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Abstract— Piecewise linear feedback systems composed by
a dynamical linear time invariant system closed in feedback
through a static piecewise linear mapping are considered. By
representing the closed loop system in the affine complemen-
tarity form, passivity is exploited in order to prove existence
of absolute continuous solutions and stability of the equilibria.
Assuming passivity of the open loop system and using results on
equivalent circuit representations of piecewise linear mappings,
conditions on the static feedback connection for preserving
passivity in closed loop, are proposed and discussed.

I. INTRODUCTION

PieceWise Linear (PWL) systems have been widely stud-
ied in the literature. Within this class, we consider piecewise
linear feedback systems as the feedback interconnection of a
linear dynamical system Σd with a piecewise linear static
characteristic, as reported in Figure 1. Σd represents the
linear system with (Ad, Bd, Cd, Dd) being a minimal state
space realization, Ad ∈ R

n×n, Bd ∈ R
n×m, Cd ∈ R

m×n,
and Dd ∈ R

m×m. The static characteristic ϕ(λ) : R
m �→ R

m

is a piecewise linear multi–valued mapping, which includes
piecewise linear functions (Figure 2(a)), set–valued functions
(Figure 2(b-d)) and unbounded characteristics (Figure 2(c-
d)).
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Fig. 1. The closed loop class of system under consideration.

Even basic questions like the well–posedness and stability
in this class of nonsmooth dynamical systems, are far to
be easily answered [1], [2]. Several particular cases of such
problem have been considered in the literature. If the static
characteristic ϕ is at least locally Lipschitz then the whole
closed loop system has a Lipschitz vector field and stan-
dard results on existence and uniqueness of solutions apply.
Moreover, if ϕ(0) = 0 and if u = −ϕ(Cdx + Ddu) has a
unique solution for any x, then the classical absolute stability
problem can be considered [3]. If the static characteristic
ϕ is not Lipschitz, possibly discontinuous or even a set–
valued function, proving well–posedness is a non trivial task.
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Fig. 2. Piecewise linear mappings (one-dimensional case).

Filippov’s work on discontinuous differential equations [1]
deal with such kind of systems, although in that framework
unbounded characteristics like that in Figure 2(c-d) cannot
be considered. The particular case in which the linear system
Σd is strictly proper and strictly passive and ϕ is a set–valued
mapping, has been studied in [4] where well–posedness
and the absolute stability problem are solved. Anyway in
that paper it is required that the set–valued mapping ϕ
is nondecreasing (the term monotone is used) and passing
through the origin. If Σd is not strictly proper but it is still
passive and ϕ represents complementarity relations between
y and u, the results in [5] can be used to conclude well–
posedness with the forward solution concept.

In our paper we will use the linear complementarity
systems framework [6], [7] in order to extend the existing
results to the case with Dd �= 0, Σd not necessarily
passive, and ϕ any piecewise linear set–valued mapping,
not necessarily passing through the origin neither lying in
the first and third orthant. We only require that ϕ(·) can
be represented by using the complementarity formalism and
that the corresponding complementarity closed loop model Σ
satisfies some passivity conditions. By exploiting the passiv-
ity concept on the class of affine complementarity systems,
conditions for well–posedness and stability are presented.

An equivalent electrical circuit approach [8] is proposed
for constructing a model of the feedback characteristic in the
complementarity formalism. Such representation is exploited
in order to derive passivity of the closed loop system Σ when
starting from a passive open loop system Σd, showing that
passivity is preserved for any nondecreasing possibly set–
valued feedback characteristic.
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II. PRELIMINARIES

This section presents some facts about linear complemen-
tarity problems [9].

Problem 1 (LCP(q,L)): Given q ∈ R
p and L ∈ R

p×p,
find z ∈ R

p such that

z � 0 (1a)

q + Lz � 0 (1b)

zT (q+Lz) = 0, (1c)

where the inequalities are considered componentwise.
Definition 1: A matrix L ∈ R

p×p is called a P -matrix if
all its principal minors are strictly positive.
According to the definition, every positive definite matrix is
a P -matrix but the converse is not true.

Theorem 1: [9, Theorem 3.3.7] Let L ∈ R
p×p be given.

Then the LCP(q,L) has a unique solution for any q ∈ R
p if

and only if L is a P -matrix.
Now we will introduce some definitions that will be used in
the Section IV-A.

Definition 2: Let us denote the set of solutions of the
LCP(0,L) by QL:

QL = {z|z � 0, Lz � 0, zT Lz = 0}. (2)
Definition 3: Let be Q a nonempty set of R

p. Then the
dual set of Q is the set

Q∗ = {w ∈ R
p|wT z � 0 ∀z ∈ Q}. (3)

We now introduce the concept of a complementarity system,
i.e. a linear system whose dynamics must satisfy a LCP for
each time instant.

Definition 4: An affine complementarity system (ACS)
is the following affine system subject to complementarity
constraints of z and w variables:

ẋ = Ax + Bz + g (4a)

w = Cx + Dz + h (4b)

0 � w ⊥ z � 0, (4c)

where g ∈ R
n, h ∈ R

p are constant vectors, x ∈ R
n, z ∈ R

p,
w ∈ R

p are vector functions of the time and A, B, C, D
are matrices of suitable dimensions.
It appears evident how the LCP(Cx + h, D) must be
feasible for each time instant t since its solution z(t) (that
might exists or not, can be discontinuous or even impulsive,
etc.) affects the dynamics. Existence of solutions in such
nonsmooth systems are not a trivial problem [5], [10], [11].

Finally we present one definition [3] of passivity for a
linear dynamical system:

Definition 5: The following linear dynamical system, de-
noted by Σ(A, B, C, D),

ẋ = Ax + Bu (5a)

y = Cx + Du, (5b)

is said to be passive if there exists a continuously differen-
tiable positive semidefinite function V (x) (called the storage

function) such that

uT y � V̇ �

(
∂V

∂x

)T

(Ax + Bu) ∀(x, u). (6)

Moreover, it is said to be strictly passive if

uT y � V̇ + ψ(x) ∀(x, u), (7)

for some positive definite function ψ(x).
By using the well-known Kalman-Yakubovich-Popov

Lemma [3] it can be shown that the passivity of
Σ(A, B, C, D) is equivalent to the feasibility of the following
linear matrix inequality (LMI):(

AT P + PA PB − CT

BT P − C −D − DT

)
� 0 (8a)

P = PT � 0, (8b)

with V (x) = xT Px � 0 defining a storage function.
Note that if the realization (A, B, C) is minimal, then the
inequality (8b) is strict, i.e. P is definite positive. In the
following we will assume (A, B, C) being minimal.

Regarding the strict passivity, it is possible to show that
a system Σ(A, B, C, D) with (A, B, C) minimal, is strictly
passive if the following LMI(

AT P + PA + εP PB − CT

BT P − C −D − DT

)
� 0 (9a)

P = PT > 0, (9b)

is feasible for some ε > 0.
The passivity of a linear system Σ(A, B, C, D) can be

shown to be equivalent to the positive realness of the transfer
matrix G(s) = C(sI − A)−1B + D [3].

III. FROM PWL FEEDBACK SYSTEMS TO AFFINE

COMPLEMENTARITY SYSTEMS

Let us consider the dynamical part of the system in
Figure 1:

ẋ = Adx + Bdu (10a)

y = Cdx + Ddu, (10b)

with x ∈ R
n, u, y ∈ R

m and (Ad, Bd, Cd) minimal.
We will consider static piecewise linear characteristics that

can be described by the following LCP

ϕ = Asλ + Bsz + ḡ (11a)

w = Csλ + Dsz + h̄ (11b)

0 � w ⊥ z � 0, (11c)

with ϕ ∈ R
m, λ ∈ R

m and z, w ∈ R
q
+. Such representation

can be considered really general for describing set–valued
piecewise linear mappings [12]. It is extremely useful also
for describing the feedback structure of Figure 1. In that case
−ϕ is the input u of the dynamical linear system and λ is
the output y of the system. So, putting all together,

ẋ = Adx − Bd [Asλ + Bsz + ḡ] (12a)

λ ≡ y = Cdx − Dd [Asλ + Bsz + ḡ] (12b)

w = Csλ + Dsz + h̄ (12c)

0 � w ⊥ z � 0. (12d)
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By looking at the equation (12b), if the matrix DdAs has no
eigenvalues in −1, the matrix M � I + DdAs ∈ R

m×m is
invertible and

λ = M−1 [Cdx − DdBsz − Ddḡ] . (13)

Now system (12) can be written as (4) with

A := Ad − BdAsM
−1Cd, (14a)

B := BdAsM
−1DdBs − BdBs, (14b)

C := CsM
−1Cd, (14c)

D := Ds − CsM
−1DdBs, (14d)

g := Bd

[
AsM

−1Dd − I
]
ḡ, (14e)

h := h̄ − CsM
−1Ddḡ. (14f)

Note that being M singular, it means that the feedback
structure has an algebraic loop not solvable and we get an
ill-posed problem. Note that in the case Dd > 0 and As � 0,
the matrix M = (I + DdAs) is invertible (see [13]).

IV. WELL–POSEDNESS AND STABILITY

The following analysis refers to the existence of solutions
and stability of the affine complementarity systems (4).

A. Well–posedness

Theorem 2: Consider an ACS (4) such that the system
Σ(A, B, C, D) is passive. Then, given an initial state x(0) =
x0, it exists an absolutely continuous solution x(t) for almost
every t � 0, if and only if the conditions

Cx0 + h ∈ Q∗

D (15)

h ∈ Q∗

D + imC (16)

hold.
Proof: See the authors’ report [14].

In the following we assume that an absolute continuous
solution exists on the time interval [0,∞).

B. Equilibria

All equilibrium points
(
x̄ z̄

)T
satisfy the following re-

lations:

0 = Ax̄ + Bz̄ + g (17a)

w̄ = Cx̄ + Dz̄ + h (17b)

0 � w̄ ⊥ z̄ � 0. (17c)

It is clear that in the case the static gain −CA−1B+D is a P-
matrix, there exists a unique solution of the LCP (17), and so
there exists a unique equilibrium point

(
x̄ z̄

)T
of (4). The

same occurs if Σ(A, B, C, D) is strictly passive: in fact the
transfer function G(jω) = C(jωI −A)−1B + D is positive
definite for all ω, in particular for ω = 0. It means that
−CA−1B + D exists and is positive definite, thus it is a
P-matrix.

C. Stability

We now analyze the stability of the equilibria of (4)
under the hypothesis of passivity of Σ(A, B, C, D). Let us
rewrite (4) in terms of the variations xδ = x − x̄ and
zδ = z − z̄:

ẋδ =Axδ + Bzδ (18a)

wδ =Cxδ + Dzδ (18b)

0 � wδ + w̄ = w ⊥ z = zδ + z̄ � 0. (18c)

Since Σ(A, B, C, D) is passive, there exists a quadratic
storage function V (x) = xT Px > 0 that is null only in the
origin. We will show that V (xδ) = xT

δ Pxδ is a Lyapunov
function for system (18). First of all we will prove the
following lemma.

Lemma 1: Any trajectory
(
xδ zδ

)T
of system (18) will

satisfy the constraint

zT
δ wδ = zT

δ Cxδ + zT
δ Dzδ � 0. (19)

Proof:

zT
δ wδ =(z − z̄)T (w − w̄)

=zT w − zT w̄ − z̄T w + z̄T w̄

= − zT w̄ − z̄T w � 0. (20)

By using the previous lemma, we can infer Lyapunov stabil-
ity of the equilibria x̄:

Theorem 3: Consider an ACS (4) such that
Σ(A, B, C, D) is passive. Then all equilibrium points
x̄ are stable. Moreover, if Σ(A, B, C, D) is strictly passive,
the unique equilibrium point is globally exponentially stable.

Proof: By passivity of Σ, there exists a matrix P =
PT > 0 satisfying LMI (8a). Let us introduce the following
quadratic function:

V (xδ) = xT
δ Pxδ. (21)

Note that this function is continuous in xδ and it has no
discontinuities on [0, +∞). It is a continuously differentiable
function with respect to its domain R

n and its time derivative
is

V̇ =

(
∂V (xδ)

∂xδ

)T

(Axδ + Bzδ) a.e. (22)

except at isolated time instants where zδ is discontinuous.
By using LMI (8a), Lemma 1 and (18b), we have

V̇ = xT
δ (AT P + PA)xδ + xT

δ PBzδ + zT
δ BT Pxδ

� xT
δ (AT P + PA)xδ + xT

δ PBzδ + zT
δ BT Pxδ − 2zT

δ wδ

=
(
xδ zδ

)T

(
AT P + PA PB − CT

BT P − C −D − DT

)(
xδ

zδ

)

� 0, (23)

from which follows the stability of all equilibria x̄.
In the case Σ(A, B, C, D) satisfies the strict passivity

condition, by using LMI (9a) it is easy to show that

V̇ � −εxT
δ Pxδ < 0 (24)

which implies the global exponential stability of the unique
equilibrium x̄.
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V. PASSIVITY OF THE FEEDBACK INTERCONNECTION

As shown in Section IV, in order to study stability we need
the passivity property related to the system Σ(A, B, C, D)
with respect to input-output variables z and w. Note that
system Σ can be represented as in Figure 3 by assuming
g and h to be zero. Under the hypothesis that Σd is
passive we would like to investigate which conditions the
representation (11) should satisfy in order to get the system
Σ passive.

From well-known results on feedback interconnection of
passive systems [3] it follows that the system with input
−Bsz and output y is strictly passive if Σd is passive and
As > 0 or in the case Σd is strictly passive and As � 0.

�

Σd
� �
u y�

− �

λ
As

���−Bs
�

Ds
�

�
g

+ +

−

z
Cs

� �+�

�

�

h

w

Fig. 3. Block diagram of the closed loop systems under consideration
including the ϕ(λ) characteristic representation.

Looking at the conditions that the piecewise linear charac-
teristic ϕ(λ) should satisfy in order to have Σ(A, B, C, D)
to be passive, we can prove the following

Theorem 4: If the dynamic system Σd(Ad, Bd, Cd, Dd)
is (strictly) passive and

Qs =

(
As Bs

Cs Ds

)
� 0 (25)

then the system Σ(A, B, C, D) is (strictly) passive. Moreover
if (25) is verified then the function ϕ(λ) is nondecreasing.

Proof: By definition (see Section III), passivity of Σ
does not involve g and h. Therefore, assuming g = 0 and
h = 0,

zT w + λT ϕ =
(
λT zT

) (
ϕ
w

)
=

(
λT zT

)
Qs

(
λ
z

)
.

(26)

Then, by using (25) and (strict) passivity of Σd, one obtains:

zT w =
(
λT zT

)
Qs

(
λ
z

)
− λT ϕ

=
(
λT zT

)
Qs

(
λ
z

)
+ yT u � yT u

� V̇ (x) (+ψ(x)), (27)

where V (x) is the storage function of system Σd (and ψ(x)
is a positive definite function). Inequality (27) implies the
(strict) passivity of the system Σ (see [3]).

Assume now that (25) is verified. By considering any two
points of the characteristic (λ1, ϕ1) and (λ2, ϕ2), from (11)

one obtains:

(λ1 − λ2)
T (ϕ1 − ϕ2) + (z1 − z2)

T
(w1 − w2)

=
(
λT

1 − λT
2 zT

1 − zT
2

)
Qs

(
λ1 − λ2

z1 − z2

)
� 0

∀
(
λi, ϕi := ϕ(λi)

)
. (28)

Using (28) and by recalling Lemma 1,

(λ1 − λ2)
T (ϕ1 − ϕ2) � −(z1 − z2)

T (w1 − w2) � 0, (29)

which implies nondecreasing monotonicity of ϕ(λ).
The previous theorem extends the results on passivity

reported in [4]. Indeed, by using circuit theory arguments
it will be shown in Section VI that for any nondecreasing
ϕ(λ) it always exist a representation (25) for which Qs � 0.

VI. COMPLEMENTARITY REPRESENTATIONS OF PWL
CHARACTERISTICS

As shown above, the affine complementarity represen-
tation of the piecewise linear characteristic influences the
passivity of Σ(A, B, C, D) on which well–posedness and
stability results are obtained. Thus, it is important to analyze
the different possible complementarity representations of the
characteristic, since there is no unique representation.

A. Breaking points models

Let us consider a generic piecewise linear characteristic
with m breaking points. A possible complementarity repre-

ϕ

λ
�

�

λm+1λ3λ1

λ0

ϕ0

ϕ1

ϕ2

ϕ3

ϕm+1

Fig. 4. Piecewise linear characteristic with m = 3 breaking points.

sentation of the characteristic reported in Figure 4 can be
obtained by imposing [15](

ϕ
λ

)
=

(
ϕ1

λ1

)
+

(
ϕ0

λ0

)
µ−

1 +

(
ϕ2 − ϕ1

λ2 − λ1

)
µ+

1

+

m−1∑
k=2

(
ϕk+1 − 2ϕk + ϕk−1

λk+1 − 2λk + λk−1

)
µ+

k

+

(
ϕm+1 − ϕm + ϕm−1

λm+1 − λm + λm−1

)
µ+

m (30)

µ+

j − µ−

j = µ+

1 − µ−

1 − (j − 1) (31)

with µ+

j � 0, µ−

j � 0 and µ+

j · µ−

j = 0 for j = 1, . . . , m.
The parameters (λ0, ϕ0) and (λm+1, ϕm+1) must be chosen
as the coordinates of points belonging to the initial and final
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direction of the characteristic, respectively. By considering
a scalar characteristic, a possible complementarity model in
the form (11) can be obtained by choosing, for instance,
zj = µ+

j , wj = µ−

j for j = 1, . . . , m and by computing
w1 = µ−

1
from the second component of (30).

B. Equivalent circuit models

From circuit theory it follows that any piecewise linear
characteristic can be represented by means of an equivalent
circuit in which there are only resistors, independent voltage
and current sources and ideal diodes [8], [16]. Let us first
consider the typical idealized voltage-current characteristic
of a diode. Let vD the voltage across the diode, and iD the
current through the diode. The behavior of a diode can then
be described by

(−vD = 0 ∧ iD � 0) ∨ (−vD � 0 ∧ iD = 0). (32)

The relation (32) can be rewritten as a complementarity
relation by choosing z = −vD and w = iD or conversely.
By exploiting the ideal diode characteristic one can construct
any piecewise linear characteristic assuming that ϕ and λ are
current and voltage at the terminals of a suitable equivalent
circuit. In the circuit theory framework there exist algorithms
for constructing such m-port equivalent circuit starting from
the (possibly multivariable) voltage-current characteristic to
be represented [16], [17]. Figure 4 together with Figure 5 and
Table I report a simple example. Once the equivalent circuit
has been obtained one can simply construct the model (11)
by using the Kirchhoff rules (that give matrices As, Bs, Cs

and Ds) and the complementarity conditions on the voltage
and currents of the ideal diodes, while ḡ and h̄ are related to
the independent voltage and current sources in the equivalent
circuit.

By using some circuit theory results [8], it can be shown
that any nondecreasing characteristic can be represented by
means of circuits with diodes, independent sources and only
positive resistors. Therefore by using the equivalent circuit
representation of ϕ(λ) it is shown that for any nondecreasing
PWL characteristic it always exists a representation (11) with
Qs � 0. In fact, from the model (11) and by the circuit
interpretation, it follows that the quantity λT ϕ+ zTw repre-
sents the power furnished to the circuit obtained by putting
to zero all sources (ḡ = 0 and h̄ = 0), i.e. voltage sources
considered as short circuits and current sources considered
as open circuits. Since the resulting circuit contains only
positive resistors, the power furnished to the circuit must be
non negative and from (26) one can conclude that Qs � 0.

Thus, by using Theorem 4 one can conclude passivity of
the closed loop system when Σd is passive and ϕ(λ) is any
nondecreasing possibly set–valued function.

VII. APPLICATIONS

We first consider the case of a non passive Σd system
with a static characteristic ϕ(λ) that is nondecreasing and
set–valued. Let Σd be the non passive linear system

ẋ = x + u, (33)

y = x, (34)

saturation

ϕ0 = ϕ1 = −1
ϕ2 = ϕ3 = +1
−λ1 = λ2 = +1

λ0 < −1, λ3 > +1

V = 1, R1 = 1
I = 2, R2 = +∞

Ib = 1, Rb = +∞

step

ϕ0 = ϕ1 = 0
ϕ2 = ϕ3 = +1
λ1 = λ2 = 0

λ0 < 0, λ3 > 0

V = 0, R1 = 0
I = 1, R2 = +∞

Ib = 0, Rb = +∞

max(λ − λ̄, 0)

ϕ0 = ϕ1 = ϕ2 = 0
λ1 = λ2 = λ̄

ϕ3 > 0
λ0 < λ̄, λ3 > λ̄

V = −λ̄, R1 = 0
R2 = 0

Ib = 0, Rb = +∞

TABLE I

SOME CHARACTERISTICS BELONGING TO THE CLASS REPORTED IN

FIGURE 4 WITH THE CORRESPONDING CIRCUIT PARAMETERS OF

FIGURE 5.

�

ϕ

λ

vD2

�
�iD2

R2

V

I

���
��

R1

�

�
iD1

vD1

�
� �

ϕ

Ib

Rb

���
��

Fig. 5. Equivalent circuit corresponding to the piecewise linear character-
istic reported in Table I. The circuit parameters depend on ϕi and λi.

with u = −ϕ, λ = y and the set–valued function ϕ(λ)
reported on the left of Figure 6. By choosing as λi and ϕi

the points indicated in the figure, the representation (30)-(31)
leads to the following matrices of the model (11):

As = 2, Bs =
(
1 0

)
, ḡ = 0, (35)

Cs =

(
−1
−1

)
, Ds =

(
0 0.5
−1 1.5

)
, h̄ =

(
0
1

)
. (36)

An equivalent circuit representation of the characteristic can
be obtained by considering the circuit of Figure 5 with
the same values reported in the second row of Table I
(step function) with Rb = 1/2 instead of +∞. Choosing
as complementarity variables z1 = iD1

, w1 = −vD1
,

z2 = −vD2
and w2 = iD2

the resulting complementarity
representation (11) has the same As, Bs, ḡ and h̄ of the
previous model and

Cs =

(
−1
0

)
, Ds =

(
0 1
−1 0

)
. (37)

It is straightforward to verify that in this case Qs � 0. Our
aim is to study passivity of the closed loop system Σ by
using both the two different LCP representations of the PWL
feedback characteristic. Note that results in [4] cannot be
applied since the linear dynamical system is not passive. The
closed loop system in the case of the first LCP representation
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has the following matrices:

A = −1, B =
(
−1 0

)
, g = 0, h =

(
0
1

)
(38)

C =

(
−1
−1

)
, D =

(
0 0.5
−1 1.5

)
. (39)

Such matrices give rise to a non passive Σ(A, B, C, D)
while, in the case of the equivalent circuit LCP represen-
tation, the closed loop system can be represented in the
complementarity form (4) with the matrices in (38) and

C =

(
−1
0

)
, D =

(
0 1
−1 0

)
, (40)

which give a strictly passive Σ as it can be verified through
the LMI (9a) with P = 1. Therefore, using passivity
(see [14]) one can conclude existence and uniqueness of the
solution and, from Theorem 3, stability of the closed loop
system.

Although we could not apply Theorem 4 since Σd was not
passive, we were able to infer well–posedness and stability
because by using circuit representation, Σ was passive. This
example shows how it is important to choose a “good” LCP
representation for the static characteristic. This consideration
can be extended also for studying systems with static char-
acteristics that are not nondecreasing. Consider as Σd

ẋ = −2x + u, (41)

y = x. (42)

The closed loop system obtained with u = −ϕ, λ = y
and the set–valued function ϕ(λ) reported on the right of
Figure 6, can be put in the complementarity form (4) by
using both the breaking point approach and the equivalent
circuit method for modelling the piecewise linear feedback.
In the first case the matrices of the representation (4) are (38)
and (39) and thus we do not have passivity. Still, if we use the
equivalent circuit representation (circuit corresponding to the
step function with Rb = −1 instead of +∞), we get well–
posedness and stability (we have matrices (38) and (40)).

VIII. CONCLUSIONS

The complementarity framework has been used to prove
existence of absolute continuous solutions and stability of
the equilibria for linear time invariant systems connected

in feedback through a piecewise linear static mapping. It is
shown that the way how the feedback characteristic is mod-
elled plays an important role for the passivity of the closed
loop system. Using equivalent circuit representations, a novel
approach for constructing a model of any piecewise linear
characteristic in the complementarity framework is proposed.
The circuit representation is useful to obtain passivity of
the closed loop system when the feedback consists of any
nondecreasing possibly set-valued characteristic.
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