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Matrix Learning in Learning Vector Quantization

Michael Biehl, Barbara Hammér Petra Schneidér
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P.O. Box 800, 9700 AV Groningen - The Netherlands
2- Clausthal University of Technology - Institute of Comg@uScience
Julius Albert Strasse 4, 38678 Clausthal-Zellerfeld - Gamn

Abstract

We propose a new matrix learning scheme to extend Genatdiekevance Learn-
ing Vector Quantization (GRLVQ), an efficient prototypesbd classification algo-
rithm. By introducing a full matrix of relevance factors inet distance measure,
correlations between different features and their impaeafor the classification
scheme can be taken into account and automated, generat adzptation takes
place during training. In comparison to the weighted ewaidmetric used for GR-
LVQ, a full matrix is more powerful to represent the intersaiucture of the data
appropriately. Interestingly, large margin general@atbounds can be transfered
to the case of a full matrix such that bounds which are indégenof the input
dimensionality and the number of parameters arise. Thésha&ls for local met-
rics attached to each prototype. The algorithm is testedcantpared to GLVQ
without metric adaptatiori[16] and GRLVQ with diagonal kelece factors using
an artificial dataset and the image segmentation data frerd @i repository[[15].

1 Introduction

Learning vector quantization (LVQ) as introduced by Kohowrenstitutes a particu-
larly intuitive and simple though powerful classificatiocheme [T4] which is very
appealing for several reasons: the method is easy to impleite complexity of the
resulting classifier can be controlled by the user; the flasgan naturally deal with
multiclass problems; and, unlike many alternative neuladsification schemes such
as feedforward networks and support vector machines, thatirey classifier is human
understandable because of the intuitive classificatioratd goints to the class of their
closest prototypes. For these reasons, LVQ has been usedgiiety of academic and
commercial applications such as image analysis, telecaruation, robotics, etcl]4].
Original LVQ, however, suffers from several drawbacks sastslow convergence
and instable behavior because of which a variety of altereshave been proposed, as
explained e.g. in[[14]. Still, there are two major drawbaokshese methods, which
have only recently been tackled. On the one hand, LVQ relelauristics and a full
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mathematical investigation of the algorithm is lackingisTiroblem often leads to un-
expected behavior and instabilities of training. Receiitlyas rigorously been shown
that already slight variations of the basic LVQ learningesole yield quite different re-
sults [2[8]. For this reason, variants of LVQ which can bewéerfrom an explicit cost
function are particularly interesting, since they obey dl-defined dynamics. Several
proposals for cost functions can be found in the literatilmefirst one being generalized
LVQ which forms the basis for the method we will consider irstarticle [16]. Two
alternatives which implement soft relaxations of the avigiearning rule aré [17.718].
These two approaches, however, have the drawback thatitiieadrcrisp limit case
does not exist (fol[A7]) resp. it shows poor results alsarimpte settings{[B] (forl[18]).
The cost function as proposed [N]16] has the benefit thabivststable behavior and
it aims at a good generalization ability already duringrtirag as pointed out ir [11].

On the other hand, LVQ and variants severely rely on the stahduclidean met-
ric and they are not appropriate for situations where thdicean metric does not fit
the underlying semantic. This is the case e.g. for high dsiweral data where noise
accumulates and likely disrupts the classification, foetmeneous data where the
importance of the dimensions differs, and for data whicloives correlations of the
dimensions. In these cases, which are quite common in peactimple LVQ fails.
Recently, a generalization of LVQ has been proposed baséuediormulation as cost
optimization in [16] which allows the incorporating of eyedifferentiable similarity
measurel[12]. The specific choice of the similarity meassra aimple weighted di-
agonal metric with adaptive relevance terms turned out g&cpkarly suitable in many
practical applications since it can easily account forléwant or inadequately scaled
dimensions. At the same time, it allows easy interpretatibthe result because the
relevance profile can directly be interpreted as the cantioh of the dimensions to the
classification[[IB]. For an adaptive diagonal metric, disienality independent large
margin generalization bounds can be deriVied [11]. Thisifastmarkable since it ac-
companies the good experimental classification resulthifgr dimensional data by a
theoretical counterpart. The same bounds also hold forekesd versions, but not for
an arbitrary choice of the metric.

Often, the dimensions are correlated in classificationstabkunsupervised cluster-
ing, correlations of data are accounted for e.g. by the icalsMahalanobis distance
[6] or fuzzy-covariance matrices as derived e.g. in the yedassifiers[[F[19]. For su-
pervised classification tasks, however, an explicit mettiéch takes correlations into
account has not yet been proposed. Based on the generalnfoaknags presented in
[1Z], we develop an extension of LVQ to an adaptive full matsihich describes a
general euclidean metric and which can account for corosigtof any two data di-
mensions in this article. This algorithm allows for an agprate scaling and also an
appropriate rotation of the data to learn a coordinate systhich is optimum for the
given classification task. Thereby, the matrix can be ch@seone global matrix, or
as individual matrices attached to the prototypes, therla@tcounting for local ellip-
soidal shapes of the classes. Interestingly, one can dgeiveralization bounds which
are similar to the case of a simple diagonal metric for thiserammplex case. Apart
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from this theoretical guarantee, we demonstrate the bariefits extended method for
several concrete classification tasks.

2 Generalized metric LVQ

LVQ aims at approximating a clustering by prototypes. Asstraining data({l-, yi) €
RN x {1,...,C} are given,N denoting the data dimensionality adtithe number
of different classes. A LVQ network consists of a number aftptypes which are
characterized by their location in the weight spage € R and their class label
c(w;) € {1,...,C}. Classification takes place by a winner takes all scheme. For
this purpose, a (possibly parameterized) similarity memgti is fixed forR™V. Often,
the standard euclidean metric is chosen. A data [inBtRN is mapped to the class
labelc(£) = ¢(w;) of the prototype for which d*(@;, £) < d*(i7;,€) holds for every
j # i (breaking ties arbitrarily), i.e. it is mapped to the clagshe closest prototype,
the winner.

Learning aims at determining weight locations for the piypies such that the given
training data are mapped to their corresponding classdalbéis is usually achieved by
a modification of Hebbian learning, which moves prototypeser to the data points
of their respective class. A very flexible learning approlaas been introduced iAT12]:
Training is derived as a minimization of the cost function

S o (dﬁ - d?()
- dy +dy

where ® is a monotonic function, e.g. the identity or the logistimétion, d} =
d* (g, é) is the distance of data poiﬁ;from the closest prototyp& ; with the same
class labey;, anddy, = d* (i, {;:;) is the distance from the closest prototypg with
a different class label tha;. Note that the nominator is smaller theauiff the classi-
fication of the data point is correct. The smaller the nonaindhe greater the security
of classification, i.e. the difference of the distance froooarect and wrong prototype.
The denominator scales this term such that it lies in betwedn1). A further possi-
bly nonlinear scaling by might be beneficial for applications. This formulation can
be seen as a kernelized version of so-called generalizeddd/@roduced if16].

The learning rule can be derived from this cost functionrigkihe derivative. We

assume that the similarity measur&w, {) must be differentiable with respect to the
parametersi and\. As shown in[[IR], for a given pattethe derivatives yield

Ady = —e- @ (u(€) - ut(E) Va,d)

wheree > 0 is the learning rate, the derivative fis taken at position(¢) = (d} —
dX) /(&) + ), andut (§) = 2 d) /(d} + d)?. Further,

— —

Adig = - ' (u(€)) - p (&) - Vi dic
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wherep(€) = 2- d/(d) + d))2. The derivative with respect to the parameters
yields the update

— —

AX= e @' (&) - (1 (E) - Vad) — = (§) - Vadi) -

The adaptation oh is often followed by normalization during training, e.gfering
>; Ai = 1to prevent degeneration of the metric. It has been shownZhtfiat these
update rules are valid if the metric is differentiable. Tét®y, this argument also holds
for the borders of receptive fields, i.e. an underlying awnius input distribution, as
can be shown using delta-functiofis][12].

It has been demonstrated [n]12], the squared weighteddealimetrial* (0, E) =
Do Ai(w; —&;)? where); >0 and), \; = 1 constitutes a simple and powerful choice
which allows to use prototype based learning also in thegm@s of high dimensional
data with a different (but priorly not known) relevance oé imput dimensions. This
choice has the benefit that the relevance tekmshich are automatically adapted dur-
ing training allow an interpretation of the classificatidghe dimensions with large pa-
rameters\; contribute most to the classification. We refer to this mdth®generalized
relevance learning vector quantization (GRLVQ). Alteiveathoices have been intro-
duced in[12], including, for example, metrics which takedbwindows into account
e.g. for time series processing.

Note that the relevance factors, i.e. the choice of the maged not be global, but
it can be attached to a single prototype. In this case, iddali updates take place
for the relevance factors’ for each prototypeg, and the distance of a data po'gﬁt
from prototyped;, d*i (;, {i) is computed based oxy. This allows a local relevance
adaptation taking into account that the relevance mighhgeavithin the data space.
This method has been investigated e.g[1d [10]. We referitouérsion as localized
GRLVQ (LGRLVQ).

3 Generalized matrix LVQ

Here, we introduce another specific relevant choice of tindasiity measure, a full ma-
trix, which can account for arbitrary correlations of thenénsions. We are interested
in a similarity measure of the form

dM (@, €) = (€~ )T A (€~ @)

whereA is a full matrix. Note that, this way, arbitrary euclideantries can be achieved
by an appropriate choice of the parameters. In particubaretations of dimensions and
rotation of the axes can be accounted for. Such choices h@aelg successfully been
introduced in unsupervised clustering methods such ay ftlagtering [7[®], however,
accompanied by the drawback of increased computations,caince these methods
require a matrix inversion at each adaptation step. For #gicras introduced above,
a variant which has cos(/N?) can be derived.

DEPARTMENT OF INFORMATICS 4
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Note that the above similarity measure only leads to a sguswelidean distance in
an appropriately transformed spacdiifs positive (semi-) definite. We can achieve this
by substituting

A= Q0T

which yieldsa? Ad = a7 Q QT = (QTu)2 > 0 for all @, where() is an arbitrary
matrix. As A is symmetric, it has onlyV(NV + 1)/2 independent entries. We can
therefore assume without loss of generality fdtself is a symmetri¢V x N) matrix
with Q7 = Q, i.e. A = QQ in the following. This reduces the computational costs by
2. Hence

a1, €) = Y (& — wi) QueQu; (& — wy).

ijk

To obtain the adaptation formulas we need to compute theatses with respect
to « andA. The derivative of/* with respect tas yields

— —

Ved' = —2A (€= @) = —200(E — ).
Derivatives with respect to a single eleméhf, give
ady 0 0
O - Z(gl —wy) mj (5; — U}j) + Z(& —w; ) Qi (& — Win)

J

= (@ -w) [2E- )]

m

where subscriptdenotes componehbf the vector. Thus, we get the update formulas

AGy = e ¢ (u(&) - pt(E) - Q- (€ - dy)
Adg = —e ¢ () p () QQ- (€ - i)
For the update of the matrix elemefils,, we get
Ale = — € qb’(,u(&)) :

<N+(5) ' ([Q(g— W)l (& — waa) + [UE = T)i(Em — wJ,m))

—1= (&) - (196 = @) (& — wica) + [UE = T )u(€m — wK,m>)>

Thereby, the learning rate for the metric can be chosen ewdgntly of the learning
rate of the prototypes. Usually, it is an order of magnitudialer to account for a
slower time-scale of metric learning compared to the weiglutates. We assunfeto

be symmetric. Note that this is automatically fulfilled besa the above updates are
symmetric w.r.t/ andm.

5 Technical Report Ifl-06-14
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After each updaté should be normalized to prevent the algorithm from degenera
tion. One possibility is to enforce

ZA%:1

by dividing all elements of\ by therawvalue of)_, A;; after each step.

In this way we fix the sum of diagonal elements which coincidéh the sum of
eigenvalues, here. This generalizes the normalizatioelefancesy . \; = 1 for a
simple diagonal metric. One can interpret the eigendimestiof A as the temporary
coordinate system with relevancks.

Note that
Aii = Qe = (Qur)?.
k k
So normalization takes place by dividing all elementsoby (3., (2:)%)1/? =
(32,[99],,)"/? after every update step.

We term this learning rule generalized matrix LVQ (GMLVQhd& complexity of
one adaptation step is determined by the computation ofltfsest correct and incor-
rect prototypes@(N? - P), P being the number of prototypes), and the adaptation
(O(N?)). Usually, this procedure is repeated a number of time stépsh is linear
in the number of patterns to achieve convergence. Thusptbisedure is faster than
unsupervised fuzzy-clustering variants which use a sirfolan of the metric but which
require a matrix inversion in each step. Apart from this ioyed efficiency, the met-
ric is determined in a supervised way in this approach, shahthe parameters are
optimized with respect to the given classification task.

Note that we can work with one full matrix which accounts fdransformation of
the whole input space, or, alternatively, with local masi@ttached to the individual
prototypes. In the latter case, the squared distance of)dmbg from a prototypeu; is
computed ag’ (£ — ;) = (€ — ;)T AI (€ — ;). Each matrix is adapted individually
in the following way: givenfwith closest correct prototyp&; and closest incorrect
prototypewy , we get the update formula

AQ, = —e ¢ (u(f) -
GE ([QJ(g* G)|m (& — wig) + Q7 (€ = TN (Em — w.],m))
AQE = +e ¢ (@)

1 (@) - (197 = @)l (& = wiea) + [ (€ = B ) (€ — wrcm))

Localized matrices have the benefit that general ellipsaidaters can be learned by
the method whereby ellipsoidal clusters need not be aligmétke axes (this restriction
holds for GRLVQ). And the main axes of the ellipsoid can besgmindependently for
every prototype. Thus, general mixtures of Gaussians cappsximated in a very
elegant way. We refer to this general version as localized B(LGMLVQ).

DEPARTMENT OF INFORMATICS 6
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4 Generalization ability

One of the benefits of prototype-based learning algorithonsists in the fact that they
show very good generalization ability also for high dimensil data. This observa-
tion can be accompanied by theoretical guarantees. It lasdieown in[[b] that basic
LVQ-networks equipped with the euclidean metric possesedsionality independent
large-margin generalization bounds, whereby the marderseo the security of the
classification, i.e. the minimum difference of the distamcemputed for classification.
A similar result has been derived in]11] for LVQ-networkscamsidered above which
possess an adaptive diagonal metric. Remarkably, the margfiereby directly cor-
related to the nominator of the cost function as introdudsale, i.e. these learning
algorithms inherently aim at margin optimization duringiting. As pointed out in
[12], these results transfer immediately to kernelizeaiears of this algorithm where
the similarity measure can be interpreted as the composifithe standard scaled eu-
clidean metric and a fixed kernel map. In the case of an adafutivmatrix, however,
these results are not applicable, because the matrix iggeldaduring training, i.e. the
kernel is optimized according to the given classificatiaktia this setting.

Here, we directly derive a large margin generalization lodion (localized) GMLVQ
networks with a full adaptive matrix attached to every ptgpe, whereby we use the
ideas of [T1]. We consider a LGMLVQ network given Byprototypess; with inputs
|§| < BforsomeB > (0 and the case of a binary classification. That means, prastyp
c(w;) are labeled byt or —1. Classification takes place by a winner takes all rule, i.e.

€ — o(w;) where(€ — @) T AN (€ — ;) < (€ — @) TN (€ — ;) V) #i (1)

with positive semidefinite matrid® with normalization)", A}, = 1. The network
corresponds to a function in the class

Fi={f:RY — {-1,1}| fis given by formulallL) for soma’, ; }

We can assume that prototypes are located within the datéspoe.|w;| < B.
Assume some unknown underlying probability measdtiie given onRY x {1, 1}.
The goal of learning is to find a functiohe F such that the generalization error

Ep(f) =Py # f(v))

is as small as possible. Howevét,is not known during training; instead, examples
for the distribution(¢;, y;), ¢ = 1,...,m, are available, which are independent and
identically distributed according t8. Training aims at minimizing the empirical error

En(f) = Z {y: # f(&)}H/m.

Thus, the learning algorithm generalizes to unseen dzi?a,b(ff) becomes representa-
tive for Ep(f) for an increasing number of exampleswith high probability.

7 Technical Report Ifl-06-14
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The training algorithm of LGMLVQ optimizes a cost functiomieh is correlated to
the number of misclassifications of training. Assume a paitg y) is classified by a
GMLVQ network which implements the functigh We define the margin

My(Ey) = —db +dy"

Wherebyd{}" refers to the distance from the closest prototype with claasd df}f
refers to the distance from the closest prototype with aléfésrent fromy. Note that
LGMLVQ tries to maximize this margin during training sindeoiccurs as nominator
within the cost function. Following the approach [1], we defthe loss function

1 ift<0
L:R->Rit—< 1—t/p ifO<t<p
0 otherwise

wherep > 0 is some fixed value. The term

m

Ey(f) =Y L(Mg(&,y)/m

i=1

accumulates the number of errors for a given data set, aratjdition, also punishes
all correct classifications with a margin smaller than

It is possible to correlate the generalization error angd thodified empirical error
by a dimensionality independent bound. According{o [LE®tem 7) for allf € F
with probability at least — §/2, the inequality

2K In(4/3)

Gn(F) 5, =

Ep(f) < EE(f)

holds, wherebyK is a universal constant arid,, (F) is the Gaussian complexity which
is the expectation of the quantity

with respect to the patterrfs whereg; constitute independent Gaussian variables with
zero mean and unit variance. It measures the amount of sarprithe considered
function class.

A winner-takes-all classification according to equatiblp ¢an be formulated as
Boolean formula over terms of the foraft’ —dé‘] wherei andj enumerate the mutually
different prototypes. There exi€t(P — 1)/2 such pairs. According td]1](Theorem
16), we find

fer

2 -
Eg...gm <Sup - Zlgi - f(&)

1=

G (F) < P(P—1) -Gn(Fij)

DEPARTMENT OF INFORMATICS 8
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wherebyF;; denotes a LGMLVQ network with only two prototypes. For a netk
with two prototypes, we get for inpuft

dd —d¥ <o
= TN ETNE-
2(07 A — T AN+ ()T Ay + ()T ATy < 0
This is the sum of a linear classifier and a quadratic term. idgld constant input
dimensionl to &, the input to the linear classifier is restricted By+ 1 and the length
of the weight vector is restricted byB + 2B? because vectorig;| are limited byB

and the sum of the eigenvalues/dfis at mostl. The empirical Gaussian complexity
of this linear part is limited by

4B(B+1)(B +2)y/m

m

according tol[ll]j(Lemma 22). According to the same theormGaussian complexity
of the quadratic term is limited by

4-B-m

m

Thus, an overall estimation is given by the sum of these terhish is of order3® //m.
Since the empirical Gaussian complexity and the Gaussiaplexity differ by more
thane with probability at mose exp(—e?m /8) according tol[L](Theorem 11), i.e. they

differ by no more than/8/m - In(4/6) with probability at least — §/2, we finally get

Bo(f) < BL(f) + O <ﬁ <P 2p33 +P2ij(1/ ) +\/1n<1/6>>> @)

with probability1 — §. This bound is independent of the dimensionality of the data
Rather, it involves the margimwhich is directly optimized during GMLVQ training.

This bound holds for priorly fixed margim For posterior margip, a generalization
of the argumentation as follows can be applied: Assume th@raal margin can be
upper bounded bg' > 0, a naive bound being e.g. the maximum distance of data in the
giventraining set. We defing = C'/ifor: > 1, and we choose prior probabilitips >
0with > p;, = 1 which indicate the confidence in achieving an empirical rimeofjsize
p;. Define the cost functiof; as above associated to marginand the corresponding
empirical errorE i (f). We are interested in the probability

P (3 Bp(f) 2 BE (f) + <)

9 Technical Report Ifl-06-14
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where the bound

12 2R3 2 n ;
(i) = ( = (P B, Pl S/ ®:d) | wn(l/(pia))))

Pi

depends on the empirical margii] being a constant. We can argue

IN

P(3Bp(N 2 BN +e) < S P(Bp() = B+ <)

Y pid=96

because the boundéi) are chosen according to equati@h (2). Thus, posterior t®ound
depending on the empirical margin and the prior confiden@hieving this margin
can be derived.

IN

5 Experiments

We test the performance of GMLVQ in comparison to GRLVQ an&¥/Glwithout met-
ric adaptation using an artificial data set and the image satation data set provided
in the UCI repositoryl[15].

5.1 Atrtificial Data

In a first experiment, the algorithm is applied to a two-disienal artificial dataset
consisting of two classes with one cigar shaped cluster. ddeitwo clusters intersect,
as depicted in Fifl.I{p). The data consists of two Gaussiéthsthre same probability
which give two classes. The Gaussians are generated with vadizes.; = [1.5,0.0]
andus = [—1.5,0.0], respectively, and varianeg » = [0.5, 3.0], these axes-aligned
cigars are rotated about the origin by the angles= 7/4 andyps = —7/6, respec-
tively. Training and test set consist of 300 and 600 datdpgier class, respectively.
For training, we use one prototype per class and the follgweitings: we use the stan-
dard euclidean metric (GLVQ), an adaptive diagonal me@GRI(VQ), individual adap-
tive diagonal metrics for each prototype (LGRLVQ), an adeptmatrix (GMLVQ),
and individual adaptive matrices for every prototype (LGKGQ). Relevance or matrix
learning is done after an initial phase consisting of 500cep@rototype adaptation.
Training is done for 2000 epochs for GLVQ and GRLVQ, and fad®@pochs for GM-
LVQ to account for the more subtle matrix adaptation. In gfieriments, learning rates
are chosen differently for prototypes and weight vectosp renatrix elements, and the
learning rates are annealed during training. The initiaiiéng ratee,(0) for proto-
types is chosen as 0.01, the initial learning rate for thgatial relevance terms;(0)

DEPARTMENT OF INFORMATICS 10
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Table 1: (a): Percentage of correctly classified patterthieaartificial training and test
set using the different LVQ-algorithms. (b): Percentageafectly classified patterns
for image data on training and test set.

(@) (b)

Algorithm  Training  Test Algorithm  Training  Test
GLVQ 75.33 71.83 GLVQ 82.38  79.05
GRLVQ 7433 72.33 GRLVQ 85.71  84.52
GMLVQ 79.67  77.83 GMLVQ 91.9 87.86
LGRLVQ 81.0 78.0 LGRLVQ 90.0 89.05
LGMLVQ 91.67 90.75 LGMLVQ  96.19 94.29

is chosen as 0.005 and the initial learning rate for nondiagmatrix elements,,, (0)
is chosen a8.0001. For annealing, we use the following learning rate schesdule

€(0)

- 1+T (t*tstart)

e(t)

wheretg.,s denotes the starting epoch for the adaptation, i.e. it isriHe weight
adaptation and 500 for the adaptation of matrix elementsraledance factors. The
parametet is chosen as 0.0001.

The classification accuracies on the training and test sestanmarized in Tgb.T{a).
The position of the resulting prototypes and decision bawied are shown in Fig.1(b)-
(). GMLVQ determines one single direction in feature spadeich is used for classifi-
cation. The resulting matri projects the data onto the respective subspace as depicted
in Fig[(g), Fig.(h) denotes the projections of the classing the LGMLVQ matrices

Ao — 0.5156  —0.4997 A 0.7195 0.4492
cesstT 0 —0.4997  0.4844 cess27 0 0.4492  0.2805

One can clearly observe the benefit of individual matrix &alégn: this allows each
prototype to shape its cluster according to the local aigisl form of the class. This
way, the data points of both cigar shaped clusters can bsifitaiscorrectly except
for the tiny region where the classes overlap. Note that|doal metric parameter
adaptation, the receptive fields of the prototypes are ngdoseparated by straight
lines (see Fid1(d)) and, further, need no longer be convéxis case (see Fifll 1(f)).

5.2 Image Data

In a second experiment, the algorithm was applied to the éns&gmentation dataset
provided in the UCI repository[15]. The dataset containglif®ensional feature vec-

tors, which encode different attributes of 3x3 Pixel regientracted out of seven out-
door images (brickface, sky, foliage, cement, window, pgthss). The features 3-5 are
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Figure 1: (a): Artificial dataset used for training. (b)#®sition of prototypes and deci-
sion boundaries after training with different LVQ-algbirits. (b):GLVQ, (c):GRLVQ,
(d):LGRLVQ, (e):GMLVQ, (f):LGMLVQ, (g):data transformedy global matrixs2,
(h): data transformed by individual matrices for both ptgpes.

(nearly) constant and were eliminated for this experim&ht training set consists of
210 datapoints (30 per class), the test sets contains 380alats per class.

As beforehand, we used one prototype per class. In all axpeets, the adaptation
of metric parameters starts after an initial training pHaséhe prototypes consisting of
a few 100 epochs. As beforehand, we compare global and leleafance resp. matrix
adaptation and simple GLVQ. The initial learning rates hiaegen optimized on the
training set and they are chosen as follows:

o GLVQ: ¢,(0) = 0.8

e GRLVQ: ¢,(0) = 0.8, 4(0) = 5- 106

e LGRLVQ: ¢4(0) = 51077

o GMLVQ: ¢,(0) = 0.8, €4(0) = 1- 1074, €,(0) = 5- 1075
o LGMLVQ: €,(0) = 0.8, 4(0) = 1- 1073, €,(0) = 5- 105

These learning rates are annealed as beforehandusin@001.
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Figure 2: Visualization of the final relevance matrix fordiface-class. Left: diagonal
elements. Right: nondiagonal elements
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Figure 3: Visualization of the final relevance matrix for @ow-class. Left: diagonal
elements. Right: nondiagonal elements

Figured® anfI3 visualize the resulting matrices for thekifaize- and the window
class after training of individual matrices for all protpgs. It is visible that espe-
cially relations between the dimensions encoding coloorimfation are emphasized:
The emphasized dimensions include feature 8: rawred-na@ngge over the regions
red values), feature 9: rawblue-mean (average over thensgjreen values), feature
10: rawgreen-mean (average over the regions green vafeas)re 11: exred-mean
(2R - (G + B)), feature 12: exblue-mean (2B - (R + G)), featuBedxgreen-mean (2G
- (R +B)).

The classification accuracy can be observed in Tablg 1(bjioDsly, relevance and
matrix adaptation allows to improve the classification aacy. Thereby, local matri-
ces yield an improvement of more than 10% compared to simpldQG Remarkably,
although the number of free parameters of the model is dieatigtincreased (being
of orderPN? for P prototypes and input dimensionality) no overfitting takes place.
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This demonstrates the good generalization ability of thelehas substantiated by the
formal generalization bounds.

6 Discussion

We have extended GRLVQ, a particularly efficient and powerfatotype based classi-
fier, by a full matrix adaptation scheme. This allows the dalégn of the class borders
such that local ellipsoidal shapes are taken into accouhe gossibility to improve
the classification accuracy by this extension has been denaded in two examples.
Remarkably, the generalization ability of the method igehigh as substantiated by
theoretical findings.

The complexity of full local matrix adaptations scales wit per epoch)V being
the input dimensionality. This is better than comparablé&imadaptation methods as
used e.g. in unsupervised fuzzy clustering17, 9], howethercomputational load be-
comes quite large for large input dimensionality. Therefepecific schemes to shape
the form of the matrix based on prior information are of manar interest. Nondiagonal
matrix elements indicate a correlation of input featurésvant for the classification. In
many cases, one can restrict useful correlations due tolgrawledge. As an example,
spatial or temporal data likely sho a high correlation ofghéiored elements, whereas
the other elements are probably independent. In such aasesan restrict to a fixed
adaptive bandwidth, decreasing the quadratic compleaity linear term with respect
to input dimensionality. Similarly, spatial correlatioimsmages or functional data can
lead to a massive restriction of the free parameters of tgeaa to promising regions.
This possibility will be the subject of future experiments.
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