port-controlled
generalized Hamiltonian system.

We will now study D further as given in representation (5.15). In what follows
we will use { , } and { , }X×F to denote the generalized Poisson brackets on X and
X ×F , respectively, with structure matrices J(x) and J̃(x) (see (5.15)), respectively.
In addition we will let B denote the constant-dimensional distribution on X given by

B(x) = Im b(x), x ∈ X .(5.16)

From (5.15) we immediately see that the distribution G0 on X ×F defined by D
(see (3.1)) is given by

G0(x, y) = Im

[
g(x) b(x)
Im 0

]
, (x, y) ∈ X × F .(5.17)

Note that G0 is constant-dimensional with dimension equal to m+k since rank b(x) =
k for all x ∈ X . The following lemma, for which a proof is straightforward, gives
necessary and sufficient conditions for G0 being involutive.

Lemma 5.1. G0 is involutive if and only if [X,Y ] ∈ B for all X,Y
∈ {g1, . . . , gm, b1, . . . , bk}.

The next lemma gives three necessary conditions for the closedness of D.
Lemma 5.2. If the generalized Dirac structure D on X × F is closed, then
1. {H1, {H2, H3}}+ {H2, {H3, H1}}+ {H3, {H1, H2}} = 0;
2. Lgj{H1, H2} = {LgjH1, H2}+ {H1, LgjH2}, j = 1, . . . ,m;
3. d{H1, H2} ∈ annB

for all H1, H2, H3 ∈ C∞(X ) such that dH1,dH2,dH3 ∈ annB.
Proof. Assume that D is closed, i.e., satisfies (4.1). Using Cartan’s magic formula,

the closedness condition (4.1) can be written as

(5.18) 〈d〈α2 |X1〉 |X3〉+ 〈d〈α3 |X2〉 |X1〉+ 〈d〈α1 |X3〉 |X2〉
+ dα2(X1, X3) + dα3(X2, X1) + dα1(X3, X2) = 0.
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Consider H1, H2, and H3 ∈ C∞(X ), where dHi ∈ annB, i = 1, 2, 3. Let j ∈
{1, . . . ,m} and define

X1(x, y) =

[
XH1

(x)
0

]
, α1(x, y) =

[
∂H1

∂x (x)

−LTgH1(x)

]
,(5.19)

X2(x, y) =

[
XH2(x)

0

]
, α2(x, y) =

[
∂H2

∂x (x)

−LTgH2(x)

]
,(5.20)

X3(x, y) =

[
XH3(x) + ρgj(x)

ρYj

]
, α3(x, y) =

[
∂H3

∂x (x)

−LTgH3(x)

]
(5.21)

for (x, y) ∈ X × F , where Yj = ∂
∂yj

, ρ ∈ R and

XHi(x) = J(x)
∂Hi

∂x
(x), LTgHi(x) = gT (x)

∂Hi

∂x
(x).(5.22)

Thus, (Xi, αi) ∈ D, i = 1, 2, 3. Now, it is easy to see that 〈αi |Xj〉 = {Hi, Hj},
i, j = 1, 2, 3, which implies that

〈d〈α2 |X1〉 |X3〉 = {{H2, H1}, H3}+ ρLgj{H2, H1},(5.23)

〈d〈α3 |X2〉 |X1〉 = {{H3, H2}, H1},(5.24)

〈d〈α1 |X3〉 |X2〉 = {{H1, H3}, H2}.(5.25)

Moreover, we have that

αi =
∂Hi

∂x1
dx1 + · · ·+ ∂Hi

∂xn
dxn − Lg1Hidy1 − · · · − LgmHidym, i = 1, . . . , 3,

(5.26)

which means that

dαi = −
m∑
l=1

n∑
k=1

∂LglHi

∂xk
dxk ∧ dyl, i = 1, . . . , 3.(5.27)

Hence,

dα2(X1, X3) = −ρ
[
∂LgjH2

∂x

]T
XH1

= −ρ{LgjH2, H1}(5.28)

and similarly

dα1(X3, X2) = −dα1(X2, X3) = ρ{LgjH1, H2} = −ρ{H2, LgjH1}.
(5.29)

In addition, it follows that dα3(X2, X1) = 0. Therefore, from the integrability condi-
tion (5.18) we have that

(5.30) {{H2, H1}, H3}+ {{H3, H2}, H1}+ {{H1, H3}, H2}
+ ρ

(
Lgj{H2, H1} − {LgjH2, H1} − {H2, LgjH1}

)
= 0

for all ρ ∈ R, implying condition 1 for ρ = 0 and condition 2 for ρ = 1.
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Now, a direct calculation yields

α12 = iX2
dα1 − iX1

dα2 + d〈α1 |X2〉(5.31)

= −
m∑
l=1

({LglH1, H2}+ {H1, LglH2}) dyl +
n∑
k=1

∂{H1, H2}
∂xk

dxk,

from which condition 3 (and condition 2) follows directly since α12 ∈ annG0 (see
Theorem 4.1).

Before being able to give the sufficient and necessary conditions forD being closed,
we also need the following result.

Lemma 5.3. If for arbitrary H1, H2 ∈ C∞(X ) such that dH1,dH2 ∈ ann B there
holds

1. Lgj{H1, H2} = {LgjH1, H2}+ {H1, LgjH2}, j = 1, . . . ,m,
2. d{H1, H2} ∈ annB,

then {H̃1, H̃2}X×F ∈ AD for all H̃1, H̃2 ∈ AD.
Proof. Take arbitrary H̃2, H̃2 ∈ AD. From (5.17) we see that this is equivalent to

0 = bT (x)
∂H̃i

∂x
(x, y),(5.32)

∂H̃i

∂y
(x, y) = −gT (x)

∂H̃i

∂x
(x, y)(5.33)

for i = 1, 2. Let j ∈ {1, . . . ,m} and define

ĝj(x, y) =

[
gj(x)

0

]
.(5.34)

Then (5.33) can be written as

∂H̃i

∂yk
= −LĝkH̃i, k = 1, . . . ,m,(5.35)

for i = 1, 2. Now,

{H̃1, H̃2}X×F =

n∑
k,l=1

Jkl(x)
∂H̃1

∂xk

∂H̃2

∂xl
,(5.36)

so

∂{H̃1, H̃2}X×F
∂yj

= − {Lĝj H̃1, H̃2}X×F − {H̃1, Lĝj H̃2}X×F .(5.37)

Since

{H1, H2} =

n∑
k,l=1

Jkl(x)
∂H1

∂xk

∂H2

∂xl
, H1, H2 ∈ C∞(X ),(5.38)

it follows from condition 1 that

Lĝj{H̃1, H̃2}X×F = {Lĝj H̃1, H̃2}X×F + {H̃1, Lĝj H̃2}X×F ,(5.39)
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which inserted in (5.37) yields

∂{H̃1, H̃2}X×F
∂yj

= −Lĝj{H̃1, H̃2}X×F .(5.40)

Moreover, from condition 2 it follows that

bT (x)
∂{H̃1, H̃2}X×F

∂x
= 0.(5.41)

Thus, from (5.40) and (5.41) we see that {H̃1, H̃2}X×F ∈ AD.
We are now ready to present the necessary and sufficient conditions for (5.15)

defining a Dirac structure on X × F .
Theorem 5.1. The generalized Dirac structure D on X ×F as defined by (5.15)

is closed if and only if
1. [X,Y ] ∈ B for all vector fields X,Y ∈ {g1, . . . , gm, b1, . . . , bk};
2. Lgj{H1, H2} = {LgjH1, H2}+ {H1, LgjH2}, j = 1, . . . ,m;
3. d{H1, H2} ∈ ann B;
4. {H1, {H2, H3}}+ {H2, {H3, H1}}+ {H3, {H1, H2}} = 0

for all H1, H2, H3 ∈ C∞(X ) such that dH1,dH2,dH3 ∈ ann B.
Proof. The necessary and sufficient conditions for closedness of D follows immedi-

ately by combining the results in Lemma 5.1, Lemma 5.2, Lemma 5.3 and then using
Theorem 4.4.

Corollary 5.1 (B = 0). Let b(x) = 0 (no constraints) in (5.14). Then the
generalized Dirac structure D on X ×F as defined by (5.15) (with b(x) = 0) is closed
if and only if

1. [gi, gj ] = 0, i, j = 1, . . . ,m;
2. Lgj{H1, H2} = {LgjH1, H2} + {H1, LgjH2} for all H1, H2 ∈ C∞(X ),
j = 1, . . . ,m;

3. { , } satisfies the Jacobi identity.
Hence, the closedness condition (4.1) for the generalized Dirac structure on X ×

F arising from the constrained port-controlled Hamiltonian system (5.14) translates
(among other things) into strong conditions on the input vector fields gj .

Conditions 2–4 in Theorem 5.1 may be succinctly expressed by requiring that
the generalized Poisson bracket { , } of F,G ∈ C∞(X ) where dF , dG ∈ annB is
preserved by the dynamics of (5.14) for every choice of internal energy H such that
dH ∈ annB and for every f ∈ F . Indeed, requiring that

d

dt
{F,G} =

{
d

dt
F,G

}
+

{
F,

d

dt
G

}
(5.42)

for all F,G ∈ C∞(X ) such that dF,dG ∈ annB, where d
dt denotes the time-derivative

along (5.14), is equivalent to

(5.43) {{F,G}, H}+ Lg{F,G}f + Lb{F,G}λ
= {{F,H}, G}+ {(LgF )f,G}+ {F, {G,H}}+ {F, (LgG)f}

for all H ∈ C∞(X ) such that dH ∈ annB and f ∈ F . Letting H = 0 and f = 0, we
obtain

Lb{F,G}λ = 0 for all λ ∈ Rk,(5.44)



86 MORTEN DALSMO AND ARJAN VAN DER SCHAFT

which means that d{F,G} ∈ annB. Moreover, letting f = 0 leads to

{{F,G}, H} = {{F,H}, G}+ {F, {G,H}},(5.45)

which is none other than the Jacobi-identity. Thus, (5.43) amounts to

Lg{F,G}f = {(LgF )f,G}+ {F, (LgG)f} for all f ∈ F ,(5.46)

which is equivalent to

Lgj{F,G} = {LgjF,G}+ {F,LgjG}, j = 1, . . . ,m.(5.47)

The next example should give an idea of what the conditions in Theorem 5.1 imply
for the (local) mathematical structure of system (5.14).

Example 5.1. Consider the port-controlled generalized Hamiltonian system with
constraints given in (5.14). Assume that conditions 1–4 in Theorem 5.1 are all satis-
fied. By condition 1 it follows that the constant-dimensional distribution B is involu-
tive. Hence, by Frobenius’ theorem in a neighborhood of any point x0 ∈ X there exist
local coordinates (y, s) = (y1, . . . , yn−k, s1, . . . , sk), such that

annB = span {dy1, . . . ,dyn−k}(5.48)

and

B = span

{
∂

∂s1
, . . . ,

∂

∂sk

}
.(5.49)

Condition 3 implies that

∂{yi, yj}
∂sl

= 0, l = 1, . . . , k, i, j = 1, . . . , n− k.(5.50)

Hence, J(x) takes the following form in the local coordinates (y, s):

J(y, s) =

[
Jyy(y) ∗
∗ ∗

]
,(5.51)

where Jyy(y) = [{yi, yj}] is the (n−k)× (n−k) upper-left submatrix of J(y, s). From
condition 1 it also follows that [bi, gj ] ∈ B which implies that in the coordinates (y, s)
the matrix of input vector fields takes the form

g(x, y) =

[
gy(y)
gs(y, s)

]
.(5.52)

Furthermore, since

[gi, gj ](y, s) =

[
[gyi, gyj ](y)

∗
]

(5.53)

while [gi, gj ] ∈ B, it follows that [gyi, gyj ] = 0, i, j = 1, . . . ,m. Assume additionally
that the distribution B + G is constant-dimensional with dimension equal to m + k.
Then the submatrix gy(y) of g(x, y) has constant rank equal to m ≤ n − k. Thus
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(see e.g., Theorem 2.36 in [NS]), there exists a local transformation (y1, . . . , yn−k)→
(ỹ1, . . . , ỹn−k) such that

gyj =
∂

∂ỹj
, j = 1, . . .m.(5.54)

In these coordinates condition 2 amounts to

∂{ỹi, ỹj}
∂ỹl

=

{
∂ỹi
∂ỹl

, ỹj

}
+

{
ỹi,

∂ỹj
∂ỹl

}
= 0, l = 1, . . . ,m, i, j = 1, . . . n− k,(5.55)

which means that {ỹi, ỹj} is independent of the first m local coordinates ỹ1, . . . , ỹm.
Let now z = (ỹm+1, . . . , ỹn−k) and w = (ỹ1, . . . , ỹm). Then from the discussion above
we can conclude that (z, w, s) are local coordinates for X around x0 in which (5.14)
takes the form ż

ẇ

 =

[
Jzz(z) Jzw(z)

−JTzw(z) Jww(z)

][
∂H
∂z (z, w, s)

∂H
∂w (z, w, s)

]
+

[
0
Im

]
f,(5.56)

ṡ = Jsz(z, w, s)
∂H
∂z (z, w, s) + Jsw(z, w, s)∂H∂w (z, w, s)

+ gs(z, w, s)f + bs(z, w, s)λ,

e = ∂H
∂w (z, w, s),

0 = ∂H
∂s (z, w, s),

where the last equation follows from the fact that the k × k matrix bs(z, w, s) has full
rank. Note that the equation for ṡ can be left out from (5.56) because it is needed only
to determine the Lagrange multipliers λ ∈ Rk. Finally from condition 4 it follows that
the matrix [

Jzz(z) Jzw(z)
−JTzw(z) Jww(z)

]
(5.57)

satisfies the Jacobi-identity (in the (z,w)-coordinates).
Finally, in the next example we will relate the results in this paper (in partic-

ular this section) to “passivity-based control” of actuated mechanical systems with
kinematic constraints.

Example 5.2. Consider a mechanical system with kinematic constraints AT (q)q̇
= 0 as in Example 3.2. Additionally, let the system be actuated by generalized ex-
ternal forces u = (u1, . . . , um) corresponding to generalized configuration coordinates
C1(q), . . . , Cm(q). The dynamical equations of motion are given as

[
q̇
ṗ

]
=

[
0 In
−In 0

][ ∂H
∂q (q, p)

∂H
∂p (q, p)

]
+
∑m
i=1

[
0

∂Ci
∂q (q)

]
ui +

[
0

A(q)

]
λ,

yi =
[
∂Ci
∂q (q)

]T
∂H
∂p (q, p)

(
= dCi

dt (q)
)
, i = 1, . . . ,m,

0 = AT (q)∂H∂p (q, p) (= AT (q)q̇).

(5.58)



88 MORTEN DALSMO AND ARJAN VAN DER SCHAFT

This is a port-controlled generalized Hamiltonian system with constraints as in (5.14)
with external flows the vector (u1, . . . , um) of external forces, and external efforts the
vector (y1, . . . , ym) of corresponding generalized velocities. It can be verified, as in
Proposition 4.1, that the underlying generalized Dirac structure satisfies the conditions
of Theorem 5.1 (that is, is closed) if and only if the kinematic constraints AT (q)q̇ = 0
are holonomic.

Now, consider an additional port-controlled Hamiltonian system (the “controller ”)

ξ̇ = uc,

yc = ∂P
∂ξ (ξ), ξ, uc, yc ∈ Rm,

(5.59)

with Hamiltonian P . (Note that this is of the type (2.1) with J = 0, g = identity
matrix, x = ξ, f = uc, and e = yc.) Feedback interconnection as in Example 2.1 leads
to the implicit generalized Hamiltonian system q̇

ṗ

ξ̇

 =

 0 In 0
−In 0 −∂C∂q (q)

0 ∂TC
∂q (q) 0




∂H
∂q (q, p)

∂H
∂p (q, p)

∂P
∂ξ (ξ)

+

 0
A(q)

0

λ,
0 = AT (q)∂H∂p (q, p),

(5.60)

with ∂C
∂q (q) denoting the matrix with ith column ∂Ci

∂q (q). The codistribution P0 of the
underlying generalized Dirac structure can be readily seen to be given as

P0 = span {dCi − dξi | i = 1, . . . ,m}(5.61)

expressing the fact (see also Remark 3.1) that the functions

Ci(q)− ξi, i = 1, . . . ,m,(5.62)

are independent conserved quantities for the closed-loop dynamics (5.60). It follows
that along (5.60)

ξi(t) = Ci(q(t)) + ci, for all t, i = 1, . . . ,m,(5.63)

with the constants ci solely depending on the initial conditions of the “controller”
(5.59).

Substituting (5.63) into (5.60) and noting that

∂C

∂q
(q)

∂P

∂ξ
(C1(q) + c1, . . . , Cm(q) + cm) =

∂P

∂q
(C1(q) + c1, . . . , Cm(q) + cm),

(5.64)

it follows that the dynamics of the (q, p)-part of (5.60) (the original mechanical system)
are given as [

q̇
ṗ

]
=

[
0 In
−In 0

][ ∂Hnew
∂q (q, p)

∂Hnew
∂p (q, p)

]
+

[
0

A(q)

]
λ,

0 = AT (q)∂Hnew∂p (q, p),

(5.65)
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where Hnew is the “new” Hamiltonian defined by

Hnew(q, p) = H(q, p) + P (C1(q) + c1, . . . , Cm(q) + cm).(5.66)

Thus by appropriately choosing the Hamiltonian P (ξ) of the “controller sub-system”
(5.59), we may shape the Hamiltonian H(q, p) of the constrained mechanical sys-
tem (5.58) by addition of the potential energy P (C1(q) + c1, . . . , Cm(q) + cm), with
c1, . . . , cm only depending on the initial condition of (5.59) (that is, with properly ini-
tialization we may set c1 = . . . = cm = 0). This idea of shaping the internal energy is
one of the main ideas of “passivity-based control.” We have thus demonstrated that
this can be accomplished by power-conserving (in fact, feedback) interconnection of
(5.58) with a controller sub-system (5.59).

In particular, if H and C1, . . . , Cm are such that P can be chosen in such a man-
ner that Hnew as defined by (5.66) has a strict minimum at some desired equilibrium
point (q0, p0), then (q0, p0) will be a (Lyapunov) stable equilibrium of (5.65) (and, be-
cause of (5.63), also the ξ-dynamics will be stable). To be more precise we only need
the function Hnew restricted to the constraint manifold {(q, p) |AT (q)∂Hnew∂p (q, p) = 0}
to have a strict minimum at (q0, p0).

It can be verified that the underlying generalized Dirac structure of (5.60) is closed
if and only if the kinematic constraints AT (q)q̇ = 0 are holonomic. If this happens to
be the case then checking that Hnew restricted to the constraint manifold has a strict
minimum may be performed as indicated at the end of section 4.

Within the same philosophy one may pursue asymptotic stability by adding, apart
from the energy-shaping Hamiltonian controller (2.24), energy-dissipating elements
to the system. In particular, one may replace the feedback interconnection uc = y,
u = −yc as above by the power-conserving partial interconnection (with free external
flow v and external effort y)

uc = y,
u = −yc + v,

(5.67)

and then terminate this port by an energy-dissipating element

v = −∂R
∂y

(y)(5.68)

for some (Rayleigh) dissipation function R. For the asymptotic stability analysis of
the resulting closed-loop system one again must distinguish between holonomic and
nonholonomic kinematic constraints AT (q)q̇ = 0. (In fact, in the nonholonomic case
there is a fundamental obstruction to asymptotic stabilization, since Brockett’s neces-
sary conditions are not satisfied; see, e.g., [MS3] for the references.)

6. Conclusions. It has been shown that a power-conserving interconnection
of port-controlled generalized Hamiltonian systems leads to an implicit generalized
Hamiltonian system, and a power-conserving partial interconnection to an implicit
port-controlled Hamiltonian system. The crucial concept is the notion of a (gener-
alized) Dirac structure, defined on the space of energy-variables or on the product
of the space of energy-variables and the space of flow-variables in the port-controlled
case. Three natural representations of generalized Dirac structures have been treated.
Necessary and sufficient conditions for closedness of a Dirac structure in all three rep-
resentations have been obtained. This has been illustrated on mechanical systems
with kinematic constraints and constrained systems on dual Lie algebras. Canonical
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coordinates for (closed) Dirac structures have been discussed, as well as their use for
stability analysis of implicit Hamiltonian systems. Finally the theory has been ap-
plied to implicit port-controlled generalized Hamiltonian systems, such as actuated
mechanical systems with kinematic constraints, and it has been shown in particular
that the closedness condition for the Dirac structure leads to strong conditions on the
input vector fields.

Acknowledgments. We would like to thank Bernhard Maschke (Conservatoire
National des Arts et Métiers, Paris) for stimulating discussions. We also thank
Peter Crouch (Arizona State University) and Tony Bloch (University of Michigan)
for pointing out to the second author the relevance of Dirac structures.

REFERENCES

[AKN] V.I. Arnold, V.V. Kozlov, and A.I. Neishtadt, Mathematical Aspects of Classical

and Celestial Mechanics, Springer-Verlag, Berlin, New York, 1997.

[AMR] R. Abraham, J.E. Marsden, and T. Ratiu, Manifolds, Tensor Analysis, and Applica-

tions, Springer-Verlag, Berlin, New York, 1988.

[BC] A.M. Bloch and P.E. Crouch, Nonholonomic control systems on Riemannian mani-

folds, SIAM J. Control Optim., 33 (1995), pp. 126–148.

[BKMM] A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden, and R.M. Murray, Nonholonomic

mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), pp.

21–99.

[C1] T.J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), pp. 631–661.

[C2] P.E. Crouch, Handwritten notes, 1994.

[CW] T.J. Courant and A. Weinstein, Beyond Poisson structures, in Seminaire sud-

rhodanien de geometrie 8, Travaux en Cours 27, Hermann, Paris, 1988.

[D1] I. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987),

pp. 240–246.

[D2] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John

Wiley, Chichester, 1993.

[D3] P. Dirac, Generalized Hamiltonian dynamics, Canad. J. Math., 2 (1950), pp. 129–148.

[JE] D.L. Jones and F.J. Evans, Variational analysis of electrical networks, J. Franklin Inst.,

295 (1973), pp. 9–23.

[M1] A.G.J. MacFarlane, An integral formulation of a canonical equation set for non-linear

electrical networks, Internat. J. Control, 11 (1970), pp. 449–470.

[M2] B.M. Maschke, Elements on the modelling of multibody systems, in Modelling and

Control of Mechanisms and Robot Systems, C. Melchiorri and A. Tornambe, eds.,

World Scientific Publishing Ltd., River Edge, NJ, 1996, pp. 1–38.

[MBS] B.M. Maschke, C. Bidard, and A.J. van der Schaft, Screw-vector bond graphs for

the kinestatic and dynamic modeling of multibody systems, Dynamic Systems and

Control, 55(1994), pp. 637–644.

[MR] J.E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Springer-

Verlag, Berlin, New York, 1994.

[MS1] B.M. Maschke and A.J. van der Schaft, Port-controlled Hamiltonian systems: Mod-

elling origins and system theoretic properties, in Proc. IFAC Symp. NOLCOS, Bor-

deaux, France, 1992, M. Fliess, ed., International Federation of Automatic Control,

pp. 282–288.

[MS2] B.M. Maschke and A.J. van der Schaft, System-theoretic properties of port-controlled

Hamiltonian systems, in Systems and Networks: Mathematical Theory and Appli-

cations, vol. II, Akademie Verlag, Berlin, 1994, pp. 349–352.

[MS3] B.M. Maschke and A.J. van der Schaft, A Hamiltonian approach to stabilization of

nonholonomic mechanical systems, in Proc. 33rd IEEE CDC, Orlando, FL, 1994,

IEEE Control Systems Society, pp. 2950–2954.

[MSB1] B.M. Maschke, A.J. van der Schaft, and P.C. Breedveld, An intrinsic Hamiltonian

formulation of network dynamics: Non-standard Poisson structures and gyrators,

J. Franklin Inst., 329 (1992), pp. 923–966.



MATHEMATICAL STRUCTURES IN PHYSICAL SYSTEMS 91

[MSB2] B.M. Maschke, A.J. van der Schaft, and P.C. Breedveld, An intrinsic Hamiltonian
formulation of the dynamics of LC-circuits, IEEE Trans. Circuits Systems I Fund.
Theory Appl., 42 (1995), pp. 73–82.

[NS] H. Nijmeijer and A.J. van der Schaft, Nonlinear Dynamical Control Systems,
Springer-Verlag, Berlin, New York, 1990.

[O] P.J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Springer-
Verlag, Berlin, New York, 1993.

[OS] R. Ortega and M.W. Spong, Adaptive motion control of rigid robots: A tutorial,
Automatica J. IFAC, 25 (1989), pp. 877–888.

[S] J.J. Slotine, Putting Physics in Control: The Example of Robotics, IEEE Control
Systems Mag., 8 (1988), pp. 12–18.

[SM1] A.J. van der Schaft and B.M. Maschke, On the Hamiltonian formulation of non-
holonomic mechanical systems, Rep. Math. Phys., 34 (1994), pp. 225–233.

[SM2] A.J. van der Schaft and B.M. Maschke, The Hamiltonian formulation of en-
ergy conserving physical systems with external ports, Arch. für Elektronik und
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