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Characterization of Well-Posedness of
Piecewise-Linear Systems

Jun-ichi Imura and Arjan van der Schaft

Abstract—One of the basic issues in the study of hybrid sys- basic problem of uniqueness of solutions of piecewise-linear
tems is the well-posedness (existence and uniqueness of solutiongliscontinuous systems, while the existing standard theory of dis-
problem of discontinuous dynamical systems. The paper addresses . ninous dynamical systems is not quite satisfactory in spite
this problem for a class of piecewise-linear discontinuous systems o : . .
under the definition of solutions of Carathéodory. The concepts of of the fact that it is crucial for various developments of hybrid
jump solutions or of sliding modes are not considered here. In this Systems.
sense, the problem to be discussed is one of the most basic prob- On the other hand, as an approach to modeling of hybrid sys-
lems in the study of well-posedness for discontinuous dynamical tems. there is a new attempt in [18] and [19] to generalize in a
B gt fecessan and sffentcortons X natural manner cynamical properies of physicalsystems vith
on lexicographic inequalities and the smooth continuation prop- JUMP phenomena which occur between unconstrained motion
erty of solutions. Next, its extensions to the multi-modal case are and constrained motion, such as the collision of a mass to an
discussed. As an application to switching control, in the case that inelastic wall, so as to develop a framework modeling a class
B st of o sy ! MY systems. This framewor i called the complener
gtate fegedback gains ’forwk?ich the closed loop system remains well-tamy mod_ellng (the Corre_spondlng sys_tem IS calleq the com-
posed. plementarity system), which can describe several kinds of hy-

Index Terms—Discontinuous systems, hybrid systems, lexico- brid systems including electricallnetwork with d_iode; and relay
graphic inequalities, piecewise-linear systems, well-posedness.  tYP€ Systems as well as mechanical systems with unilateral con-
straints. Such an approach provides a natural and intuitive inter-
pretation of jump phenomena in hybrid systems and makes the
analysis relatively easier. In fact, as the first result of the anal-

ARIOUS approaches to modeling, analysis, and contr$is in this line, several algebraic and checkable conditions for

synthesis of hybrid systems have been developed withi¢ll-posedness (existence and uniqueness of solutions) of such
the computer science community and the systems and conf¥$tems have been derived in [18]-{22]..
community, from different points of view (see, e.g., [1]-[6]). When hybrid (discontinuous) systems are considered from
In the computer science community, as an extension of finitee above physical viewpoint, there also exist physical phe-
automata, several models of hybrid systems such as timed aamena such as the collision to an elastic wall, which leads to
tomata [7] and hybrid automata [8] have been proposed agistems with discontinuous vector fields, but not exhibiting
some results on verification of their models have been obtainddinps. Does there exist a common algebraic structure in the
In the control community, from the dynamical systems and cogiscontinuous vector field of such systems? Can we extend this
trol point of view, models of hybrid systems have been proposéaia general framework from the mathematical point of view?
(see e.g. [9], [10]), and several properties such as stability afg far as we know, however, such questions have not been
controllability have been discussed; see [11] and [12] for coaddressed, although an abstract condition can be found in the
trollability of switched systems and integrator hybrid systemwell-known book by Filippov [23]. When solutions without
respectively, [13] and [14] for stability of general hybrid sysjumps are considered, there are, roughly speaking, two kinds of
tems, and [15]-[17] for stability of piecewise-linear systemslefinitions of solutions, that is, Carathéodory’s definition and
One of the main concerns in these researches is how to defiéppov’s definition. The latter yields the concept of a sliding
and analyze various kinds of properties of hybrid systems withode. In the case of physical systems such as the collision to
discontinuous changes of vector fields and jumps of solutioas elastic wall, on the other hand, the solution belongs to the
(i.e., autonomous switchings and autonomous jumps in the ti¥mer, although we need to extend Carathéodory’s definition,
minology of [10]). However, there are still few results on thén a straightforward manner, to the case of discontinuous vector

I. INTRODUCTION

fields.
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is closest to the well-posedness problem in continuous dynaf- Description of Bimodal System and Definition of its

ical systems. Therefore, as a first step to establish a theorySaflution

yvell—posedn(_ess of general hybrid_systems, it will be very mean--gnsider the system given by

ingful to clarify to what extent this basic problem can be an-

alyzed. The second point is that it may be easier to analyze _

a system without jumps than with jumps. By representing a Yo { model: l’ = Az, !f y=Czx =20 1

system with jumps as a limit of a system without jumps, we mode2: & = Bz, ify=Cz<0

may obtain more results on the property of hybrid systems with )

jumps. A similar approach can be found in [24]-[27]. Third, ifvherez € R", y € R, andA and B aren x n matrices

many examples of hybrid systems of practical interest, the 451 general d|ﬁgrent). Since the two linear d|ﬁer§nt|al equatl.ons

lutions do not necessarily have jumps in the transition from offe = < andi = Bz are coupled by separating the region

mode to the other mode, and also it may be desirable from {ffe/*" into two subregions, i.ey > 0 andy < 0, the system

practical point of view that no sliding mode exists in closed loop© P€longs to the class of piecewise-linear systems. Even when

control systems because of the resulting chattering behaviorV& consider the systet, on any neighborhood of the origin,
In this paper, we address the well-posedness problem in the argument be]ow holds with some mod!flcauon. However, for

sense of Carathéodory for the class of piecewise-linear discGRVity: we consider the system to be defined on the wiitle

tinuous systems. We mainly concentrate on bimodal systemsRemark 2.1:For the systenilo, it appears that satisfying

and give several necessary and sufficient conditions for thdsé = O IS allowed in both modes. However as illustrated by

systems to be well-posed, in terms of the analysis based Hf €x@mple (3), even when(T) satisfiesC'x(I) = 0 at some
lexicographic inequalities and the smooth continuation pro -we W'I! see that only one of both modes will be aIIowgd by
erty. Furthermore, some of the results obtained in the bimodiAnSidering the behaviar(t), I < ¢ < T + e, of the solution
case will be extended to the case of two kinds of multi-modir smalle > 0. -
systems. Finally, as an application of our result, we discuss™t fIr'St; we define the well-posedness for the systég. In
the well-posedness problem of feedback control systems wilf SyStemo, there may be a set (of measure 0) of points of
two state feedback gains switched according to a criterion diN® Where the solution(t) is not differentiable, although we
pending on the state. Recently, switching control schemes h&f¢ hereaftet(t) in (1) for simplicity of notation. So formally,
attracted considerable attention in the control community (Bl SYStento is given by its integral form (which is called the
e.g. [28]-[30]). As one of its basic results, we give a charab:arathéodory equation):
terization of all admissible state feedback gains for which the
corresponding closed loop system is well-posed. t
The organization of this paper is as follows. In Section II, w(t) = o +/t fa(r)) dr )
piecewise-linear discontinuous systems in the bimodal case ’
are described, together with the definition of solutions afheref(z) is the discontinuous vector field given by the right
Carathéodory. Section Il is devoted to some mathematidednd side of (1) and(ty) = x¢. Moreover ift is a time instant
preliminaries on lexicographic inequalities and smooth coat which the system switches from one mode to another mode,
tinuation. We give our main results on the well-posedness ofs said to be an event time. A pointis called a right (left)-
bimodal systems in Sections IV and V, and some extensioascumulation point of event times [21], if there exists a sequence
in Section VI. In Section VII, our results are applied to thgt;} of event times such that < (>)t;41 andlim;_., t; =
well-posedness problem in switching control systems. Sectibr: co. Then a solution of this system is defined as follows.
VIIl presents a brief summary and some topics for future Definition 2.1: If z(¢) satisfies (2) and is absolutely contin-
research. uous onfty, t1) for somet; > g, and there is no left-accumu-
In the sequel, we will use the following notation: for lexdation point of event times ofto, ¢1), thenz(t) is said to be a
icographic inequalities ok € R™, if for somei, x; = 0 solution of¥; on [t, ¢1) in the sense of Carathéodory for the
(j = 1,2,---,4 — 1), while z; > (<)0, we denote it by initial statex(to).
x > (<)0. Furthermore, ift = 0 or z > (<)0, we denote  The condition of disallowing the existence of left-accumula-
it x > (=<)0. We use the notatiom representing any fixed but tion points of event times will be used in the proof of Lemma
unspecified number or matrix. Finally, and0,,, , denote the 2.1. On the other hand, a solution with the right-accumulation
n x n identity matrix and then x n zero matrix, respectively. points of event times, which is called a Zeno trajectory, is al-
lowed in the above definition of solutions. The well-posedness
for the systent,, is defined as follows (without loss of gener-
II. PIECEWISELINEAR DISCONTINUOUSSYSTEMS ality, we setty = 0 hereafter).
Definition 2.2: The systemd; is said to be well-posed if
In this section, we describe the basic form of bimodal systenti®ere exists a unique solution of (1) { o) in the sense of
to be studied here, and give a definition of well-posedness foarathéodory for every initial statg € R".
these bimodal systems. Next, we discuss the relation betweelt is well-known that a sufficient condition for a system given
well-posedness and smooth continuation, and give an equivalleyta first-order differential equation to be well-posed is that it
representation of bimodal systems, which will be important faatisfies a global Lipschitz condition. When we apply this to
further developments. the systemd, it follows that a sufficient condition for well-
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posedness is that there exist& such thatB = A+ KC. Note -k
that in this case the vector field is necessarily continuous in the L1
statez.
Now, how about the case of discontinuous vector fields? Let L d
us consider the following example shown in Fig. 1. The equa- _

tions of motion of this system are given by
Fig. 1. Collision to an elastic wall.

( model: | *1| = 0 1} {xl} , is called a sliding mode given by the equivalent control input
) 0 0 ) o . - , .l . .
L= L Le u = 0. Certainly, Filippov’s definition is very important from a
if y = [10] Il 5 practical viewpoint as well as from a mathematical viewpoint,
[ 2] — 3) and it is of interest to address the well-posedness problem in-
BN [0 17 [z cluding sliding modes. However, in some discontinuous sys-
mode2: il ==k —d| |z |’ tems with mechanical ON/OFF-type (not relay-type) switches,
S ) " 1 a sliding mode is not in general physically feasible, and even
if y=[10] x; <0. when a sliding mode theoretically exists as in the case of sliding

o mode control, it is desirable to avoid a sliding mode because of
Suppose that the initial state satisfieg0) = 0 andz2(0) > 0, chattering phenomena. Thus in this paper, as the first step, we

for which there may exist a solution in both modes. Then f&qncentrate on the well-posedness problem in the sense of Def-
somee > 0, z1(t) > 0in mode 1 ands;(f) > 0 in mode 2 'Ntion 2.2 (Se? also Remark 4.2). o
holds for all¢ € (0, ¢). Thus in this initial state, only mode 1 Remark 2.3:When we consider the case of the collision to

is active. In a similar way, only mode 2 is active for the casd? inélastic wall byl — oc in the example (3), @ jump in the so-
21(0) = 0 andz2(0) < 0. Since a solution from the origin is lution will occur. Such a system can be treated within the frame-

the same in both modes, we see that this system is well-po¥@k of linear complementarity systems [18]. Thus we con-

(without jumps and sliding modes), although the vector field jecture that there exists some relation between linear comple-

discontinuous in whend £ 0. On the other hand, we can easilyNentarity systems and systems of the form (1). In other words,
find an example which is not well-posed, as shown below: there may be a possibility to approximate the complementarity
system, i.e., the discontinuous dynamical system with jumps, by

a system without jumps given by (1). Some researchers have al-

( model: {xl} = {8 (1)} {xl} , ready studied the relation between the two solutions for a simple
*2 *2 physical system as in Fig. 1 (see [27, Ch. 2]), and we plan to re-
if y = [10] {371} >0 turn to this issue in a future paper. Note also that the system
To |~ @ of the form (1) can be expressed as a bilinear complementarity
ode: |:-T1:| B [0 _1} |:-T1:| form [19].
a0 0 ’ . .
2 2 B. Well-Posedness and Smooth Continuation
. X

| if y=[10] {xj <0. In this subsection, we will characterize the well-posedness by

the concept of smooth continuation, which is defined as follows.

In fact, if the initial stater(0) satisfiez1 (0), z2(0)) = (0, 1), Definition 2.3 [18]: LetS be asubset dR™. If for the initial

then for somes > 0, z;(t) > 0 in mode 1 ande,(¢) < Statezo there exists ag > 0 such thatu(t) € Sforall ¢ €

0 in mode 2 holds for alt € (0, ¢). Thus there exist two [0; €], then we say that the system has the smooth continuation
solutions for this initial state. Moreover, from the initial stat@"OPerty atzo with respect taS, or that smooth continuation

(21(0), £2(0)) = (0, —1), there exists no solution because fofS Possible fromz, with respect toS. Moreover, if from all
somee > 0, z1(¢) < 0in mode 1 andz; (t) > 0in mode 2 %0 €S smooth continuation is possible with respecttahen
holds fort € (0, €). the system is said to have the smooth continuation property with

Within the type of physical systems as given by (3), there wiiSPect taS. _
exist many systems with discontinuous vector fields, but which e have the following resuit. _
are well-posed. In the next sections, we will derive a necessary-8mma 2.1: The following statements are equivalent.
and sufficient condition for the well-posedness of the system i) The systen®, is well-posed.
3o including such physical systems. ii) For the systen®,, from every initial stater, € R",
Remark 2.2: For the system (4), if the discontinuity of the smooth continuation is possible in only one of the two
vector field is regarded as a kind of relay-type and the solu-  modes, in other words, with respect to either on¢.ot
tion concept by Filippov is applied, there exists a unique so- R"|Cxz > 0} or {x € R"|Cz < 0}, except for the case

lution from the initial statez;(0), z2(0)) = (0, —1). In fact, that the solutions in both modes are the same in some time
the systeni; can be rewritten bye = (1/2)(1 + w)Ax + interval.

(1/2)(1 — w)Bxz, using a relay-type input = 1if y > 0, Proof: i)—ii). Since no finite left-accumulation point of

w = —1ify < 0,andu € [-1,1] if y = 0. Thus for event times exists by Definition 2.1, if a unique local solution

x1(0), 22(0)) = (0, —1), there exists a unique solution whichz(¢) exists atco, smooth continuation exists in only one of the
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two modes, as long as the two solutions in both modes are mdtere/ andk are the observability indexes of the pai€s, A)

the same. This implies ii). and(C, B), respectively . In addition, le§1, 57, S}, andSy
i) —i). Since ii) implies that there exists a local unique soluse sets defined by

tion from every initial state, we can make a successively con-

nected solution. Then the solutiaiit) in (2) is given by

St E{z e R Tyz =0}, Sy=2{zecR"Iyz =0} (7)

_ L Si(—t) S (ti—ti_1) . S0t
a(t)=e eSi-1 D50t (0) for N'=A,B, using the lexicographic inequalities defined in the

. . end of Section I. Then noting thdtyz = [y, ¥, - -+, y" V|7
forallt € [t_i, tiv1), wher_ez‘ €10, 1,2, ---}is the switching ¢/ o system: = Az andTBgc :5[[1:;7 0, '['31'7732(’“717)]32/1 fort]he
number.?; is an event timg(t, = 0), andS; = Aor B systemi = Bz, we introduce the system given by
(j=0,1,2,---, 7). Since there exists a positive real number
a such that mag|ct|], ||Bt|} < ¢ forall t > 0, it fol-
lows that||z(#)]| < e*||z(0)]| for all + € [¢;, t;+1) and all model: # = Azx. ifz € ST
i €{0, 1, 2, ---}. Note here that there exists a unique solution YaB { mode2: & — Bx: itz c S%. (8)

for all ¢t > t., even whert., < ~, i.e., a finite right-accumu-
lation point of event times exists. In fadt;(¢;) } has awell-de-  We call 74 and Tz the rule (or observability) matrices of
fined limit att., sincex(t) is uniformly continuous offto, o) the systenm 45. The well-posedness for the systén 5 is
because of:(t) = ¢*(*~*)x(t;), and from the state(t..) a defined similar to Definition 2.2. The following result shows
unique solution exists again. Thus we have L... (extended that the systeno is well-posed if and only if the systed, 5
L space). Furthermore, singéx) € £, [with f(z) defined s well-posed.
by (2)]if € Lo, it follows from the theory of Lebesgue inte- | emma 2.3: The systent® 4 5 is equivalent to the original
grals that the solution given by (2) is absolutely continuous @&ystem>, i.e., both systems have the same solutions.
any interval ofK. Proof: If a solutionz(t) of X, exists in mode 1 on some
Finally, if ii) holds, no finite left-accumulation points of eventtime interval, i.e., for some > 0, y(t) = Cx(¢) > Oon[r, 7+
times in{¢;} exists. In fact, if a finite left-accumulation pointe) for # = Az, then a solution satisfies either oneygt) > 0,
of event times exists, thent) has a well-defined limit at that y(¢) = 0 andy(t) > 0, y(t) = %(t) = 0 andij(t) > 0, ---
point, which is similar to the case of the right-accumulatiop(t) = 5(t) = - - - = y*=2)(¢) = 0 andy*~1)(¢) > 0 for each
points, and smooth continuation from that state is not possible [, 7 4-¢). Using the lexicographic inequality notations, this
in any mode. This is inconsistent with ii). Therefore there exisigplies T,y () = 0 holds on[r, 7 + ¢). Conversely, suppose
aunique solution:(t) on [0, o) for every initial statezo € R™,  that a solutionz(t) of & = Ax satisfiesI’yz(¢) = 0 on some
which leads to i). U time interval. Then ifl4x(¢) = 0 on that intervaly(t) > 0
By this lemma, we only have to focus on whether or naiolds on that interval. On the other handZif=x(7) = 0 for
smooth continuation is possible from every initial state in ord@omeT’, the definition of the observability index implies that
to show the well-posedness of the systEg. y(t) = 0fort > T. The case oft = Bz is similar. Thus a
Remark 2.4:Note that ii) in Lemma 2.1 is equivalent to thesolution in modes 1 and 2 &, is equivalent to a solution in
following statement: modes 1 and 2 oE 4, respectively, which implies that both
iii) for every initial statexy € R™, there exists an > 0 such systems have the same solutions. U
that a unique solutior(t) of X, exists on[0, ¢), under This lemma implies that the solution does not exist in mode
the assumption that there are no left-accumulation poiritrom the initial stater(0) satisfying, for exampley(0) = 0
of event times. andy(0) < 0, although it is included in mode 1 at= 0. In

In this sense, there is a slight difference between the smo&tRer words, we only have to consider the regici{sandSy

continuation property and the existence of local unique solyhich express the sets of all the initial states from which smooth
tions. continuation is possible in mode 1 and 2, respectively.

Remark 2.5: After Section V, we will consider other types
of discontinuous systems such as multi-modal systems. For E\IIII
these systems, Definition 2.1 and 2.2 can be straightforwardly
extended and Lemma 2.1 and 2.2 also hold for these systems.
In this section, as a preparation, we give mathematical pre-
C. Equivalent Representation of the Bimodal Systgm liminaries on lexicographic inequalities and smooth continua-
tion for solutions of linear systems. Most of the results obtained
in this section will play a central role in the study of well-posed-
ness in the next sections.
First of all, we define the following classes of matrices, which
¢ ¢ is used throughout the paper.
A | €A A | CB ()  Definition 3.1: Let £" be the set oh x n lower-triangular
- : - : matrices. In addition, lef”} be the set of elements i with
C AP CB*1 all diagonal elements positive.

PRELIMINARIES ON LEXICOGRAPHIC INEQUALITIES AND
SMOOTH CONTINUATION

For the systent, define the following row-full rank ma-
trices:
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Definition 3.2: Let G{' be the set defined by Now we define the new coordinates= [7;,z2,- - - ,Zn]T 2

Tz. Denote the4,7)th element off” by ¢;;. Suppose that, for
* m2 0 L. 0 ke{12---mn},z;,=0(i=12;-- .k — 1),z > 0, andx;
Lo : (j=k+1,k+2,--,n)are arbitrary. We prove the assertion for
gr Alrermnlr=|: - > by induction. First, let us considér= 1. From

Yn—1,n 21 =tz ke + -+ EinTp,

we havet;; = 0 (¢ = 2,3,---,n) becausex; > 0 and

x; (4 = 2,3, ---,n) are arbitrary. Furthermore, #f; < 0,

] thenz; < 0 forxzy > 0, and ift;; = 0, thenT is sin-

Yii4r 20, ¢=1,2, -, mn—1 gular. Hence we concludg; > 0. Next assume that, for =
ke € {1,2,---,n—1},t; > 0(i = 1,2, ---, k), and

ti; =00 =1,2,--, ke, j=i+1,i+2,---, n). Under

this inductive assumption, let us consider= %, + 1. From

wherev;; is the(s, j) element of the matriX. In addition, let z; = --- = z, = 0, it follows that

G’ be the set of elements @ with all the (¢, ¢ + 1) elements

Vi, i+1 positive. Zh =t kA Thor i, k2Thoa2 i nTne
A. Lemmas on Lexicographic Inequalities Thus noting that; =0 (i = 1, 2, ---, k), we havel, 41 ; =

. : . . 0 = ke +2,---,n)sincez, 41 > 0andx; (i = ki +
First we give some lemmas on lexicographic |nequal|t|e§. .., n) are arbitrary. In addition, similarly to the cake- 1

Throughout this subsection,will be a vector inR™. " e .
Lemma 3.1:Let T be anm x n real matrix with rankl’ = IL'?SV;:::E: thatty +1, k. +1 > 0. The proof of the assertlorllzll‘or
rank Ty = r, whereT = [T TF* andT; € R™™. Then — . . ' : : . _
. . While Lemma 3.2 is concerned with the nonsingular matrices
Tz > (X)0ifand only if 71z = (X)0. . . -
case, the following result treats the singular matrix case.

and TP r;ao:. OT xHe_nc?a |;;q: I\(/)ailrir;,tntecgl;xio() O(r:gé\a/jerse(l)y Lemma 3.3:Let T"and.S bel x n andm x n real matrices
20 = = = ' with rankT = [, rankS = m, andl > m, respectively. Then

considerlix = 0. Thenrankl’ = rankl} = r yields75xz = 0. the following statements are equivalent

Thuslixz > OimpliesTz = 0. Thecasedl's < 0 « Tix <0 . o ’

is similar. 0 i) Sz = (X)0for all z satisfyingTx = (=)0.
This lemma shows that the row full-rank submatifix of ii) S5 = [M O]T for someM & L7

T is enough for representing the relation of the lexicographic ~ Proof: i)—ii). Let @ be any(n — 1) x n matrix such that

inequality. Thus the following result is obtained: [Etbe an [77 Q*]%( éT) is nonsingular. We denote the new coordinates

m x n matrix and letf; be theith row vector ofT". Let also by z 2 [2F 2Z]7, wherez; = Tz andz = Q. Then i) is

T, 2% %, ---%]7. Suppose that rank, = rankT;4; = equivalent to thatVz > 0 for all z; = 0, whereN 2 ST-1.

i. Then from Lemma 3.1, we can use, in placeZafT = LetN; andN, bem x I andm x (n —I) matrices, respectively,

[f1 -+ & tiq2 -+ m]” which is obtained by removing thesatisfying N = [N; N,]. Whenz; *= 0 andz, is arbitrary,

¢ + 1th row vectorEiTJrl from T". Hence we can assume withoutV, = 0 is necessary foiVz = 0. Thus i) is equivalent to

loss of generality thdt’ is row-full rank, whenever we considerthe condition thatV,;z; = 0 for all z; > 0. Similarly to the

Tz = (X)0. proof of Lemma 3.2 and noting rank = m, we can prove
The following lemma shows that the sét; characterizes that Ny = [M 0] for someM € L. Hence it follows that

the coordinate transformations preserving the lexicographic ifi-= N7 = N, T = [M 0]T.

equality relation. ii)—i). If Tz > 0, then[{,, 0|7z > 0, which implies that
Lemma 3.2:Let 7" be ann x n real matrix. Then [M 0]Tz > 0 becausel/ € £7'. Hence ii) providesSz > 0.
x> ()0« Tx = (K)0ifand only if I" € L7}. The proof of the case witk is similar. O

Proof: (+) Obvious. ) First, we will prove that ifr > As can be easily seen from the proof, it is noted that even if i)
0 < Tz > 0 holds, theril’ is nonsingular. So assume tHi&t is replaced by i)'Sz > (=)0 for all z satisfyingl’z > (<)0, or
is singular and ran’ = m < n. Then from Lemma 3.1, therei)’ Sz = (<)0 for all = satisfyingZz = (<)0, Lemma 3.3 still
exists al; € R™*™ with rank7; = m such thatl’z > 0 < holds. This fact will be used in the proof of Lemma 3.4 below.
Tiz = 0. So we considers = 0 « Tyxz > 0. Letd, be an Moreover, when we describe the singular case in terms of a
(n — m) x n matrix such thaf” 2 [T TZ]” is nonsingular, form corresponding to Lemma 3.2, the following corollary is
and letz 2 [z7 ZZ|T wherez; = T;z. Thenz = T~z = obtained from Lemma 3.3.
M %, + Myz, where[M; M,] = T-'. Whenz, = 0 and Corollary 3.1: LetZ andS bel x nandm x n real matrices
Z, is any vector, we obtaim = M,Z,. In addition, since rank With rankl" = I, ranks = m, andl > m, respectively. Then
M, = n—m, there exists a, € R ™ such that: < 0. Thisis the following statements are equivalent.
inconsistent with the condition thdi z > 0 — z > 0. Hence, i) Sz > (20« Tz = (X)0.
T is nonsingular. i) I =mandS = MT for someM € L.
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Proof: i)—ii). We can prove rank’ = rank.S in a similar where
way to the first part of the proofin Lemma 3.2. The latter part in _
ii) follows from Lemma 3.3. Conversely, it follows from ii) that 0 ... 0
Sz = (2)0 & MTz = ()0 < Tz = ()0, which implies } 0o 0 1 . o
i). O Ay = g Rrixmi
From the definition of the lexicographic inequality, it follows o 0 ... 0 1
that for any nonsingulas x n matrix’I" we have the properties: o N
[+ ... =*
{zeRMTe = O}U{x € R'|Tz 20} =R, Aij= |t C| e RMXM L fori > g,
{z € R"|Tz = 0}({z € R"|Tx = 0} = {0}. R
The following lemma generalizes this property. andn=ny +ne+---+n, (pe{l, 2, -, n}).
Lemma 3.4:LetT andS bel x n andm x n real matrices Proof: i)—ii). Suppose that, fok € {2, ---, n}, z;(0) =
with rank?” = [, rankS = m, andl > m. Letalsoli andl> 0 (i=1,2, .-,k —1),2;(0) > 0,andz; (j =k + 1, k +
bem x n and(l — m) x n real matrices withranif; =mand 2, ..., »)take any values. We prove the assertion by induction.
T = [1{" T7']". Then the following statements are equivalentFirst, considei: = 2. Let a;; be the(4, 5)th element ofd. So
i) {z € R"|Tz =0} U{z € R"|Sz =0} = R"™. from
i) {x € R*Tz = 0}({zr € R*|Szx X 0} = {x €
R Tix = 0, Tox > 0}. z1(t) = t{a1222(0) + a1323(0) + -+ - + a1z (0)} + o(t?),

iy S = [M O]T for someM € L. _ _
Proof: Since the complement diz € R™|Tz = 0} in it follows thata,; = 0 (j = 3,4, ---, n). Infact, ifay; # 0

R™is{z € R"|Tz < 0}, i) is equivalenttoi)Sz < Oforallz fOrsomej € [3, 4, ---, n|, then there exists an> 0 such that
satisfyingZ'z < 0. From remarks in Lemma 3.3, it follows that®1(f) < 0forall# € [0, <] at somez;(0), which is inconsistent
i)’ iii). Next, we have with the condition i). In addition, since»(0) > 0, no smooth
continuation is possible if;> < 0. Hence we have;s > 0.
i) < {x € R*|Tx < 0} U{x € R™|Sz = 0} Nextassumethat, fdr =%, € {2, 3, ---, n—1},a; ;41 =

 om " _ (iIl,Z,---,l),CLLLH:0,ai7i+1>0(i=l+1,l+
=R"/{z € R"|T1x =0, Tox = 0} coyke—1),anday; = 000 = 1,2, -, ke — 1, j =

0

2,

—{z € R"|Tz = 0} C {x € R"|Sz > 0} i+ 2,1+ 3,---,n). Under this assumption, let us consider
U{:L' € R"|Tiz =0, Thx = 0} k = k. + 1. By inductive calculations, noting that(¢) = 0

— Sz 0forall Tyz - 0. (i=1,2,---,1),itis verified that

T, ko ko

Thus from remarks in Lemma 3.3,4)iii) follows. On the other . _ " i o 11 (0
hand, sinces < 0 is equivalent iz < 0, i) i) holds. 0 (" = (=21 ZLIH b skt (0)

Remark 3.1: The sets defined by lexicographic inequalities 1
suchagz € R™|Tx = 0} in Lemma 3.4arein general neither + H @i i1 Oh. kg2 Th42(0)+- -
open nor closed, contrary to what might be suggested by the i
notation. ko1

+ H ;. i1k, nZn(0) —l—o(tk*_l"'l).

B. Characterization of Smooth Continuation Property =i

In this subsection, we discuss when the sysiem Ax has m o
smooth continuation property with respectite- (<)0. wherel[;”; a; ;41 = 1for! >. m. From this, it follows that
The following result show that the sg§, which is defined in - @, k.+1 = 0 anday,,; = 0(j = ks +2,---, n). Thus by
Definition 3.2, characterizes the smooth continuation propeffjduction, ii) holds.

of linear systems. ii)—iii). Suppose that, for¢ = k;, a; ;41 = 0
Lemma 3.5:For the system: = Az, the following state- (S] t:kL 2, 0 g de]j <n-— 1)’Ifmtd for the (_)(;hefir?i,i-l—l >d_0- t
i etk = 0 andks;41 = n. Let us consider the coordinate
mer?ts ore easvalen inuati transformation: —5[7 2, -, z,]T 2 Tz given b
i) The system has the smooth continuation property wiff 2= AL 22, s =4 y
respect tar > (=)0. A
||) A€ g{} Rki+1 = Th;+1,
iii) There exists a matriX’ € £} such that k42 Gog+utl dgg iyt
P : SUEED VD METED
1 T W=l i 42y=0 - =1
TAT! = An Ax : 9) . akj+17i(kj+1>ai(kj+1>7i(kj+2> T
. : 0 ai(k»j+l—2)7i(kjﬁ»l—l)xi(kjﬁ»l—l)?

Apl App—l App 1227"'7kj+l_kj7j:0717"'73' (10)
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wherei, = k; + 1 (note thats = 0 implies that all elements Proof: Let My andl'y (k = 1,2,---,n — 1) bek x
a; i+1 are positive). The matrif” is given by k matrices withM;, € £f andTy € G§. Whenk = 1,
My MY € Gb is obvious. Assume tha¥/ I, M, ' € Gk
T 0 0 foranyk € {1, 2, ---, n — 1}. Under this assumption, let us
s : showMp1les1 M € Gyt Denote théi, j)th element of
Tr= . 0 (11) Mp4+1 andl'y 1 by m;; andwy,;, respectively. After some cal-
' ' culations, we have
Ts-l—l, 1 e Ts-l—l, s Ts—l—l,s-i—l
MIDeM7P+S | n
where Mk+1Fk+1M;Z+11 = [ ‘
_1 0 o 0 - Ko oeee e * ‘ >*
* Ok 1yt kGo1yt2 where
Ty=|: 0 Ok 1 & Or_1,1
ki—kia—1 ’
* * H ag i k H1 S:l ]’ = %W’kkl
o i1y, kit K oo % T4, ht L Sk
E,R_«(ki_k(ifm)X(ki_k(ifm)a Thus frokal“kMk_l € gé, Mg,k > 0, ME4+1, k+1 > 0,
o0 ... ... 0 andyy, k41 > 0, it follows that My D1 M € _g(’;‘“. By
T — ¥ e K induction, we concludd/I'A/~* € g}'. The proof in the case
A I : of G is similar. O
- There is another type of the smooth continuation property
e RUi—ka-0)x(ki—kG-1)  fori > j. with respect tar = (2)0, wheree in Definitiop 2.3 is in_de—
’ pendent of the initial state(0). In other words, if there exists a
Thus froma; ;41 > Oforalli € {1, 2, ---, n} exceptfor; = POSitive constant such thatz(t) = (=)0 for all z(0) satisfying
k;, we concludel” € £7. Furthermore, by direct computation,(0) > (2)0 and all & [0, ], we call this the uniform smooth
it is verified thatZ AT~ satisfies (9). continuation property with respect o= (=<)0. The following
iii) —i). The casez(0) = 0 is trivial. So we con- lemma characterizes this property. .
sider the case:(0) > 0. Denote the new coordinates by Corollary 3.2: For the systeni = Az, the following state-
2 = [21, 22, oy )t 2 Tz. From Lemma 3.2T ¢ Lr mer?ts are equivalent. _ _ _
implies thatz = 0 — z = 0. Letzx (k = 1,2, ---, p) be i) The system has the uniform smooth continuation prop-
defined by erty with respect ta: > (<)0.
ii) There exists a positive constansuch tha:** € L for
A all¢t € [0, €] o
_ A o i) z(t) = (=)0 for all (0) satisfyingz(0) > (=)0 and all
A= : t € [0, o).
55 np iv) et e L7 forallt € [0, o).
v) Ae L™
wherez, = [z1, 22, -+, 2,]" fork = 1. . _ Proof: Sincexz(t) = e*z(0), i)«ii), and iii)«iv) are
Note thatz(0) > 0, namelyz(0) > 0, is equivalent to straightforward from Lemma 3.2. We prove i¥)i) —v)—iv).
Zi(0) = 0 (i = 1,2,---, k — 1) andZ(0) » 0 forall First, iv)—ii is trivial. Next, ii)—v). Note that** is a one-pa-
ke {1,2, -, p}. So from the structure of thé-matrix of  rameter subgroup 87 aroundt = 0. Thus the tangent vector
the system, for each € {1, 2, ---, p}, there exists aa > 0 at¢ = 0 is A. On the other hand, the tangent spat&” at
such that the identity matrix isC™. HenceA € £". Finally, v)—iv). If
() =0, i=1,2 - k-1 A € L™, simple calculations show
- , Vtelo, el
Zk(t) >0 eot 0 - 0
which implies thatz(¢) = 0forall¢ € [0, ]. The case:(0) < 0 A | ¥ ezt : A= [ai]
is proven in the same way. O ] TURY S S
From Lemma 3.5, it turns out that, by the coordinate trans- ” x  cannt

formation given in (11), any linear system with the smooth con-

tinuation property is transformed into a system whdsmatrix which implies iv). O

is given by (9). In addition, the equivalence between ii) and iii) Obviously, the uniform smooth continuation property implies

suggests that all the coordinates transformations given by dlge smooth continuation property, but the converse is not true.

ments inL’; preserve the smooth continuation property of th€orollary 3.2 asserts that the uniform smooth continuation prop-

linear system. This is shown in the following lemma. ertyinthe local sense [i.e., i)]is equivalent to the global one [i.e.,
Lemma 3.6:Let M be a matrix in{’} andI’ be a matrix in iii)] in the case of linear systems. Thus the sgisc R" |+ > 0}

Gy(G%). ThenMT M~ € Gy (G1). and{x € R™|z = 0} are invariant subsets &" with respect
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to the dynamics: = Az with the uniform smooth continuation satisfied. More strictly, as seen in the proof below, we can prove

property i). thatTABTg]L € g% and that this is also a sufficient condition
for the systent 4 g to be well-posed.
IV. CHARACTERIZATION OF WELL-POSEDNESS OF Thus we come to the first main result on the well-posedness.
BIMODAL SYSTEMS Theorem 4.1: Suppose that both paif€’, A) and(C, B) are

In this section, we discuss the well-posednesssiiven by observable. Then the following statements are equivalent.

(1), or equivalently ob 4 5 given by (8). First, we give aresult 1) 2o (or equivalently. s 5) is well-posed.
in the case that both pait€’, A) and(C, B) are observable. 1) . is well-posed.
This will clarify a fundamental issue in the algebraic structure 1) 25 is well-posed.
for well-posed bimodal systems. Next, the unobservable case is iv) STUSp = R".
treated as a generalization of the observable case. Y) SiNsp = {0}.
Vi) TpTit € Lh.
A. Observable Case Vi) TaBT ' € G».

vii) TpATL' € g7
Proof: We have already proven 4)iv)«—V)«—vi) and
vi)—ii). So let us prove ii}-vii) —vi). i) —vii). We have shown
in (15) T4 BT * € Gy. Furthermore, letting;; be the(i, j)th

In this subsection, we assume that the paits A) and
(C, B) are observable, that i§ 4y and T are nonsingular,
where

CCA OC;B element of" 2 T4 BT;!, and noting thaCTg1 =[10--- 0],
T, 2 . , Tg 2 ) (12) we obtain
CA.n—l CB-n_l CB = CTZII‘TA — [* Y120 ceeens O]TA

. . . CB* = CTyT?Ty = [+ % 727230 - 0]T4
In addition, we consider the following two systems: ) i

model: & = Az, ifz € ST ' B ' et
A { mode2: £ = Bz, ifze S, (13) OBt = C’TAII‘"*]LTA e % H'Vi,i-l—l T

model: & = Az, if v € S} (16)
2B . . 5 (14) . .
mode2: & = Bz, if x € Sy From these calculations, it follows that
whereSj{, andSy, (N = A, B) are given by (7). Utilizing the Tg = LT, @an

fact thatST |JS, = R™, the systenk, is given by the rule
matrix 7’4 only. The systent. 5 is defined by the rule matrix where
Tp in the same way. 10 o o 0 -
Now the main idea to characterize the well-posednesgf
is as follows. First, note tha! andS express sets of all initial M2
states from which smooth continuation is possible in mode 1 and o YioYaz :
mode 2, respectively. Next, if the solutions in both modes are L ] ) : (18)
the same on some time interval, they must satigly = 0 on .
that interval, and so such a solution is only the origfn) = 0 « " H Vi i1
under the assumption of observability. Thus from Lemma 2.1, Pl
we can see that the systery g is well-posed if and only if L . .
StUS; = R™ andSTNS; = {0} This implies .that all elements; i+1 are positive, sincéy a_nd
On the other hand, from Lemma 3.4, it follows thaf 5 &€ nonsingular. Hencg, BT~ € G.. vii) —vi). In a sim-
StUS; = R is equivalent toST NS5 = {0}, and also ilar wazl to (16), we obtain the equation (17) from vii). Since
is equivalent tals7;" € L£7. Thus we conclude that eitherl € £7, Vi) holds.

one of these conditions holds if and only if the systBmg is 1€ Proof of vi)=iii) —viii) —vi) is similar. =
well-posed. Remark 4.1:From Theorem 4.1, it turns out that the

Moreover, we will derive another type of condition by using'€!l-Posedness property of the bimodal systémy with both
the relatiorlZ 17! € £7. SincelpT; ! € £7 impliesS] = C, A) and(C, B) observable is characterized by either one of
S from Lemma 3.2, ifS.p is weII‘-posed, thert, is also the following two properties: a) the preservation property of the

_ . A lexicographic inequality relation between two rule matrigas
weII-posed-. Moreover, in the new coordinates= Ty, the and7’z, which is characterized by the s&t , and b) the smooth
system?. 4 is described by

continuation property which is characterized by the&et(or
« [model: s = T4 AT 2. if2>0 Gg)- The former corresponds to iv), v), or vi) in Theorem 4.1,
49 mode2: 5 = T A0 w2 (15)  and the latter to vii) or viii). Note also that the well-posedness
12 =T4BIl, %, ifz=x0. . p
} property of ¥ 45 can be given by the equivalence between
Then the well-posedness &fy implies that smooth continua- > 45, 3 4, and > . Furthermore, from vii), it follows that a
tion is possible in each mode. Thus by Lemma .’:%BTXI € parametrization of all matriceB for which X 4 5 is well-posed
Gy must hold. Note also thﬂfAATgl € Gl is automatically is given by the formB = TglFTA foranyl’ € 7.

>
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1 1 . .
T " pe) ks From the equations at the bottom of the page it follows that
: ]
OO I/ixe o/ rop-t_ (01 00
0 _ Bfa T lx % 1 0
T |

Fig. 2. Elastic collision between two objects.
which belongs to the set? . Hence the system is well-posed.
Remark 4.2:When the well-posedness condition in Thewe also have
orem 4.1 is not satisfied, there is still some possibility that
the system is well-posed with sliding modes, if we allow
the existence of sliding modes. However, such a situation is TABTXI —
not possible under the assumption of observability. In fact,
whenever the well-posedness condition in Theorem 4.1 is not
satisfied St (S5 # {0} holds, which implies that there exists,, hich belongs to the set*
two different solutions from the initial state, € S} S5. +
We here use the fact thatdfz(¢) = 0 is satisfied on some time g jnobservable Case
interval, thenz(¢) = 0 by observability. ) ] ) )
Example 4.1: Consider the physical system in Fig. 2. The The following resultis concerned with the case that both pairs

equations of motion of this system are given by (C; A) and(C; B) are unobservable. ,
Theorem 4.2:Denote the observability indexes of the pairs

¥ ¥ ¥ O
* ¥ Kk =
¥ ¥ = O
¥ = O O

f |0 1 (C, A) and(C, B) by m 4 andm g, respectively. Then the fol-
model: 0 0 ’ lowing statements are equivalent.
1. 0 1) 5, . _ i) 2o (or equivalentlyX 4 g) is well-posed.
L = [—kQ —ds ef, ify=[10-10z<0 if) The following conditions are satisfied.
( 0 1 0 0 a) ma = mpg.
2 |-k —dy k1 dy b) Ts = MT, for someM € L4,
de2: ) 0 0 0 1 c) (A— B)x=0forallz € KerTjs.
modes: kr di —ki—ky —di—ds iii) The following conditions are satisfied.
1
-[372}, ify=[10-10lz<0 a) may = mp.
L z b) T4B =I'T4 for somel’ € GI'*.

c) (A— B)x =0forallz € KerTj,.

— NNT 2NTT __ 1.1 .2 21T H
wherez = [(z°)" (2%)"]" = [ 23 2 23]" . These provide Let us compare Theorem 4.2 with Theorem 4.1, which deals

0 1 0 0 with the observable case. 4 = mpg = n, ii) and iii) in The-
0 0 0 0 orem 4.2 generalize vi) and vii) in Theorem 4.1, respectively.
A= 0 0 0 1] However, in the unobservable case (ke,4 < nandmp < n),
LO 0 —ky —do additional conditions ii)a) and ii)c) [or iii)a) and iii)c)] are re-
-0 1 0 0 quired. The former condition implies that the dimension of the
ki —d; Ky dy unobservability subspace in both modes must be the same for
B= 0 0 0 1 ’ the well-posedness. For examplepifs > mp, then for the
Lk dy —ky—ky —dy —dy initial state in some subset of tier 4 — m p)-dimensional un-
C=[10-10]. observability subspace smooth continuation is possible in both

modes and the two different solutions exist, which implies that
Simple calculations show that the pé&fr, A) is observable the system is not well-posed. The latter condition, on the other
if and only if k; # 0, and also the paifC, B) is observable if hand, implies that the solutions in the unobservability subspace

and only ifks # 0. Thus we here assunig # 0. Ker T4 (= Ker T'5) must be the same in both modes.
rl1 0 -1 0
0 1 0 -1
Ta=10 o ko da
L0 0 —kodo ky — d3
r 1 0 -1 0
T — 0 1 0 —1
B = —2k, —2d, k1 + ks 2d; + dy
L (4d1 + dg)k‘l —2k1 + (4d1 + dg)dl —(4d1 + dg)k‘l — (2d1 + dg)k‘g (2/{}1 + /{}2) — 4d% —3d1dy — d%
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Since this theorem is a special case of Theorem 5.1 in thel)2(i—1)mi7i > 0, wherem;_ ; is the (¢, i)th element of
next section, the proof will follow from that of Theorem 5.1 (seé/. So noting that bothZ,,, and A are lower-triangular,
Remark 5.1). E.,ME,,, € L} holds. Similarly for i} i). O

Remark 4.3: From Theorem 4.2, it follows that whenever the Example 4.2: Consider the system in Example 4.1 again. As-
pair (C, A) is observable and the pdi€’, B) is unobservable, sume that, = 0 andd, # 0. Then since
the systent is not well-posed. However, if the number of the _ - _

criterions which specify admissible regions of the state in each ¢ 10 -1 0

mode, i.e., the dimension gfin (1), is more than one, then the Ta= OAQ =101 0 -1,

situation is different. The details will be given in Theorem 5.1 :OA d :0 0 0 d

and Example 5.1 in the next section. C 1 0 -1 0
Remark 4.4: The conditions in Theorem 4.2 can be checkedis = | CB | = 0 1 0 -1 )

as follows. First, check the condition iii)a). If it is not satisfied, CB? | |2k —2d1 2k 2di+dy

we ConCIL.Jd?.thatth? systemis n-o~twe||-posed. gtheTrWJie’TCh%lé havem, = 3 andmpg = 3. Thusiii)a) in Theorem 4.2 is
b) and c) iniiii). So pick any matri€’4 suchthafl’ = [T} T71]

. g . > A
is nonsingular. Then we can show that b) and c) are equivalg'r?%'Sﬂed' Lettingl’y = [0 01 0], we have

to [0 1 0 0
0 0 1 0
— Irn m —
[IrnB OrnB,n—rnB]TBT ! |: B :| €g+B7 TAT = 0 0 —dg 0],
n—mpg, mpg

(L omB,n_mB]TBT1[0’"37"""3} =0, (19 L0 0 1d | 0

n—mp i 0 1 0 0
o ok, —2d 1 0
TBT ' = | kdy didys —ds 0
— Orng,n—rng
O, Inemn JT(A — BYT™ [ } —0. 0 0 1/ds | O
n—mpg

(20) Using (19) and (20) in Remark 4.4, we can show that b) and c)

Thus if _these conditions are_satlsfled, we conclude that tn?iii) are satisfied. Therefore, the system is well-posed.
system is well-posed. Otherwise, we conclude that the system

is not well-posed. Note here that we only have to check t
condition for someT’4, since the well-posedness does not’
depend on the choice 6f,.

Furthermore, for this class of systems, we can show that if theln this section, we treat bimodal systems given by multiple
systemd, is well-posed, then the time-reversed system beloiteria.

WELL-POSEDNESS OFBIMODAL SYSTEMS WITH MULTIPLE
CRITERIA

is well-posed: o ) ) ) o
A. Description of Bimodal Systems with Multiple Criteria
— J model:i = —Az, ify=Cz 20 Let us start with the following example:
© 1 mode2: & = —Buz, if y=Czx <0.
. . . 0 1 .
Theorem 4.3:For the systen® given by (1), the following model: & = |, ||z, ifz>=0
statements are equivalent. Yan 1 0 (21)

i) X is well-posed.

Proof: We prove i}~ii). Let m.4 andmp be the observ- Since smooth continuation in each mode is possible, that s, both
ability indexes of the pair¢C, A) and (C, B), respectively. A-matrices belong tg7, this system is well-posed. Then let us
Let also7; and 7 given by (6) with—A and —B instead consider what is the original systeny, of this EA.B. Sp from
of A and B, and withh = m.4 andk = mp, respectively. mode 1, we can see that = [1 0]. However, in this case,

Note thatm,s = mp because of i). Then since there existda = I> andZz = [1 0], and so(C, A) is observable but
M € L}, suchthatl's = MT,, we havel; = E,, , Tp = (C, B) is not observable. This implies that the system of the

ma

Em,ME,,, T, where form (1) given byC' = [1 0] is not equivalent to the system
> 4B, and so is not the original system Bf; 5.
1 0o ... e 0 How can this well-posed bimodal system be characterized by
0 -1 0 : our framework? In fact, the original system for; g in (21) is

given in terms of two criteriadCz > (<)0 andCr > (<)0

Ema = - whereC = [1 0] andC = [0 1] as follows.
: .. (_1)771,_4—2 0 0 1
0 ... ... 0 (—1)ma—t model: & = [1 J z, ifCz>0

Yo (22)

Thus we will showE,, , ME,,, € £}*. From simple cal-

culations, the(i, ¢)th element ofE,, , ME,,, is given by

. 1 0 | C
mode2.a:_[1 1}% if [a}xjo.
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In this section, we will generalize this example to consider the i) X (or equivalently>: 4 5) is well-posed.

following bimodal system: i) The following conditions are satisfied.
5 {model: i=Az, fCz=0 23 a) Eﬂé[fiﬂ T,i;z - TTJF = mp for somei €
o o — i y 4y sy Py
mode2: & = B if Dr <%0
v x’ r= b) Te = [M Oniy ma—my)Ta forsomeM e L7,
where c) (A—B)z =0forall x € KerTg.
o) D iii) The following conditions are satisfied.
C D, a) rank[T1, T, .. TL]" = mpg for somei €
c=|lerrn, p=|""|erm, T
y . b) [IrnB OrnB,rnA—rnB]T'—lB =
Cp D O[i,., Omp,ma—mplla  for  some
andC;" and D} aren-dimensional vectors. In this definition, I' e G5°".
note that it is at least required for well-posedness thate ) D; = [x--xa 0 --- O]T4 for everyi €
R Cz = 0} J{r € R"|Dz < 0} = R"™. ,
First, we give an equivalent representation to the above {1,2, -, s}, wherek; =k 4+ ko + -+ ki_q,
system, as in Section Il. So we introduce the following rule ko = 0, anda > 0.
matrices: d) (A— B)x =0forall z € KerT.
141 T Proof: i)—ii). From i), it follows thatSTJS; = R,
A | Taz s ~ | Tho . which implies by Lemma 3.4 thatl’y and TB. .satisfy
Ta=| . | €eR™™, Tp=| . | €R (24) Tp = [M 0T, for someM € L77. In addition, let
T;p Tp, two new coordinates be defined by = [¥ |7 £ Tz
X andw = [w? wl]T £ Tz, whereT 2 77 T1]T and
where T2 (1% TE)T foranyTy € T4 and anyl’s € 7. ThenX. 5
G is transformed into
A CZA h;Xn . .
Ty = : € RMAT, v=1,2,---,p, > model: 2 = TAT 'z, ifz =0 27)
C<A.hf_1 A8 mode2: w = TBT 1w, if w <0.
[ DDZB HereT AT—! and7' BT~ are given by
Tp; 2 : e RE™ =12 ... s .
: All OrnA, n—mta -
D‘Bki_l TAT_l = s All c gglA, (28)
- * *
andeacth; (i =1, 2, ---, p) isthe maximumvalue of therank By Omp. n—ms y
such thafT?, 77, ... T%]" has a row-full rank. Similarly for ~ 7BT~* = ] , B € G§'2. (29)
* *

k;. Note that}"?_ h, = m4 andd_._, ki = mp, and then
rank7y = m4 and rankKl'g = mp.
Using these rule matrixes, we consider the system given blyet z; be denoted by £ (2L, 2L]* wherez;; € R™» and
. ) n z12 € R™4~™#r_ So let us consider the case of (0) = 0
Yun { model: r= Az, !f e Sé (25) andz12(0) > 0, which also impliesw; (0) = 0 becausd’s =
modez2: & = Bz, ifz € Sp [M 0]T4. From (28) and (29), smooth continuation in each
whereSt andSy (N = A, B) is defined by (7), wherd’, mode is possible from this state, and the solution in mode 2

and T’ are given by (24). Then, similar to Lemma 2.3, we caﬁ in then — m g dimensional unobservable invariant subspace
prove that the syster 4  is equivalent to the original systemWith wi(¢) = 0, namely, KerI’s. Thus due to uniqueness of

Yo Therefore, we focus on the well-posednesE.af;. the solution, the solution in mode 1 must satisfy_(t) =0
as far asz;» = 0 holds. Hence a) follows from this. Further-

B. Well-Posedness Conditions more, the vector fields in both modes must be the same on

We consider the general case that both pairs are not nec{é%[ T N {# € R"|z12 = 0}. From the property of linear sys-

. . eéms, this implies thatlz = Bz for all z € Ker 1.
sarlly observable. LeTy be the set ofn — m.4) > nmatrices ™ i \ve oo have to show b) and c) in i), It follows

such that?’ 2 [T 777 is nonsingular, that is, from ii)b) that

A 2 (n—ma)xn H H } .
Ti= {TA eR | T is nonsingulag . (26) [, O]T4B =MTyB = M~'By, Ty

Let also7 be defined in the same way. =M"'ByM|I,,, 0T4 (30)
Theorem 5.1:Suppose that the rank @f, and7’z given by .

(24) arem 4 andm g, respectively, andn,, > mp. Then the whereBy, is the same as (29). From Lemma 3.6, this implies

following statements are equivalent. ra M™BM e G2, namely, iii)b). Moreover, lettingn; ;
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be the(i, j) element ofM inii)b), the relationl’s = [M 0]T4

implies that, fori € {1, 2, ---, s},
DZ‘I *---*mzi_i_l’%i_i_l()---() TA.

SincemEJrl T > 0 we have iii)c).
iii) —1). First, we showl’z = [M 0]1’4 for someM € L7'?.
From b) and c) in iii), it follows that

DiB=a[l0 ---0][ln, 0|]T4B
10 -0 [Lyny O]Ta
*7120 --- O][ImB O]TA

* Y12 0-.- O]TA

al
a
a
=qf

Thus by calculating similarlyD, B2, - --, D, B*~!, D,B, - - -,
DyB*~1 ... andD,B* 1, we can derivel’s = [M 0]T4
for someM € L'7. In addition, sincgM 0]T4z < 0 <
[{mps O]Taz < 0, X 45 is equivalent to

model: & = Az, ifTaz =0
X4 { mode2: & = Bz, if [I,,, 0]Taz < 0. (31)
In the new coordinatess 2 [:I X|T = Tz, where

T 2 [T TT]7 for any Ty € T4, 4 is transformed into
5 if z1 =0
4 if [, 0]z1 =< 0.

model: 2 = TAT 'z,

mode2: 2 = TBT 1z, (32)

Note here tha"AT~1 is given by (28). On the other hand, it

follows from b) that, in mode 2,
7:11 = [IrnB O]ZﬁABTilZ = F[InzB O]Zl = lel
vector

where z;; is the mpg-dimensional

defined by
z = [24 #L]*. Thus, smooth continuation in each mode is

1611

Remark 5.2: When in Theorem 5.1 we consider the case that
the pairs(C, A) and(D, B) are observable (i.em4 =mp =
n), the condition ii) is reduced int(TBTg]L € L7, and the
condition iii) is reduced int<TABT;L € G andiii)c).

Remark 5.3: The conditions in Theorem 5.1 can be checked
as described in Remark 4.4. Namely, the conditions iii)b) and d)
are replaced by (19) witf;"”? instead ofG'?, and (20).

Remark 5.4:In terms ofz = Tz andw = Tz given in the
proof of Theorem 5.1, where

every well-posed bimodal system given by (23), or equivalently
(25), with rankT’y = m 4 and rankl's = mp(< m4) can be
transformed into the following canonical form:

TB _ |:[Orn_4—rnB,rn]i IrnA—rnB]TA
Ta

r .[111 ‘ OmA, n—ma
model: 2 = | — " %
AQl | A22
5 if (L O, nmalz = 0
o -
B ‘ Omp,n—mp
mode2: w = = w,
* ‘ Bas
i [Lng, Oy nemp]Jw X0

where[l,,; Orny,nemp|w = [M Onp n_my |z fOr someM e

possible. Furthermore, from a) and d), which mean that the

vector fields in both modes are the same on Kgr i.e., the
invariant subspace given by;;(0) = 0, it follows that the
solutions in both modes are the same when(0) = 0 and
212(0) = 0. ThereforeX. 4 5 is well-posed. O

Compared with Theorem 4.2, ii)a) or iii)a) in Theorem 5.1

implies that the dimension of the invariant subspacelksein

mode 2 must be the same as either of the dimension of the

invariant subspaces given by KgF{ 771 ... 7117 (i
1,2, ---, p) in mode 1. By this condition and ii)c) or iii)d),

when solutions exist in both modes, they are necessarily the By,

same. iii)c) comes from the relation betweéEpnand?’s on the
k;th row in ii)b).

Remark5.1: Whenp = 1ands = 1, Theorem 5.1 is reduced
to Theorem 4.2, althougliy"” is replaced byG"” in iii)b). In

the proof of Theorem 5.1, the condition iii)b) in Theorem 4.2

comes from the fact thaBy; in (30) is given by

0 1 0 0
i 0 0 1 :
Bu=1: 0| €957
0 0 0 1

*

Lye Sty hy =mp forsomel € {1, 2, -+, p},
- -’Zill ‘ OrnA,n—rnA
B22 = [On—rn,B,rn,B In—rn,B] = =
21 | A22
. OrnB,n—rnB
In—rnB ’
and
rA;; 0 0
Ay = A?l Ay € Rmaxma
E ' R 0
—f}pl ce Ap,pfl App
M B11 0 0
_ BQI BQQ . c r]z'rnB ><'rnB7
o ) 0
_le .. Bs,sfl Bss
[0 0 0
) 0 :
Aii — . 0 c ’R]H XTv; ,
0 O 0 1
| * ce. K
0 0
Ay = e RM>hi  fori > j,
0 0
L * %
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o ... 0 so there exisR” modes. Moreover, lef; be a subset of:™
0o 1 . defined by
Bii = . . . . 0 GIR,kiin, A
0 0 : 0' ! Cir={zeR"y; >0foricZ, vy <O0forigI} (33)
L* o o . % By numbering the index sefsfrom 1 to2", we use the number
o ... ... 0 1€ {1, 2, ---, 2"} in place of to express the mode.
R : : Then we consider the originaf-modal systents given b
By= | e RMR L fori > . g ystemko gven by
0 ... ... 0 model: z=Axz, ifzel

I mode2: &= Asx, fze(,
N N Yo : : . (34)

From Lemma 3.5, we see thdi; andB;; are the same as the : : :

form (9) of all A-matrices for which the system has the smooth mode2” : &= Agrx, ifzeCor

continuation property with respect 0> 0. h = le. for — 2 h he 4 |
Example 5.1:Let us check the well-posedness of the fol\-N erer < R, For example, for = 2, we have the 4 moda

. . system given by
lowing simple example:
_ - m0d81:.i7:A1$, .’EEClI{aZERnwle, yQEO}

( . 0 10 , mode2: ¢ = Asx, v € Cy = {z € R"|y1 >0, y» <0}
model:z=1{1 1 0|z, fCx>=0 mode3: & — Agz, = € Cs = {x € R"|y1 <0, yo > 0}
o :O 0 1: moded: & = Ayx, x € Cy = {z € R"[y <0, y2S0(}-
010 35)
mode2: = (1 2 0|z, fDz<0 In addition, we assume that every p@¥;, Ax) (i =1, 2,
L 1 1 1 -,y k=1,2, .-, 27) is observable. So the rule matrices
where C;
C= sz[o 0 1}, D=D;=[100] A= : €
) Ci AL

Then we obtainn 4 = 3 andmpg = 2 from ] ]
are all nonsingular. So Iy be a subset dR™ defined by

1 1 0 0
T,=|CiAl=]0 1 0], Si2{z e R,z 0forieZ, T z=<0forigI}
C 0 0 1
? Using the setsS;, we also define the”-modal systenkt 4, as
Ty = Dy _ 1100 follows:
D\B 01 0" _
model: z=Az, fzxed
Thus ii)a) is satisfied. Frorfi’s = [I> 0]74, we obtain ii)b). mode2: & =Ax, fzeS,
In addition, notingTs AT;' = A andT4BT;* = B, c)is Ya, : . : (36)

satisfied. Therefore, this system is well-posed, althoi¢ghA) PO : . '
is observable an@D, B) is not observable. mode2” : & = Ay, ifx€Sy.
For a vectorz, y € R™, the notation: > y expresses; > y;
VI. EXTENSIONS TOMULTI-MODAL CASES for all . Similarly for the other notatior<, >, and <. For a

In this section, we extend several results for the case of Blosed convex polyhedral code= {z € R"|Fx > 0} where
modal systems given by (1) to the case of multi-modal sy4- is anm x n real matrix, let intC be the interior of” and let
tems with multiple criteria and multi-modal systems based ¥ be the boundary of.
affine-type inequalities. We only discuss the observable case, aghen the following result is a natural extension to that for
a first step to investigate to what extent our framework can émodal systems.
generalized, although the unobservable case may be extendetheorem  6.1:Suppose that every pair (Cj, 4;)

in a similar way. (1 =1,2,---,7; j=1,2,---,2") is observable. Then the
following statements are equivalent.

A. Multi-Modal Systems with Multiple Criteria ) Xo is well-posed.

We here consider multi-modal systems with multiple criteria. 1)) 2.4, is well-posed.
For any matrixC = [CT ¢T ... CT]T € R™*" wherer < n, iii) U7_, S; = R™ andS; NS, = {0} for all j, k(# j) €
let the criterion vector bey = [y1 »2 --- w.]7 = Cz. We {1,2, ..., 2"}
assume throughout that there exists no congtanth that”; = Proof: i)«ii) can be proven in the same way as Lemma
kC; foreachi, j € {1,2,---,r}. LetZ c {1,2, ---, r} be 2.3.i)—iii). Since S; is a set of all initial states from which
the index set satisfying; > 0 fori € Z andy; < 0fori ¢ 7. smpoth continuation is possible in mode it follows that
The index sefZ represents the mode (location) of the syster‘qu=15j = 7R™. In order to prove the latter part of iii),

Note that there arg” possible choices for the index sBtand we assume that there exists somend k(# j) such that
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S; Sk # {0} andS; N Sk # 0. So letz.(# 0) be an element whereTi(ylghj isan(n —1) x (n— 1) matrix. Concernin@f}il,
of §; () Sk. Then for some > 0, the solution in modg from  a necessary condition for condition iii) is that for eaeh €

the initial stater, satisfiesz(t) € intC; forall¢t € (0,¢], {1,2,---,7}

while the solution in modé: from =z, satisfy z(¢) € intCy

because of observability. This implies that the solution is not (1) n—1 (1 (1)

unique, which is in contradiction with ii). Hence the latter part U Sian =R S ﬂsk o =10,

EL::)m?lzd,i: i) —1) follows from the multi-modal verS|onDof Vj, R g) € {1, 2, -+, 2}, (41)
From Theorem 6.1, it turns out that the well-posedness Ribting that the condition (41) has a similar form to that of con-

Yo is characterized by condition iii). When is condition iii) satdition iii), we will repeat the above discussion for (41). So let

isfied? It seems difficult to interpret condition iii) in terms of0<1> ; be the first row vector of the matri€) .. and let

some simple algebraic relation between the matr‘E?sas in C(l) be defined by o

the case of bimodal systems. However, we give below an algd=*+

rithm to check condition iii). c — — e RO ct >0
First, the following simple lemma is useful for the algorithm. G et ’
Lemma 6.1:Let S be a set defined byx € R"|T;x > Then if (41) holds for each; € {1, 2, ---, r}, the following

0, ¢ = 1,2, ---,r} whereT; is ann x n real matrix, and relation on the first row of the lexicographic inequalities must

letC be a set defined bjiz € R™|Cx = 0} whereCisal x» hold for eache; € {1, 2, ---, r}:

real matrix. Then there exigh — 1) x (n — 1) matricesT;

(i =1,2, -, ) such that U ) —Rrnl

1, 1

7:17 2777} (42)

SC={ze R Tiz=0,i=12--,r} (37) it ﬂc<1> = {0} or = actt), ﬂac,{”al

Vi, k(#F ) e{L, 2,27 (43)
Proof: In the new coordinates = [w z*|* = Mz where . - .
M = [CT TT]7 is nonsingular for som@ 6 Rn—1xn_and Nextletus consider a necessary condition for (41) with respect

w = Cz andz = Tz, we haveliz = T,M 1% > 0. Sowhen 10 the set ofx satisfyingcj(}il ﬂczglzll : acs), ﬂac;ifl_“-
w = 0, this yields Note that this set is included in the union of the sets given by
{z € RPHC) 7 =0} forallas € {1,2, -+, 70},
0 i whereO((l) oy IS given byC(") ; for some(i, as, j), and
Mt { } "_11} Tz =0 (38) r,, is some finite number. So if we define the set
(2) €8] n—1)~(1)
Then by applying Lemma 3.1 to (38), we can derive(an- Sil(ar,a2) = Siyon {z € RO ay? = 0} (44)
1) x (n — 1) matrixT; in (37). O

) . . i . a necessary condition for (41) is given by for eaghe {1, 2,
In order to clarify the idea of the algorithm, let us firstdiscuss . } Y (“4Disg y ache {

the necessity of condition iii) in Theorem 6.1.
Suppose that condition iii) in Theorem 6.1 holds. Then we 2"

@ n—2 (2) (2 _
have U Sz (a1, 22) — =R ’ S (a1, a2) ﬂsk (ar,@2) = {0},
=1
Je=r" ¢;(\c = {0} or =ac; [ ck, and also concerning the first row of the lexicographic inequali-
=1 i ties |n$Z (o, o)+ (45) implies
V]7k€{1727"'721} (39) e
or

where(C; is given by (33). Next, let us consider a necessary UCZQ()Q1 ) =R"2,
condition for condition iii) with respect to the set of satis- =
fying C; (N Cx = 9C; (N ICk, which is given byl J, _{z € '@ ﬂcf) ={0}or = 86(2) ﬂacl?) 7
R"™|Cy,z = 0}. So for eachy; € {1, 2, ---, r}, we consider (o, 02) (o, 2) - (o, 22) (o, 02)

v 7, (7& J) € {1’ 2, -, 21’} (46)

whereC(Q) ) is defined in a similar way to (42).
s —S<ﬂ{xeR"|C z =0} i—=1.2 ... 9" Thusmasmﬂarway,fohe{l 2, .-+, n— 1}, we define
(3 a - 9 — 4y 4 ?

the set defined by

ne (40) the sets") as
Note here that, from Lemma 6 $( ) _isasetinR™~! which RO 1) Bt 1| (A1)
is expressed by Sz =S, {z e R It IC5, 2= 0} (47)
whereay, implies (o, oz, ---, ap), a5 € {1,2, -+, r&z._, }

SY = {zerRNTY 220, j=1,2,---, 1} (s = 1,2 -, h) with g, =, S0 =S, andC) =

a1, ]
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C,, . Note thatSi(’gh is expressed using son‘ig(h) (G = i) C1(NC2 = {0} or=08C () ICs.

X ] sy - . .
1,2, -, r) (see Lemma 6.1). Furthermore, @i’gh’j be the 1) mtnCl NintC; = 0, ie.,{zr € R"[Fiz > 0}z €
first row vector of the matriﬂ’i(}g ., and IetCi(’g be defined R |F2_x >0} - @ I
by s o - Proof: i)—ii) is trivial. ||) —i). We only h_ave t(_) show that
ifii) holds, then there also exist no elements in the intersection of
c™ _ {z c Rnfhw@ 230, j=1,2 T}' the boundary of a closed convex polyhedral cone and the interior
b Qh b Qs d T of another cone. Lef;; be the 1st row vector af; and letF';

be the matrix such that; = [fZ T, ]¥. Then we will show

Then we can show that foreaeh € {1, 2, ---, r5,_,} (s =
1,2, -+, ), the following relation must hold: N = 0 where
o A n _ a .
(et —go NE{zeRfur=0, Fiz>O0}[)intC,.
T, A, ?
i=1 Assume N # 0, and let z, be an element of\.
{0} orac](,f%h mac,i’jgh, Note that an element of; can be expressed by =
o) ﬂc“‘) B ifh=12 -, n—2 Yo ayu; + {an element of KeFl}, whereo; > 0 and
3, % ko, — {0} Fiu; = e; (theith element of; is 1 and the others are 0). So

h 1 z. is expressed by, = >, «;u; + {an element of Kef }

. N . wherea; > 0. Now for &, = =z, + eu; wheree > 0 is
Vi, K(#J) €141, 2, -+, 2" (48) sufficiently small, we havé., € int C; (int Ca, which implies
t ii) is not true. Hence, it follows that if ii) is true, then

From the converse argument of the above one, we see tha - . .
g = (0. For any other boundary @%, similar discussion holds.

(48) holds for eacth € {1,2,---,n — 1} and eachy, € Thi | h f O
(1,2, -, =} (s = 1,2, ---, ), then condition iii) in | S cOmpletes the proof. »

Theorem 6.1 holds. Thus by L'emma 6.2, thg second condmpn of (48) can be also
Next, let us show how to check (48). The first condition o?heCked using, e.g., the I|_near programming. )
(48) is equivalent to Based on the above discussion, an algorithm for checking

condition iii) is given as follows.

2" Step 1: Seh = 0.
N {Z e R M < 0} =0, Step2: Seh = h + 1. Foreachy, € {1,2, ---,rg, .}
i=1 (s =1,2,---,h)and eachi € {1,2,---,2"}
\V/jlv j27 Ty jQT S {17 27 ) T}' (49) derivesi(}g andcz‘(ha) .
. Step 3: Check whether (48) is true or not for each €
So letting (1,2, ra Y (s = 1,2 -, h). If itis true
(h) for all cases, then go to Step 2Af < n — 1, or
tgh,h we conclude that condition iii) holds & = n —
o 02,51“]'2 1. Otherwise, we conclude that condition iii) is not
Qs Jor : satisfied.
C(h)' Since (39) is always satisfied, the statement on (39) is
27,0, Jor omitted in the above algorithm. The proposed algorithm in-
wherej,. implies(ji, ja, -+, jor), (49) is rewritten by cludes some redundant calculations, so it will have to be refined

from the viewpoint of its computational complexity. However,
n—h) (k) . the algorithm is meaningful in the sense that it provides one of
{zG’R |F_7z<0}—®, ) - .
@, Jor approaches to determine systematically the well-posedness in
Vi1, g2, ooes der €41, 2,00, 1} (50) the sense of Carathéodory of any multi-modal piecewise-linear
system (34).
Thus we only have to solve the feasibility problem of the form" ing)ly, we give a simple example to illustrate the idea of the
Fg% z < 0. An answer of this kind of problem is given, forproposed algorithm.
exéfnzﬁle, by solving the following linear programming: min ~ Example 6.1: Consider the 4-modal system of (35) where
subject toFéh)7 z < Ae Or min X subject toFéh)7 z < de
and —e¢ < z]”gjzre, wheree is some vector witﬁ’lazﬁ elements
positive. Letting\, be an optimal solution, ik, = 0, then the A=
set{z € R"—"|Fa(h)7 z < 0} is empty, and if\, < 0, then it
is not an empty set.
Concerning the second condition of (48), on the other hand, Ay =
the following lemma is obtained.
Lemma 6.2: LetC; be a set defined hy; 2 {z e R"*"| Lz >
0} (¢ = 1, 2) whereF; is anm; x n real matrix. Then the Az =
following statements are equivalent.

T 1
O O =
o = O

|
—
o

o
|
—

—_— o0 P OO kOO
—
—

O O =
|
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0 -1 0 we conclude that condition iii) of Theorem 6.1 is satisfied for
Ag=10 1 -1 this system, and so the system is well-posed.
1 0 -1

B. Multi-Modal Systems with Affine Inequalities

and,Cy = [1.0.0 andC% = [0 1 0]. Then we have We here start with the bimodal system given by

1 0 0 01 0 .
model: z = Az, ifCzx >«
T =10 1 0|, T3, =(0 0 1], Eo(a){ LT = (51)
L 0 0 1 L 10 0 mode2: & = Bz, ifCx <«
(1 0 0 0 10 wherex € R", C € RY*", anda € R is any given con-
T}h =0 -1 0], sz =10 1 1], stant. Note that the inequality constraint is affine. This system
|0 -1 -1 1 10 is equivalent to the following system:
[1 0 0] [0 1 0] _ P
T}13 —1l0 1 0], Tig — 00 -1/, EAB(OC) model: & = Az, If T € fé(a) (52)
0 0 -1 -1 0 0 mode2: £ = Bz, ifx € Sp(w)
(1 0 0] [0 1 0] where
Ti,=|0 -1 0|, T3,=| 0 1 -1].
|0 -1 1] -1 1 0] gjz{a:eR"ﬁAa:za}, Sy ={z € R"|Tpx < a},
_ T, = T,
Step2h =1): Fore; = 1,we haveinSi(jlf (i=1,2,3,4) Ta= |:02n:| , T'p= {an}
o _[1 0} TV _ [1 0} anda = [« 0 --- 0]7 € R™*!, andT4 and7 are defined
R N o R NN O by (12). In fact, ifCz(t) > « in So(a) on some time interval,
W _ (-1 0 @ _[-1 0 thenZ 4x(t) = @ on that interval. Conversely, f s z(t) = @
LI -1 =1 TERLZT 1 1 on some time interval, the@'z(¢) > « on that interval, and if
W —1 0 W 1 0 T 42(t) = @, thenCzx = . The same argument holds in mode
1370, = 0 1} v I310= [0 _1} ) 2. Thus each mode il («) is identified with each mode in
1o 1 0 Y ap(a). Denote by(M); ;) the(4, j) element of a matrix/.
Tﬂ, 1= _1} 7 be = [_1 1} ) Theorem 6.2: Suppose that both paif€’, A) and(C, B) are

observable. Then for any given constant R, the following
statements are equivalent.
i) Yo(«) is well-posed.
i) ¥.4p(a)is well-posed.
O iii) The following conditions are satisfied.
, Cs1.=1[-10] a) ¥.45(0) is well-posed.
. o), =01 0, b) (T5T4 )1,y =04 =23, -, n.
" €) (C1)(TAAT ") (n, 1y > 0 @nd(TpBT5")
(n, 1) > 0, or (C2) (TAATZI)(n,l)a < 0
and (TpBT5 ) na < 0, or (c3)
(TaAT N, o = 0 and(TpBT5 ), o =
0.

Fora; = 2, 55712) andci(jlg (i =1, 2,3, 4) are obtained simi-
larly. Step 3(h = 1): It can be easily verified that (48) holds
for h = 1. Step 2(h = 2): Foray = 1, we obtainr,, = 1,

and 0(11)1 — [1 0]for as = 1. Then we have inS@l . Proof:. |)<—>||)2as alreatiiy been groven.+|=)!|). Inthe~two
2()’ ) “(L1)  new coordinates = T4z — & andw = Tz — &, wherea =
(=Clay) (=1234) [@0 ---0]" € R™, Lap(a) is described by
(2) _~@ _ (2) e e)) _ ( L5 —1 -1~
I an:1=%uni=1b T p2=C =5 model: 2 = Ty AT "z + T4 AT, &,
(2) —_ 2 _ (2) _ 2 _ . z
15,01 —02,(1,1),1 =-1 1312~ 02,(1,1),2 =-1 ) if [CA"T;I(;: I d)} =0
7@ —c®@ -1 7@ —c®@ -1 Zan(a) : 1 s
3,(1,1),1 3,(1,1),1 ’ 3,(1,1),2 3,(1,1),2 ’ mode2: w = TpBTp w+TgBTg ¢,
T _o@® @ s _ w
4,(1,1),1 4,(1,1),1 ) 4,(1,1),2 4,(1,1),2 .
(1,1) (1,1) (1,1) (1,1) | if CB"T,;l(w—i—&) =<0
On the other hand, fa¥; = 2, we obtain-,, = 2, andc® (53)

21D~ 50 from ii) it follows that{z € R"|z = 0} {z € R"|w <
_ 1 _ _ ©

[1 Offora; =1 andg(z 2) = [02 1] for ap = 2. Then 0} = 0, which implies thaty > 0 for all z > 0. Sincew =
similarly we can deriveSf ()m o) 2657 ()01702))f0r (o1, ) = TpTit2+(TTit —1)a, thismeans thatls T — a = 0.

(2, 1), (2, 2). Step 3(h = 2)7: It Is verified that (48) is satisfied On the other hand, from ii) it follows that < 0 for all > < 0,
for h = 2 and for everya, , a) = (1, 1), (2, 1), (2, 2). Thus which means that7sT;* — I)& =< 0. Therefore, we have
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(TBTX1 — Ia = 0, which leads to iii)b). In addition, from andC € R*™. Let us also introduce the bimodal system given

Lemma 3.3, we havés = M1 4 for someM € L. by
Now let us consider(0) = 0, where both modes may be o
admissible because af = Mz. For mode 1, ifCA"T & > mode:: z = A;xr,

(<)0, smooth continuation is (not) possible, while for mode 2, if v € {x € R"|Cx > a4}

if CB"T,;ld < (>)0, smooth continuation is (not) possible. Zo(Ai, Aiyr, i) mode: + 1: & = A; 41z, (55)
From Lemma 2.1, smooth continuation in both modes is not if v € {zeR"Cx <}
possible at the same time, except for the origit) = w(t) = 0. ' '

Hence iii)c) holds. fori € {1, 2, ---, r — 1}. Then noting that we only have to
iii) —ii). Consider (53), where andw are defined above. focus on smooth continuation from the initial statsatisfying
iiija) and b) implyw = M~ for someM € £7}. Thusineach Czx =¢«; (i =1, 2, ---, r — 1) to show the well-posedness of
case o&(0) > 0andw(0) < 0, smooth continuation in only one the systenm®g (o, aa, -+, a,._1), the following fact will be

of the two modes is possible. In addition, wh&®) = 0, iii)c)  straightforwardly obtained.
guarantees smooth continuation in only one of the two modesTheorem 6.3:The multi-modal system
or z(t) = w(t) = 0. From Lemma 2.1, this impliesii). 0O Yo(a, ag, ---, a,._1) is well-posed if and only if the

This theorem asserts that the well-posednesE®f«) for bimodal systemXo(A;, 441, ;) is well-posed for all
all o € R is characterized by that &f(0), provided thatiii)c) ¢ € {1,2, ---, 7 — 1}.
holds. In iii)c), (c1) implies that, whenevef0) = 0, smooth Using Theorem 6.3, we can determine whether the multi-
continuation in mode 1 is possible, while not in mode 2. (c2hodal systento(o, o, - -+, a,.—1) is well-posed or not, as
implies the converse situation of (c1). In addition, (c3) correshown in the example below.
sponds to the case that smooth continuation in both modes i€xample 6.2: Consider the physical system in Fig. 3. As-

possible and their solutions are the same. sume that; = 0, oy = 0, andas = —1. Then the dynamics
Remark 6.1:Let A, C, andz be defined by of the system is given by
Z: |:61 8:|’ 62[0 —1]a T = |:$:| (mOdel:i:Alxv
K if z € {x € R*|Cz > 0}
Then the systemto(«) is rewritten as mode2: & = A,z
s Yo(0, —1 o
model: z = Az, ifCz >0 o(0, =1) ifze{xreR"0>Ce> -1}
Yo(@) T e .
mode2: T = Bz, ifCz<0 mode3: & = Asx,
which has the same form as the syst®m of equations (1). L ifze{zeR"-1>Cz}

Thus an alternative approach to derive a well-posedness condi-
tion of £ () will be to directly apply the results derived in thewherez = [z1, z;]*, C = [1 0], and
previous sections. However, it is noted that the proof based on

this approach is not straightforward (although possible), since A = [0 1} Ay = [0 1 }
we have to take into account the following points: an additional 0 0]’ 0 —di)’
condition(0) = « is required in this case, and also a pair A — 0 1
(C, A) may not be observable even when the (it A) is 3= |:—/€2 —di — d2:| ’
observable.
Remark 6.2:1n the case of polyhedral sets, instead of th€hen for Yo(A4;, Aiy1, ;) (¢ = 1,2) we obtain

constraints sets given by affine inequalities, some extensidén, = T4, = T4, = I whereT,, (¢ = 1,2, 3) is the
may be possible by considering the intersection of sets suttie matrix. Thus for = 1, sincea; =0 andTAngZ1 € L2,
asS’(a). Furthermore, the case such@s= h(z) < 0 or o(A1, 4s, 0) is well-posed. Foi = 2, on the other hand,
> 0 may be discussed. These extensions are topics for furter, Iy, € £3 implies iii)a) in Theorem 6.2. In addition, we

research. have(Ts, ATy} )2, 1yce = 0 and(La, AsT )2, 1ycva = k2,
Based on the above result, we consider the well-posedneswbich implies that iii)b) holds for anyk; > 0. Thus
the following »-modal system: Yo(Aq, As, —1) is also well-posed for ang» > 0. Hence

from Theorem 6.3, the 3-modal systerf(0, —1) is

model: &= Az, ifzeC .2
° L rEo well-posed for anyk, > 0. From this, it turns out that the

mode2: &= Asx, ifx ey

Solan, ag, -y 1) well-posedness of(As, Az, —1), which expresses the
: : : system with the discontinuity betweetyx and Az, depends
moder : &= A,z, ifzel, on the values ok», on the other hand, does not depend on the
(54) values ofd; andd,. Furthermore, ifk; # 0, the dynamics
wherez € R™, a1 > a2 > -+ > vy @re any real nNUMbers, j, mode 3 is given by the affine form. An extension of the
and well-posedness condition to the affine form is seen in [31].
C,={z € R"|Czx > a1}, Remark 6.3: Consider the system

G :{x € Rn|ai*1 >Cz > ai}v (&S {27 e, T 1}7 model: z = Az, if |Cl’| > o
o ) Z% >0 (56)

Cr ={z € R"|ap—1 > Cx}, mode2: ¢ = Bz, if |Cz| < «,
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As shown in the above example, for any given closed loop
system, the well-posedness can be determined by checking
the corresponding conditions derived in the previous sections.
Moreover, we can give an parametrization of all feedback gains
which guarantee the well-posedness of the closed loop systems
in question. Such a parametrization provides a clear structure
in the parameter space of all admissible feedback gains in the

hich the closed | ¢ iting f ?]tudy of stabilizability with well-posedness, and also will be
which may appear as the closed loop System resutting from hgeful to find a feedback gain which stabilizes the system with

use of_swnchmg_controllers. F_rom Theor_em 63 we can Sh(Well-posedness, using the numerical methods such as the LMI
that this system is well-posed if and only if the bimodal SySte'tEchniques

i 2

Fig. 3. 3-modal system.

s (A B model: & = Az, if Cz > «, 57 For the closed loop system with two modes given by (58),
o(4, B, a) mode2: &+ = Bz, ifCr <« (57) letting K 2 K> — K; and denotingd + BK; by A again, we

is well-posed. Thus the well-posedness problem for the systgr%ve ) _
given by (56) is reduced to that for the system given by (57).  y. [ model: & = Az, ify=Czx >0 (59)
) mode2: & = (A+BK)z, ify=0Cz<0.
VII. APPLICATION TO WELL-POSEDNESSPROBLEM IN

For the single-input control system (59), we will use the infor-
CONTROL SWITCHING

mation on the relative degree of the p@it, A, B), which ex-
The well-posedness conditions as obtained in the previopresses at what stage the effectiof Kz, which leads to the
sections can be applied to several issues in hybrid syste@iigcontinuity of vector fields, on the output= C'x appears.
theory. Especially, by combining a stability condition of Theorem 7.1:Assume that the pajlC, A) is observable and
piecewise-linear systems by Johansson and Rantzer [16] wile relative degree for the triplg”, A, B) is p(< n) (i.e.,
our result, we can determine stability of those systems whefd3 = CAB = --- = CAP 2B = 0 andCA*"'B # 0).
the existence of a unique solution without sliding modes i&hen the following statements are equivalent.
guaranteed. i) The system®, is well-posed.
As another application, we discuss in this section a well- i)y K7 ¢ spafC7T, (CA)T, ..., (CAP~HT} + {¢ €
posedness problem of switching control systems where the state  R"|¢ = v(CAP)T, yCAP~IB > —1}.
feedback gains are switched according to a criterion depending proof: i)—ii). From Theorem 4.2, i) implies th&t>, A+

on the state. BK) is observable. Thus from Theorem 4.1, there exists an
Consider the stabilization problem for the control systeny L7 such thatTyypx = MTs, whereTyypy and
given by T, are the observability matrices for the paf(s, A + BK)
P (K, ifCr>0, - ahd (C, A), respectively. Noting th?}C(A +pBK)z ;1 CA
F=Av+Bu u=9%" i Cp s (58) (i=0,1,--, p—1)andC(A+BK)’ = CAP+CAP~'BK,
we obtain

wherez € R*, v € R™, C € RY*", andK; and K, are . _—
feedback gains. Consider a simple example given by CA? + CAP " BE =mpt1,1C + mypy1 20A + -+

11, pCAP ™ 41y g CAP

.Z"l _ 0 1 X1 0

L‘:J B [0 0} L:J + [1} “ wherem,, 1 ; isthe(p+1, i) element ofM, andmpt1, 41 >
o 0. This implies thatk = Y0 m41,,CA™Y + 4CAP
andKl = [k‘l kQ], K> = [k‘l k‘Q] ,andC = [Cl CQ]. Then let- Wheremp+1 i = Myt Z/CAP_IB and,y — (mp+1 1 —
tin(T;_TAJrBK_1 andZ sy B, t_)e the rule matrices (i.e., the ObserV]_)/CAple’_ Frommp+71,p+1 > 0, ii) follows. ’

ability matrices) for the pair&C, A+BK;)and(C, A+BK>), iy —i). Let 4 A 018 and let K be given by

and assuming that these matrices are nonsingular, we obtan}( _ st oAt wherew; (i = 1,2, -, p) are
T 71 {10 any values and:, ., > —1. Then simple calculations show
AYBK2Ta+BIKG T | 4 g that there exists a matrik/ € L7 such thalllyypx = MT4

Furthermore sinc@/ is nonsingular, the paiiC, A + BK) is
wherea 2 (c1(cy + caka) — 21 Jer(c1 + coks) — c3ky). Thus  observable. Hence by Theorem 4%%; is well-posed. O
from Theorem 4.2, we conclude that the closed loop system isRemark 7.1:1t follows from Theorem 7.1 that fas = n the
well-posed if and only itz > 0. This example shows that evenclosed loop system is well-posed for aily Note also that the
if each controller stabilizes each system in the usual sense, thsel{ = «,C corresponds to the vector field of the closed loop
total system is not necessarily well-posed. For example, caystem being Lipschitz continuous.
siderthecaseof, = 1,¢co =1, k; = =1, ks = =3, k1 = =1 Remark 7.2: Theorem 7.1 can be extended to the multi-input
andk, = —1. ThenA + BK,; andA + BK, are stable, but case. If the relative degrees for all inputs are different from
a < 0. Note that such a case is not rare and the stability in teach other, the extension is straightforward. On the other
usual sense for each mode does not automatically provide tand, if some relative degrees are the same, the condition
well-posedness of the closed loop system. for well-posedness becomes more complicated. Furthermore,
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Theorem 7.1 can be extended to the case of affine inequalitigso] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework
as given below:

Yo(A, A+BK, ) {

model: & = Az, if Cx>a« (1]

mode2: ¢ = (A+BK)z, if Cx<o. [12]
(13]

VIII. CONCLUSION

We have discussed the well-posedness probleminthe sense[%)%]
Carathéodory for a class of piecewise-linear discontinuous sy$t5]
tems, and we have derived necessary and sufficient conditions
for those systems to be well-posed. The obtained results afgs)
based on the lexicographic inequality relation and the smooth
continuation property. As an application to switching control 17]
problems, we have given a necessary and sufficient conditioh
for two state feedback gains, which are switched according to a
criterion depending on the state, to maintain the well—posedneé%g]
property of the closed loop system.

There are several open problems on well-posedness of dig9]
continuous systems to be addressed in the future. We will have L(L)O]
discuss well-posedness of multi-modal systems in the unobserv-
able case as an extension of Section VI. In addition, extensions
to the case of nonlinear systems should be addressed. It will tet!
also interesting to discuss some relations with the well-posed-
ness of complementarity systems as mentioned in Remark 2.32]

Finally, basic results derived here such as the smooth continy-
ation property may be useful to solve well-posedness problems

3]

arising in the framework of hybrid automata as exposed e.g., it24]

[8].
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