
 

 

 University of Groningen

Partial Symmetries for Nonlinear Systems
Nijmeijer, H.; Schaft, A.J. van der

Published in:
Mathematical systems theory

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1985

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Nijmeijer, H., & Schaft, A. J. V. D. (1985). Partial Symmetries for Nonlinear Systems. Mathematical systems
theory.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-06-2022

https://research.rug.nl/en/publications/b56b8e75-1e77-4b34-8388-e04f1aac270e


Math. Systems Theory 18, 79-96 (1985) Mathematical 
Systems Theory 
©1985 Springer-Verlag New York Inc. 

Partial Symmetries for Nonlinear Systems 

H. Nijmeijer and A. J. van der Schaft 

Department of Applied Mathematics, Twente University of Technology, P.O. Box 217, 7500 AE 
Enschede, The Netherlands 

Abstract. We define the concept of partial symmetry for nonlinear systems, 
which is an intermediate notion between the concepts of symmetry and 
controlled invariance. It is shown how this concept can be used for a 
decomposition theory of nonlinear systems and is particularly suited as a 
framework for treating input-output decoupling problems. 

1. Introduction 

The notion of symmetry of a dynamical system has been a subject of long 
standing interest in physics and mathematics. Roughly speaking, a dynamical 
system possesses a symmetry if its dynamics are invariant under a (coordinate)' 
transformation or a family of (coordinate) transformations. The existence of such 
a symmetry implies usually that we can "decompose" the system into subsystems 
of lower dimension, or that we can "reduce" the system to a (quotient) system of 
lower dimension. In this way the knowledge of the existence of symmetries can be 
very useful for the qualitative understanding, or even the explicit description of 
the dynamics of a system. This becomes very clear in the case of Hamiltonian 
systems where a classical theorem of Noether asserts that symmetries are in 
one-to-one correspondence with the existence of conservation laws of a system (cf. 
[1, 21). 

Usually the notion of symmetry is only defined for dynamical systems 
without inputs and outputs (for instance in the Hamiltonian case systems without 
external forces, cf. [1, 2]). In recent publications ([15, 16]) the notion of symmetry 
is also defined for systems with inputs and outputs and a generalization of 
Noether's theorem is obtained. This notion of symmetry is further explored by 
Grizzle and Marcus ([4, 3]), by using in particular families of symmetries 
generated by the action of a Lie group. Moreover in these papers the role of 
symmetries in obtaining a local or global decomposition of a system into smaller 
subsystems is emphasized. 



80 H. Nijmeijer and A. J. van der Schaft 

In another avenue of recent research the concept of controlled invariance for 
(nonlinear) systems has been used in deriving a (local) normal form of a system 
([5]). The main tool in this case is the notion of a (locally) controlled invariant 
distribution on the state space of a system. If a system possesses such a (locally) 
controlled invariant distribution then, possibly after applying feedback, the 
system can be (locally) factored out to obtain a lower dimensional quotient system 
([10]). Furthermore controlled invariant distributions and in particular the special 
subclass of controllability distributions have been successfully used for the 
input-output decoupling of a system ([8, 9, 11]). Here one tries to decompose (by 
feedback) the system into a number of lower dimensional subsystems which are 
from the input-output point of view independent. 

The purpose of this paper is to fill the gap between the concepts of symmetry 
on the one hand and controlled invariance on the other hand. In order to do so 
we introduce the notion of partial symmetry, which is a weaker notion than 
symmetry, but gives rise to a (locally) controlled invariant distribution. Since this 
distribution is generated by the action of a Lie group this also enables us to give a 
more "algebraic" treatment of controlled invariance and in particular of the 
input-output decoupling problems which will be considered in Section 4. In fact 
the concept of partial symmetry seems the natural framework for the (global) 
decompositions of systems aimed at in input-output decoupling. 

Apart from symmetry and controlled invariance there still exists another 
approach to the investigation of structural properties of nonlinear systems. This 
approach is based on the study of the Lie algebra of vectorfields generated in a 
certain way by the system (the "controllability algebra"). In an innovative paper 
by Krener ([7]) the structure of this Lie algebra (in the case it is finite-dimen- 
sional!) is employed to derive a decomposition of the system into lower dimen- 
sional systems. The sum of the dimensions of these systems is however in general 
larger than the dimension of the original system. This problem is not met in the 
work of Respondek ([12]), where Lie algebraic conditions are stated in order to 
give a parallel and/or  cascade decomposition of the system by using state space 
transformations. The controllability algebra is obviously not invariant under 
feedback, in contrast with the notions of symmetry and partial symmetry which 
we will use in this paper. 

Some Notation 

A coordinate free description of a general nonlinear system 

Yc = f ( x ,  u) (1.1) 

can be given in the following way, see for instance [10]. Let M be an n-dimen- 
sional state space manifold with local coordinates x. Let furthermore B & M be 

an n + m-dimensional fiber bundle over M with projection ~r. We can extend the 
local coordinates x for M to local coordinates (x, u) for B. The nonlinear system 
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is now given by a smooth mapping f :  B ~ TM such that the diagram 

f 
B , T M  

M 

(1.2) 

commutes. 
In local coordinates (x, u) this yields (1.1). A special but important case is 

where B is a vector bundle and f is an affine map. Then we obtain a 
representation of the form 

m 

2 = A ( x ) +  ~_, uiBi(x ) (1.3) 
i=1 

with A and B i (locally) defined vectorfields on M. We call this an affine (or 
input-linear) system. 

2. Symmetries and Partial Symmetries 

In this section we define the notion of symmetry and partial symmetry for 
nonlinear control systems. For a more general treatment of symmetries including 
the inputs and the outputs of the system we refer to [15, 16]. 

The (partial) symmetries which we will deal with are generated by the action 
of a Lie group. 

Definition 2.1 (see for instance [1]). Let M be a smooth manifold. An action of 
a Lie group G on M is a smooth mapping ~ : G x M ~ M such that 

(i) for all x ~ M, ~ (e, x) = x 
(e is the identity of G) 

(ii) for all x e M, ~(g ,  ~(h ,  x)) = ~(gh, x) 
for all g, h ~ G (gh is the "product"  in G) 

We denote for each g ~ G the mapping O(g, .): M ~ M by ~g, and the mapping 
• (-, x): G ~ M, with x ~ M, by • x. 

We use the following additional terminology. 

Definition 2.2. Let • be an action of G on M. For x ~ M the orbit of x is given 
by 

The space of orbits is denoted by M/G.  The projection Pm: M ~ M / G  is defined 
by x --, G.x.  The action is free if for each x E M, the map ~x is one-to-one. The 
action is proper if ~ : G X M ~ M x M, defined by ~(g ,  x) = (x, ~(g ,  x)) is a 
proper mapping, that is, if K c M x M is compact, then q) - l (K)  is compact. 
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The following statements can be proved (cf. [1]): 

Proposition 2.3. Let 09 be an action of G on M. 
a. I f  09 is proper, then the orbits G .x are closed submanifolds of M. 
b. I f  09 is free and proper, then 09x is an injective immersion. 
c. I f  09 is free and proper, then M / G  is a smooth manifold such that 

Pm : M ~ M / G  is a surjective submersion. 
After these preliminaries we give the following definition of a symmetry 

introduced in [15, 16] and followed up in [4, 3]. 

Definition 2.4. Let Z(M,  B, f )  be a nonlinear control system. Let G be a Lie 
group such that 0 : G x B ~ B and 09 : G x M ~ M are group actions. This pair 
of group actions is denoted by (G,O, 09). Then (G,O,09) is a symmetry for 
Y~ (M, B, f )  if for each g ~ G the following diagram 

B , B 

~r T M  • T M  ~r 

/71"M 09g* ~MX 
M • M 

% 

commutes, i.e. 

~r o Og = @g o Ir (2.1 .a) 
for all g ~ G. 

f o Og = 09g. o f (2.1.b) 

Example. The simplest example of a symmetry is given by a pair (S, R)  of 
complete vectorfields S on M and R on B such that the diagram 

B 

T M  
/ 

M 

" B  
R, 

, T M  
s,. ". .  

M 
s, 

d 
commutes for all t ~ R, with R t and S t the flows of R and S (i.e. :-~tR,(b)= 

R ( R , ( b ) ) ,  a s t ( x  ) = S(St(x))) .  In this case the group G equals R and the group 
/ 

actions @ : R x M --* M, O : R X B ~ B are given by @(t, x) = St(x), ®(t, b) = 
R t ( b  ). This type of symmetry is extensively studied in [15, 16]. 
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In the sequel we will restrict ourselves to pairs of group actions (G,O, ~ )  
such that 69 and 0 are both proper and free (Actually it is easy to prove that if 
is proper and free, then 0 is necessarily also proper and free (cf. [4])). The orbits 
of 0 on B define a foliation on B, and the orbits of 69 define a foliation on M 
(the leaves of the foliations are the orbits of the group actions). Since 0 and 69 
are free the dimension of the leaves of both foliations is equal to the dimension of 
G. Corresponding to these foliations there exist involutive distributions D o on B 
and D~ on M (the maximal integral manifolds of D o and D~ are the orbits of O, 
respectively 69). The dimension of both distributions is constant and equal to the 
dimension of G. 

We now come to the definition of a partial symmetry. Let f :  B ~ TM and D 
be a distribution on M. Then we denote by f (mod D) the map attaching to a 
point (x, u) • B the rest class f ( x ,  u)+ D contained in TM. 

Definition 2.5. Let Z(M,  B, f )  be a control system. Let 19 : G x B ~ B and 
qb : G x M ~ M be group actions. Then we call (G, O, 69) a partial symmetry if 
for each g e G 

7roOg = 69go~r (2.2.a) 

f o Og(mod D~,) = (69g), o f ( m o d  D~) (2.2.b) 

Remark. In comparison with Definition 2.4 we have just weakened equation 
(2.1.b) to (2.2.b) by requiring equality modulo the distribution D~,. 

Let (G,0 ,69)  be a partial symmetry for Y~(M, B, f ) .  Since it will be a 
standing assuml~tion that 0 and 69 are free and proper, by Proposition 2.3.c, 

= B / G  and M = M / G  are smooth manifolds with submersive smooth projec- 
tions Pb : B ~ B and Pm: M ~ 37/. Moreover the following holds 

Proposition 2.6. rr : B ~ M induces a smooth mapping (r : B ~ ill such that 

Pb 
b 

cr (r 

Pm 
M M 

commutes, and B ~ )(4 is a fiber bundle with standard fiber equal to the standard 
fiber of B. In fact B -% M is diffeomorphic to the pullback bundle (over P,n) of 
~ .  

Proof Since rr is by (2.2.a) equivariant ([1, p. 264]) with respect to the actions 69 
and O, ~r projects to a smooth mapping ~: B - - , M  ("passage to quotients"). 
Since ~r is a surjective submersion it follows that ~ is a surjective submersion too. 
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From the definition of the differentiable structure on 37/and J~ it follows that 

2, 37/ is a fiber bundle with standard fiber equal to the standard fiber of 
B ~ M (since dim D o = dim D~). [] 

Remark. Therefore the condition (2.2.b) for a partial symmetry 

f o ®g(mod D~) = (~g),O f (mod Do) 

can be also stated as 

(pm) ,o fo®g = (pm),O(~g) ,Of .  

Actually not only the fiber bundle B -% M projects a fiber bundle/~ -~ 37I but the 
whole control system projects to a control system 2(37/,/~, f ) :  

Proposition 2.7. Let (G, O, ~)  be a partial symmetry for a nonlinear control 
system ~( M, B , f  ) ( with 0 and d9 free and proper). Then there exists a smooth 
mapping f :  B ~ TM such that the diagram 

Pb 
B 

M 

Pm 

commutes. 

Proof. Define f by f (b) := (pm), f(b) ,  with b e pbl(b). It follows from (2.2.b) 
that f is a well-defined smooth mapping which makes the diagram commutative. 

[] 

Remark 1. The control system E(37/, B, f )  as above is called a quotient system 
(see [10]). 

Remark 2. Of course, Propositions 2.6 and 2.7 hold afortiori for symmetries 
(G, O, ~)  (Definition 2.4.) 

We now investigate what the existence of a symmetry or partial symmetry 
implies for the structure of the control system. First we make a local analysis. Let 
(G, ®, ~)  be a (partial) symmetry, and let D o and D~ be the corresponding 
distributions on B and M. 
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Since D~, is integrable we can locally choose coordinates x = ( x  1 . . . . .  Xn) for 

{ 0  O }, with k < n (Frobenius).Furthermore we M such that D~, = span ax 1 , . . . ,  Ox k 

can consider the coordinates (xx,.. .  , x , )  for M as functions on B (by identifying 
them with x i o ~r), and extend this set of functions to coordinates (x, u ) =  
(xx , . . . , xn ,  ul , . . . ,Um) for B. We call such coordinates for B fiber respecting. 
Moreover since D o is integrable and 7r.D o = D~, (this follows from ~r o 19g = 
4 g  o ~r,Vg), we can choose the coordinate functions ul . . . . .  um in such a way that 
with respect to the coordinates (x, u) (remember dim D o = dim D~) 

O a ) (see[10]) D o = span Ox I . . . . .  Oxk 

Denote for simplicity x 1 = (xl , . . .  , Xk) and x 2 = (xk+ 1 . . . .  , x , ) .  Then, if (G, O, 4 )  
is a partial symmetry, it follows from f o Og(mod D~)=  (4g) .  o f (mod D~),Vg 
G, that the system has the following normal form 

~1 = f l ( x l  ' X 2,/,/) 

JoE = f 2( x2, U) (2.3) 

with f = ( f l ,  f2)  in the above coordinates (x a, x2). 
A fortiori this normal form holds if (G, O, 4 )  is a symmetry. However in this 

case we can say more following [3, 4]. Let the center (the maximal abelian sub 
group) of G be/-dimensional (l < k). Then it is easily seen that we can choose the 

0 0 
coordinates (xD.. .  , x~) in such a way that the vectorfields - -  - -  are the 

OX 1 " ' "  OXt 
images of left-invariant vectorfields on G under the action 4,  i.e. there exist 
independent vectors ~1 . . . .  , ~t in T~G such that for every x in the coordinate 
neighbourhood 

O = _d 4 ( e x p t ~ i , x ) l t = o ,  i = 1 , . . . , l .  
Ox i dt 

where exp: T e G ~ G  is the usual exponential map. Then, if (G,O, 4 )  is a 
symmetry, f o Og = (4g) ,  of ,  for each g ~ G, implies that the system has the 
following more specialized normal form 

~1 =f~ (x,+~ ..... x.,u) 

x, =?, (~,+~ ..... Zn, U) 
"Xl+l =fl+x (Xl+l . . . . .  x , ,  u) 

Xk ~*fk (Xl+]. . . . . .  Xn~ U) 
"~k+l = f k + l ( X k + l  . . . . .  Xn, U) 

~. =~. (x~+l ..... x.,u) 

(2.4) 
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In particular if G is abelian ( / =  k) we can choose the coordinates x 1 = (xl . . . . .  x~) 
in such a way that the system has the form 

2 1 = f l ( x 2 ,  u) (2.5) 

jc2= f 2 ( x 2 ,  u) 

For a global analysis we make use of some results obtained in [4]. We define 
feedback as a bundle isomorphism from B to itself (cf. [9, 15]). So feedback is a 

a 
diffeomorphism a : B  ~ B such that the diagram B B commutes. 

M 
We call a control system Z(M,  B, f )  feedback equivalent to another control 

system Z'(M, B, f ' )  if there exists a feedback a such that f '  = f o a (cf. [10, 16]). 
The following proposition is immediate (cf. [4]). 

Proposition 2.8. Suppose Y.(M, B, f )  has a (partial) symmetry (G, O, d~). Let 
be another G-action on B satisfying ~r o ~ = dpg o 7r, Vg ~ G. Then Z is feedback 
equivalent to some system having a (partial) symmetry (G, xt ', (P) if and only if 
there exists a feedback a : B ~ B satisfying f o Og o a = f o a o 41~, Vg ~ G, in the 
case of a symmetry, or, f o Og o a(mod Do) = f o a o ~g(mod Do), Vg ~ G, in the 
case of a partial symmetry. 

A sufficient condition for the existence of a feedback a is stated in the 
following 

Proposition 2.9. Take the same assumptions as in Proposition 2.8. Furthermore 
suppose that M is diffeomorphic to M / G  x G. Then there exists a feedback a 
satisfying Og o a = ot o 4lg, Vg ~ G. 

Remark. In [4] this proposition is proved for trivial bundles B = M x U, but the 
proof is easily generalized to arbitrary fiber bundles. 

For the global analysis of the structure induced by the existence of a 
symmetry or a partial symmetry we will now make the following rather severe 
assumptions following [4]: 

1. B is trivial, i.e. B = M X U, with U a manifold, 
2. M is diffeomorphic to M / G  X G. 
Let now (G, O, ~ )  be a (partial) symmetry for the control system Z(M,  B, f ) .  

Consider the G-action ,t, on B ( = M × U) defined by 

• g ( m , u )  = ( O g ( m ) , u )  m ~ M , u  ~ U 

It is clear that ~r o "1" 3 = ~g o ~r. Hence by propositions 2.8, 2.9 there exists a 
feedback a such that Z(M,  B, f )  is feedback equivalent to the control system 
Z ' ( M,  B , f ' ) ,  with f ' = f  o a, having (partial) symmetry (G ,q ,  ~). Since M--- 
M / G  x G we can identify a point m ~ M with a point (y,  g) ~ M / G  × G. Then 
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if (G, O, gP) is a symmetry we obtain the following global normal form for the 
system E'(M, B, f ' ) .  The system equations ~ = f ' (x ,  u) take the form (see [4]) 

j:=f'(y,u) (2.6) 
= z e g . ,  

with v = h(y, u) and .C#g the left multiplication on G. Here f '  is the "quotient 
mapping" of f '  (see Proposition 2.7), while the mapping h is further specified in 
[4]. We notice that both mappings f '  and h do not depend on g. 

Similarly, if (G, 0, ep) is only a partial symmetry we obtain the following 
normal form for ~ = f ' (x ,  u) 

p= f '(y,u) (2.7) 

with h a certain mapping generally depending on g. Schematically we summarize 
the situation as follows (cf. [3, 4]). 

Symmetry. Y.(M, B, f ' )  has the form 

static I v system on G ] g 
nonlinearity h > ~ = T ~ v ) e--g 

system I 
on M/G ) 

I Y 

Partial Symmetry. Y~(M, B, f ' )  has the form 

I system on G I ) 

system 
on M/G 

By taking the feedback a into account one easily obtains similar decompositions 
of the original system Z(M, B, f ) .  

3. Connections with Controlled Invariance 

Let (G, 0, ~P) be a partial symmetry for a nonlinear control system ~(M, B, f )  
and let the distributions D o and D o be as before. Recall the definition of the 
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prolongation b of an involutive distribution D of constant dimension on M (see 
[10]). In local coordinates b is given as follows. By Frobenius' Theorem we can 

( 0  0 / 
choose coordinates ( x l , . . . ,  x , )  for M such that D = span Ox 1 , . . . ,  Ox k , k < n. 

Then b is the distribution on TM locally given by 

0 0 0 0 } 
b = span Ox 1 . . . .  ,Ox  k,  061 . . . .  ,O~k 

Here (X 1 . . . . .  Xn, Jq , ' " ,  JG) denote coordinates for TM with 2i: TM --, R defined 
by 2i(v ) = dxi(v ) for v ~ TM. 

Recall furthermore that an involutive distribution D of constant dimension 
on M is called locally controlled invariant w.r.t, the control system E(M, B, f )  if 
locally around each point on M there exists an involutive distribution E of 
constant dimension on B such that (see [101) 

1. 7 r , E = D  and d i m E = d i m D  

2. f , E c b  (3.1) 

We obtain 

Proposition 3.1. Let (G, ®, q5) be a partial symmetry for E(M, B, f ). Then: 
t r . D  o = D~, dim D o = dim D~ and f . D  o c D~. Hence D~ is locally controlled 
invariant. 

Proof ~r , D o = D~ follows from (2.2.a), while f , D e = D~ follows from differen- 
tiating (2.2.b) along curves t ~ g(t)  in the Lie group G. [] 

We conclude that a partial symmetry, and a fortiori a symmetry, yields a 
locally controlled invariant distribution D~. This distribution however has a 
richer structure than a general locally controlled invariant distribution D, because 
of the following reasons: 

1. The distribution E on B such that dim E = dim D, ~r,E = D, f , E  c D is 
globally defined if D = D~, with (G, O, ~)  a partial symmetry. Indeed E = D o. 

2. The distributions D~, and D o have a special structure, being generated by 
a group action. In fact D, viewed as a subbundle of TM, is a trivial bundle over 
M, isomorphic to M × g (g is the Lie algebra of G). The same applies to D o. 

3. If • and O are free and proper then M / G  and B / G  are well-defined 
smooth quotient manifolds. 

We recall from [10] that a necessary and sufficient condition for an involutive 
distribution D of constant dimension on M to be locally controlled invariant is 
that D satisfies 

f , ( ~ r , l ( D ) )  c D + f , (Aeo) (3.2) 

where he 0 C TB is the vertical tangent space of B, i.e. A~o(b ) = ( X  ~ TbBI~r,X= 
0}, Vb E B. In fact this condition implies the local existence of a distribution E 
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on B satisfying (3.1). If we assume that D satisfies (3.2) and is generated by a 
group action we can say more: 

Proposition 2.1. Let d~ : G X M ~ M be a group action (free and proper ). Let D~ 
be locally controlled invariant (i.e. satisfies (3.2)). Assume that G is simply 
connected. Then there exists a globally defined distribution E on B such that 

f , E  c D~ 

r r , E  = D a n d d i m E  = d i m D ,  (3.3) 

Furthermore assume that E defines a horizontally complete connection ( cf. [10]) in 
the bundle B above every leaf of the foliation corresponding to dp. Then there exists a 
group action 0 : G x B ~ B (free and proper ) such that E = D o. Hence ( G, O, ~ ) 
is a partial symmetry. 

Proof. M / G  is a smooth manifold such that p m : M ~  M / G  is a smooth 
submersion. Because D~ is locally controlled invariant E satisfying (3.3) exists 
locally. Since G is simply connected the leaves of the foliation of M induced by 
D ,  are also simply connected. Then it follows (see [6]) that E exists globally. 
Finally we construct 0 : G × B ---, B as follows. Let g ~ G and b ~ B. Denote the 
maximal integral manifold of E through B by F. Now there exists a unique point 
b ' ~  F such that ¢r(b')= ~g(~r(b)). (The existence follows from the fact that E 
defines a horizontally complete connection, and so we can lift every curve in a 
leaf of D~, to a curve in B. The uniqueness follows from G being simply 
connected). Then define Og(b) = b'. It is easy to see that Og is a smooth group 
action. [] 

Remark.  In the next section we will restrict ourselves to affine (or input-linear) 
systems ~ = A ( x ) +  B(x )u .  In this case the distribution E is an affine connection 
on B (above every leaf) given by tangent vectors of the form 

ax--7 + [h,(x)+ 

where the h~ and Kg satisfy certain integrability conditions (cf. [10]). Such affine 
connections are automatically horizontally complete. So in this case we do not 
have to make extra assumptions in order to define O such that E = D o. 

The contents of the last proposition are related to the notion of global 
controlled invariance. Recall ([10, 16]) that we call a distribution D on M 
globally controlled invariant if there exists a horizontal involutive distribution H 
on B (horizontal means dim H =  dim M and ~ r , H =  TM, i.e. an integrable 
connection cf. [10]), such that 

f,(~;l(o)nn) c D (3.4) 
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Proposi t ion 3.3. Let ( G, (9, ~ ) be a partial symmetry. Suppose that the bundle 
[~ = B / G  admits a horizontal involutive distribution [t. Then D~ is globally con- 
trolled invariant. 

Proof There exists a unique horizontal involutive distribution H on B such that 
( p b ) , H  = [1 and ker(Pb) , N H = D o. This distribution H does the job. [] 

4. Decom p os i t i on  and Partial Symmetr ies  

In this section we will restrict ourselves to smooth affine nonlinear systems 
Z(M,  B, f ) :  

m 

k = A ( x ) +  E B i ( x )u ,  = A ( x ) +  B ( x ) u  (4.1) 
i=1  

It is assumed that the distribution A 0 -= Span(B1,.. .  , B m } has constant dimen- 
sion m on M. Our goal is to discuss here the relation between partial symmetries 
and decomposition of nonlinear systems. In our context decomposition can be 
understood in three different ways: 

1. algebraically: The group action (G, (9, ~ )  has a refined algebraic structure. 
2. geometrically: The distributions D O and De induced by a partial symme- 

try possess a special geometric structure. 
3. analytically: The normal form (2.3) associated with a partial symmetry 

(G, O, ~)  has a more detailed structure. 
The second characterization enables us to fully exploit the recent results on 

input-output decoupling problems of a nonlinear system, see [8, 11, 12, 13]. It is 
our belief that the notion of partial symmetry is a natural framework for the 
(global) study of these noninteracting control problems. 

To start with, we assume there is given a Lie-group G together with closed 
Lie-subgroups G1,..., G~. Let ~b be a free and proper action of G on M. Then ~b 
induces free and proper actions ~i of Gi on M by 

~ ,  = ~16 , ,  i = 1 . . . .  , k .  (4.2)  

Suppose that there exist partial symmetries (G1, 01, ( I )1)  . . . . .  (Gk, Ok, ~b~) for the 
affine system Y.(M, B, f )  given by (4.1). Our first results treats the simplest case, 
where the subgroups G 1 . . . . .  G k are 'independent', i.e. 

G = G 1 ~ ' ' '  ~ G  k. (4.3) 

L e m m a  4.1. Let G, G 1 . . . . .  G k be Lie-groups satisfying (4.3), with proper and free 
group actions d~,g~ 1 . . . . .  ~k satisfying (4.2). Let (G1, Ol, qbl), . . . , (Gk,Ok,~k) be 
partial symmetries for the strongly accessible ( cf. [14]) system (4.1). Then there 
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exists a partial symmetry (G, O, ¢b) for (4.1) tf 

A0 = E A0 N Do .  (4.4) 
i E k  

Proof. By the fact that d~ : G × M ~ M is a free action and while (4.3) holds, it 
follows that the induced involutive distributions D%, .. . .  D% are independent, cf. 

[13, 8], i.e. the intersection of distinct unions of Do's is zero ( ~ Do, n ~ D% = 0 
i ~ l  j ~ J  

for I, J c k, I n J = O ) .  Notice that d im(Do)  = dimGg, i ~ _ k. 
From the strong accessibility of (4.1) and the fact that h 0 = ~ h 0 n De, c 

D O it follows, see [16], i e_k 

d im(D o)  = d im(TM) = n, (4.5) 

with TM the maximal distribution on M. Furthermore the distributions 
Do, ... . .  Dok are simultaneously integrable, see [13], therefore 

TM = D O = Dol~ . . .~D,~k  , (4.6) 

cf. [8, 13]. 
In order to prove that there exists a partial symmetry (G, O, ~ )  for (4.1) we 

only need to construct the free and proper action O : G × B ---, B. But the so-called 
noninteracting condition (4.4) guarantees that the distributions Do1,... , Dok (all 
being locally controlled invariant, cf. section 3) are compatible, i.e. there locally 
exists a state feedback for the system (4.1) such that each of the distributions 
t~.~ . . . . .  Dok is invariant for the modified system (remark (iii), p. 17 of [11]). From 

and proposition 3.2 (also remark after proposition 3.2) it now follows that 
there is a free and proper group action ep : G × B --, B. [] 

Remark. It is emphasized that in general OIG ~ 4: O,. 

Corollary 4.2. Under the conditions of lemma 4.1 the normal form (2.3) associated 
with the partial symmetry ( G, O, gP ) has the following detailed structure: 

~1 =AI(x1) _[_ ~l(x1)ul 

X i ='A~i(x i) ~ - B i i x i ) u i  

)ok ='A'k(x $ i  ix )u 

Proof. Because the independent distributions /)ol, . . . ,  Dok are simultaneously 
integrable we may choose local coordinates x = (x 1 . . . . .  x n) = (x 1 . . . . .  x k) such 
that, cf. [13], 

Oo ; span( ) ,47  

The result now follows from [8]. [] 
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Our second result in this context deals with the situation that the closed 
Lie-subgroups G1,..., G k are no longer independent. Perhaps somewhat surpris- 
ingly condition (4.3) may be replaced by the much weaker version (U is the 
set-theoretic union) 

G = G 1 t . ) . . ,  k.)G k. (4.8) 

Obviously we still insist on the constraint that the free and proper actions 4~ of 
G i on M are induced by the action 4, i.e. 

4 i = 41o,, i ~ k .  (4.9) 

Notice that in contrast with (4.2) and (4.3), the constraints (4.8) and (4.9) have 
certain implications for the actions 4 i, i ~ k. For example 4 i and 4j coincide on 
the subgroup G i A Gj, i, j ~. k. 

Lemma 4.3. Let G be a Lie group with closed Lie subgroups G1,..., G k, satisfying 
(4.8), with proper and free actions 4, 4 1 , . . . ,  4 k satisfying (4.9). Let 
(G1, 6)1, 41),. . .  , (Gk, Ok, 4k) be partial symmetries for the strongly accessible sys- 
tem (4.1). Then there exists a partial symmetry (G, 6), 4 )  for the control system 
(4.1) if 

A o = Y'~ h o fq De .  (4.10) 
i ~ k  

Proof. This result follows the same lines as lemma 4.1. The basic observation is 
that (4.10) is the necessary and sufficient condition for compatibility of the 
distributions D¢I . . . . .  D~,k, see [11, 12]. In the same way as in lemma 4.1 we may 
conclude that there exists a free and proper action 4 : G × B ---, B. [] 

Remark. As in Lemma 4.1 the involutivity of the distribution ~ De,, I c k, is 
i E I  

a direct consequence of the group action 41 E c," ~ Gi x M ~ M. In the geo- 
~EI i E I  

metric treatment of input-output decoupling problems this integrability issue is 
hard to solve, see [11, 12]. 

Corollary 4.4. Under the conditions of lemma 4.3 the normal form associated with 
the partial symmetry ( G, 0,  4 ) has the following detailed structure 

3~ 1 - -Al (x l )  + BI(x1)u 1 

=2ix') 

"jc k = ~kixk ) + Bkixk)uk  

 k+l= A(x I .... ,xk+l)+ E 
i E m  

Proof. See [11, revised version]. [] 
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Up till now we assumed that a group action of G on M was already given. A 
more general question deals with the problem of first defining an action of G on 
M, given the actions of G~ on M and afterwards constructing the action of G on 
B. The following result should be considered as the preliminaries for lemmas 4.1 
and 4.3. 

Lemma 4.5. Suppose (G 1, O1, (I)1) . . . . .  (G k, O k, Ok) are partial symmetries for the 
strongly accessible affine system (4.1). Suppose that the distributions D% ... . .  D~k 
are independent and simultaneously integrable. Then there exists a group action 
O" G × M o M with G =Ga~ . . . ~G k and o l c  =Oi, i ~ k .  

Proof. From the fact that the distributions D%,..., D% are simultaneously 
integrable it follows that for gi~G~ the map O ~ ( g ~ , . ) : M ~ M  leaves the 
distribution D% invariant, i, j ~ k. 

l o 

integral manifolds of DO. 
3 

Namely, while D~ + D~ is involutive, we have that there is a well defined 
• . . i j 

distribution D~, on M / G j = M / D ~ j  such that pj.(D~,)= b,~,, where pj: M--* 
M/Do j  is the corresponding projection• Notice that the integral manifolds of D~,, 
are diffeomorphic to the integral manifolds of D~, (D~c and D% are independent). 
Therefore there exists a well defined Lie-group action ~j : Gj × M / D O  i ~ M / D O  i 
by 

~j ( g j, x mod D., ) = Oj ( g j, x )mod D , .  (4.11) 

Notice that the above procedure also works for more than two distributions D~, 
and D~. 

Ne~t we come to the definition of O: G × M ~  M, where G = GI~ • • • ~G~. 
Each g ~ G has a unique representation as 

g = gl + ' ' "  +gk, wheregi ~ Gi, i ~ k .  

Define 

@(g,-)  = ~ l (g l ,~2(g2  .. . . .  ~k_ l (gk_ l ,~k(gk , ' ) ) ) ) .  (4.12) 

It is now easy to verify that • is a group action of G on M, which is again proper 
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and free (the actions 09~ of G~ on M are proper and free) and moreover satisfy 

091c, = 09i, i ~ __k. (4.13) 

Also, because 09i(g~,-) leaves the distribution D% invariant, we may replace the 
order of terms in the right-hand side of (4.12) in a~ arbitrary way. [] 

Putting together lemrna 4.1 and lemma 4.5 we arrive at 

Corollary 4.6. Suppose (G 1, 0 1, 091) . . . . .  (Gk, Ok, 09k) are partial symmetries for 
the strongly accessible system (4.1). Suppose that the distributions are independent 
and simultaneously integrable. Then there exists a partial symmetry (G, 19, dg ) for 
(4.1), with G = G I ~  . . .  OG k and 091a=09i, i ~ k, if 

A o = Y'. A o ¢q Do.  (4.14) 
i ~ k  

Remark. We note that in fact the strong accessibility assumption in the forego- 
ing lemmas is superfluous. This is most easily seen by reducing the state space by 
factoring out the 'uncontrollable part'. 

Next we generalize the foregoing for the case that the Lie-groups G~ . . . . .  G~ 
are no longer independent. So we will start with a Lie-group G with closed 
Lie-subgroups G 1 . . . .  ,G k. As we have seen in lemma 4.3 the simultaneous 
integrability of the distributions Box . . . .  , Dok (09~" G/× M ~ M group actions), 
i.e., for all i ~ k is ~ Do, involutive, plays a crucial role. Independency of the 

i ~ l  
G~'s is not a sufficient condition for simultaneous integrability as can be seen 
from the following example. 

Example 4.7. Let G =  SO(3) and its Lie algebra g =  so(3). Define the Lie 
subalgebras gl and g2 as [01 ] [00 ] 

gl = span -1-  0 , ga = span 0 0 0 . 
0 0 - 1  0 O 

Let G 1 and G 2 be the corresponding Lie subgroups, G 1 = exp gl, G2 = exp g2. 
Although gl and g2 are independent the set-theoretic union of gl and g2, 
g lUg2 ,  is not a Lie subalgebra of g and therefore also G l U G  a is not a 
Lie-subgroup of G. 

In the following easy proposition the necessary and sufficient conditions for 
simultaneous integrability are given. 

Proposition 4.8. Let G be a Lie group with closed subgroups GI,.. .  , G~. Suppose 
09i : Gi × M ---, M, i ~ k are proper and free group actions on M. Then Do1 . . . . .  Dok 
are simultaneous integrable (i.e. all possible distributions ~ Do,, I ~ k_ are 

i ~ I  

involutive) if and only if for all I ~ k, (.J G i is a closed Lie subgroup 
i ~ I  

of G. 

Proof. Immediate. [] 
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We now come close to the construction of the group action on G. Suppose G 
is given and we have proper and free group actions ~i : Gi × M ~ M, i = 1,2 of 
closed Lie subgroups G~ of G, i = 1, 2. 

Assume that G 1 and G 2 satisfy the conditions of proposition 4.8. Then there 
exists a proper and free group action • : ( G  1 k) G2)×  M ~ M if 

Oxl~,~o= = O a l ~ .  (4.15) 

Namely the closed Lie subgroup G~ U G 2 can be decomposed as 

G 1 U G 2 = a l  ~ Gx N G2~)a2 ,  where  G1 c G 1 and G2 c G 2. (4.16) 

Given g ~ G 1 k) G 2 we may write g = gt" g12" g2 with & ~ G1, g2 ~ G2 and 
g12 E G 1 0  G 2. Then ~(g ,  .) = ~ t (g t ,  ~1(g12, dPz(g2, ")))" One easily verifies 
that, although the decomposition (4.15) is not unique, the action is well- 
defined. Moreover ~ t (g l ,  ~1(g12, qb2(g2, "))) = ~1(gl ,  ~2(g12, d)2(g2, "))) = 
~2(gZ,~Z(glZ, dPl(gl, "))), where the last equality is proved analogously as in 
lemma 4.5. Therefore the order of the ~ ' s  in the definition of • may be reversed. 
Notice that • is uniquely defined on G x U G 2. The foregoing discussion reveals 
whether or not a group action • can be defined on U Gi, where the G/s  satisfy 

i E k  

the conditions of proposition 4.8. We will call the actions ~x . . . . .  ~k compatible if 
such an action exists. That is, firstly condition (4.15) should be satisfied for all 
(G i, tbi) and (Gj, Oj), i, j ~ k. Then secondly while there is a unique action, say 
d)~J on G~ U Gj the same condition (4.15) should hold for all (Gi U Gj, • i j) and 
(G t, Or), i, j ,  l ~ k. The remaining conditions for compatibility of the dg~'s now 
should be obvious. 

Proposition 4.8 and the above considerations may be summarized as follows 

Lemma 4.9. Suppose Gt , . . . ,G  ~ are closed Lie subgroups of a Lie group G. Let 
(G1, ¢bl), i . . , (G k, Ok) be proper and free Lie group actions on M. There exists a 
proper and free group action • : G × M ~ M with t~ [ c~ = d)i if 

1) for all I c k, U Gi is a closed Lie subgroup of G ( u  denotes the set 
i E l  

theoretic union) and U Gi = G. 
i ~ k  

2) The group actions tb t . . . . .  tb k are compatible. 
Therefore, see lemma 4.2 and lemma 4.9, we finally obtain: 

Corollary 4.10. Suppose (G1, 01 ,  (I)l) . . . . .  (Gk, O k, ~ )  are partial symmetries for 
the affine system (4.1), and where GD...  , G k are closed Lie subgroups of a Lie 
group G. Suppose that 

1) for all I c k, U Gi is a closed Lie subgroup of G and [,J Gi = G. 
i ~ l  i ~ k  

2) The group actions ~ t , . . . ,  tb~ are compatible. Then there exists a partial 
symmetry ( G , O , ~ )  for (4.1) with d#lc ~ =tb i, i ~ k. 

Remarks. (i) A very easy similar sort of results may be obtained for systems 
which admit a triangular decomposition, see [9]. 
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(ii) Most of the results of this section are also valid for a general nonlinear 
system Z(M, B, f ) .  Basically one needs results on input-output decoupling for 
these systems. This will be reported in a forthcoming paper, [17]. 
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