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Abstract

In multiprogrammed systems, synchronization often
turns out to be a performance bottleneck and the source
of poor fault-tolerance. Wait-free and lock-free algorithms
can do without locking mechanisms, and therefore do not
suffer from these problems. We present an efficient al-
most wait-free algorithm for parallel accessible hashtables,
which promises more robust performance and reliability
than conventional lock-based implementations. Our solu-
tion is as efficient as sequential hashtables. It can easily be
implemented using C-like languages and requires on aver-
age only constant time for insertion, deletion or accessing
of elements. The algorithm allows the hashtables to grow
and shrink when needed.

A true problem of wait-free and lock-free algorithms is
that they are hard to design correctly, even when apparently
straightforward. The reason for this is that processes can
execute all statements in every conceivable order. Since our
algorithm is quite large and rather complex, we turned to
the interactive theorem prover PVS to prove safety of our
algorithm, which we could not have done reliably by hand.
To our knowledge no algorithms of comparable complex-
ity have ever been mechanically verified. Wait-freedom is
shown informally.

1. Introduction

We are interested in efficient, reliable, parallel algo-
rithms. The classical synchronization paradigms are not
most suited for this, because synchronization often turns out

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

a performance bottleneck, and failure of a single process
can force all other processes to come to a halt. Therefore,
wait-free or lock-free algorithms are of interest [9, 17, 11].

An algorithm is wait-free when each process can accom-
plish its task in a finite number of steps, independently of
the activity and speed of other processes. An algorithm is
lock-free when it guarantees that within a finite number of
steps always some process will complete its tasks, even if
other processes halt. The difference between wait-free and
lock-free is that a lock-free process can be arbitrarily de-
layed by other processes that repeatedly start and accom-
plish tasks.

Since the processes in a wait-free algorithm run rather
independently of each other, wait-free algorithms scale up
well when there are more processes. Processors can finish
their tasks on their own, without being blocked, and gener-
ally even without being delayed by other processes. When
there are processors of differing speeds, or under different
loads, a wait-free algorithm will generally distribute com-
mon tasks over all processors, such that it is finished as
quickly as possible. A wait-free algorithm can carry out its
task even when all but one processor stops working. With-
out problem it can stand any pattern of processors being
switched off and on again. The only noticeable effect of
failing processors is that common tasks will be carried out
slower and that the failing processor may have claimed re-
sources, such as memory, that it can not relinquish anymore.

Despite their technical advantages, there are relatively
few wait-free algorithms, due to the inherent complexity of
these algorithms. There are very general solutions for wait-
free data structures in general [1, 2, 5, 7, 8], but these are not
efficient. Furthermore, there exist wait-free algorithms for a
small number of domains, such as linked lists [17], queues
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[18] and memory management [6, 9].

In this paper we present an almost wait-free algorithm
for one of the most important data structures in current use,
namely hashtables, by means of synchronization primitives
compare&swap, test&set and fetch&add. Hashtables are
used to store huge but sparsely filled tables, and they are
virtually used everywhere, e.g., in compilers, run-time en-
vironments and application software. In our algorithm pro-
cesses can simultaneously insert, delete and find items in
the hashtable, without ever blocking each other. As far
as we know, no wait- or lock-free algorithm for hashtables
with open addressing has ever been proposed. We recently
encountered a lock-free resizable hashtable with chaining
based on a recursively split ordered list structure [15] which
addresses the same problem but which is technically com-
pletely different.

Strictly speaking, our algorithm is lock-free. However,
we call our algorithm almost wait-free since wait-freedom
is only violated when a hashtable is resized, which is a rel-
atively rare operation. Compared to sequential hashtables,
our solution has the same time-complexity. It can easily be
implemented using C-like languages and requires on aver-
age only constant time for insertion, deletion or accessing
of elements. Regarding space requirements, our algorithm
only requires one additional bit per entry in the hashtable.

As we hope we made it clear that a true problem of wait-
free algorithms is that they are hard to design correctly,
which even holds for apparently straightforward algorithms.
Whereas human imagination generally suffices to deal with
all possibilities of sequential processes or synchronized par-
allel processes, this appears impossible (at least to us) for
lock-free algorithms. The only technique that we see fit
for any but the simplest lock-free algorithms is to prove the
correctness of the algorithm very precisely, and to double
check this using a proof checker or theorem prover.

As a correctness notion, we take that the operations be-
have the same as for ‘ordinary’ hashtables, under any arbi-
trary serialization of these operations. In view of the com-
plexity of the algorithm and its correctness properties, we
turned to the theorem prover PVS [16] for mechanical sup-
port, and constructed a mechanical proof of the safety and
atomicity properties of the algorithm that uses around 200
invariants (see [3]). In this extended abstract, we cannot
describe the proof in any detail, but only sketch the proof
obligations.

2. Specification

A hashtable with open addressing is an implementation
of (partial) function, say X, between two domains Address
and Value. Thus, value v is stored at an address a in the
hashtable can be described by the equality X(a) = v. The
Address 0 indicates the absence of the address, while Value

null is the default value. In particular, X(0) equals null. We
assume that from every value the address can be derived by
function ADR : Value — Address with ADR (null) = 0.
Note that the existence of ADR is not a real restriction since
one can choose to store the pair (a, v) instead of v.

One main aspect for the hashtable with open addressing
is that the address in the hastable must be unique, we there-
fore have the following two properties:

v=null = ADR(v)=0,
X(a) #nmull = ADR(X(a)) =a.

There are four principle operations for which we give spec-
ifying descriptions below: find, delete, insert and assign.
The first operation is to find the value currently associated
with a given address. This operation yields null if the ad-
dress has no associated value. The second operation is to
delete the value currently associated with a given address.
It fails if the address was empty, i.e. X(a) = null. The
third operation is to insert a new value for a given address,
provided the address was empty. The fourth operation is to
assign a new value for a given address, it does the same as
insert if the address was empty. For reasons of space we do
not treat assign here (see [3]).

proc finds(a : Address \ {0}) : Value =
local S : Value;
#S) (7S := X(a) );
return rS.

proc deletes(a : Address \ {0}) : Bool =
local sucS : Bool,
(dS) (sucS :=(X(a) # null) ;
if sucS then X(a):=null end ) ;
return sucS.

proc insertg (v : Value \ {null}) : Bool =
local sucS : Bool ; a : Address := ADR (v) ;
@1S)  (sucS := (X(a) = null) ;
if sucS then X(a):=v end);
return sucS.

The basic correctness conditions for concurrent systems
are functional correctness and atomicity, say in the sense
of [14]. Functional correctness is expressed by prescribing
how the procedures find, delete and insert affect the value
of the abstract mapping X. We use angular brackets (.. .)
to denote atomicity. The code thus specifies that the mod-
ification of X is executed atomically at some time between
the invocation of the routine and its response. Each of these
procedures has the precondition that the calling process has
access to the hashtable.

We prove partial correctness of the implementation by
extending it with the auxiliary variables and commands
used in the specification. We regard X as a shared auxiliary
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variable and S and sucS as private auxiliary variables; we
augment the implementations of find, delete and insert with
the atomic commands (fS), (dS), and (iS), respectively. We
prove that the implementation of the procedure below ex-
ecutes its atomic specification command always precisely
once and that the resulting value r or suc of the implemen-
tation equals the resulting value rS or sucS in the specifica-
tion above. It follows that, by removing the implementation
variables from the combined program, we obtain the spec-
ification. This removal may eliminate many atomic steps
of the implementation. This is known as removal of stut-
terings in TLA [13] or abstraction from 7 steps in process
algebras. By removing the auxiliary variables, we obtain
the implementation given below.

3. Algorithm

The aim is to construct a hashtable that can be accessed
simultaneously by different processes in such a way that
no process can passively block another process’ access to
the hashtable. We assume that there is a bounded number,
say P, of processes that may need to concurrently interact
with the hashtable. Each process is characterized by the
sequence of main operations

(getAccess; (find + delete + insert)*; releaseAccess)®

A process that needs to access the hashtable, first calls the
procedure getAccess to get the current hashtable pointer.
It may then invoke the procedures find, delete, and insert
repeatedly, in an arbitrary, serial manner. A process that has
access to the hashtable but is not accessing it for a while,
can call releaseAccess to allow memory to be released.

As is well known [12], hashing with open addressing
needs a special value del € Value to replace deleted val-
ues. When the current hashtable becomes full, processes
will reach consensus on the choice for a new hashtable of
new size to replace for, and the values except null and del
will be migrated to the new hashtable. The main operations
will be proceeded in the new hashtable once the migration
is done. The remaining operations are all related to the mi-
gration. Since the migrating process may stop functioning
during the migration, a value being migrated must be tagged
by function old in such a way that it can be recognized by
function oldp. We define EValue as an extended domain of
values:

EValue = Value U {old(v) | v € Value}

and introduce function val : EValue — Value to re-
call the value without the old tag and paticularly specify
val(del) = null and val(old(del)) = null. The old tag can
easily be implemented by designating one special bit in the
representation of Value. In the sequel we write done for

old(null) or old(del). Moreover, we extend the function
ADR to domain EValue by ADR (v) = ADR (val (v)).

‘We implement function X via hashing with open address-
ing, cf. [12, 19], rather than direct chaining [15] where col-
liding entries are stored in a secondary list. In principle,
hashing is a way to store address-value pairs in a hashtable
with a length much smaller than the number of potential
addresses. For the sake of the algorithm, we combine the
ordinary hash function and the secondary hash function in
one abstract function key given by:

key(a : Address, 1 : Nat, n: Nat) : Nat ,

where [ is the length of the hashtable and n serves to obtain
alternative locations in case of collisions. The function key
satisfies for any address a and any number [:

0 < key(a,l,n) <1,
0<k<m<l = key(a,l,k)+#key(a,l,m).

3.1. Data Structure

Fig. 1 shows the data structure that is used by the pro-
cesses. A hashtable is of type Hashtable, where the field
size indicates the size of the hashtable, the field bound
the maximal number of places that can be occupied before
refreshing the hashtable, bound must be less than size.
Both are constants that are set when the hashtable is created
and tuned for optimal performance. The field occ gives the
number of occupied positions in the hashtable, while the
field dels gives the number of deleted positions with the
purpose of allowing our hashtable to shrink. If /4 is a pointer
to a hashtable, we write h.size, h.occ, h.dels and
h.bound to access these fields of the hashtable. We write
h.table[i] to access the i*" EValue in the hashtable. Apart
from the current hashtable (pointed to by H (currInd)),
which is the main representative of the specification vari-
able X, we have to deal with old hashtables, which were in
use before the current one, and new hashtables, which can
be created after the current one. There can be 2P hashta-
bles around, because each process can simultaneously be
accessing one hashtable and attempting to create a new one.

The basic idea is to count the number of processes that
are using a hashtable, by means of a counter busy. The
hashtable can be thrown away when busy is set to 0. An
important observation is that busy cannot be stored as part
of the hashtable, in the same way as the variables size,
occ and bound above. The reason for this is that a process
can attempt to access the current hashtable by increasing its
busy counter. However, just before it wants to write the
new value for busy it falls asleep. When the process wakes
up the hashtable might have been deleted and the process
would be writing at a random place in memory.
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constant P = number of processes
type Hashtable: record=
size, bound, occ, dels: Nat;
table : array[0..size — 1] of EValue ;
end
shared variables:
currInd: [1..2P];
H: array[1..2P] of pointer to Hashtable;
prot,busy : array[l1..2P] of Nat;
next : array[l..P] of [0..2P];
public initialization:
all shared variables are initially O or nil except:
currInd can be any value in [1..2P];
pointer H [currInd] points to the current hashtable,
which is valid and empty with size > bound + 2P;
there is no other valid hashtable;
prot [currInd] = 1;busy[currInd] =1.
private variables:
index : [1..2P]; pc : Nat;
private initialization:
index can be any value in [1..2P]; pc = 0.

Figure 1. Data Structure.

This forces us to use separate arrays H and busy to store
the pointers to hashtables and the busy counters. As indi-
cated, we also need arrays prot and next. The variable
next/[i] points to the next hashtable to which the contents
of hashtable H[{] is being copied. If next[i] equals 0, this
means that there is no next hashtable. The variable prot[i]
is used to guard the variables busyli], next[i] and H[{]
against being reused for a new hashtable, before all pro-
cesses have discarded them.

3.2. Primary Procedures

We provide the code for the primary procedures, which
match directly with the procedures in the specification. Ev-
ery process has a private variable index containing what it
regards as the current hashtable. Private variable pc stands
for program counter. Each process, numbered from 1 up to
P, is a sequential program comprised of statements that are
thought to be executed atomically. Except for some special
commands (offered by machine architectures) such as com-
pare&swap and test&set enclosed by angular brackets (. . .),
all actions on variables are separated into different atomic
accesses, and we labeled each group of statements in which
at most one access to a public variable takes place with a
number. The labels are those chosen in the PVS code, and
are therefore not completely consecutive.

In order to prove correctness, we added instructions that
modify auxiliary variables (between braces {...}). Since
auxiliary variables are only used to facilitate the proof of
correctness, they can be assumed to be touched instanta-

neously without violation of the atomicity restriction, and
can therefore harmlessly be added to an atomic statement
within the angular brackets. As procedure calls only mod-
ify private control data, procedure headers are not labeled
themselves, but their bodies usually have numbered atomic
statements.

The main operations are given in Fig. 2 and 3. Finding
an address in a hashtable with open addressing requires a
linear search over the possible hash keys until the address
or an empty slot is found. The main complication is that
the process has to join the migration activity if it encounters
an entry done, which indicates that another process started
migrating. So, the new hashtable must be located, which is
carried out by the procedure refresh (see section 3.3). Note
that it is not necessary to assist in migrating when a value
old(v) is encountered. In this case it is safe to let find con-
tinue.

With the help of PVS, we have proved that when some
process is executing find, no other process can delete or
insert an entry associated with the same address in the re-
gion where the process has already searched, and thus vio-
late the views of data for the process. We have also proved
that, when the bound of the new hashtable is tuned prop-
erly before use (see section 3.3), there exist at least one null
or done entry in any valid hashtable. Hence, the local vari-
able n in the procedure find will never go beyond the size
of the hashtable.

Deletion is similar to finding. Since r is a local variable
to the procedure delete and line 18b is a so-called com-
pare&swap instruction, we can take 18a and 18b as two
parts of atomic instruction 18. If the entry is outdated, the
process joins the others to complete the migration and then
proceeds with the deletion in the new table. Since we post-
pone the increment of h.dels until line 25, the field dels
actually reflects a lower bound of the number of positions
deleted in the hashtable. Line 25 is a so-called fetch&add
instruction.

Basically, the procedure for insertion is the standard al-
gorithm for insertion. Any deleted value can not be reused
in a subsequent insertion. Notable is line 28 where the cur-
rent process finds the current hashtable too full, and orders a
new table to be made. When the new hashtable has been lo-
cated at line 37, we do not need to re-evaluate the field occ
since we have proved that field size is at least 2P more
than field occ. Instruction 35b is a test&set instruction, a
simpler version of compare&swap.

We did not force the above procedures to check if
the hashtable pointer is valid, but it should be guaran-
teed that no process can inspect invalid contents. Since
prot[currInd] and busy[currInd] are always posi-
tive in our system (see [3]), procedure getAccess serves
to initialize the private variable index in such a way that
the hashtable pointer H[index] is valid and that it is not in-
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proc find(a : Address \ {0}) : Value =
local r : EValue ; n,[ : Nat ; h : pointer to Hashtable ;
5:  h:=H[index]; n:=0;
6: [:= h.size;

repeat
7: (r:= h.tablelkey(a,l,n)];
{ifr =null V a = ADR(r) then (fS) fi})
8: if r = done then refresh() ;
10: h := Hlindex] ; n:=0;
11: l:=h.size;

else n++; fi
13:  untily =null V a = ADR(r) ;
14:return val (r) .

proc delete(a : Address \ {0}) : Bool =
local r : EValue ; k,l,n : Nat ; h : pointer to Hashtable ;
suc : Bool ;

15:  h:= H[index] ; suc := false ;
16: [:=h.size; n:=0;

repeat
17: k :=key(a,l,n) ;

(r:=h.table[k]; {ifr = null then (dS) fi})

18a: if oldp(r) then refresh() ;

20: h := H[index] ;
21: l:=h.size; n:=0;
elseif a = ADR(r) then
18b: (if r = h.table[k] then h.tablelk] :=del;

suc := true ; { (dS) } fi)
else n++ ; fi
until suc V r = null ;
25: if suc then (h.dels++; ) fi
26:return suc .

proc insert(v : Value \ {null}) : Bool =
local r : EValue ; k,l,n : Nat ; h : pointer to Hashtable ;
suc : Bool ; a : Address ;
27:  a:= ADR(v) ; h := H[index] ;
28: if h.occ > h.bound then newTable() ;
30: h := H[index] ; fi
31: n:=0;[:=h.size; suc:= false;

repeat
32: k:= key(a,l;n);
33: (r:= h.table[k];

{if a = ADR(r) then (iS) fi } )
35a: if oldp(r) then refresh() ;

36: h := H[index] ;
37: n:=0;l:=h.size;
elseif r = null then
35b: (if h.table[k] = null then suc := true ;

h.tablel[k] :=v; {GS) } fi)
else n++; fi
until suc Va = ADR(r) ;
41:  if suc then (h.occ++; ) fi
42:return suc .

Figure 2. Procedure find, delete, insert.

proc getAccess() =

loop
59: index := currInd;
60: (protlindex]++; )
61: if index = currInd then
62: (busylindex]++ ; )
63: if index = currInd then return
else releaseAccess(index) ; fi
65: else (prot[index]--; ) fi
end end .

proc releaseAccess(i : 1..2P) =
local h : pointer to Hashtable ;
67:  h:= H[i];
68:  (busyli]--;)
69: if h #nil A busy[i| =0 then

70: (ifH[¢] = h then H[{] :=nil; )
71: deAllocate(h) ; fi fi
72:  (prot[i]--;)

end .

Figure 3. Procedure getAccess, releaseAccess.

advertently destroyed (both requirements are protected by
busylindex]) or used to create a new hashtable (this re-
quirement is protected by prot[index]) before the process
actively releases it. Both prot[index] and busyl[index]
are used primarily as counters with atomic increments and
decrements since they are both shared.

In procedure releaseAccess, the process releases its
claim on the hastable pointed to by H[i] by decrement-
ing busy[i] and prot[i]. When busy[i] becomes 0, the
hashtable itself must be deallocated. A bigger atomic com-
mand (i.e. compare& swap) in line 70 is needed to preclude
that the hashtable is deallocated more than once. Indeed, in
line 71, deAllocate is called only for allocated memory. It
is incorrect to replace the compare&swap statement 70 by
the assignment H[i] := nil. This replacement would intro-
duce a race condition and hashtable H[i] could be deallo-
cated twice.

3.3. Procedures for Migration

The remaining operations are shown in Fig. 4 and Fig.
5. Procedure newTable is called when the number of occu-
pied positions in the hashtable exceeds the bound. It first
searches for a free index i, say by round robin. We rep-
resent this by a nondeterministic choice. Then it tries to
allocate a new empty hashtable in line 82. If several pro-
cesses call newTable concurrently, they need to reach con-
sensus (in line 84) on the choice of the next hashtable. A
hashtable newly allocated by a late process will not be used
and must be deallocated again. In 78, we use an atomic
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proc newTable() = test&set instruction. Indeed, separation of this instruction

locali:1..2P; in two atomic instructions is incorrect, since that would al-

77:  while next[index] =0 do low two processes to grab the same index ¢ concurrently.
78: choosei € 1..2P; Field occ and field dels in the new hashtable are ini-
(if protli] =0 thenprot[i] :=1; ) tially O since the new hashtable is empty. Due to some
2; kc)ltl:oi;[:]s;z:e ! l;oun d- particular scenario (see [3]? and our proof obligations, in
H[i] := allo;ate (sjze’, bound) ; command 82, t.he bound is requlred to be chosen to be
83: nextli] i= 0; greater than H[index].bound — H[index].dels + 21.3 .and
84: (if next[index] = 0 then next[index] := i ; the s1ize to be more than bound + 2P . These conditions
else releaseAccess(i) ; fi) fi are proved to be sufficient for the safety conditions that will
end ; be described later. It may be useful to make field size even
refresh() ; larger than bound + 2P to avoid too many collisions, e.g.

end . with a constraint size > a - bound for some a > 1.

In order to avoid that a process starts migration of an
old hashtable, we encapsulate it in a procedure refresh.
When index is outdated, it is necessary that the process calls
releaseAccess to abandon its hashtable and getAccess to ac-
quire the pointer to the current hashtable. Otherwise, the

proc refresh() =
90: if index # currInd then
releaseAccess(index) ; getAccess()
else migrate() ; fi

end .
process can join the migration.
proc migrate() = After the choice of the new hashtable, procedure migrate
locali:0..2P ; h: pointer to Hashtable ; serves to transfer the contents in the current hashtable to the
94: 4 := next[index] ; new hashtable by means of moveContents and to update the

95:  (protli++; )

current hashtable pointer afterwards. Migration is complete
97: if index # currInd then

when at least one of the (parallel) calls to migrate has ter-

o8: els¢<=, protfil--;) minated. Line 103 contains a co.mpare&swap instruction
99: (busyli]++ ;) to update the cu.rrent. has.htabl.e pomter. when some process
100 h = H[i] ; ﬁnds.that thcj, m1.grat10n is ﬁmshed while _cgrr;nd is still
101: if index = currInd then identical to its index. This means that ¢ is still used for
moveContents (H[index], h) ; the index of the next current hashtable. The increments of
103: (if index = currInd then currInd:=i; ) prot[i] and busy]i] here are needed to protect the next
104: ( busylindex]-- ;) hashtable. The decrements serve to avoid memory loss.
105: (prot[index]-- ; ) fifi Procedure moveContents has the task to move the

releaseAccess(i) ; fi
end .

contents from the current hashtable to the next current
hashtable. All processes that have access to a hashtable,
can participate in this migration, until they can use the next

roc moveContents (from, to : pointer to Hashtable) = .
P " ( 10 P ) current hashtable. We have to take care that delayed actions

local ¢ : Nat ; v : EValue ; toBeMoved : set of Nat ;

109: toBeMoved := {0, ..., from.size — 1} ; on the current hashtable and the new hashtable are carried
110: while currInd = index A toBeMoved # 0 do out or abandoned correctly. Note that the value is tagged as
111: choose i € toBeMoved ; v := from.tableli] ; old before it is migrated. After tagging, the value cannot
112: if v = done then be deleted or assigned until the migration has been com-
toBeMoved := toBeMoved — {i} ; pleted. Tagging must be done atomically, since otherwise
else an interleaving deletion may be lost. The value is made
114: (ifv = from.table[i] then done when it has been copied to the new hashtable. In this
'from.table[i] = old(val(v)) ; ) way other processes need not wait for this process to com-
116: if val(v) # null then plete procedure moveElement of Fig. 5, but can help with
moveElement (val (v), to) ; fi .. .

17: from.table[i] := done ; the migration of tl.le value 1.f needed. o
118: toBeMoved := toBeMoved — {i} : fi fi The processes involved in the same migration should not
end end . use the same strategy for choosing ¢ in line 111, since it is
advantageous that moveElement is called often with differ-
ent values. They may exchange information: any of them
Figure 4. Procedure newTable, refresh, migrate may replace its set toBeMoved by the intersection of that
and moveContents. set with the set toBeMoved of another one. We do not give
a preferred strategy here, one can refer to algorithms for the
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proc moveElement(v : Value \ {null},
to : pointer to Hashtable) =
local a : Address ; k,m,n : Nat ; w: EValue ;b : Bool ;
120: @ := ADR(v) ; m:=to.size; n:=0;
repeat
121:  k:= key(a,m,n); w:=to.table[k];
if w = null then
123: (if to.table[k] = null then
to.table[k] :=v; b:=true ; fi)
else n++ ;fi;
125: until bV a = ADR(w) V currInd # index ;
126: if b then (to.occ++; ) fi
end .

Figure 5. Procedure moveElement.

write-all problem [4, 11].

To illustrate the subtlety of the algorithm, we note that
one could propose to replace the tests oldp(r) in the lines
18a and 35a by next[index] # 0, followed by an elimi-
nation of function old. In this way, one might hope to re-
place the set EValue by Value U {done}. This is incorrect,
however, since one then needs a bigger atomic statement,
or procedure moveContents can disastrously interfere with
procedure delete (and also with assign, see [3]).

Procedure moveElement copies the non-null value v to
the new hashtable. Migration requires that every value ex-
cept null and del in the current hashtable is migrated only
once to a unique position in the new hashtable, for, other-
wise, the main property of open addressing would be vi-
olated. It has been proved that no process is able to in-
sert a value in the new hashtable when its index differs
from currInd. We have also proved that there exists at
least one null entry in the new hashtable while the current
hashtable pointer is not updated yet, Hence the local vari-
able n in the procedure moveElement never goes beyond
the size of the hashtable, and the termination is thus guar-
anteed.

4. Correctness

In order to ensure that our algorithm is correct and re-
liable, we have to justify safety and progress. The safety
property consisting of around 200 invariants has been veri-
fied with PVS. The main aspect of safety is functional cor-
rectness. Functional correctness of find, delete and insert
is the condition that the result of the implementation is the
same as the result of the specification (fS), (dS) and (iS).
This is expressed by the required invariants:

Col: pc =14 = val(rgz) = rSs
Co2: pc € {25,26} = sucge = sucSge
Co3: pc € {41,42} = sucins = SucSins

where the subscript indicates the name of the procedure
each local variable belongs to.

According to the definition of atomicity in [14], atom-
icity means that in each of the procedures find, delete and
insert the specifying command (fS), (dS) and (iS) is exe-
cuted precisely once, respectively. This has been proved
formally in [3]. We interpret absence of memory loss to
mean that the number of allocated hashtables at any given
time is bounded (by 2P). In [3], we have also proved the ab-
sence of memory loss. Moreover, if the size of the hashtable
is bounded, all counters are bounded.

We now turn to the discussion of progress. As an-
nounced, the algorithm is lock-free and almost wait-free.
The first point to note is that, according to the invariants
described in [3], the primary procedures find, delete and
insert are loops bounded by the size of the hashtable, so
they are wait-free unless they are reset infinitely often. This
reset only occurs immediately after the call of refresh (in
lines 8, 18a, 35a).

Procedure getAccess is not wait-free. When the active
clients keep changing the current index faster than the new
client can observe it, the accessing client is doomed to star-
vation. It may be possible to make getAccess wait-free by
introducing a queue for the accessing clients which is emp-
tied by a process in newTable. The accessing clients must
however also be able to enter autonomously. This would
at least add another layer of complications. We therefore
prefer to treat this failure of wait-freedom as a performance
issue that can be dealt with in practice by tuning the sizes
of the hashtables.

It is clear that releaseAccess is wait-free. It follows
that the wait-freedom of migrate depends on wait-freedom
of moveContents. Wait-freedom of moveContents de-
pends on wait-freedom of moveElement. As the loop of
moveElement is also bounded [3], this concludes the sketch
that migrate is wait-free. The main part of procedure
newTable is wait-free, see [3].

Therefore, if we assume that the current hashtable is not
updated too often, the primary procedures are wait-free.
Under these circumstances, getAccess is also wait-free, and
then everything is wait-free.

5. Conclusions

Wait-free shared data objects are implemented without
any unbounded busy-waiting loops or idle-waiting primi-
tives. They are inherently resilient to halting failures and
permit maximum parallelism. We have presented a new
practical algorithm, which is almost wait-free, for concur-
rently accessible hashtables, which promises more robust
performance and reliability than a conventional lock-based
implementation. Moreover, the new algorithm is dynamic
in the sense that it allows the hashtable to grow and shrink

nn

COMPUTER

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) SOCIETY

0-7695-2132-0/04/$17.00 (C) 2004 IEEE



as needed.

The algorithm scales up linearly with the number of pro-
cesses, provided the function key and the selection of ¢
in line 111 are defined well. This is confirmed by some
experiments where random values were stored, retrieved
and deleted from the hashtable. These experiments indi-
cated that 10° insertions, deletions and finds per second and
per processor are possible on an SGI powerchallenge with
250Mhz R12000 processors. This figure should be taken as
a rough indicator, as the performance of parallel processing
is very much influenced by the machine architecture, the
relative sizes of data structures compared to sizes of caches,
and even the scheduling of processes on processors.

The correctness proof for our algorithm is noteworthy
because of the extreme effort it took to finish it. Formal
deduction by human-guided theorem proving can, in prin-
ciple, verify any correct design, but doing so may require
unreasonable amounts of effort, time, or skill. Though PVS
provided great help for managing and reusing the proofs,
we have to admit that the verification for our algorithm was
very complicated due to the complexity of our algorithm.
The total verification effort can roughly be estimated to con-
sist of two man years excluding the effort in determining
the algorithm and writing the documentation. ‘Fortunately’,
we received compensation as approximately a dozen errors
in the algorithm were found in this way, that would be ex-
tremely hard to find in any other manner.

The whole proof contains around 200 invariants. With-
out suitable tool support like PVS, we even doubt if it
would be possible to complete the proof of such size and
complexity. The complete version of the PVS specifications
and the whole proof scripts can be found at [10].
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