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Algorithmic bisimulation for Communicating Piecewise Deterministic
Markov Processes

Stefan Strubbe and Arjan van der Schaft

Abstract— In this paper we present an algorithm for finding
a bisimulation relation for stochastic hybrid systems from
the class of CPDPs (Communicating Piecewise Deterministic
Markov Processes). We prove that the fixed point of the
algorithm forms a bisimulation on the state space of the CPDP.
We give sufficient conditions on the continuous dynamics and
the transition structure of a CPDP, for the computation of the
algorithm to be decidable.

I. INTRODUCTION

The class of Communicating Piecewise Deterministic

Markov Processes (CPDPs) is an automata framework devel-

opped for compositional modelling and analysis of complex

stochastic hybrid systems. In [12] and [14] it is shown how

complex CPDPs can be modelled in a compositional way by

first specifying all component-CPDPs of the complex system

and second by interconnecting these component-CPDPs by

using a parallel composition operator. In [13] it is shown

that the behavior of a CPDP that is closed (i.e. that does

not interact with any other systems) can be modelled by a

Piecewise Deterministic Markov Process (PDP) (see [2] and

[3]). Analysis tools have been developed for PDPs (see [3]

and with the equivalence result of [13], these tools can be

used for closed CPDPs as well.

It is well-known that the composition of multiple sub-

systems leads to state space explosion and this is also

the case for composite CPDPs. One tool that has proved

to be effective in dealing with the state space explosion

problem is bisimulation. Bisimulation can be seen as a state

space reduction technique: by using bisimulation we can

find systems with smaller state spaces, that still have the

same external behavior. Two systems have the same external

behavior if they cannot be distinguished in any composition

context. The notion of bisimulation was introduced by Milner

[7] in the context of discrete state processes. Bisimulation

has also been established in the context of probabilistic

and stochastic automata [6], [1], continuous time interactive

Markov chains (IMC) [4], continuous dynamical systems [8],

[10], general (non-stochastic) hybrid systems [5], [11], and

CPDPs [14].

In this paper we present an algorithm to compute a

bisimulation relation on the set of locations L of any CPDP

X . In general the computation of this algorithm will not be

decidable. We give sufficient conditions on the continuous
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dynamics, the guards, the reset maps and the jump rates,

under which the algorithm terminates (i.e. has a fixed point

within finitely many steps) and under which the computation

is decidable. One of these conditions is that the number

of different probability measures used for the resets of the

transitions is finite. For the so called identity-reset map,

which plays an important role in the composition of CPDPs,

an infinite number of probability measures is needed. We

show how the algorithm can be adjusted such that identity-

reset maps are allowed, while keeping decidable computation

of the algorithm.

The organization of the paper is as follows. In Section

II we give definitions of the CPDP model and bisimulation

for CPDPs. In Section III we give the algorithm and prove

that it provides the maximal bisimulation. In Section IV we

give suffucient conditions for the algorithm to be decidable.

In Section V we give an example of using the algorithm.

Finally, in Section VI we draw conclusions.

II. CPDPS

In this section we define the CPDP-model, we introduce

some notation and we define the concept of bisimulation.

A. The CPDP model

We give the formal definition of CPDP as an automaton.

Definition 2.1: A CPDP is a tuple

(L,V,ν ,W,ω,F,G,Σ,A ,P,S ), where

• L is a set of locations

• V is a set of state variables. With d(v) for v ∈ V we

denote the dimension of variable v. v∈V takes its values

in R
d(v).

• W is a set of output variables. With d(w) for w ∈ W
we denote the dimension of variable w. w ∈W takes its

values in R
d(w).

• ν : L→ 2V maps each location to a subset of V , which is

the set of state variables of the corresponding location.

• ω : L → 2W maps each location to a subset of W ,

which is the set of output variables of the corresponding

location.

• F assigns to each location l and each v∈ ν(l) a mapping

from R
d(v) to R

d(v), i.e. F(l,v) : R
d(v) → R

d(v). F(l,v)
is the vector field that determines the evolution of v for

location l (i.e. v̇ = F(l,v) for location l).
• G assigns to each location l and each w ∈ ω(l) a

mapping from

R
d(v1)+···+d(vm) to R

d(w), where v1 till vm are the state

variables of location l. G(l,w) determines the output

equation of w for location l (i.e. w = G(l,w)).
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• Σ is the set of communication labels. Σ̄ denotes the

’passive’ mirror of Σ and is defined as Σ̄ = {ā|a ∈ Σ}.

• A is a finite set of active transitions and consists of five-

tuples (l,a, l′,G,R), denoting a transition from location

l ∈ L to location l′ ∈ L with communication label a ∈ Σ,

guard G and reset map R. G is a closed subset of the

state space of l. The reset map R assigns to each point

in G for each variable v ∈ ν(l ′) a probability measure

on the state space (and its Borel sets) of v for location

l′.
• P is a finite set of passive transitions of the form

(l, ā, l′,R). R is defined on the state space of l (as the R
of an active transition is defined on the guard space).

• S is a finite set of spontaneous transitions and consists

of four-tuples (l,λ , l′,R), denoting a transition from

location l ∈ L to location l′ ∈ L with jump-rate λ and

reset map R. The jump rate λ (i.e. the Poisson rate of

the Poisson process of the spontaneous transition) is a

mapping from the state space of l to R+. R is defined on

the state space of l as it is done for passive transitions.

Note that the symbol G is used twice; for denoting the

output map and for denoting a guard of an active transition.

In the rest of this paper, it will directly be clear from the

context which use for G is meant.

We now introduce some notation. We call an active

transition with event a ∈ Σ an a-transition and we call a

passive transition with event ā ∈ Σ̄ a ā-transition. For a

CPDP X with v ∈VX , where VX is the set of state variables

of X , we call R
d(v) the state space of state variable v.

We call {(v = r)|r ∈ R
d(v)} the valuation space of v and

each (v = r) for r ∈ R
d(v) is called a valuation. We call

vs(l) := {(v1 = r1,v2 = r2, · · · ,vm = rm)|ri ∈ R
d(vi)}, where

v1 till vm are the variables from ν(l), the valuation space or

state space of location l and each (v1 = r1, · · · ,vm = rm) is

called a valuation or state of l. We call {(l,x)|l ∈ L,x∈ vs(l)}
the (hybrid) state space of the CPDP with location set L and

valuation spaces vs(l). With the output variables (instead of

state variables) we define in the same way output valuations,

output space of location l and the (hybrid) output space of

the CPDP. If a state x lies in the guard Gα of active transition

α , then we say that α is enabled at x. We say that a passive

transition α is enabled at x if lx, the location of x, is the

origin location of α . We say that a transition leaves location

l if l is the origin location of that transition.

A reset map R of a CPDP consists of an indexed set

of probability measures (i.e. R assigns to each state x of

a location l a probability measure). We call the probability

measures of a reset map reset measures. A reset map/measure

resets the state variables of a specific location. We call this

specific location the target location of the reset map/measure.

We can assign a scheduler SX to any CPDP X . A scheduler

is a mechanism that probabilistically chooses which transi-

tion is taken given that a transition has to be executed from

some hybrid state x. Formally, SX assigns to each guarded

hybrid state x (i.e. each hybrid state that lies in the guard of

some active transition) combined with each active transition

α of X a value in [0,1] (i.e. SX (x,α) ∈ [0,1]) such that

∑
α∈lx→

S(x,α) = 1,

where α ∈ Alx is the set of all active transitions that are

enabled at x. In this way SX defines for each x a probability

measure on the set of active transitions that are enabled at x.

Also, SX assigns to each hybrid state x combined with each

passive transition α a value in [0,1], such that for each ᾱ ∈ Σ̄
we have

∑
α∈Plx ,ā

S(x,α) = 1,

where α ∈ Plx,ā is the set of all ā-transitions that are enabled

at x. Thus, SX also defines for each x and each ā a probability

measure on the set of ā-transitions enabled at x (unless there

are no ā-transitions enabled at x).

B. Bisimulation for CPDPs

In order to define bisimulation for CPDPs we need

to introduce the notions of combined reset map and

combined jump rate function. We consider CPDP X =
(L,V,W,v,w,F,G,Σ,A ,P,S ), with hybrid state space E,

together with scheduler SX . We define R, which we call the

combined reset map, as follows. R assigns to each triplet

(l,x,a) with (l,x) ∈ E and with a ∈ Σ and each Borel set

B ∈ B(E), where B(E) denotes the set of Borel sets of E,

a value in [0,1] (i.e. R(l,x,a)(B) ∈ [0,1]) as follows: for any

l′ and any Borel set A ⊂ vs(l′)

R(l,x,a)(l′,A) = ∑
α∈Al,a,l′

SX (l,x)(α)Rα(A,x),

where Al,a,l′ denotes the set of active a-transitions from l
to l′ and (l′,A) denotes the Borel set {(l ′,x)|x ∈ A}. (This

measure is uniquely extended to all Borel sets of E). Now,

for A ∈B(E), R(l,x,a)(A) equals the probability of jumping

into A via an active transition with label a given that the jump

takes place at (l,x).
Furthermore, R assigns to each triplet (l,x, ā), with (l,x)∈

E and with ā ∈ Σ̄, and each Borel set B ∈ B(E) a value in

[0,1] as follows: for any l′ and any Borel set A ⊂ vs(l′)

R(l,x, ā)(l′1,A) = ∑
α∈Pl,ā,l′

SX (l,x)(α)Rα(A,x).

(This measure is uniquely extended to all Borel sets of E).

Now, R(l,x, ā)(A), with A ∈B(E), equals the probability of

jumping into A if a passive transition with label ā takes place

at (l,x).
We define the combined jump rate function λ for CPDP

X as

λ (l,x) = ∑
α∈Sl

λα(l,x),

with (l,x) ∈ E.

Finally, for spontaneous jumps, R assigns to each (l,x)∈E
and each Borel set B ∈B(E) a value in [0,1] as follows: for

any l′ and any Borel set A ⊂ vs(l′)

R(l,x)(l′1,A) = ∑
α∈Sl→l′

λα(l,x)
λ (l,x)

Rα(A,x).
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(This measure is uniquely extended to all Borel sets of E).

The definition of bisimulation for CPDPs, which we are

about to present, uses the concepts of measurable relation
and equivalent measure. These notions are formally defined

in [14]. Briefly said, a measurable relation R ⊂ X ×Y on

measurable spaces (X ,B(X)) and (Y,B(Y )) is a relation

such that the R-projection of each Borel set B of X on Y
is a Borel set of Y and vice versa. Then, if BX ∈ B(X) is

projected on BY ∈ B(Y ) (and vice versa), BX and BY are

each others corresponding Borel sets. Two measures rX and

rY on X and Y are called equivalent if rX (BX ) = rY (BY ) for

sets BX and BY that correspond to each other.

Definition 2.2: Suppose we have CPDPs

X = (LX ,VX ,W,vX ,wX ,FX ,GX ,
Σ,AX ,PX ,SX ) and Y =(LY ,VY ,W,vY ,wY ,FY ,GY ,Σ,AY ,PY ,SY )
with shared W and Σ and with schedulers SX and SY . A

measurable relation R ⊂ vs(X)× vs(Y ) is a bisimulation if

((l1,x),(l2,y)) ∈ R implies that

1) ωX (l1) = ωY (l2), for all w ∈ ωX (l1) we have

GX (l1,x,w) = GY (l2,y,w), λ (l1,x) = λ (l2,y) (with λ
the combined jump rate function defined on both vs(X)
and vs(Y )).

2) (φl1(t,x),φl2(t,y)) ∈R (with φl(t,z) the state at time t
when the state equals z at time zero).

3) If λ (l1,x) = λ (l2,y) �= 0, then R(l1,x) and R(l2,y) are

equivalent probability measures with respect to R.

4) For any ā ∈ Σ̄ we have that either both l1 � ā−→ and

l2 � ā−→ or else R(l1,x, ā) and R(l2,y, ā) are equivalent

probability measures.

5) For any a ∈ Σ we have that either both l1 � a−→ and

l2 � a−→ or else R(l1,x,a) and R(l2,y,a) are equivalent

measures.

X with initial state (l1,x) and Y with initial state (l2,y) are

bisimilar if ((l1,x),(l2,y)) is contained in some bisimulation.

We call two locations lX and lY of CPDPs X and Y (where

X may be equal to Y ) with state spaces EX and EY bisimilar

if there exists a bisimulation relation R ⊂ EX ×EY such that

vs(lX ) = {x ∈ vs(lX )|(∃y ∈ vs(lY ))((x,y) ∈ R)} and vs(lY ) =
{y ∈ vs(lY )|(∃x ∈ vs(lX ))((x,y) ∈ R)}.

III. BISIMULATION ALGORITHM

Bisimulation algorithms, that check for example bisimilar-

ity of locations l and l′, normally have to check whether a

a-transition of l has a ’matching’ a-transition in l ′ and vice

versa. In the case of CPDP, this is a bit different. Here, an a-

transition of l should not have matching a-transition in l ′, but

rather the combined action of scheduler and all a-transitions

of l should match the combined action of scheduler and all

a-transitions of l.
We assume throughout this section that guards, jump-rates

and the assignment of reset measures can all be defined on

the output space. This means that we assume that if x and

x′ have the same output value, then for any guard G, either

both x and x′ are in G or both x and x′ are not in G, for any

spontaneous transition the jump-rates for x and x′ are the

same and finally, any reset map assigns to x and x′ the same

reset measure. Therefore, under these assumptions, we can

say that a guard or a guard area is a part of the output space,

etc. For the bisimulation algorithm that we will present, we

restrict ourselves to CPDPs that satisfy these assumptions.

A. Algorithm

Let L be the set of locations of X and let M be the set of

all reset measures ‘used’ by X , i.e., let M := {r|(∃l ∈ L,x ∈
vs(l),σ ∈ Σ∪ Σ̄)(r = R(l,x,σ)}∪ {r|(∃l ∈ L,x ∈ vs(l))(r =
R(l,x))}. Any reset measure from M either reflects the

probability measure that is, for some σ ∈ Σ∪ Σ̄, the result

of the probabilities assigned by the scheduler to all σ -

transitions and the probabilities of all reset measures of those

σ -transitions, or reflects the probability measure that is the

result of the combination of reset measures of all spontaneous

transitions.

The algorithm that we give next, consists of three steps. In

the first step, a partition of L is made, such that locations that

have bisimilar continuous dynamics are in the same class of

the partition. For each l and l ′ that lie in the same class of the

partition, the maximal continuous bisimilation Rl,l′ on the

state spaces of l and l′ is determined, where a continuous

bisimulation is a relation on the state space that satisfies

items 1 and 2 of Definition 2.2. Two reset measures r and r′
are equivalent with respect to the partition of step one if first

lr and lr′ (the target locations of the reset measures) lie in the

same class and second if r and r′ are equivalent with respect

to Rl,l′ . In the second step, a partition of M is made, such

that reset measures that are equivalent with respect to the

partition of step one, are in the same class of the partition.

In step three, the two partitions on L and M of steps one and

two, are refined via inductive steps: in each step a class of one

of the partitions is refined if two elements of that class can

be discriminated as ’not bisimilar’. The fixed point of step

three will turn out to be a bisimulation on the set of locations.

In the algorithm, we use the following notation: If R is

an equivalence relation on a set X , then Part(R) denotes

the corresponding partition, i.e. Part(R) = {C1,C2, · · · ,Cn},

where C1 till Cn are the equivalence classes of X with respect

to R.

Before we present the algorithm, we need to introduce the

partitioning functions Ps and Pj. These are defined as follows.

For all l ∈ L, σ ∈ Σ∪ Σ̄ and Cr ⊂ M, Ps(l,σ ,Cr) :=
⋃

p∈R+

{(p,{y| ∑
α∈T

l,y σ→

S(y)(α) = p,

∑
α∈T

l,y σ→

S(y,α)Rα(y) ∈Cr}−
⋃

p∈R+

{(p, /0)},

where T
l,y σ→ denotes the set of all σ -transitions leaving l

that are enabled at output y, and Rα(y) denotes the reset

measure of transition α at output y. For all l ∈ L and Cr ⊂M,

Pj(l,Cr) :=
⋃

λ∈R+

{(λ ,{y| ∑
α∈Sl→

λα(y) = λ ,
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∑
α∈Sl→

λα(y)
λ

Rα(y) ∈Cr})}−
⋃

λ∈R+

{(λ , /0)}.

The functions Ps and Pj have the following interpretations.

For σ ∈ Σ, Ps(l,σ ,Cr) = ∪i∈I{(pi,Si)} for some index set I.

If y ∈ Si for some i ∈ I, then this means that if an active

transition is executed at a state with output y, then 1. the

probability that that the scheduler chooses a σ -transition

equals pi and 2. the reset map that is used then, lies in Cr.

Note that ∪i∈ISi forms a partition of {y|R(l,y,σ) ∈Cr}. For

σ ∈ Σ̄ we get Ps(l,σ ,Cr) = {(1,S)}. Here, S is the set of

outputs where the combined action of scheduler and all σ -

transitions results in a reset measure from Cr. Pj(l,Cr) =
∪i∈I{(λi,Si)} for some index set I. For y ∈ Si, this means

that 1. the total jump-rate for this output y equals λi and 2.

the total reset map of the spontaneous transitions for output

y lies in Cr.

Algorithm 1:
Step 1.Determine R0

l ⊂ L×L such that (l, l′) ∈ R0
l if and

only if the continuous dynamics of l and l ′ are

bisimilar. Then, determine for each (l, l ′) ∈ R0
l the

maximal bisimulation concerning the continuous

dynamics Rl,l′ ⊂ vs(l)× vs(l′).
Step 2.Determine R0

r ⊂ R×R such that (r,r′) ∈R0
r if and

only if r and r′ are equivalent with respect to R0 :=
{((l1,x1),(l2,x2))|(l1, l2) ∈ R0

l , (x1,x2) ∈ Rl1,l2}.

Step 3.Determine inductively for each k ∈ N

Rk+1
l = Rk

l ∩{(l, l′)|(∀σ ∈ (Σ∪ Σ̄))(∀Cr ∈ Rk
r )

(Ps(l,σ ,Cr) = Ps(l′,σ ,Cr)∧Pj(l,Cr) = Pj(l′,Cr))}
Rk+1

r = Rk
r ∩{(r,r′)|(∀Cl ∈ Rk+1

l )(r ∼ r′)},
where r ∼ r′ means that r and r′ are equivalent

with respect to Rk+1 := {((l1,x1),(l2,x2))|(l1, l2)∈
Rk+1

l ,(x1,x2) ∈ Rl1,l2}.

Theorem 3.1: If algorithm 1 has a fixed point Rk
l for

some k ∈N, then this fixed point is a bisimulation on the set

of locations.

Proof: We prove that, according to Definition 2.2, Rk

is a bisimulation. Suppose ((l1,x1),(l2,x2)) ∈ Rk, then

1. ω(l1) = ω(l2) and G(l1,x1,w) = G(l2,x2,w) follow

from (l1, l2) ∈ R0
l . If we define for all Cr ∈ Part(Rk

r )

λCr(x) =
{

λ̃ (∃(λ̃ ,G) ∈ Pj(l,Cr))(x ∈ G)
0 otherwise.

,

then we can write λ (x) = ∑Cr∈Part(Rk
r ) λCr(x) and then

λ (x1) = λ (x2) follows from Pj(l1,Cr) = Pj(l2,Cr).
2. Follows from (l1, l2) ∈ R0

l .

3. Take any Cl ∈ Part(Rk
l ) and any saturated Borel set B

within the state space of Cl . Let B/Rk denote the projection

of B on the quotient hybrid state space (with respect to Rk)

and let rCr denote the reset map on the level of this quotient

space corresponding to the (equivalent) reset maps in Cr.

Then it can be seen that

R(l1,x1)(B) = ∑
Cr→Cl

λCr(x1)
λ (x1)

rCr(B/Rk),

where Cr →Cl denotes Cr ∈ {C ∈
Rk

r | the target location of any r ∈ C lies in Cl}, and

because λCr(x1) = λCr(x2) we get R(l1,x1)(B) = R(l2,x2)(B).
It can now be easily seen that this result is also valid for

any saturated Borel set of the hybrid state space.

4. This can be proved analogously to 3. except that here

we get for ā ∈ Σ̄ that

R(l1,x1, ā)(B) = ∑
Cr→Cl

pCr(x1, ā)
λ (x1)

rCr(B/Rk),

where

pCr(x, ā) :=
{

p̃ (∃(p̃,G) ∈ Ps(l, ā,Cr))(x ∈ G)
0 otherwise.

Then because Ps(l1, ā,Cr) = Ps(l2, ā,Cr) we get pCr(x1, ā) =
pCr(x2, ā) and consequently R(l1,x1, ā)(B) = R(l2,x2, ā)(B).

5. Analogous to 4. except that we use a ∈ Σ instead of

ā ∈ Σ̄.

All conditions of Definition 2.2 are satisfied, which means

that Rk is a bisimulation.

Remark 3.2: We can not claim that the fixed point

of algorithm 1 is the maximal bisimulation on the set of

locations. This is because there are situations possible where

a class of locations is refined by the algorithm while all

locations in that class are bisimilar. This happens when two

locations jump to bisimilar states of non-bisimilar locations.

These locations do not fall in the same class by the algorithm

because they have reset measures to non-bisimilar locations.

However, the locations might be bisimilar.

IV. DECIDABILITY

Algorithm 1 is a general algorithm for CPDP bisimulation.

It will not be decidable in general. In this section we pose

some conditions under which the algorithm terminates at a

fixed point and is decidable. One of the conditions that we

state for decidability is that the set of reset measures (used

by the CPDP) is finite. From a compositionality point of

view, the identity reset map (i.e. the reset map that leaves

the state variables unaltered) is very important. However,

because each continuous state has its own identity reset

measure, the number of reset measures used by the identity

reset map is infinite. At the end of this section we provide

a method which, under certain decidability conditions, finds

the fixed point of the algorithm while allowing the use of

identity reset maps.

A. Decidability conditions

Each of the three steps of Algorithm 1, asks for its

own decidability conditions. Because of the lack of space,

we refer to [15] for a more extensive description of the

decidability conditions. Here we only summarize the results.

Step 1. This step is decidable if the continuous state/output

dynamics is for each location linear, i.e. can be described as

ẋ = Ax,y = Cx. Finding the maximal bisimulation between

two linear state/output systems can be done by using the

method of [10].
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Step 2. This step is decidable if M, the set of used reset

measures is finite and if each reset measure consists of

assigning a positive probability to a finite number of states.

Step 3. This step is decidable if

• the guard of each transition can be given as a finite set

of linear inequalities and

• the number of different scheduling values is for each

transition finite and the ’guard-areas of equal scheduling

value’ can all be given as a finite set of linear inequal-

ities and

• for each transition, the number of reset measures used

by the reset map of the transition is finite and the guard

area corresponding to each reset measure can be given

as a finite set of linear inequalities and

• for each spontaneous transition the number of different

jump rates is finite and the area corresponding to

each jump-rate can be given as a finite set of linear

inequalities.

Then for each a ∈ (Σ ∪ Σ̄) and each finite set of reset

measures Cr, the computation of Ps(l,a,Cr) and of Pj(l,Cr)
is decidable. If then the number of transitions used is finite,

then under the conditions listed above, the computation of

step 3 is decidable.

B. Identity reset maps

The identity reset map for a state variable v is defined as

Idv({(v = x)},(v = x)) = 1, with other words if variable v
is reset with Idv at the moment that its value equals x, then

the probability that the value of v after reset equals x, equals

one (because the singleton Borel set {(v = x)} gets measure

one). If we have two CPDPs, X1 and X2, interacting with each

other, and CPDP X1 executes a transition (with reset map R)

which does not influence X2, then in the composite CPDP

the variables of X1 are reset with R while the variables of X2
are reset with Id, which expresses that X2 is not influenced

by the transition of X1. This is a common situation, which

makes clear the importance of identity reset maps. Another

situation where the identity reset map is used, is when a

CPDP component wants to send, at a certain state, a signal a
to another component, while the state should not be changed.

This can be expressed via an active a-transition with identity

reset map.

In order to use identity reset maps, while still allow-

ing decidable computation of Algorithm 1, we need to

syntactically add more structure to the relation between

state and output variables of a CPDP location. Composing

CPDPs naturally leads to different compartments of a joint

location (i.e. a location of the composite CPDP), where each

compartment contains the state and output variables of a

specific component-CPDP. Instead of ν and ω , which select

state and output variables for each location, we will now

use γ , which assigns a set of compartments to each location.

A compartment is combination of a set of state variables

and a set of output variables like ({v1,v2},{w1,w2}) and

we might have for example for some location l that γ(l) =
{({v1,v2},{w1,w2}),({v3,v4},{w3}). Two compartments of

one location have disjoint sets of state variables and have

disjoint sets of output variables. Output variables may depend

only on the state variables of its compartment.

Now we define the concept of extended reset measure:

An extended reset measure on a location l assigns to each

compartment of location l either a reset measure on the state

variables of that compartment, or the symbol Id. Assigning

the symbol Id to a compartment, expresses that this com-

partment is reset via the identity reset.

For Algorithm 1, instead of using the set of all reset

measures used by the CPDP we now use the set of all

extended reset measures used by the CPDP. Note that under

the conditions stated in Section IV-A, this set of extended

reset measures is finite, while we can still express he identity

reset action. We call extended reset measures r1 and r2
equivalent if first for each compartment with output set

W that is reset by r1 there is a compartment with output

set W that is reset by r2 and vice versa, and second, two

corresponding compartments should be reset by equivalent

reset measures of r1 and r2 or should both get the symbol Id
from r1 and r2. Now it can be seen that Algorithm 1, where

now M is the set of extended reset measures and the phrase

’equivalent measures’ in step 2 is changed to ’equivalent

extended measures’, determines a bisimulation for CPDPs

with compartments and extended reset measures.

V. EXAMPLE

We give an example of finding the a bisimulation for

a CPDP by using Algorithm 1. Consider the CPDP X in

Figure 1. X has three locations with state variables x1,x2
and x3 respectively. All locations have linear continuous

dynamics and share the same output variable y. There are

two spontaneous transitions with label λ [y < 0] which is

shorthand notation and means that the jump-rates for these

transitions are λ for y < 0 and are zero for y ≥ 0. The

other spontaneous transitions have constant rates (µ or 2µ).

Furthermore, X has a number of transitions with label a,

which stand for active a-transitions with guards equal to the

output space y ∈R. We assume that CPDP X uses only three

reset measures: r1, r2 and r3, where ri resets the state xi (of

location li) deterministically to x̂i. x̂i is some given ’initial’

state for location li. We assume that the reset map of any

transition of X to location li uses (for all y∈R) reset measure

ri. We assume that the scheduler SX is defined on the five

a-transitions as follows:

• SX ((l2,y),a, l2
a→ l1) equals 1 for y ≤ 0 and equals 0 for

y > 0,

• SX ((l2,y),a, l2
a→ l3) equals 0 for y ≤ 0 and equals 1 for

y > 0,

• SX ((l3,y),a, l3
a→ l1) equals 1 for y ≤ 0 and equals 0 for

y > 0,

• SX ((l3,y),a, l3
a→ l2) equals 0 for y ≤ 0 and equals 1

2 for

y > 0,

• SX ((l3,y),a, l3
a→ l3) equals 0 for y ≤ 0 and equals 1

2 for

y > 0.

Now we execute Algorithm 1 for CPDP X .

Step 1: Via the algorithm of [10], we can find via

matrix operations maximal bisimulations for the continuous
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Fig. 2. Example of a bisimulation-reduced CPDP

dynamics of locations l1,l2 and l3. We assume that according

to this algorithm all three locations are bisimilar, thus we

get Rc = {(li, l j)|i, j ∈ {1,2,3}} and R0
l = {{l1, l2, l3}}.

Furthermore we assume that maximal state reduced versions

of the dynamics of l1,l2and l3, which can be computed with

the same algorithm, are given by
·
x̃1= Ã1x̃1, y = C̃1x̃1 and·

x̃2= Ã2x̃2, y = C̃2x̃2 and
·
x̃3= Ã3x̃3, y = C̃3x̃3. We also assume

that, according to these computed bisimulations, the states

x̂1,x̂2 and x̂3 are bisimilar to one another.

Step 2: From the results and assumptions of step 1 above,

it is clear that we get R0
l = {(ri,r j)|i, j ∈ {1,2,3}} and R0

r =
{{r1,r2,r3}}.

Step 3: We can compute that for l1 we get

Ps(l1,a,{r1,r2,r3}) = 0, Pj(l1,{r1,r2,r3}) = 0,

for l2 we get Ps(l2,a,{r1,r2,r3}) = {(1,y ∈ R)},

Pj(l2,{r1,r2,r3}) = {(λ + 2µ,y < 0),(2µ,y ≥ 0)}
and for l3 we get Ps(l3,a,{r1,r2,r3}) = {(1,y ∈ R)},

Pj(l3,{r1,r2,r3}) = {(λ + 2µ,y < 0),(2µ,y ≥ 0)}.

This means that we get R1
l = {{l1},{l2, l3}} and

R1
r = {{r1},{r2,r3}}.

We continue with these new partitions and compute that

for l2 we get Ps(l2,a,{r1}) = {(1,y≤ 0)}, Ps(l2,a,{r2,r3}) =
{(1,y > 0)}, Pj(l2,{r1}) = {(λ ,y < 0)}, Pj(l2,{r2,r3}) =
{(2µ,y ≥ 0)} and for l3 we get Ps(l3,a,{r1}) = {(1,y ≤ 0)},

Ps(l3,a,{r2,r3}) = {(1,y > 0)}, Pj(l3,{r1}) = {(λ ,y < 0)},

Pj(l3,{r2,r3}) = {(2µ,y≥ 0)}. This means that we get R2
l =

{{l1},{l2, l3}} and R2
r = {{r1},{r2,r3}}, which is the fixed

point of the algorithm.

It can be seen that, because here we have no situations as

described in Remark 3.2, R2
l forms the maximal bisimulation

on the set of locations.

VI. CONCLUSIONS

We presented an algorithm for finding a bisimulation

relation on the set of locations of a CPDP. We showed

that if the algorithm terminates, then the result equals a

bisimulation. We have given conditions on the continuous

dynamics, the reset maps and the transitions, under which the

algorithm terminates in a finite number of steps and under

which the algorithm is thus decidable. We have shown that

for CPDPs that use identity reset maps (which use an infinite

number of reset measures, but form from a compositionality

point of view an important class of reset maps) we can alter

the algorithm such that it stays decidable while allowing

identity reset maps.

A direction for future research is to find broader classes

of CPDP transitions and reset maps (like perhaps reset

maps with Gaussian distributions) that do allow decidable

algorithms for finding bisimulations. A second direction is to

find optimal ways of computing the three steps of Algorithm

1. It might be possible to combine optimization strategies

used in for example [4] for Interactive Markov Chains and

in [9] for Switched Linear Systems. A third direction is to get

more insight into the maximality of the algorithm; in which

cases does the algorithm provide a maximal bisimulation?
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