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Abstract 

The problem of approximating a distributed parameter sys- 
tem with free boundary conditions is solved for the I- 
dimensional Telegrapher’s equations. The Telegrapher’s 
equations are described using an infinite-dimensional port- 
Hamiltonian model, and we derive a finite dimensional port- 
Hamiltonian model using a mixed finite-element procedure. 
We show that energy conservation, passivity and some dy- 
namic invariants are preserved in the discretization. 

1 Introduction 

In previous work, [I ,  2, 31, it has been shown how port- 
based network modeling of complex lumped-parameter 
physical systems naturally leads to a generalized Hamil- 
tonian formulation of the dynamics. Here the geometric 
structure, defining together with the Hamiltonian the dy- 
namics of the system, is given by the power-conserving 
interconnection structure of the system (corresponding to 
what in bond-graph terminology is called the ”generalized 
junction Structure”), and is called a Dirac structure. The 
resulting class of open dynamical systems has been called 
”port-Hamiltonian systems” (131). 

Recently, the framework of port-Hamiltonian systems has 
been extended to classes of distributed-parameter systems 
[4], like Maxwell’s equations over a bounded domain with 
energy radiation through its boundary, the n-dimensional 
wave equation, and compressible ideal fluids. Hereto a spe- 
cial type of infinite-dimensional Dirac structure has been in- 
troduced, based on Stokes theorem. Physically, this Stokes- 
Dirac structure 141 captures the basic balance laws of the 
system, like Faradays and Ampbres law, or mass balance. 
The port-Hamiltonian formulation is a non-trivial extension 
of the Hamiltonian formulation of PDEs by means of Pois- 
son structures, as has been explored before in the literature 
(151). Indeed, in this case it is crucially assumed that the 
boundary conditions are such that the energy-flow through 
the boundary of the spatial domain is zero. In order to allow 
a non-Zero boundary energy-flow the use of Dirac structures 
instead of Poisson structures seems to be indispensable. 

As a result complex physical systems consisting of com- 
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ponents which are either lumped-parameter or distributed- 
parameter systems, and which moreovermay belong to dif- 
ferent physical domains can be modeled in a unified and 
intrinsic way. This opens up several possibilities for the 
analysis and control of such complex systems. From a sim- 
ulation point of view, the problem concerns the incorpo- 
ration of the powerful numerical methods for the solution 
of PDEs, such as finite-element and finite-difference meth- 
ods, into this framework. Also for control purposes it is of- 
ten crucial to he able to approximate either the distributed- 
parameter system with a finite-dimensional system, or to 
approximate the infinite-dimensional controller by a finite- 
dimensional one. This is however not an easy task. One 
fundamental pmblern which arises is the fact that numerical 
methods for the solution of PDEs usually assume that the 
boundary conditions are given. On the other hand, more of- 
ten than not it is precisely the boundary conditions which 
represent the interaction of the distributed-parameter com- 
ponent with the other components of the system. We thus 
have to approximate the distributed-parameter system while 
reraining the energetic port-structure of the system. In this 
paper we show how this can he done for the example of the 
transmission line. Indeed, we will show how the intrinsic 
Hamiltonian formulation of the transmission line suggests 
finite-element methods which result in finite-dimensional 
systems which are again port-Hamiltonian! From a geomet- 
ric point of view it is natural to use different finite-elements 
for the approximation of the differential forms (which are 
the physical variables of the system), see e.g. 161 where this 
is shown to lead to inired finite elements. In the present 
paper we have to deal with the additional complication of 
the boundary variables, which we in fact solve in the same 
spirit as of [6] .  Finally, we show how the proposed method 
preserves some physical properties of interest, like energy 
conservation, passivity, some dynamic invariants etc, in the 
finite-model also. 

2 The Telegrapher’s equations 

We recall the definition of a Dirac structure from 141. Let 
3 and E be linear spaces (usually called the spaces of flows 
and efforts), equipped with a non-degenerate pairing that is 
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a bilinear operation 

3 x E - L  

with L a h e a r  space. The pairing will be denoted by 
( e l f )  E L ,  f E 3 , e  E E .  Flows (or rate energy variables) are 
denoted by f ,  and effolts (or co-energy variables) are de- 
noted by e. By symmetrizing the pairing (see [4]) we obtain 
a symmetric bilinear form (( ,)) on 3 x E .  

Definition 1'Le-I 3 and E be linear spaces with a non- 
degenerate pairing < I >. A Dirac strucmre is a linear 
subspace 2) c 3 x E suck that 'D = !DL, with I denoting 
the orrhogonal complement with respect lo the symmetric 
bilinearform ((,)). 

In the finite-dimensional case the above definition of a Dirac 
Structure reduces to a subspace 2) C 3 x & with the property 
that ( e l f )  =.O,V(f ,e)  €2),andthatdim'D=dimE=dim3. 

Next, we recall the port-Hamiltonian model of the transmis- 
sion l i e  [4]. Consider an ideal lossless transmission line 
with Z = [O. I] c W. We define the energy variables as the 
infinitesimal charge q = q( r , z )  E RI@), and the infinitesi- 
malflux$=$(f,z) ER'(Z), whereR'(2)denotesthespace 
of I-forms. The energy density (or the Hamiltonian density) 
stored at time I in the transmission line is given as: 

where t is the Hodge star operator which is usually defined 
~ S * ( U ) : & ( U ) - R ' ~ - ~ ( U )  whereU isopenin2,andZis 
a Riemannian manifold. Of course the total energy is then 
H = Jz X. The co-energy variables (voltage and current) are 
related to the energy variables by the constitutive relations 
as follows: 

Next we denote the rate energy variables as follows: 

The resulting port-Hamiltonian system (with the boundary 
conditions) is given by the Telegrapher's equations: 

f q ( t , z )  = 0 -d eq(r,z) 
[p(t,z)] [ -d  0 1  [em(t.z)] 

(3) 

where d is the usual exterior-derivativeL. B denotes the 
boundary and BL, BR, denote the leh and right boundary 
respectively. It has been shown in [4] that (3) defines the 
so-called Stokes-Dirac structure, and (2),(3) together define 
a port-Hamiltonian system. 

2.1 Conservation laws 
In this subsection we present some conservation laws of the 
port-Hamiltonian system (3). First, we express the energy 
conservation law of this system: 

dH(q( t )Mr) )  dt = /azes(,) AfS(1)  = [ f " ( t ) P ( t )  -f""(t)eB"(t)] 

(4) 
which expresses that the increase in energy inside the do- 
main Z is equal to the supplied energy through the bound- 
ary aZ. From this we derive the passivity (see [3]) property 
of this system as follows: integrating (4) on both sides with 
respect to time, we obtain 

where J,'s(@(r).f'(r)) = J,'.f,eB(r) A f B ( I )  is the sup- 
plied power. ( 5 )  implies that the input-output maps of the 
system for every (q(O) .+(O) )  are passive. 

We can obtain two dynamic invariants by integrating the 
first part of (3) over Z. First we obtain: 

Q ( r ) = ~ ' ( t . O ) - - . * ( t , l ) = f a L ( t ) - f B R ( t )  (6) 

where Q ( t )  = J..q(t.z) is the totalchargeofthetransmission 
line. Next, we obtain: 

& ( I )  =eq(t ,o)-eq(t , l )  =eBL(r)  - eBR( t )  (7) 

where @ ( I )  = J z + ( r , i )  is the total flux of the transmission 
line, Equation (6) represents charge conservation, and (7 )  
representsflux conservation, see [41. 

3 Spatial Discretization of Telegrapher's Equations 

We present a discretization procedure for obtaining a finite- 
dimensional model of the Telegrapher's Equations which 
preserves certain physical properties of interest (see Section 
3.1). The procedure consists of two steps: first we discretize 
the interconnection structure in (3). and then discretize the 
constitutive relations (2) of the energy storage part of the 
transmission line. 

' d  is defined as d ( U )  : n'(U) - &'(U) where U is open in 2. In 
other words the exterior derivative maps a space of k-foms to a space of 
k - 1  forms 



3.1 Discretization of the interconnection structure 
The transmission line is 'split' into n cells. Due to the spatial 
compositionality (i.e. interconnection of two transmission 
lines via a common boundary once again gives a transmis- 
sion line) propeny. we need to perform the discretization to 
only one cell. For ease of notation we concentrate on the 
first cell, we denote the spatial manifold of the first cell as 
Z = [O,S], S k ing  the length of this cell. 

The relations between the boundary variables and the efforts 
(or co-energy variables) of this cell are 

eBL(t)  = e9(t .0),  

fEL( t )  = e'+(t ,o),  

eBR(r) = e q ( r . ~ )  

f B R ( t )  = e+(t .S) 
(8) 

The infinitesimal charge rate f q ( r , z )  and the infinitesimal 
flux rate P ( t . 2 )  are approximated on 2 as follows: 

P ( t , z )  =P(r). '69(~),  P(t.2) =P( t ) . 'b@(z)  (9) 

where we assume that the approximating one-forms 
'bq,'b'+ E n'(2) satisfy the following conditions 

The above assumption is physically motivated because as 
we see later on, the infinitesimal charge and the infinitesimal 
flux will be approximated on 2 as q(t. z) = Q ( r )  . ' bq(z), and 
O(1.z) = @(t).'6$(2) so that by(l0) Q(t) and @(I) represent 
the total charge and total flux of this cell. The efforts es(t . z )  
and e@(f,z) are approximated as 

where we assume that the approximating 0-form elements 
b;.b4.6$,6$ E Qo(Z) satisfy the following conditions 

bZ(0) = I .  @(S) =0, bZ(0) = 0, b:(S) = 1 

b$(O) = 1,  6$(S) =0, b$(O) = 0. b$(S) = 1 
(12) 

The above assumption is made since then eq(r,z) ,  respec- 
tively e@@,& coincides with e:(t), respectively e$@),  at the 
point 0, and with eZ(t), respectively e f ( f ) ,  at the point S. 
Also, the efforts cannot be approximated with only one ap- 
proximating element, see [7]. 

By substituting (11) and (9) into (3) we obtain 

P(t ) .  'b4(2) = -d&z) .e$( t )  - db$(:) .e'$(t) (13) 

The forms ' 6q ( z ) ,b$ (~) ,b '$ ( z )  should be chosen in such a 
way that for every e$(r) ,e!(f)  we can find a f q ( t )  such that 
(13) is satisfied. Using (IO) and (12) we obtain 

bi(2) = 1 - l ' V ( p ) .  b t ( ; )  = l ' b q ( p )  (14) 

Similarly we can obtain as before 

b;(z) = 1 - f ' b ( ( p ) ,  bz(r) = l I b @ ( p )  (15) 
0 

By substituting (14) into (13) we obtain 

f4(t) .  '6q(z) = . $ ( I ) .  ' 6 9 ( z )  - e$( t ) .  'bq(z) 

Integrating the above equation over Z, we have 

P(t) =&) - e $ ( [ )  (16) 

Similarly, we can show that 

P(r) =e%) -4) (17) 

Thus, the relations describing the spatially discretized inter- 
connection structure of this particnlar cell are given by 

Now, we describe some properties of the approximating 0- 
forms and 1-forms 

Proposition 1 W(z), be(:), I 64 (2) , '6( (2) safisfy rhefollow- 
ing conditions: 

(i) bg(i )  +bz(z) = 1 

(ii) b$(z) +6$(:) = 1 

( i i i )  Jz 6; (2) A I bq (z) + Jz bZ(z) A ' 69(z )  = 1 

(iv) Jz6$(z)A'6((z) +Jzb$(z )A 'b@(z )  = 1 

(U) Jz61(z) A 'bq(:)  = JZb$(z) A'b((2) 

Proof: ( i )  and ( i i )  are trivial to prove and the proof of (iv) 
follows from the proof of (iii). We prove only ( i i i )  and ( v ) .  

(iii) Jzb: (:) A '6'4 (2 )  + Jz 64 (2) A '67 (2) 

= . f z ( b % ( z ) + 6 ~ ( z ) ) A ' 6 9 ( z ) =  1 

( w )  .fz6:(z)A'64(z) = Jz'b4(z)A(1-f i 'b@m(P))  

= [ ( I  - $ ' b $ ( p ) ) .  J i ' b q ( ~ ) l  1 + 
Jz '6$(2) AJ$'b4(p)  = . fz6$(z) A'b@(z). 

S 

0 

The net power of this cell is 

P"* = em(,) Aj+(z)  + / eq(z) A P ( z )  - eBLfBL +eBR f B R  
Z 

(19) 
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Inserting the corresponding terms from (9) and (1 1) and us- 
ing the properties of Proposition 1, we have 

Pa = (ae: + (1 -a)  e:) fp + 
( ( ~ - a ) e b + a e ~ ) p - e , ~ ~ f ~ ~ + e ~ ~ f ~ ~ ,  (2Oa) 

a = / z b q ( z )  A lbq(Z) (2Ob) 

The expression (20a) is used for the identification of the 
port variables of the spatially discretised interconnection 
structure of this cell. The thud and the fourth term on 
the right side of (2Oa) imply that the port variables of the 
left boundary port are (fBL.eBL) and that the port vari- 
ables of the right boundary port are ( fBR.eBR) .  The fist 
term on the right side of (20a). denotes the power sup- 
plied to or taken from the electrical pan of this cell, and 
that the flow variable of the electric port is fp and that 
the effort variable is ae; + (1 - a) e;. Similarly, the sec- 
ond term implies that the port variables of the magnetic port 
are (p,aeb + (1 -a)  e!). If we introduce the following re- 
placements 

where 

p = f4 ,  ( 2 W  

P = P ,  (21b) 

(2lc) 

( 2 W  

8 = aez + ( I -a) e:, 

8 = ( I  - a)e$  + ae!. 
then the expression for P'" becomes 

P' = (el0 = f 4 6 + ~ 8 - e B L f B L + e B R f B R ,  (22) 

where fr = [fq p f"" f""] and er = 168 eEL e""]. 

Remark 1 (Net power) Observe that the expres- 
sion (20a) is a degenerate pairing, since P'!" = 0 
for any (fq,P,fBL,fBR) does not imply fhat the 
(e&e!>e&e$,eBL,eBR) is zero. On the other hand the 
apression (22) is a non-degeneratepairing. 

Elimination off q , p , e ; ,  e$, e!, e? from (1 8),(21) gives 

E F 

Equation (23) represents the spatially discretised intercon- 
nection structure of this cell expressed by means of the port 
variables. In the sequel we investigate the properties of (23). 
Denote with 2, the space of admissible efforts, e, and the 
flows, f, such that (23) is satisfied, i.e. 

2, = {(Se) ER' : Ee+Ff =0}. (24) 

Proposition 2 'D is a Dirac sfrucfure with the respect to the 
bilinearform 

<< (f',e'),(f2,ez) >>= (e')T?+(e2)Tfl. (25) 

Proof: 'D is a Dirac structure with respect to the bilinear 
form given by (25) if and only if the following two condi- 
tions are satisfied [l]: rank [E F]  = 4, and FET +EFT = 
0. Straightforward computation shows that both conditions 
are satisfied. 

. 

3.2 Discretization of the constitutive relations 
The flow variables f Q ( t , z )  andp( f . z )  are approximatedby 
(9). Since f Q ( f , z )  a n d p ( f , i )  are relatedto theenergyvari- 
ahles q(r.2) and + ( f , z ) ,  then q(r.2) and b(f.2) are approxi- 
mated on Z by 

q(t,z) =Q(c)  . 'bq(2) .  (26a) 

@(t,z) = @(t). ' b @ ( z ) ,  (26b) 

where 
Q(r) =P(t), (27a) 

+ ( f )  = f m ( r ) .  ( 2 7 ~  

Observe that Q(r)  represents the total amount of charge of 
the cell and @(t)  represents the total amount of flux of the 
cell. 

The electric energy of the cell is given by 

1 
Hq ( r )  = - / eq (1, z )  A 4 ( r ,  2 ) .  W a )  

z 

or equivalently as 

First, the electrical energy of the cell calculated by means 
of discretization of (28a) is 

H q ( Q ( t ) )  = f J e 9 ( t , z )  Aq(f,z) 

= f J (e: (1). bl ( z )  +e: ( t )  . b!(z))  A Q(t). ' b Q ( z )  

= 4 (aeZ(1) + ( I  - a ) e : ( f ) )  Q ( t )  = $$(f)Q(t)  

The electrical energy calculated by means of discretization 
of (28b) is 

2 

z 
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Comparing the expressions for the energy yields 

Q(t)  8 ( f )  = - 
C 

By using the same reasoning as before, one proves that 

where 

Now it is clear that (29b) and (29c) can be rewritten as 

where H ( Q , @ ) ,  the total energy of the cell, is given by 

Q2 O2 
H ( a , @ )  = - + - 2c 2L 

The equations (23),(iterconnection structure) and (27), 
(29) (constitutive relations of the magnetic and electric 
ports) represent a finite dimensional model of the transmis- 
sion line. 

3.3 Properties of the Finite-dimensional model 

(i) As noted before the interconnection structure of the 
finite dimensional model is a D i m  structure. Since 
the constitutive relations of the magnetic and electric 
ports obey Hamiltonian formalism then the finite di- 
mensional model ((23), (27), (30)) represents a port 
Hamiltonian system! 

(ii) Since the interconnection structure of the finite di- 
mensional model is a Duac structure its net power is 
zero. Consider n cells of the transmission line, each 
interconnected to one another. On each cell a spa- 
tial approximation is performed and finite models de- 
rived. The cells are interconnected such that 

where 

H ( Q , @ )  = g H i ( Q i , @ i )  

Q =  [Qo ... Q J T ,  @ =  100 ... 
i=O 

Relation (32) represents the power balance of the dis- 
cretized model and it has the same form as the power 
balance of the distributed parameter system. 

(iii) Inserting (27a), (21a) into (16) and taking into ac- 
count the boundary conditions in (3) gives 

&t) = f L ( t )  -hBR(t) (33) 

The boundary variables of the i'* and the i+ 1'' are 
related as follows: 

f{L = f", e:' = e'', f f R  = f"", e:' =eB' (34) 

Summation of relation (33) for i = 0.. .n, where (34) 
is taken into account, gives 

Q(t) = f B L ( r ) - f B R ( t ) ,  

where Q = xy=oQi represents the total charge of the 
transmission line. The previous relation represents a 
dynamic invariant and it has the same form as (6). 
Similarly, it can be proved that the second dynamic 
invariant is given by 

4 = - eBR, 

where Q, = &@i represents the total flux of the 
transmission tine. Hence the dynamic invariants are 
preserved in the finite dimensional model. 

(iv) The conservation of energy for the infinite- 
dimensional port-Hamiltonian system was explained 
in Section 3.1. Due to the power-conservation 
property of the Duac structure, defined by the 
vanishing of the bilinear form when restricted to 
'D, any distributed parameter port-Hamiltonian 
system satisfies along it's trajectories the energy 
balance [4]. In the finite dimensional model, the 
vanishing of the bilinear form when restricted to the 
finite-dimensional Dirac structure is indicated by 
(32). Hence, we have the energy conservation law 
for the finite-dimensional model also. Once we have 
the energy balance law, the property of passivity 
follows trivially, just as in Section 3.1, where of 
course the Hamiltonian remains positive-definite 
also after the spatial discretization. Hence for the 
finite-dimensional model 

T 
H ( Q ( T ) , Q ( T ) )  - H(Q(o),@(o) = 1 s ( e B , f B )  

= . i r s ( r B . f R )  t -H(Q(O).Q,(O) 

(35) 
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where s(p, f ” )  is the supplied pawer just as in Sec- 
tion 3.1. (35) is the property of passivity, which 
implies that the input output maps of the finite- 
dimensional system for every (Q(O) ,@(O)  are pas- 
sive. 

3.4 Discussion 
In (20b) we have defined the variable a which depends on 
the choice of the independent functions. Usual approxi- 
mations of the Telegrapher’s equations result in LC ladder- 
networks. The approximation that we propose are either 
LC ladder networks or mirmred-LC ladder networks (which 
implies that we can use either a voltage or a current source 
as the input) which include rransformers. The results of 
the approximation then depend on the choice of indepen- 
dent functions. So if we choose a = 0, which corresponds 
to the independent functions being simply Dirac delta func- 
tions S(z - 0), then the approximation is the LC ladder net- 
work with accuracy equal to t, where n is the number of 
cells, If we choose a = 1, which corresponds to the inde- 
pendent functions being S(z - S), then the approximation is 
the mirrored-LC ladder network with an accuracy equal to A. Howeverifwechooseu=OSforconstantC(z) andL(z) 
then we obtain LC ladder networks with transformers, and 
with an accuracy equal to f .  In the case that C(z) and L(z)  
are varying functions, then we can always choose indepen- 
dent functions such that the accuracy is equal to f .  Note 
that the accuracy of the approximation can be improved by 
an appropriate choice of the independent functions. In fact 
as it turns out an optimal choice of a for constant C(z) and 
L(z)  is 0.5, and the accuracy is then 5. 
3.5 Extension to higher dimensional cases 
We give a brief outlime of the procedure for higher dimen- 
sional cases. Consider the two-dimensional wave equation. 
We can express the wave equation as a port-Hamiltonian 
system with the energy variables defined as the 2-form in- 
finitesimal kinetic momentum p(r,zl,zz), the I-form in- 
finitesimal elastic strain and the co-energy variables defined 
as the 1-form infinitesimal stress and the 0-form velocity. 
The co-energy variables are related to the energy variables 
by the constitutive relations of the wave equation. For the 
approximation we choose square grids. The approxima- 
tion of the @forms and the I-forms of the wave equation is 
done as in equations (9) and (11). We define p’(r,z,,zz) = w. The 2-form infinitesimal rate kinetic momentum 
is approximatedasfP(r,il,zl) = f P ( t ) Z b P ( z r , ~ ~ )  where we 
maketheassumptionthatZbP(zl!zz) satisfiesJ2bP(zI,zz) = 
1 with the integral defined on the square grid. This assump- 
tion is physically motivated since the infinitesimal kinetic 
momentumis approximatedas p(r,zI , z z )  = p(r).2bP(z1,zz) 
and since we choose 2bP(z1 .z2) to satisfy the above assump- 
tion, hence p(r) represents the total kinetic momentum on 
the approximating square grid. Then we proceed as done in 
Section (3.1) and derive the spatially discretized intercon- 
nection structure. And the discretization of the constitutive 
relations follow the same reasoning as in Section (3.2). The 

extension to part-Hamiltonian systems over 3-dimensional 
spatial domain is then fairly obvious. We approximate an 
infinitesimal 3-form with a function which satisfies the con- 
dition that it’s integral over a cube grid is equal to 1. And 
we proceed as before. 

4 Conclusions 

Numerical methods for the solutions of PDE‘s usually as- 
sume that the boundary conditions are given. In the frame- 
work‘s of network modeling and control, the boundary con- 
ditions represent the interaction of the various components 
of the system with each other and with the environment. 
Hence the need to approximate distributed parameter sys- 
tems while retaining the energetic port-stmcture. We adopt 
a paint of view introduced by Bossavit, [6], and solve the 
general problem of approximation including free bound- 
ary conditions, for the telegrapher’s equations. Indeed this 
procedure can be adopted for other types of 1-dimensional 
systems which can be modeled as part-Hamiltonian sys- 
tems, like the 1-dimensional compressible fluid, the vibrat- 
ing string, the Timoshenko beam etc. Also, approximating 
distributed parameter systems with dissipation can be easily 
incorporated into this procedure. Also important in such ap- 
proximations are to preserve the physical properties of the 
original system. In this paper we have shown how the port- 
Hamiltonian smcture can he preserved, as well as some 
other physical properties. The extension of our procedure to 
higher-dimensional cases is conceptually straightfonvard. 
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