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Abstract— We cast the notion of bisimulation in the Willems’
behavioral setting. We show that in this setting, bisimulation
is also a congruence, as it is known in the field of concurrent
processes. Bisimulation is a congruence means if A and A′ are
bisimilar systems, then A ‖ B and A′ ‖ B are also bisimilar.
Here, the operator ‖ denotes systems composition, and B is
any other system that is composed with A or A′.

I. INTRODUCTION

In this paper we study bisimulation of dynamical systems

using the behavioral systems theory setting. Bisimulation as

a notion of systems equivalence originates in the field of

concurrent processes in theoretical computer science [1], [2].

The recent development in systems theory, particularly in

the branch of hybrid systems, has seen an increase in the

application of ideas from the theoretical computer science

to the traditional systems theory. Bisimulation is one of the

ideas picked up by researchers and applied to, for example,

hybrid systems [3], [4], [5] and some classes of continuous

time dynamical systems [6], [7], [8].

Bisimulation is a notion of systems equivalence. One of its

idiosyncrasies, as it is known in theoretical computer science,

is that bisimulation is a congruence. By this we mean the

following. Let A and A′ be bisimilar processes. We denote

synchronization of processes with the operator ‖. Then for

any other process B, we have that A ‖ B and A′ ‖ B are

also bisimilar.

Obviously, congruence is an essential property if a notion

of systems equivalence is to be applied in the context of

systems composition. Consider a complex system composed

of many subsystems. If we replace a subsystem with another

system that is equivalent to it, then the congruence property

guarantees that the altered complex system is equivalent to

the original one. This motivates us to study the congruence

property of bisimulation in the behavioral framework [9],

[10].

See Figure 1 for an illustration of the discussion above.

One potential benefit that we can exploit from this property

is that when we want to analyze the complex system, we

can replace the subsystems with other systems that are less

§A. J. van der Schaft is also affiliated with the Institute for Mathematics
and Computer Science, University of Groningen, P.O. Box 800, Groningen
9700AV, The Netherlands, Email:A.J.van.der.Schaft@math.rug.nl

Fig. 1. Illustration of the congruence property. Suppose that subsystem
A and A′ are equivalent (w.r.t ≈), and complex system 2 is obtained
by replacing subsystem A with A′ in complex system 1. If ≈ has the
congruence property, then both complex systems are also equivalent w.r.t
≈.

complex, and thus make the analysis easier. By less complex,

we typically mean systems with smaller state space.

The physical interpretation for lesser complexity can be

illustrated as follows. For discrete event systems, this means

fewer states, which in terms of computer programs can mean

a program that takes less space in the memory. For physical

systems, typically the state of a system is associated with

the energy of the system. Thus, a state space with smaller

dimension means a system with less way to store energy,

which usually implies that the system is simpler.

Naturally, we also need to make sure that the system

properties that we want to analyze is preserved under the

systems equivalence. For bisimulation, it is known that

temporal logic formula in LTL and CTL are preserved [11],

[12].

II. SYSTEMS AND DYNAMIC MAPS

Now we shall (re)introduce some basic concepts of the

behavioral systems theory.

Definition 1: [13] A dynamical system Σ is defined as a

triple (T, W,B), where T is called the time axis, W is called

the signal space, and B ⊂W
T is called the behavior of the

system.

A behavior is a collection of trajectories, which are func-

tions mapping the time axis to the signal space. We don’t

require the trajectories to be total functions, as they can

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

MoB05.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 814



be partial functions as well. The behavior of a dynamical

system is the collection of all possible trajectories of the

system. A trajectory is possible if it is consistent with the

(mathematical) laws describing the system. Thus,

B := {w : T → W | w is compatible with the laws of Σ}.
(1)

The description of possible trajectories above is rather

abstract. To make the exposition clearer, we provide the

following examples of dynamical systems.

Example (Newton’s laws): Newton’s law of motions stipu-

lates that the force (F) needed to accelerate a physical body

is proportional to the mass (m) and the acceleration (a).
This is epitomized in the well-known relation

F = m · a. (2)

A dynamical system that describes this theory can be written

as a triple (T, W, B). If we denote the position of the

center of gravity of the body as x, then the behavior of

the dynamical system that describes the relation between the

force and the position of the body is

B :=
{

(F, x) ∈ R → R
3 × R

3|∀t ∈ R, F (t) = m · d2x

dt2
(t)

}
.

(3)

The trajectories of this system are trajectories of the force

and the position variables. Each variable is vector valued,

so in this case we take W as R
3 × R

3. The evolution of

the variables takes place continuously, so we take T as, for

example, R. �
Example (finite state automaton): A finite state automaton

can be associated with the collection of strings that it

executes [14]. Consider as an example, a printer machine

that operates in the following way. It can receive a printing

job, this event is annotated by job. It must print out the

job that it has received and feed out the output before it can

receive another job. Suppose that the printing is associated

to an event annotated by print, and the feeding out the

printout is associated to feed. The behavior of this system

can be defined as the collection of all strings such that

job.print.feed always occur in this order. Any string

that has, for example, print.job.feed, as a substring is

not an element of the behavior as it corresponds to the accep-

tance of a new job before the printout is fed out. The behavior

has Z+ as its time axis, and A = {print, job, feed} as its

signal space. �
In general, for a dynamical system Σ = (T, W,B), we

assume that there exists a totally ordered commutative group

G such that either

(i) T = G or,

(ii) There is a t0 ∈ G such that T = {t ∈ G | t ≤ t0}.

This assumption gives the structure of the general time axis

T.

Definition 2: [9], [10] Given a dynamical system Σ =
(T, W,B). Any surjective map with B×T as its domain is

called a dynamic map of Σ. We denote the class of dynamic

maps of Σ by D(Σ).

We equip D(Σ) with a partial ordering �, which is defined

as follows.

Definition 3: Given a dynamical system Σ = (T, W,B).
Let φ and γ be dynamic maps in D(Σ). We say that φ � γ if

for all (w1, t1), (w2, t2) ∈ B × T the following implication

holds.

γ(w1, t1) = γ(w2, t2) ⇒ φ(w1, t1) = φ(w2, t2). (4)

Since we assume that the dynamic maps are surjective but

not necessarily bijective, their inverse function do not nec-

essarily exist. Intuitively, this means that some information

may be lost when B×T is passed through a dynamic map.

That is, it can happen that two different elements of B × T

are mapped to the same point in the codomain. The fact that

φ � γ can be interpreted that φ retains less information than

γ. Indeed, we can prove that φ � γ if and only if there

exists a surjective map κ such that γ = φ ◦ κ. Furthermore,

we can also prove that D(Σ) and the partial ordering � form

a lattice. By this we mean that the greatest lower bound and

least upper bound of any pair of elements in D(Σ) exist.

Given a dynamical system Σ = (T, W,B), there are a few

properties of dynamic maps in D(Σ) that are of interest in

this paper. These properties are:

Past inducedness. A dynamic map φ ∈ D(Σ) is said to be

past induced if for any w1, w2 ∈ B and τ ∈ T,

w1(t)|t≤τ = w2(t)|t≤τ ⇒ φ(w1, τ) = φ(w2, τ). (5)

Markovian. A dynamic map φ ∈ D(Σ) is said to be

Markovian if for any w1, w2 ∈ B, τ1, τ2 ∈ T, and τ ′
1 > τ1,

(i) (φ(w1, τ1) = φ(w2, τ2)) and

(ii)
(
w1(t)|τ1<t≤τ ′

1
= w2(t)|τ2<t≤τ2−τ1+τ ′

1

)
implies

φ(w1, τ
′
1) = φ(w2, τ2 − τ1 + τ ′

1). (6)

In words, a dynamic map is Markovian if whenever two

trajectories that are not distinguishable by the dynamic map

at a certain time and they proceed with the same segment of

trajectory, they should remain indistinguishable.

State property. A dynamic map φ ∈ D(Σ) is said to be a

state map if it satisfies the following state property. For any

w1, w2 ∈ B, τ1, τ2 ∈ T,

(φ(w1, τ1) = φ(w2, τ2)) ⇒
(
w1 ∧τ1

τ2
w2

) ∈ B. (7)

The concatenation operation ∧τ1
τ2

is defined as

(
w1 ∧τ1

τ2
w2

)
(t) :=

{
w1(t), t ≤ τ1,

w2(t − τ1 + τ2), t > τ1.
(8)

The past inducedness and state properties are related to

the partial ordering � through the following result.

Lemma 4: [9] Let φ and γ be elements of D(Σ) such that

φ � γ, then

(i) if γ is past induced, so is φ,

(ii) if φ is a state map, so is γ.

The codomain of a state map is called its state space, and

the elements of the state space are called states.

To make the exposition on the concept of state maps

clearer, we shall present a few examples. First, we introduce

some notations we shall use hereafter.
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Notation. (i) The class of locally integrable functions f :
R → R

w that are continuous from the left is denoted as−→
L loc

w .

(ii) The class of all g × q matrices whose entries are real

polynomials with indeterminate ξ is denoted by R
g×q[ξ].

Example (continuous time LTI): Consider a continuous

time linear time invariant (LTI) system

P

(
d

dt

)
y = Q

(
d

dt

)
u, (9)

where P (ξ) ∈ R
y×y[ξ] and Q(ξ) ∈ R

y×u[ξ]. We assume that

P−1 exists as a rational matrix and that P−1Q is a proper

rational matrix. The variables y and u can be regarded as

output and input of the linear system. The behavior of this

system can be defined as

B := {(y, u) ∈ −→
L loc

y ×−→
L loc

u | (9) is satisfied weakly}.

(10)

It is known that this system admits an observable state space

representation of the form

dx

dt
= Ax + Bu,

y = Cx + Du. (11)

It can be proven that:

(i) The state variable in this observable representation can

be regarded as a dynamic map of the dynamical system, as

we can find polynomial matrices T1 and T2 such that the

following relation holds.

x(t) = T1

(
d

dt

)
y + T2

(
d

dt

)
u. (12)

(ii) The dynamic map x defined in (12) is indeed a state

map. Moreover, it is also past induced and Markovian. �
Example (discrete time LTI): Consider the discrete time

counterpart of the previous example. We deal with a system

of the form

P (σ) y = Q (σ)u, (13)

where P (ξ) ∈ R
y×y[ξ] and Q(ξ) ∈ R

y×u[ξ]. We assume

that P−1 exists as a rational matrix and that P−1Q is a

proper rational matrix. The symbol σ signifies unit time shift

operation, that is,

σy(k) := y(k + 1), for all k ∈ Z. (14)

We can prove that this system admits an observable state

space representation of the form

x(k + 1) = Ax(k) + Bu(k + 1),
y(k + 1) = Cx(k) + Du(k + 1). (15)

It can be proven that:

(i) The state variable in this observable representation can

be regarded as a dynamic map of the dynamical system, as

we can find polynomial matrices T1 and T2 such that the

following relation holds.

x(k) = T1 (σ) y + T2 (σ)u. (16)

(ii) The dynamic map x defined in (16) is indeed a state

map. Moreover, it is also past induced and Markovian. �
Example (deterministic automata): Consider a determinis-

tic automaton1 A as depicted in the figure below.

Example of a deterministic automaton.

The language generated by this automaton is given by the

following regular expression.

L(A) = (aab + aba)∗. (17)

The overbar denotes the prefix closure operation. We as-

sociate the language generated by the automaton with the

behavior of the system. Each string in the language, which

is a partial function from Z+ to {a, b}, is considered as a

trajectory of the system.

We can associate the state reached by a certain string at a

certain time with a state map. Denote this state map as x,

then we have that, for example:

s1 := aba, x(s1, 0) = 1,x(s1, 1) = 2,x(s1, 2) = 4, · · ·
s2 := aab, x(s2, 0) = 1,x(s2, 1) = 2,x(s2, 2) = 3, · · ·

It is trivial to see that x indeed has the state property.

Moreover, x is also Markovian and past induced. �

III. BISIMULATION IN THE BEHAVIORAL SETTING

Hereafter we assume that the signal space of the dynamical

systems we discuss can be factored as follows.

W = V × D. (18)

The interpretation being that V is the external signal space

and D is the internal signal space. Thus, any trajectory can

be written as a pair w = (v, d), where v and d denote the

external and internal component of the trajectory.

Notation. We denote the projection of the trajectories with

respect to the external and internal signal space as πv and

πd respectively.

Consider the following definition.

Definition 5: A state system is an ordered pair (Σ, x),
where Σ is a dynamical system and x ∈ D(Σ) is a state

map of Σ.

Bisimulation is relation defined between the states of two

state systems.

Definition 6: [10] Given two dynamical systems Σ1 =
(T, V×D1,B1) and Σ2 = (T, V×D2,B2), with state maps

x1 and x2 respectively. Notice that the systems share the

same external signal space. We denote the state space of

1For excellent introductory material on discrete event systems and au-
tomata, we refer the reader to [15], [14].
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the state maps as X1 and X2 respectively. A bisimulation
relation R ⊂ X1 × X2 is a relation with the following

property. If we take any (ξ1, ξ2) ∈ R. Then, given any

w1 := (v1, d1) ∈ B1 and t1 ∈ T such that x1(w1, t1) = ξ1,

the following holds. If t2 ∈ T is such that there exists a

w′ := (v′, d′) ∈ B2 such that x2(w′, t2) = ξ2, then there

exists a d2 ∈ πdB2 such that if we define

v2 := v′ ∧t2
t1 v1, (19)

w2 := (v2, d2), (20)

we have that

w2 ∈ B2, (21)

x2(w2, t2) = ξ2, (22)

d2(τ) = d′(τ),∀τ ≤ t2, (23)

and for all τ > t2,

(x1(w1, τ − t2 + t1), x2(w2, τ)) ∈ R. (24)

Conversely, given any w2 := (v2, d2) ∈ B2 and t2 ∈ T such

that x2(w2, t2) = ξ2, the following holds. If t1 ∈ T is such

that there exists a w′ ∈ B1 such that x1(w′, t1) = ξ1, then

there exists a d1 ∈ πdB1 such that if we define

v1 := v′ ∧t1
t2 v2, (25)

w1 := (v1, d1), (26)

we have that

w1 ∈ B1, (27)

x1(w1, t1) = ξ1, (28)

d1(τ) = d′(τ),∀τ ≤ t1, (29)

and for all τ > t2, (24) holds.

Furthermore, we require that

∀ξ1 ∈ X1,∃ξ2 ∈ X2 such that (ξ1, ξ2) ∈ R, (30)

∀ξ2 ∈ X2,∃ξ1 ∈ X1 such that (ξ1, ξ2) ∈ R. (31)

Although this definition looks cumbersome, it can be

summarized as follows. The bisimulation requires that from

any two bisimilar states2 it is possible to proceed with equal

external trajectories while visiting states that are bisimilar.

This definition is similar to the original definition by Milner

[1], [2], and also similar to the extension defined for contin-

uous time dynamical systems in, for example, [6], [7], [8].

The additional requirements (30) and (31) are to make sure

that all states are involved in the bisimulation.

When two state systems (Σ1, x1) and (Σ2, x2) are such

that there exists a bisimulation relation R between their state

spaces, we say that (Σ1, x1) and (Σ2, x2) are bisimilar. In

shorthand notation, we write (Σ1, x1) ≈bis (Σ2, x2). The

following result establish ≈bis as an equivalence relation.

Remark 7: In some literature, a bisimulation relation R
does not necessarily satisfy (30) and (31). However, two

systems are said to be bisimilar if there exists a bisimulation

relation that satisfies (30) and (31).

2Two states are bisimilar if they are related by the bisimulation relation.

Lemma 8: [10] Let (Σi, xi), i ∈ {1, 2, 3}, be state sys-

tems. Moreover, assume that xi, i ∈ {1, 2, 3}, are past

induced Markovian state maps. The following relations hold.

(i) (Σ1, x1) ≈bis (Σ1, x1),
(ii) (Σ1, x1) ≈bis (Σ2, x2) implies (Σ2, x2) ≈bis (Σ1, x1),
(iii) (Σ1, x1) ≈bis (Σ2, x2) and (Σ2, x2) ≈bis (Σ3, x3)
implies (Σ1, x1) ≈bis (Σ3, x3).

Notice that although in Lemma 8 we assume that the

state maps are past induced and Markovian, this is not too

restrictive. For example, all the examples that we discuss in

the previous section have this property.

Assumption. In the remaining of this paper, we shall assume

that state maps are past induced and Markovian.

IV. INTERCONNECTION OF STATE SYSTEMS

In the previous section we see how bisimulation is formu-

lated as a notion of equivalence among state systems. In order

to study bisimulation as congruence, we need to formalize

the notion of interconnection of state systems.

Definition 9: Let Σi = (T, V × Di,Bi), i = 1, 2, be

dynamical systems with their respective state maps x1 and

x2. The interconnection of the state systems (Σ1, x1) and

(Σ2, x2) is defined as follows.

(Σ, x) := (Σ1, x1) ‖ (Σ2, x2),

where

Σ = (T, V × D1 × D2,B), (32)

B := {(v, d1, d2) | (v, d1) ∈ B1 and (v, d2) ∈ B2}, (33)

x(v, d1, d2, t) :=
[

x1(v, d1, t)
x2(v, d2, t)

]
. (34)

Thus, interconnection of state systems are defined for

systems that have the same external signal space. Notice that

the state space of the composed state system is a subset of

the product of the state spaces of the individual state systems.

Example: Consider two continuous time LTI system

q1

(
d

dt

)
y(t) = p1

(
d

dt

)
u(t) + r1

(
d

dt

)
d1(t), (35)

q2

(
d

dt

)
u(t) = p2

(
d

dt

)
y(t) + r2

(
d

dt

)
d2(t), (36)

where pi/qi and ri/qi are strictly proper fractionals. Con-

sider u and y as external variables, and d1 and d2 as internal

variables. It is known (see, for example, [10]) that there exist

X1

(
d
dt

)
and X2

(
d
dt

)
such that if we define

x1(t) := X1

(
d

dt

) ⎡
⎣ y

u
d1

⎤
⎦ , (37)

x2(t) := X2

(
d

dt

) ⎡
⎣ y

u
d2

⎤
⎦ , (38)

we can have the following state-space representation.

d

dt
x1 = A1x1 + B1u + F1d1, (39)

y = C1x1, (40)
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Fig. 2. Interconnection of automata as state systems. The automaton at
the bottom is the result of interconnection of the two at the top.

for the first system, and

d

dt
x2 = A2x2 + B2y + F2d2, (41)

u = C2x2, (42)

for the second system. Thus, (37) and (38) can be thought
of as state maps of the respective system. We can consider
the systems together with their respective state map to form
state systems (Σ1, x1) and (Σ2, x2). The interconnected state
system is then given by the dynamical system that satisfies
equations (39) - (42), and the state map is given as (37) and
(38) together. It is quite easy to verify that the interconnected
state system is then associated with the following state-space
representation.

d

dt

»
x1

x2

–
=

»
A1 B1C2

B2C1 A2

– »
x1

x2

–
+

»
F1 0
0 F2

– »
d1

d2

–
,

(43)»
y
u

–
=

»
C1 0
0 C2

– »
x1

x2

–
. (44)

�
Example: Consider the two automata on the top row of

Figure 2. We assume that the alphabets (thus the signal

spaces) of the automata can be factored into two parts. Thus

the transitions are labeled with a pair, where the first element

in the pair is the external signal and the second element is the

internal signal. In this example, the external signal is denoted

with the letter a, while the internal signal is denoted with

numbers.

Notice that these automata are then deterministic au-

tomata, but if we hide information about the internal signal,

the top left automaton is nondeterministic. The synchroniza-

tion / interconnection of these automata as state systems

results in the automaton at the bottom of the figure. Notice

that the state space of the interconnected system is indeed

a subset of the product of the state spaces of the individual

systems. �

V. BISIMULATION AS CONGRUENCE

Now that we have covered the necessary preliminary

materials, we can state the main result of this paper.

Theorem 10: Let Σi = (T, V × Di,Bi), i = 1, 2, 3, be

dynamical systems with their respective state maps x1, x2

and x3. If (Σ1, x1) ≈bis (Σ2, x2) then

(Σ1, x1) ‖ (Σ3, x3) ≈bis (Σ2, x2) ‖ (Σ3, x3). (45)

Proof: First we define

(Σ, x) := (Σ1, x1) ‖ (Σ3, x3), (46)

(Σ′, x′) := (Σ2, x2) ‖ (Σ3, x3). (47)

Denote the state space of xi as Xi, i = 1, 2, 3. The state

spaces of x and x′ are given by (see Definition 9)

X = X1 ×X3, (48)

X ′ = X2 ×X3. (49)

We denote the behaviors of Σ and Σ′ with B and B′

respectively.

Since (Σ1, x1) ≈bis (Σ2, x2), there exists a bisimulation

relation R ⊂ X1 × X2 as defined in Definition 6. We need

to show that there also exists a bisimulation relation R′ ⊂
X ×X ′ so that (45) holds. We can construct R′ as follows.

For any (ξ, ζ) ∈ X and (ξ′, ζ ′) ∈ X ′,

((ξ, ζ), (ξ′, ζ ′)) ∈ R′ ⇔ (ξ, ξ′) ∈ R and ζ = ζ ′. (50)

We now have to prove that R′ is indeed a bisimulation

relation. First, we prove that for any (ξ, ζ) ∈ X , there exists

a state (ξ′, ζ ′) ∈ X ′ such that ((ξ, ζ), (ξ′, ζ ′)) ∈ R′. We shall

construct such a (ξ′, ζ ′) ∈ X ′. Since R is a bisimulation

relation, from Definition 6 we know that there exists a ξ′′ ∈
X2 such that (ξ, ξ′′) ∈ R. Moreover, from (49), we know

that (ξ′′, ζ) ∈ X ′. Therefore we can take (ξ′, ζ ′) = (ξ′′, ζ)
and obtain ((ξ, ζ), (ξ′, ζ ′)) ∈ R′. We also have to prove that

for any (ξ′, ζ ′) ∈ X , there exists a state (ξ, ζ) ∈ X such that

((ξ, ζ), (ξ′, ζ ′)) ∈ R′. However, since this proof is analogous

to the one we just constructed, we shall not display it.

We also need to show that if we take any ((ξ, ζ), (ξ′, ζ ′)) ∈
R′, then, given any w := (v, d1, d3) ∈ B and t1 ∈ T such

that x1(v, d1, t1) = ξ and x3(v, d3, t) = ζ, the following

holds. If t2 ∈ T is such that there exists a w′ := (v′, d′2, d
′
3) ∈

B′ such that x2(v′, d′2, t2) = ξ′ and x3(v′, d′3, t2) = ζ ′, then

there exists a (d′′
2 , d′′3) ∈ πdB

′ such that if we define

v′′ := v′ ∧t2
t1 v, (51)

w′′ := (v′′, d′′2 , d′′3), (52)

we have that

w′′ ∈ B′, (53)

x2(v′′, d′′2 , t2) = ξ′, (54)

x3(v′′, d′′3 , t2) = ζ ′, (55)

d′′2(τ) = d′
2(τ),∀τ ≤ t2, (56)

d′′3(τ) = d′
3(τ),∀τ ≤ t2, (57)

and for all τ > t2,

(x(w, τ − t2 + t1), x′(w′′, τ)) ∈ R′. (58)
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By the construction of R′, we know that (ξ, ξ′) ∈ R and

ζ = ζ ′. Since (ξ, ξ′) ∈ R, we know that there exists a

d′′2 ∈ πdB2 such that(v′′, d′′2) ∈ B2, (54) and (56) hold, and

for all τ > t2,

(x1(v, d1, τ − t2 + t1), x2(v′′, d′′2 , τ)) ∈ R. (59)

Since ζ = ζ ′, if we construct d′′
3 asd′′

3 := d′
3 ∧t2

t1 d3, then

by the state property we shall have that (v′′, d′′3) ∈ B3, (55)

and (57) hold, and for all τ > t2,

x1(v, d1, τ − t2 + t1) = x3(v′′, d′′3 , τ). (60)

Notice that (60) holds because of the Markovian property,

and that we have established (53). Furthermore, (58) is

implied by the construction of R′, (59) and (60).

Formally, we have only proven that R′ is a simulation of

(Σ, x) by (Σ′, x′). The proof of the converse is completely

analogous to the proof above.

This result concurs with the following results.

Continuous time LTI systems. In [10] it is proven that

two continuous time LTI systems of a particular form are

bisimilar if and only if their external behaviors are equal. By

external behavior we mean the projection of the behavior to

the external signal space. Theorem 10 implies that external

behavior equality is a congruence, which is known, and

proven, for example in [10].

Discrete event systems. Consider again the automata in

Figure 2. It is obvious that the automata on the top row

are bisimilar. Now, consider the interconnection between the

automaton on the top right with itself. It is not difficult

to see that the result of this interconnection is bisimilar to

the automaton at the bottom of the figure. This fact is also

implied by Theorem 10.

VI. CONCLUDING REMARKS

In this paper we show that bisimulation in the behavioral

setting has the congruence property. The congruence property

makes bisimulation a suitable notion of systems equivalence

to use in the context of systems interconnection.

The behavioral framework is general, it is not restricted

to any particular class of systems. To show it, we present

examples, in which the theory can be applied. These exam-

ples are in the form of linear systems and discrete automata.

However, the application of the theory is not restricted on

these systems only. A more general class of systems, namely

hybrid systems, can also benefit from it. In [10] it is shown

how hybrid systems can be cast in the behavioral framework.

Therefore, the results that we obtain here can be applied for

hybrid systems, as well as other classes of systems that can

be cast in the behavioral framework.

A possible future research direction, following up the

results presented here, is as follows. In the typical setup of

control problems in the behavioral setting, systems equiv-

alence is interpreted as behavioral equality [16], [17], [18],

[10]. Thus, the problem can be summarized as follows. Given

P and S, find C such that P ‖ C ≈ S.

The symbols P , C, and S denote the plant system, the con-

troller, and the specification respectively. The equivalence ≈

typically means behavioral equality. Some general solutions

of this kind of problems are given in the above mentioned

references. It is interesting to see how we can formulate the

problem with ≈ being interpreted as bisimulation. Generally,

the solutions for the case where ≈ means behavioral equality

cannot be applied, since bisimilarity is generally more strict

than behavioral equality.
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