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Stochastic semantics for Communicating Piecewise Deterministic
Markov Processes

Stefan Strubbe and Arjan van der Schaft

Abstract— CPDPs (Communicating Piecewise Deterministic
Markov Processes) can be used for compositional specification
of systems from the class of stochastic hybrid processes formed
by PDPs (Piecewise Deterministic Markov Processes). We give
an extension of the CPDP model of [6]. This extension provides
richer interaction possibilities such as broadcasting (and re-
cieving) of multiple signals at the same time. We show that the
|PA| operator from [7] can be used in the context of CPDPs to
express all these interactions. We provide an algorithm in which
scheduling and maximal progress are used to find the PDP that
models the behavior of a CPDP of this new type. We give the
conditions under which a CPDP allows this PDP-semantics.

I. INTRODUCTION

Many real-life systems nowadays are complex hybrid sys-

tems. They consist of multiple components ’running’ simul-

taneously, having both continuous and discrete dynamics and

interacting with each other. Also, many of these systems have

a stochastic nature. An interesting class of stochastic hybrid

systems is formed by the Piecewise Deterministic Markov

Processes (PDPs), which were introduced in 1984 by Davis

(see [1], [2]). Motivation for considering PDP systems is two-

fold. First, almost all stochastic hybrid processes that do not

include diffusions can be modelled as a PDP, and second,

PDP processes have very nice properties (such as the strong

Markov property) when it comes to stochastic analysis.

(In [2] powerful analysis techniques for PDPs have been

developed.) However, PDPs cannot communicate or interact

with other PDPs and therefore the PDP-framework does not

allow compositional modelling (where all components are

modelled individually and connected / composed afterwards).

In [6] the CPDP automata framework is introduced as a

compositional modelling framework for PDP-type systems.

A CPDP is an open system which can interact with other

CPDPs. CPDPs can be connected / composed via a parallel

composition operator. A CPDP can be closed (by ’closing

down all interaction channels’) and in [8] it is proved that

the behavior of a closed CPDP can be modelled through a

PDP. This means that CPDPs can be used for compositional

modelling of complex stochastic hybrid systems and that

composite CPDPs (which contain all relevant components

and do therefore not interact anymore with other compo-

nents) can be analyzed by using PDP analysis techniques.

Another framework that has been developed for compo-
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sitional modelling of PDP-type systems is the Petri net

framework DCPN (Dynamically Coloured Petri Nets) of [3].

In this paper we upgrade the compositional power of

CPDPs in two ways. First, by using guards instead of the

boundaries of the CPDPs in [6], we show that it is possible

to exploit the full compositional power of the |PA| composition

operator of [7] in the context of CPDPs. |PA| is a rich compo-

sition operator, defined in [7] for general transition systems

with active and passive transitions, which allows several

types of interaction by exploiting all possible combinations

of synchronization of active and passive transitions.

Second, by using guards we can allow that multiple

transitions are executed (in a specific order) at the same time

instant. This means that at one time instant a chain of signals

can be broadcast between the components of complex CPDP.

This feature has proved to be very useful in for example the

Air Traffic Management CPDP model in [10].

By using guards in the CPDP model, we diverge from

the PDP model because non-determinism (introduced by

the guards) and mutliple-transitions-at-the-same-time-instant

are not present in the PDP model. However, we show that

under certain conditions, the behavior of CPDPs can still

be modelled through PDPs. We do this by presenting an

algorithm which replaces hybrid jumps of multiplicity greater

than one (i.e. a chain of multiple transitions executed at

the same time instant) by a single transition. We show

that converting a chain of transitions to a single transition

does not change the stochastic behavior. With this algorithm

CPDPs can be converted to CPDPs of the old type (as in

[6]) which means that its behavior can be modelled through

a PDP. We give necessary and sufficient conditions under

which this conversion is possible. Then, if conversion is

possible, CPDPs of the new type still allow analysis via PDP-

analysis-techniques.

The organization of this paper is as follows. In Section

II we give the definition of the CPDP automaton and we

highlight how this definition differs from the definition of

[6]. In Section III composition of CPDPs is defined via the

|PA| operator. In Section IV we present the algorithm, and the

conditions under which it works, that converts a CPDP to

a CPDP of the old type. Therefore, this algorithm, which

provides a stochastic PDP semantics for CPDP, can be used

to find the PDP that models the behavior of a CPDP of the

new type. Finally, in Section V we draw conclusions.

II. DEFINITION OF CPDP

We give the formal definition of CPDP as an automaton.
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Definition 2.1: A CPDP is a tuple

(L,V,ν ,W,ω,F,G,Σ,A ,P,S ), where

• L is a set of locations

• V is a set of state variables. With d(v) for v ∈ V we

denote the dimension of variable v. v∈V takes its values

in R
d(v).

• W is a set of output variables. With d(w) for w ∈ W
we denote the dimension of variable w. w ∈W takes its

values in R
d(w).

• ν : L→ 2V maps each location to a subset of V , which is

the set of state variables of the corresponding location.

• ω : L → 2W maps each location to a subset of W ,

which is the set of output variables of the corresponding

location.

• F assigns to each location l and each v∈ ν(l) a mapping

from R
d(v) to R

d(v), i.e. F(l,v) : R
d(v) → R

d(v). F(l,v)
is the vector field that determines the evolution of v for

location l (i.e. v̇ = F(l,v) for location l).
• G assigns to each location l and each w ∈ ω(l) a

mapping from R
d(v1)+···+d(vm) to R

d(w), where v1 till vm
are the state variables of location l. G(l,w) determines

the output equation of w for location l (i.e. w = G(l,w)).
• Σ is the set of communication labels. Σ̄ denotes the

’passive’ mirror of Σ and is defined as Σ̄ = {ā|a ∈ Σ}.

• A is a finite set of active transitions and consists of five-

tuples (l,a, l′,G,R), denoting a transition from location

l ∈ L to location l′ ∈ L with communication label a ∈ Σ,

guard G and reset map R. G is a closed subset of the

state space of l. The reset map R assigns to each point

in G for each variable v ∈ ν(l ′) a probability measure

on the state space (and its Borel sets) of v for location

l′.
• P is a finite set of passive transitions of the form

(l, ā, l′,R). R is defined on the state space of l (as the R
of an active transition is defined on the guard space).

• S is a finite set of spontaneous transitions and consists

of four-tuples (l,λ , l′,R), denoting a transition from

location l ∈ L to location l′ ∈ L with jump-rate λ and

reset map R. The jump rate λ (i.e. the Poisson rate of

the Poisson process of the spontaneous transition) is a

mapping from the state space of l to R+. R is defined on

the state space of l as it is done for passive transitions.

Note that the symbol G is used twice; for denoting the

output map and for denoting a guard of an active transition.

In the rest of this paper, it will directly be clear from the

context which use for G is meant.

For a CPDP X with v ∈ VX , where VX is the set of state

variables of X , we call R
d(v) the state space of state variable

v. We call {(v = r)|r ∈ R
d(v)} the valuation space of v and

each (v = r) for r ∈R
d(v) is called a valuation. We call {(v1 =

r1,v2 = r2, · · · ,vm = rm)|ri ∈ R
d(vi)}, where v1 till vm are the

variables from ν(l), the valuation space or (continuous) state

space of location l and each (v1 = r1, · · · ,vm = rm) is called a

valuation or (continuous) state of l. A valuation (state) is an

unordered tuple (e.g. (v1 = 0,v2 = 1) is the same valuation

as (v2 = 1,v1 = 0)). We denote the valuation space of l by

val(l). We call {(l,x)|l ∈ L,x ∈ val(l)} the state space of a

CPDP with location set L and valuation spaces val(l). Each

state of a CPDP consists of a location (belonging to a discrete

set) and a valuation (which takes value in a continuum),

therefore we call the state (state space) of a CPDP a hybrid

state (hybrid state space). The (continuous) state space of

a location l with ν(l) = {v1, · · · ,vm} can be regarded as

R
d(v1)+···+d(vm), because the state space is (topologically)

homeomorphic to R
d(v1)+···+d(vm) by the homeomorphism

πl : val(l)→ R
d(v1)+···+d(vm) defined as πl((v1 = r1, · · · ,vm =

rm)) = (r1, · · · ,rm). We use unordered tuples for the valua-

tions (states) because this will turn out to be helpful for the

composition operation and for some other definitions and

proofs.

The difference between the CPDP model here (i.e. of

Definition 2.1) and the CPDP model from [6] is as follows.

First, a CPDP location contains both state and output vari-

ables, while the CPDP model of [6] does not consider output

variables. Second and main difference is that we use guards.

This causes non-determinism because a transition may take

place anywhere in the guard-area but it is not determined

exactly where the transition will take place. In [6] there

are no guards but there are boundaries. Using boundaries

does not cause non-determinism because then a transition

will take place exactly when the boundary is hit. Later we

will see that we can model this boundary effect also by using

guards together with the socalled maximal progress strategy.

The advantages of using guards instead of boundaries are as

follows.

1) If a transition jumps into the guard area of another tran-

sition, then this other transition is immediately enabled

and may therefore immediately be taken. Therefore the

CPDP model allows that multiple transitions are taken

at the same time instant. In a composition context this

means that multiple signals can be broadcast between

different components at the same time instant. (The

use of this feature is clearly apparent in the Air Traffic

Management CPDP-model of [10]). Note that this can

not be done in the CPDP model of [6] because there it

is not allowed to jump on the boundary of a location.

2) Communication through synchronization of active

transitions and through synchronization of active with

passive transitions is possible, whereas the CPDP

model of [6] only allows synchronization of active with

passive transitions.

III. COMPOSITION OF CPDPS

In the process algebra and concurrent processes literature

it is common to define a parallel composition operator,

normally denoted by ||. || has as its arguments two processes,

say X and Y , of a certain class of processes. The result of the

composition operation, denoted by X ||Y , is again a process

that falls within the same class of processes (i.e. the specific

class of processes is closed under ||). The main idea of using

this kind of composition operator is that the process X ||Y
describes the behavior of the composite system that consists

of components X and Y (which might interact with each

other).
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In [7] the composition operator |PA| is defined for general

transition systems with active and passive transitions. Here,

we will use |PA| in the context of CPDPs. The sets A and

P contain respectively the active and passive events that

should synchronize in the composition. Passive events can

not happen ‘by themselves’, but should be triggered by active

events from other components. This expressed in rule r2

below. For a full explanation of the use of active and passive

events and their interaction, we refer to [7]. The composition

rules, which define the operator |PA|, are given in the Plotkin

style, which is common practice in the process algebra

literature. This means that we use structural operational rules

of the form A,B1
C (B2), which should be read as: if A,B1 and

B2 are true, then this implies that C is true.

r1.
l1

a,G1,R1−→ l′1, l2
a,G2,R2−→ l′2

l1|PA|l2
a,G1×G2,R1×R2−→ l′1|PA|l′2

(a ∈ A).

r2.
l1

a,G1,R1−→ l′1, l2
ā,R2−→ l′2

l1|PA|l2
a,G1×val(l2),R1×R2−→ l′1|PA|l′2

(a �∈ A).

r2′.
l1

ā,R1−→ l′1, l2
a,G2,R2−→ l′2

l1|PA|l2
a,val(l1)×G2,R1×R2−→ l′1|PA|l′2

(a �∈ A).

r3.
l1

a,G1,R1−→ l′1, l2 � ā−→
l1|PA|l2

a,G1×val(l2),R1×Id−→ l′1|PA|l2
(a �∈ A).

r4.
l1

ā,R1−→ l′1
l1|PA|l2

ā,R1×Id−→ l′1|PA|l2
(ā �∈ P)

r5.
l1

ā,R1−→ l′1, l2
ā,R2−→ l′2

l1|PA|l2
ā,R1×R2−→ l′1|PA|l′2

(ā ∈ P).

r6.
l1

ā,R1−→ l′1, l2 � ā−→
l1|PA|l2

ā,R1×Id−→ l′1|PA|l2
(ā ∈ P)

r7.
l1

λ1,R1−→ l′1

l1|PA|l2
λ̂1,R1×Id−→ l′1|PA|l2

, r7′.
l2

λ2,R2−→ l′2

l1|PA|l2
λ̂2,Id×R2−→ l1|PA|l′2

.

In the above rules Gi ×G j denotes the product space of

the guard spaces Gi and G j, Ri × R j denotes the product

reset map (consisting of product probability measures) of Ri
and R j and Id is the identity reset map, which leaves each

variable that is reset, unaltered with probability one. In rules

r7 and r7’, λ̂1 and λ̂2 are defined on the combined state

space of locations l1 and l2 and equal λ̂1(x1,x2) = λ1(x1)
and λ̂2(x1,x2) = λ2(x2), where x1 and x2 are states of l1 and

l2 respectively.

Besides the above rules, we also consider (but do not

explicitly state) the rules r3’,r4’ and r6’, which are the mirror

rules of r3,r4 and r6 like r2’ and r7’ are the mirror rules of

r2 and r7. We now define the composition of two CPDPs,

resulting in a new composite CPDP.

Definition 3.1: If X = (LX ,VX ,νX ,WX ,ωX ,FX ,GX ,Σ,
AX ,PX ,SX ) and Y = (LY ,VY ,νY ,WY ,ωY ,FY ,GY ,Σ,AY ,
PY ,SY ) are two CPDPs that have the same set of events Σ
and if we have VX ∩VY =WX ∩WY = /0, then X |PA|Y is defined

as the CPDP (L,V,ν ,W,ω,F,G,Σ,A ,P,S ), where

• L = {l1|PA|l2 | l1 ∈ LX , l2 ∈ LY},

• V = VX ∪VY , W = WX ∪WY ,

• ν(l1|PA|l2) = ν(l1)∪ν(l2), ω(l1|PA|l2) = ω(l1)∪ω(l2),
• F(l1|PA|l2,v) equals FX (l1,v) if v ∈ νX (l1) and equals

FY (l2,v) if v ∈ νY (l2).
• G(l1|PA|l2,w) equals GX (l1,w) if w ∈ ωX (l1) and equals

GY (l2,w) if w ∈ ωY (l2).
• A , P and S contain and only contain the transi-

tions that are the result of applying one of the rules

r1,r2,r2’,r3,r3’,r4,r4’,r5,r6,r6’,r7 and r7’, defined above.

The operator |PA| is called commutative if for all CPDPs

X and Y we have that X |PA|Y is isomorphic to Y |PA|X ,

where two CPDPs are isomorphic if they can be turned into

each other by renaming the locations. The operator |PA| is

called associative if for all CPDPs X ,Y and Z we have that

(X |PA|Y )|PA|Z is isomorphic to X |PA|(Y |PA|Z).
Theorem 3.2: The composition operator |PA| is com-

mutative for all A and P. |PA| is associative if and only if for

all a ∈ Σ we have: if ā �∈ P then a ∈ A.

Proof: The proof of this theorem in the context of

active/passive labelled transition systems can be found on

www.cs.utwente.nl/˜strubbesn. The proof can easily be gen-

eralized to the context of CPDPs.

If we have n CPDPs Xi (i = 1 · · ·n) with events-set Σ
that are composed via an associative operator |PA|, then the

order of composition does not influence the resulting CPDP

and therefore we can write X1|PA|X2|PA| · · ·Xn−1|PA|Xn in order

to unambiguously (up to isomorphism) denote the resulting

composite CPDP.

IV. PDP-SEMANTICS OF CPDPS

Under certain conditions, the state evolution of a CPDP

can be modelled as a stochastic process. In this section we

give the exact conditions under which this is true. We also

prove that the stochastic process may always be chosen of

the PDP-type. In order to achieve this result, we first need

to make a distinction between guarded CPDP states and

unguarded CPDP states.

Definition 4.1: A state (l,x) of a CPDP X is called

guarded, if there exists an active transition with origin

location l such that x is an element of the guard of this

transition. A CPDP state is unguarded if it is not guarded.

If we execute a CPDP X from some initial hybrid state

(l0,x0) then the first part of the state trajectory (i.e., the

evolution of the state variables in time) and of the output

trajectory (i.e. the evolution of the output variables in time)

is determined by FX and GX respectively. This is the case

until the first transition is executed, which might cause a

jump (i.e. discontinuity) in the state/output trajectories. We

choose that at these points of discontinuity, the state/output

trajectories have the cadlag property, which means that at

these points the trajectories are continuous from the right

6105



and have limits from the left. If then at t = t1, X executes

a transition which resets the state to an unguarded state x1,

then the value of the state trajectory at t = t1 equals x1 (and

the value of the output trajectory equals the output value of

x1). If the state after reset x1 is guarded, then it is possible

that at the same time t1 from state x1 another active transition

is executed. If this transition resets the state to an unguarded

state x′1, then the value of the state trajectory at t1 equals x′1.

If this transition resets the state to a guarded state x′1, then

another active transition can be executed, etc. We conclude

that the CPDP model allows multiple transitions at the same

time instant.
Formally, let E := {(l,x)|l ∈ LX ,x ∈ val(l)} be the state

space of CPDP X , where val(l) denotes the space of all

valuations for the state variables of location l. The trajecto-

ries of X are elements of the space DE [0,∞[ which is the

space of right-continuous E-valued functions on R+ with

left-hand limits. According to [2], a metric can be defined

on E such that (E,B(E)), with B(E) the set of Borel sets

of E under this metric, is a Borel space (i.e. a subset of a

complete separable metric space) and each Borel set B is

such that for each l ∈ LX , {x|(l,x) ∈ B} (i.e. the restriction

of B to l) is a Borel set of the Euclidean state space val(l)
of location l. Therefore, the concept of continuity within a

location (i.e. for sets {(l,x)|x ∈ val(l)}) coincides with the

standard (Euclidean) concept of continuity.
The CPDP model exhibits non-determinism. This means

that at certain time instants of any execution of a CPDP

(starting from some initial state) choices have to be made

which are neither deterministic (like a differential equa-

tion deterministically determines the state trajectory) nor

stochastic (i.e. a probability measure can be used to make

a probabilistic choice). These non-deterministic choices are

simply unmodelled. We distinguish two sources of non-

determinism for the CPDP: 1. The choice when an active

transition is taken. 2. The choice which active transition is

taken. To resolve non-determinism of type 1, we use, in the

line of [4], the maximal progress strategy, which means that

as soon as the state enters a guard area (i.e. at the first time

instant that the state is guarded), an active transition has to

be executed. To resolve non-determinism of type 2, we use

a socalled scheduler S which

1) assigns to each guarded state x a probability measure

on the set of all active transitions that have x as

an element of their guard (i.e. the set of all active

transitions that are allowed to be executed from state

x) and

2) assigns to each pair (x, ā), with x any state and ā ∈ Σ̄
such that there is a ā-transition at the location of x,

a probability measure on the set of all ā-transitions at

the location of x.

In other words, if an active transition has to be executed

from state x, S probabilistically chooses which active transi-

tion is executed and if an active a triggers a ā-transition, then

S probabilistically chooses which ā-transition is executed.
For identifying the stochastic process of a CPDP, we only

look at closed CPDPs, which are CPDPs that have no passive

transitions. Closed CPDPs are called closed because we as-

sume that they represent the whole system (i.e. no more other

component-CPDPs will be added). Therefore closed CPDPs

should have no passive transitions because passive transitions

can only be executed when another component triggers it

(via an active transition). The order of finding the stochastic

behavior of the composite system is therefore: first compose

the different components. Then remove all passive transitions

of the resulting CPDP. This results in a closed CPDP where,

under maximal progress and scheduler S, all choices for the

execution of the CPDP are made probabilistically. One could

question whether the evolution of the state can, for closed

CPDPs, be modelled as a stochastic process. We can state

a condition on the CPDP under which this is certainly not

possible: if with non-zero probability we can reach a guarded

state x where with non-zero probability an infinite sequence

of active transitions can be chosen such that each transition

resets the state within the guard of the next transition, then

the trajectory of this execution deadlocks (i.e. time does

not progress anymore after reaching x at some time t̂ and

therefore the trajectory is not defined for time instants after

time t̂). Trajectories of stochastic processes do not deadlock

like this, therefore this state evolution cannot be modelled

by a stochastic process.

In order to find the stochastic process of a closed CPDP,

we would first like to state conditions on a CPDP, which

guarantee that the probability that an execution deadlocks

(i.e. comes at a point where time does not progress anymore)

is zero.

A. The stochastic process of a closed CPDP

Suppose we have a closed CPDP X with location set

LX and active transition set AX . The CPDP operates under

maximal progress and under scheduler S. We write Sx(α) for

the probability that active transition α is taken when an active

transition is executed at state x. We assume that the CPDP

has no spontaneous transitions. The case ’with spontaneous

transitions’ is treated at the end of this section.

We call the jump of a CPDP from the current state to

another unguarded state via a sequence of active transitions

a hybrid jump. We call the number of active transitions

involved in a hybrid jump the multiplicity of the hybrid jump.

For example, if at state x1 a transition α is taken to x′1, which

lies in the guard of transition β , and immediately transition

β is taken to an unguarded state x′′1 , then this hybrid jump

from x1 to x′′1 has multiplicity two.

We need to introduce the concept of total reset map.

Rtot(B,x) denotes the probability of jumping into B ∈ B(E)
when an active transition takes place at state x. (Here, B may

contain both guarded and unguarded states). We have that

Rtot(B,x) = ∑
α∈Alx→

[Sx(α)Rα(B∩ val(l′α),x)],

where Alx→ is the set of all active transitions that leave the

location of x. We define the total guard Gtot,l of location

l as the union of the guards of all active transitions with

origin location l. It can be seen now that for the stochastic
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executions (i.e. generating trajectories during simulation) of

X it is enough to know Rtot and Gtot,l (for all l ∈ LX ) instead

of AX : a trajectory that starts in (l0,x0) evolves until it

hits Gtot,l0 at some state (l0,x1). From x1 we determine the

target state (l1,x′1) of the (first step of the) hybrid jump by

drawing a sample from Rtot(·,x1). If x′1 is unguarded, the next

piecewise deterministic part of the trajectory is determined

by the differential equations of the state variables of location

l1 until Gtot,l1 is hit. If x′1 is guarded, we directly draw a

new target state (l′1,x
′′
1) from Rtot(·,x′1), etc. Therefore, if

two closed CPDPs that are isomorphic except for the active

transition set, and they have the same total reset map and the

same total guards, then the stochastic behaviors (concerning

the state trajectories) of the two CPDPs are the same and

consequently if some stochastic process models the state

evolution of one CPDP, then it also models the state evolution

of the other CPDP.

We will now present the algorithm that can convert CPDPs

to CPDPs of the type of [6]. The algorithm consists of three

parts. First, we show how a transition can be split into a

stable and unstable part such that the stochastic behavior

does not change. Second, we show, by using the distinc-

tion between stable and unstable transitions, how chains of

transitions can be converted into a single transition without

changing the stochastic behavior. Third, we show how the

results from the first two steps can be used to determine the

PDP that models the behavior of the original CPDP.

a) Finding the stable and unstable parts of an active
transition: Take any α ∈AX . We now show how to split up

α in a stable part αs and an unstable part αu such that if we

replace α by αs and αu, then the stochastic behavior of X
does not change.

We define Gαs as the set of all x ∈ Gα (i.e. all x in the

guard of α) such that Rα(vals(l′α),x) �= 0, where vals(l′α) is

the unguarded part of the state space of the target location

of α . Then for all x ∈ Gαs we define

Rαs(B,x) :=
Rα(B∩ vals(l′α),x)

Rα(vals(l′α),x)
,

Sx(αs) := Sx(α)Rα(vals(l′α),x).

The scheduler works on αs as Sx(αs) (as defined above).

We define Gαu as the set of all x ∈ Gα such that

Rα(valu(l′α),x) �= 0. For all x ∈ Gαu we define

Rαu(B,x) :=
Rα(B∩ valu(l′α),x)

Rα(valu(l′α),x)
,

Sx(αs) := Sx(α)Rα(valu(l′α),x).

The scheduler works on αu as Sx(αu) (as defined above).

It can be seen that replacing α by αs and αu does not

change the total reset map.

b) Resolving hybrid jumps of multiplicity greater
than one: For any n ∈ N we will now define T n

s and T n
u .

T n
s is a set of stable transitions representing hybrid jumps of

multiplicity n and T n
u is a set of unstable transitions repre-

senting hybrid jumps of multiplicity n. A stable transition is

a transition that always jumps to the unguarded state space

of the target location. An unstable transition always jumps

to the guarded state space. A stable transition is stable in the

sense that after the hybrid jump caused by the transition, no

other hybrid jump will happen immediately and therefore we

are sure that a stable transition will not cause an explosion of

active transitions (i.e. a hybrid jump of multiplicity infinity).

An unstable transition does not necessarily need to induce

such a blow up of active transitions, but potentially it can.

We define T 1
s as the set of all active transitions αs (with

α ∈ AX ) such that Gαs �= /0 and we define T 1
u as the set of

all active transitions αu (with α ∈ AX ) such that Gαu �= /0.

We introduce the following notations. Px(B◦β ◦α) denotes

the probability that, given that an active jump takes place

at state x, transition α is executed followed directly by

transition β jumping into the set B ∈ B(val(l ′β )). It can be

seen that

Px(B◦β ◦α) = Sx(α)
∫

x̂∈Gβ
Sx̂(β )Rβ (B, x̂)dRα(x̂,x).

We will show how the sets T n
s and T n

u can inductively be

determined. Suppose the sets T n−1
s and T n−1

u and T 1
s and T 1

u
are given. Now, for any α ∈ T n−1

u , β ∈ T 1
s ∪ T 1

u such that

l′α = lβ , we define Gβ◦α as all x ∈ Gα such that Rα(Gβ ,x) �=
0. Then, for all x ∈ Gβ◦α we define

Sx(β ◦α) := Px(val(l′β )◦β ◦α),

Rβ◦α(B,x) :=
Px(B◦β ◦α)

Sx(β ◦α)
.

If Gβ◦α �= /0 and β ∈ T 1
s then we add transition β ◦α , with

guard, reset map and scheduler as above, to T n
s . If Gβ◦α �= /0

and β ∈ T 1
u then we add transition β ◦α , with guard, reset

map and scheduler as above, to T n
u .

c) Finding the PDP that models the state evolution
of the CPDP: If we define, for z ∈ {s,u} and B ∈ B(E),

Rn
tot,z(B,x) := ∑

{α∈T n
z |lα=lx}

[Sx(α)Rα(B∩ val(l′α),x)],

with B∩ val(l′α) sloppy notation for {x|x ∈ val(l ′α),(l′α ,x) ∈
B}, then it can be seen that for any n ∈ N we have

Rtot(B,x) =
n

∑
i=1

[Ri
tot,s(B,x)]+Rn

u(B,x),

with other words, if Xn is isomorphic to CPDP X , except that

the active transition set of Xn equals T 1
s ∪T 2

s ∪·· ·∪T n
s ∪T n

u
(which need not be isomorphic to AX ), then the total reset

maps of X and Xn are the same for all n.

We are now ready to state the theorem which gives

necessary and sufficient conditions on the CPDP such that

the state evolution can be modelled by a stochastic process.

Also, the theorem says that if the state evolution can be

modelled by a stochastic process, then it can be modelled

by a stochastic process from the class of PDPs. The proof

of the theorem makes use of the results from [8].

Theorem 4.2: Let Xn be derived from X as above.

Let Rn
tot,s denote the total stable reset map of Xn. The state

evolution of X can be modelled by a stochastic process if and
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only if R(E,x) := limn→∞ Rn
tot,s(E,x) = 1 for all x ∈ Eu, with

Eu the guarded part of E. If this condition is satisfied, then

the PDP with the same state space as X , with invariants E0
l =

val(l)\Gtot,l and with transition measure Q(B,x) = R(B,x),
models the state evolution of X .

Proof: From the text above and from the results of

[8], it is clear that if R(E,x) = 1 for all x, then the PDP

suggested by the theorem models the state evolution of X .

If for some x ∈ E, R(E,x) < 1, then it can be seen that this

must mean that there exists a hybrid jump with multiplicity

infinity such that the probability of this hybrid jump at x
is greater than zero. This means that (from x) there is a

deadlock probability (i.e. time does not progress anymore)

greater than zero, which means that the state evolution of

X cannot be modelled by a stochastic process (as we saw

before).

Corollary 4.3: If for some n ∈ N we have that T n
u =

/0, then the multiplicity of the hybrid jumps of X is bounded

by n and the state of X exhibits a PDP behavior, with the

same PDP as the corresponding PDP of X n (which can be

constructed according to [8] because all hybrid jumps of X n

have multiplicity one).

B. The case including spontaneous transitions

Now we treat the case where there are also spontaneous

transitions present. Let X be a CPDP without passive and

spontaneous transitions and let X̂ be an isomorphic copy of

X together with a set of spontaneous transitions SX̂ . Suppose

that the multiplicity of the hybrid jumps of X is bounded

by n. Let X̂n be an isomorphic copy of Xn together with

the following spontaneous transitions: for any spontaneous

transition (l,λ , l′,R) ∈ SX̂ we add to Ŝ , which denotes the

set of spontaneous transitions of X̂n, the transition (l,λ ,L, R̂),
where, for B ∈ B(E),

R̂(B,x) := R(B∩ Invs(l′),x)+

∑
{α∈AXn |lα=l}

∫
x̂∈Gα

Sx̂(α)Rα(B∩ val(l′α))dR(x̂,x).

Note that all transitions from AXn are stable. Also note that

(l,λ ,L, R̂) is not a standard CPDP transition, but a transition

that represents a Poisson process in location l with jump-

rate λ and with reset map R̂, which can jump to multiple

locations. Therefore we write L instead of l ′ in the tuple of

the transition.

It is known that the superposition of two (or more) Poisson

processes is again a Poisson process (see, in the context of

CPDP, [8] for a proof of this result). This means that if

we combine all spontaneous transitions of X̂n with origin

location l to one spontaneous transition (l,λl ,L, R̂tot,l), with

λl(x) = ∑
α∈Ŝl→

λα(x),

and

R̂tot,l(B,x) = ∑
α∈Ŝl→

(
λα(x)
λl(x)

Rα(B,x)
)

,

and if we replace all spontaneous transitions by these com-

bined spontaneous transitions, then the stochastic behavior

(concerning the evolution of the state) will not change. Now

it can be easily seen that if we add jump rate λ (l,x) = λl(x)
to the PDP that models the state evolution of X and we let, for

unguarded states (l,x), the transition measure Q(B,(l,x)) =
R̂tot,l(B,x), then this PDP will model the state evolution of

X̂ .

For a CPDP with spontaneous transitions, the condition

‘R(E,x) := limn→∞ Rn
tot,s(E,x) = 1 for all x ∈ Eu’ should be

replaced by ‘R(E,x) := limn→∞ Rn
tot,s(E,x) = 1 for all x ∈ E’

because a spontaneous transition might jump to a state x∈Eg
in the guarded part of the state space, and then directly from

this state a chain of active transitions is executed. To assure

that this chain behaves ‘PDP-like’ we need R(E,x) = 1.

We do not have enough space here to illustrate the con-

version algorithm. We refer to [10] for illustrations. There,

this algorithm is applied to a composite machine repair shop

system and to a composite Air Traffic Management system.

V. CONCLUSIONS

In this paper we have presented an extension to the CPDP

framework of [6]. This extension gives richer interaction

possibilities in two ways. First, communication through

shared active events is possible and second, communication

via multiple signals at the same time instant is possible.

Because of using guards, the CPDP model diverges from

the PDP model. We have shown in this paper that by using

a scheduler and the maximal progress strategy to resolve

non-determinism, the behavior of a CPDP can, under certain

conditions, still be modelled through a PDP. We have given

an algorithm which, if it terminates, gives this corresponding

PDP.
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