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Characterization of Well-Posedness of
Piecewise-Linear Systems

Jun-ichi Imura and Arjan van der Schaft

Abstract—One of the basic issues in the study of hybrid sys-
tems is the well-posedness (existence and uniqueness of solutions)
problem of discontinuous dynamical systems. The paper addresses
this problem for a class of piecewise-linear discontinuous systems
under the definition of solutions of Carathéodory. The concepts of
jump solutions or of sliding modes are not considered here. In this
sense, the problem to be discussed is one of the most basic prob-
lems in the study of well-posedness for discontinuous dynamical
systems. First, we derive necessary and sufficient conditions for
bimodal systems to be well-posed, in terms of an analysis based
on lexicographic inequalities and the smooth continuation prop-
erty of solutions. Next, its extensions to the multi-modal case are
discussed. As an application to switching control, in the case that
two state feedback gains are switched according to a criterion de-
pending on the state, we give a characterization of all admissible
state feedback gains for which the closed loop system remains well-
posed.

Index Terms—Discontinuous systems, hybrid systems, lexico-
graphic inequalities, piecewise-linear systems, well-posedness.

I. INTRODUCTION

V ARIOUS approaches to modeling, analysis, and control
synthesis of hybrid systems have been developed within

the computer science community and the systems and control
community, from different points of view (see, e.g., [1]–[6]).
In the computer science community, as an extension of finite
automata, several models of hybrid systems such as timed au-
tomata [7] and hybrid automata [8] have been proposed and
some results on verification of their models have been obtained.
In the control community, from the dynamical systems and con-
trol point of view, models of hybrid systems have been proposed
(see e.g. [9], [10]), and several properties such as stability and
controllability have been discussed; see [11] and [12] for con-
trollability of switched systems and integrator hybrid systems,
respectively, [13] and [14] for stability of general hybrid sys-
tems, and [15]–[17] for stability of piecewise-linear systems.
One of the main concerns in these researches is how to define
and analyze various kinds of properties of hybrid systems with
discontinuous changes of vector fields and jumps of solutions
(i.e., autonomous switchings and autonomous jumps in the ter-
minology of [10]). However, there are still few results on the
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basic problem of uniqueness of solutions of piecewise-linear
discontinuous systems, while the existing standard theory of dis-
continuous dynamical systems is not quite satisfactory in spite
of the fact that it is crucial for various developments of hybrid
systems.

On the other hand, as an approach to modeling of hybrid sys-
tems, there is a new attempt in [18] and [19] to generalize in a
natural manner dynamical properties of physical systems with
jump phenomena which occur between unconstrained motion
and constrained motion, such as the collision of a mass to an
inelastic wall, so as to develop a framework modeling a class
of hybrid systems. This framework is called the complemen-
tarity modeling (the corresponding system is called the com-
plementarity system), which can describe several kinds of hy-
brid systems including electrical network with diodes and relay
type systems as well as mechanical systems with unilateral con-
straints. Such an approach provides a natural and intuitive inter-
pretation of jump phenomena in hybrid systems and makes the
analysis relatively easier. In fact, as the first result of the anal-
ysis in this line, several algebraic and checkable conditions for
well-posedness (existence and uniqueness of solutions) of such
systems have been derived in [18]–[22]..

When hybrid (discontinuous) systems are considered from
the above physical viewpoint, there also exist physical phe-
nomena such as the collision to an elastic wall, which leads to
systems with discontinuous vector fields, but not exhibiting
jumps. Does there exist a common algebraic structure in the
discontinuous vector field of such systems? Can we extend this
to a general framework from the mathematical point of view?
As far as we know, however, such questions have not been
addressed, although an abstract condition can be found in the
well-known book by Filippov [23]. When solutions without
jumps are considered, there are, roughly speaking, two kinds of
definitions of solutions, that is, Carathéodory’s definition and
Filippov’s definition. The latter yields the concept of a sliding
mode. In the case of physical systems such as the collision to
an elastic wall, on the other hand, the solution belongs to the
former, although we need to extend Carathéodory’s definition,
in a straightforward manner, to the case of discontinuous vector
fields.

Besides from the viewpoint of a generalization of such phys-
ical systems, there are in addition the following three points
we like to stress as a motivation to address the well-posedness
problem in the sense of Carathéodory for discontinuous dynam-
ical systems. First, this problem is a most fundamental one in the
study of well-posedness for discontinuous dynamical systems.
In other words, compared with the well-posedness problem in-
cluding the concept of jump phenomena or a sliding mode, it
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is closest to the well-posedness problem in continuous dynam-
ical systems. Therefore, as a first step to establish a theory of
well-posedness of general hybrid systems, it will be very mean-
ingful to clarify to what extent this basic problem can be an-
alyzed. The second point is that it may be easier to analyze
a system without jumps than with jumps. By representing a
system with jumps as a limit of a system without jumps, we
may obtain more results on the property of hybrid systems with
jumps. A similar approach can be found in [24]–[27]. Third, in
many examples of hybrid systems of practical interest, the so-
lutions do not necessarily have jumps in the transition from one
mode to the other mode, and also it may be desirable from the
practical point of view that no sliding mode exists in closed loop
control systems because of the resulting chattering behavior.

In this paper, we address the well-posedness problem in the
sense of Carathéodory for the class of piecewise-linear discon-
tinuous systems. We mainly concentrate on bimodal systems,
and give several necessary and sufficient conditions for those
systems to be well-posed, in terms of the analysis based on
lexicographic inequalities and the smooth continuation prop-
erty. Furthermore, some of the results obtained in the bimodal
case will be extended to the case of two kinds of multi-modal
systems. Finally, as an application of our result, we discuss
the well-posedness problem of feedback control systems with
two state feedback gains switched according to a criterion de-
pending on the state. Recently, switching control schemes have
attracted considerable attention in the control community (see
e.g. [28]–[30]). As one of its basic results, we give a charac-
terization of all admissible state feedback gains for which the
corresponding closed loop system is well-posed.

The organization of this paper is as follows. In Section II,
piecewise-linear discontinuous systems in the bimodal case
are described, together with the definition of solutions of
Carathéodory. Section III is devoted to some mathematical
preliminaries on lexicographic inequalities and smooth con-
tinuation. We give our main results on the well-posedness of
bimodal systems in Sections IV and V, and some extensions
in Section VI. In Section VII, our results are applied to the
well-posedness problem in switching control systems. Section
VIII presents a brief summary and some topics for future
research.

In the sequel, we will use the following notation: for lex-
icographic inequalities of , if for some ,

, while , we denote it by
. Furthermore, if or , we denote

it . We use the notation representing any fixed but
unspecified number or matrix. Finally, and denote the

identity matrix and the zero matrix, respectively.

II. PIECEWISE-LINEAR DISCONTINUOUSSYSTEMS

In this section, we describe the basic form of bimodal systems
to be studied here, and give a definition of well-posedness for
these bimodal systems. Next, we discuss the relation between
well-posedness and smooth continuation, and give an equivalent
representation of bimodal systems, which will be important for
further developments.

A. Description of Bimodal System and Definition of its
Solution

Consider the system given by

mode if
mode if

(1)

where , , and and are matrices
(in general different). Since the two linear differential equations

and are coupled by separating the region
of into two subregions, i.e., and , the system

belongs to the class of piecewise-linear systems. Even when
we consider the system on any neighborhood of the origin,
the argument below holds with some modification. However, for
brevity, we consider the system to be defined on the whole.

Remark 2.1:For the system , it appears that satisfying
is allowed in both modes. However as illustrated by

the example (3), even when satisfies at some
we will see that only one of both modes will be allowed by

considering the behavior , , of the solution
for small .

At first, we define the well-posedness for the system. In
the system , there may be a set (of measure 0) of points of
time where the solution is not differentiable, although we
use hereafter in (1) for simplicity of notation. So formally,
the system is given by its integral form (which is called the
Carathéodory equation):

(2)

where is the discontinuous vector field given by the right
hand side of (1) and . Moreover if is a time instant
at which the system switches from one mode to another mode,

is said to be an event time. A pointis called a right (left)-
accumulation point of event times [21], if there exists a sequence

of event times such that and
. Then a solution of this system is defined as follows.

Definition 2.1: If satisfies (2) and is absolutely contin-
uous on for some , and there is no left-accumu-
lation point of event times on , then is said to be a
solution of on in the sense of Carathéodory for the
initial state .

The condition of disallowing the existence of left-accumula-
tion points of event times will be used in the proof of Lemma
2.1. On the other hand, a solution with the right-accumulation
points of event times, which is called a Zeno trajectory, is al-
lowed in the above definition of solutions. The well-posedness
for the system is defined as follows (without loss of gener-
ality, we set hereafter).

Definition 2.2: The system is said to be well-posed if
there exists a unique solution of (1) on in the sense of
Carathéodory for every initial state .

It is well-known that a sufficient condition for a system given
by a first-order differential equation to be well-posed is that it
satisfies a global Lipschitz condition. When we apply this to
the system , it follows that a sufficient condition for well-
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posedness is that there exists asuch that . Note
that in this case the vector field is necessarily continuous in the
state .

Now, how about the case of discontinuous vector fields? Let
us consider the following example shown in Fig. 1. The equa-
tions of motion of this system are given by

mode

if

mode

if

(3)

Suppose that the initial state satisfies and ,
for which there may exist a solution in both modes. Then for
some , in mode 1 and in mode 2
holds for all . Thus in this initial state, only mode 1
is active. In a similar way, only mode 2 is active for the case

and . Since a solution from the origin is
the same in both modes, we see that this system is well-posed
(without jumps and sliding modes), although the vector field is
discontinuous in when . On the other hand, we can easily
find an example which is not well-posed, as shown below:

mode

if

mode

if

(4)

In fact, if the initial state satisfies ,
then for some , in mode 1 and

in mode 2 holds for all . Thus there exist two
solutions for this initial state. Moreover, from the initial state

, there exists no solution because for
some , in mode 1 and in mode 2
holds for .

Within the type of physical systems as given by (3), there will
exist many systems with discontinuous vector fields, but which
are well-posed. In the next sections, we will derive a necessary
and sufficient condition for the well-posedness of the system

including such physical systems.
Remark 2.2:For the system (4), if the discontinuity of the

vector field is regarded as a kind of relay-type and the solu-
tion concept by Filippov is applied, there exists a unique so-
lution from the initial state . In fact,
the system can be rewritten by

, using a relay-type input if ,
if , and if . Thus for

, there exists a unique solution which

Fig. 1. Collision to an elastic wall.

is called a sliding mode given by the equivalent control input
. Certainly, Filippov’s definition is very important from a

practical viewpoint as well as from a mathematical viewpoint,
and it is of interest to address the well-posedness problem in-
cluding sliding modes. However, in some discontinuous sys-
tems with mechanical ON/OFF-type (not relay-type) switches,
a sliding mode is not in general physically feasible, and even
when a sliding mode theoretically exists as in the case of sliding
mode control, it is desirable to avoid a sliding mode because of
chattering phenomena. Thus in this paper, as the first step, we
concentrate on the well-posedness problem in the sense of Def-
inition 2.2 (See also Remark 4.2).

Remark 2.3:When we consider the case of the collision to
an inelastic wall by in the example (3), a jump in the so-
lution will occur. Such a system can be treated within the frame-
work of linear complementarity systems [18]. Thus we con-
jecture that there exists some relation between linear comple-
mentarity systems and systems of the form (1). In other words,
there may be a possibility to approximate the complementarity
system, i.e., the discontinuous dynamical system with jumps, by
a system without jumps given by (1). Some researchers have al-
ready studied the relation between the two solutions for a simple
physical system as in Fig. 1 (see [27, Ch. 2]), and we plan to re-
turn to this issue in a future paper. Note also that the system
of the form (1) can be expressed as a bilinear complementarity
form [19].

B. Well-Posedness and Smooth Continuation

In this subsection, we will characterize the well-posedness by
the concept of smooth continuation, which is defined as follows.

Definition 2.3 [18]: Let be a subset of . If for the initial
state there exists an such that for all

, then we say that the system has the smooth continuation
property at with respect to , or that smooth continuation
is possible from with respect to . Moreover, if from all

smooth continuation is possible with respect to, then
the system is said to have the smooth continuation property with
respect to .

We have the following result.
Lemma 2.1:The following statements are equivalent.

i) The system is well-posed.
ii) For the system , from every initial state ,

smooth continuation is possible in only one of the two
modes, in other words, with respect to either one of

or , except for the case
that the solutions in both modes are the same in some time
interval.

Proof: i) ii). Since no finite left-accumulation point of
event times exists by Definition 2.1, if a unique local solution

exists at , smooth continuation exists in only one of the



IMURA AND VAN DER SCHAFT: CHARACTERIZATION OF WELL-POSEDNESS OF PIECEWISE-LINEAR SYSTEMS 1603

two modes, as long as the two solutions in both modes are not
the same. This implies ii).

ii) i). Since ii) implies that there exists a local unique solu-
tion from every initial state, we can make a successively con-
nected solution. Then the solution in (2) is given by

for all , where is the switching
number, is an event time , and or

. Since there exists a positive real number
such that max for all , it fol-

lows that for all and all
. Note here that there exists a unique solution

for all even when , i.e., a finite right-accumu-
lation point of event times exists. In fact, has a well-de-
fined limit at since is uniformly continuous on
because of , and from the state a
unique solution exists again. Thus we have (extended

space). Furthermore, since [with defined
by (2)] if , it follows from the theory of Lebesgue inte-
grals that the solution given by (2) is absolutely continuous on
any interval of .

Finally, if ii) holds, no finite left-accumulation points of event
times in exists. In fact, if a finite left-accumulation point
of event times exists, then has a well-defined limit at that
point, which is similar to the case of the right-accumulation
points, and smooth continuation from that state is not possible
in any mode. This is inconsistent with ii). Therefore there exists
a unique solution on for every initial state ,
which leads to i).

By this lemma, we only have to focus on whether or not
smooth continuation is possible from every initial state in order
to show the well-posedness of the system.

Remark 2.4:Note that ii) in Lemma 2.1 is equivalent to the
following statement:

iii) for every initial state , there exists an such
that a unique solution of exists on , under
the assumption that there are no left-accumulation points
of event times.

In this sense, there is a slight difference between the smooth
continuation property and the existence of local unique solu-
tions.

Remark 2.5:After Section V, we will consider other types
of discontinuous systems such as multi-modal systems. For all
these systems, Definition 2.1 and 2.2 can be straightforwardly
extended and Lemma 2.1 and 2.2 also hold for these systems.

C. Equivalent Representation of the Bimodal System

For the system , define the following row-full rank ma-
trices:

...
...

(6)

where and are the observability indexes of the pairs
and , respectively . In addition, let , , , and
be sets defined by

(7)

for , using the lexicographic inequalities defined in the
end of Section I. Then noting that
for the system and for the
system , we introduce the system given by

mode if
mode if .

(8)

We call and the rule (or observability) matrices of
the system . The well-posedness for the system is
defined similar to Definition 2.2. The following result shows
that the system is well-posed if and only if the system
is well-posed.

Lemma 2.3:The system is equivalent to the original
system , i.e., both systems have the same solutions.

Proof: If a solution of exists in mode 1 on some
time interval, i.e., for some , on

for , then a solution satisfies either one of ,
and , and ,

and for each
. Using the lexicographic inequality notations, this

implies holds on . Conversely, suppose
that a solution of satisfies on some
time interval. Then if on that interval,
holds on that interval. On the other hand, if for
some , the definition of the observability index implies that

for . The case of is similar. Thus a
solution in modes 1 and 2 of is equivalent to a solution in
modes 1 and 2 of , respectively, which implies that both
systems have the same solutions.

This lemma implies that the solution does not exist in mode
1 from the initial state satisfying, for example,
and , although it is included in mode 1 at . In
other words, we only have to consider the regionsand
which express the sets of all the initial states from which smooth
continuation is possible in mode 1 and 2, respectively.

III. PRELIMINARIES ON LEXICOGRAPHICINEQUALITIES AND

SMOOTH CONTINUATION

In this section, as a preparation, we give mathematical pre-
liminaries on lexicographic inequalities and smooth continua-
tion for solutions of linear systems. Most of the results obtained
in this section will play a central role in the study of well-posed-
ness in the next sections.

First of all, we define the following classes of matrices, which
is used throughout the paper.

Definition 3.1: Let be the set of lower-triangular
matrices. In addition, let be the set of elements in with
all diagonal elements positive.
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Definition 3.2: Let be the set defined by

...
...

.. .
. . .

...
...

. . .
. . .

...
. . .

where is the element of the matrix . In addition, let
be the set of elements in with all the elements

positive.

A. Lemmas on Lexicographic Inequalities

First we give some lemmas on lexicographic inequalities.
Throughout this subsection,will be a vector in .

Lemma 3.1:Let be an real matrix with rank
rank , where and . Then

if and only if .
Proof: is equivalent to , or

and . Hence, implies . Conversely,
consider . Then rank rank yields .
Thus implies . The case of
is similar.

This lemma shows that the row full-rank submatrix of
is enough for representing the relation of the lexicographic

inequality. Thus the following result is obtained: letbe an
matrix and let be the th row vector of . Let also

. Suppose that rank rank
. Then from Lemma 3.1, we can use, in place of,

which is obtained by removing the
th row vector from . Hence we can assume without

loss of generality that is row-full rank, whenever we consider
.

The following lemma shows that the set characterizes
the coordinate transformations preserving the lexicographic in-
equality relation.

Lemma 3.2:Let be an real matrix. Then
if and only if .

Proof: ( ) Obvious. ( ) First, we will prove that if
holds, then is nonsingular. So assume that

is singular and rank . Then from Lemma 3.1, there
exists a with rank such that

. So we consider . Let be an
matrix such that is nonsingular,

and let where . Then
where . When and

is any vector, we obtain . In addition, since rank
, there exists a such that . This is

inconsistent with the condition that . Hence,
is nonsingular.

Now we define the new coordinates
. Denote the th element of by . Suppose that, for

, , , and
are arbitrary. We prove the assertion for

by induction. First, let us consider . From

we have because and
are arbitrary. Furthermore, if ,

then for , and if , then is sin-
gular. Hence we conclude . Next assume that, for

, , and
. Under

this inductive assumption, let us consider . From
, it follows that

Thus noting that , we have
since and

are arbitrary. In addition, similarly to the case ,
it is verified that . The proof of the assertion for

is similar.
While Lemma 3.2 is concerned with the nonsingular matrices

case, the following result treats the singular matrix case.
Lemma 3.3:Let and be and real matrices

with rank , rank , and , respectively. Then
the following statements are equivalent.

i) for all satisfying .
ii) for some .

Proof: i) ii). Let be any matrix such that
is nonsingular. We denote the new coordinates

by , where and . Then i) is

equivalent to that for all , where .
Let and be and matrices, respectively,
satisfying . When and is arbitrary,

is necessary for . Thus i) is equivalent to
the condition that for all . Similarly to the
proof of Lemma 3.2 and noting rank , we can prove
that for some . Hence it follows that

.
ii) i). If , then , which implies that

because . Hence ii) provides .
The proof of the case with is similar.

As can be easily seen from the proof, it is noted that even if i)
is replaced by i)’ for all satisfying , or
i)’ for all satisfying , Lemma 3.3 still
holds. This fact will be used in the proof of Lemma 3.4 below.

Moreover, when we describe the singular case in terms of a
form corresponding to Lemma 3.2, the following corollary is
obtained from Lemma 3.3.

Corollary 3.1: Let and be and real matrices
with rank , rank , and , respectively. Then
the following statements are equivalent.

i) .
ii) and for some .
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Proof: i) ii). We can prove rank rank in a similar
way to the first part of the proof in Lemma 3.2. The latter part in
ii) follows from Lemma 3.3. Conversely, it follows from ii) that

, which implies
i).

From the definition of the lexicographic inequality, it follows
that for any nonsingular matrix we have the properties:

The following lemma generalizes this property.
Lemma 3.4:Let and be and real matrices

with rank , rank , and . Let also and
be and real matrices with rank and

. Then the following statements are equivalent.

i) .
ii)

.
iii) for some .

Proof: Since the complement of in
is , i) is equivalent to i)’ for all

satisfying . From remarks in Lemma 3.3, it follows that
i)’ iii). Next, we have

ii

for all

Thus from remarks in Lemma 3.3, ii)iii) follows. On the other
hand, since is equivalent to , iii) ii) holds.

Remark 3.1:The sets defined by lexicographic inequalities
such as in Lemma 3.4 are in general neither
open nor closed, contrary to what might be suggested by the
notation.

B. Characterization of Smooth Continuation Property

In this subsection, we discuss when the system has
smooth continuation property with respect to .

The following result show that the set , which is defined in
Definition 3.2, characterizes the smooth continuation property
of linear systems.

Lemma 3.5:For the system , the following state-
ments are equivalent.

i) The system has the smooth continuation property with
respect to .

ii) .
iii) There exists a matrix such that

...
...

...
. . .

. . .
(9)

where

...
...

...
...

. . .
. . .

...

...
... for

and .
Proof: i) ii). Suppose that, for ,

, , and
take any values. We prove the assertion by induction.

First, consider . Let be the th element of . So
from

it follows that . In fact, if
for some , then there exists an such that

for all at some , which is inconsistent
with the condition i). In addition, since , no smooth
continuation is possible if . Hence we have .

Next assume that, for ,
, ,

, and
. Under this assumption, let us consider

. By inductive calculations, noting that
, it is verified that

where for . From this, it follows that
and . Thus by

induction, ii) holds.
ii) iii). Suppose that, for ,

, and for the other, .
Set and . Let us consider the coordinate
transformation given by

(10)
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where (note that implies that all elements
are positive). The matrix is given by

...
...

...
. . .

. . .
(11)

where

...
...

...
. . .

. . .

...
...

for

Thus from for all except for
, we conclude . Furthermore, by direct computation,

it is verified that satisfies (9).
iii) i). The case is trivial. So we con-

sider the case . Denote the new coordinates by
. From Lemma 3.2,

implies that . Let be
defined by

...

where for .
Note that , namely , is equivalent to

and for all
. So from the structure of the-matrix of

the system, for each , there exists an
such that

which implies that for all . The case
is proven in the same way.

From Lemma 3.5, it turns out that, by the coordinate trans-
formation given in (11), any linear system with the smooth con-
tinuation property is transformed into a system whose-matrix
is given by (9). In addition, the equivalence between ii) and iii)
suggests that all the coordinates transformations given by ele-
ments in preserve the smooth continuation property of the
linear system. This is shown in the following lemma.

Lemma 3.6:Let be a matrix in and be a matrix in
. Then .

Proof: Let and be
matrices with and . When ,

is obvious. Assume that
for any . Under this assumption, let us
show . Denote the th element of

and by and , respectively. After some cal-
culations, we have

where

Thus from , , ,
and , it follows that . By
induction, we conclude . The proof in the case
of is similar.

There is another type of the smooth continuation property
with respect to , where in Definition 2.3 is inde-
pendent of the initial state . In other words, if there exists a
positive constant such that for all satisfying

and all , we call this the uniform smooth
continuation property with respect to . The following
lemma characterizes this property.

Corollary 3.2: For the system , the following state-
ments are equivalent.

i) The system has the uniform smooth continuation prop-
erty with respect to .

ii) There exists a positive constantsuch that for
all .

iii) for all satisfying and all
.

iv) for all .
v) .

Proof: Since , i) ii), and iii) iv) are
straightforward from Lemma 3.2. We prove iv)ii) v) iv).
First, iv) ii) is trivial. Next, ii) v). Note that is a one-pa-
rameter subgroup in around . Thus the tangent vector
at is . On the other hand, the tangent space at
the identity matrix is . Hence . Finally, v) iv). If

, simple calculations show

...
...

...
. . .

. . .

which implies iv).
Obviously, the uniform smooth continuation property implies

the smooth continuation property, but the converse is not true.
Corollary 3.2 asserts that the uniform smooth continuation prop-
erty in the local sense [i.e., i)] is equivalent to the global one [i.e.,
iii)] in the case of linear systems. Thus the sets
and are invariant subsets of with respect
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to the dynamics with the uniform smooth continuation
property i).

IV. CHARACTERIZATION OF WELL-POSEDNESS OF

BIMODAL SYSTEMS

In this section, we discuss the well-posedness ofgiven by
(1), or equivalently of given by (8). First, we give a result
in the case that both pairs and are observable.
This will clarify a fundamental issue in the algebraic structure
for well-posed bimodal systems. Next, the unobservable case is
treated as a generalization of the observable case.

A. Observable Case

In this subsection, we assume that the pairs and
are observable, that is, and are nonsingular,

where

...
...

(12)

In addition, we consider the following two systems:

mode if
mode if

(13)

mode if
mode if

(14)

where and ( ) are given by (7). Utilizing the
fact that , the system is given by the rule
matrix only. The system is defined by the rule matrix

in the same way.
Now the main idea to characterize the well-posedness of

is as follows. First, note that and express sets of all initial
states from which smooth continuation is possible in mode 1 and
mode 2, respectively. Next, if the solutions in both modes are
the same on some time interval, they must satisfy on
that interval, and so such a solution is only the origin
under the assumption of observability. Thus from Lemma 2.1,
we can see that the system is well-posed if and only if

and .
On the other hand, from Lemma 3.4, it follows that

is equivalent to , and also
is equivalent to . Thus we conclude that either
one of these conditions holds if and only if the system is
well-posed.

Moreover, we will derive another type of condition by using
the relation . Since implies

from Lemma 3.2, if is well-posed, then is also

well-posed. Moreover, in the new coordinates , the
system is described by

mode if
mode if .

(15)

Then the well-posedness of implies that smooth continua-
tion is possible in each mode. Thus by Lemma 3.5,

must hold. Note also that is automatically

satisfied. More strictly, as seen in the proof below, we can prove
that and that this is also a sufficient condition
for the system to be well-posed.

Thus we come to the first main result on the well-posedness.
Theorem 4.1:Suppose that both pairs and are

observable. Then the following statements are equivalent.

i) (or equivalently ) is well-posed.
ii) is well-posed.
iii) is well-posed.
iv) .
v) .
vi) .
vii) .
viii) .

Proof: We have already proven i)iv) v) vi) and
vi) ii). So let us prove ii) vii) vi). ii) vii). We have shown
in (15) . Furthermore, letting be the th

element of , and noting that ,
we obtain

...
...

(16)
From these calculations, it follows that

(17)

where

...
...

...
. . .

. . .
...

...
. . .

. . .
(18)

This implies that all elements are positive, since and
are nonsingular. Hence . vii) vi). In a sim-

ilar way to (16), we obtain the equation (17) from vii). Since
, vi) holds.

The proof of vi) iii) viii) vi) is similar.
Remark 4.1:From Theorem 4.1, it turns out that the

well-posedness property of the bimodal system with both
and observable is characterized by either one of

the following two properties: a) the preservation property of the
lexicographic inequality relation between two rule matrices
and , which is characterized by the set , and b) the smooth
continuation property which is characterized by the set(or

). The former corresponds to iv), v), or vi) in Theorem 4.1,
and the latter to vii) or viii). Note also that the well-posedness
property of can be given by the equivalence between

, , and . Furthermore, from vii), it follows that a
parametrization of all matrices for which is well-posed
is given by the form for any .
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Fig. 2. Elastic collision between two objects.

Remark 4.2:When the well-posedness condition in The-
orem 4.1 is not satisfied, there is still some possibility that
the system is well-posed with sliding modes, if we allow
the existence of sliding modes. However, such a situation is
not possible under the assumption of observability. In fact,
whenever the well-posedness condition in Theorem 4.1 is not
satisfied, holds, which implies that there exists
two different solutions from the initial state .
We here use the fact that if is satisfied on some time
interval, then by observability.

Example 4.1:Consider the physical system in Fig. 2. The
equations of motion of this system are given by

mode
if

mode

if

where . These provide

Simple calculations show that the pair is observable
if and only if , and also the pair is observable if
and only if . Thus we here assume .

From the equations at the bottom of the page it follows that

which belongs to the set . Hence the system is well-posed.
We also have

which belongs to the set .

B. Unobservable Case

The following result is concerned with the case that both pairs
and are unobservable.

Theorem 4.2:Denote the observability indexes of the pairs
and by and , respectively. Then the fol-

lowing statements are equivalent.

i) (or equivalently ) is well-posed.
ii) The following conditions are satisfied.

a) .
b) for some .
c) for all Ker .

iii) The following conditions are satisfied.

a) .
b) for some .
c) for all Ker .

Let us compare Theorem 4.2 with Theorem 4.1, which deals
with the observable case. If , ii) and iii) in The-
orem 4.2 generalize vi) and vii) in Theorem 4.1, respectively.
However, in the unobservable case (i.e., and ),
additional conditions ii)a) and ii)c) [or iii)a) and iii)c)] are re-
quired. The former condition implies that the dimension of the
unobservability subspace in both modes must be the same for
the well-posedness. For example, if , then for the
initial state in some subset of the -dimensional un-
observability subspace smooth continuation is possible in both
modes and the two different solutions exist, which implies that
the system is not well-posed. The latter condition, on the other
hand, implies that the solutions in the unobservability subspace
Ker Ker must be the same in both modes.
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Since this theorem is a special case of Theorem 5.1 in the
next section, the proof will follow from that of Theorem 5.1 (see
Remark 5.1).

Remark 4.3:From Theorem 4.2, it follows that whenever the
pair is observable and the pair is unobservable,
the system is not well-posed. However, if the number of the
criterions which specify admissible regions of the state in each
mode, i.e., the dimension ofin (1), is more than one, then the
situation is different. The details will be given in Theorem 5.1
and Example 5.1 in the next section.

Remark 4.4:The conditions in Theorem 4.2 can be checked
as follows. First, check the condition iii)a). If it is not satisfied,
we conclude that the system is not well-posed. Otherwise, check
b) and c) in iii). So pick any matrix such that
is nonsingular. Then we can show that b) and c) are equivalent
to

(19)

and

(20)
Thus if these conditions are satisfied, we conclude that the
system is well-posed. Otherwise, we conclude that the system
is not well-posed. Note here that we only have to check the
condition for some , since the well-posedness does not
depend on the choice of .

Furthermore, for this class of systems, we can show that if the
system is well-posed, then the time-reversed system below
is well-posed:

mode if
mode if

Theorem 4.3:For the system given by (1), the following
statements are equivalent.

i) is well-posed.
ii) is well-posed.

Proof: We prove i) ii). Let and be the observ-
ability indexes of the pairs and , respectively.
Let also and given by (6) with and instead
of and , and with and , respectively.
Note that because of i). Then since there exists

such that , we have
where

...
...

...
. . .

. . .
...

...
. . .

Thus we will show . From simple cal-
culations, the th element of is given by

, where is the th element of
. So noting that both and are lower-triangular,

holds. Similarly for ii) i).
Example 4.2:Consider the system in Example 4.1 again. As-

sume that and . Then since

we have and . Thus iii)a) in Theorem 4.2 is
satisfied. Letting , we have

Using (19) and (20) in Remark 4.4, we can show that b) and c)
in iii) are satisfied. Therefore, the system is well-posed.

V. WELL-POSEDNESS OFBIMODAL SYSTEMS WITH MULTIPLE

CRITERIA

In this section, we treat bimodal systems given by multiple
criteria.

A. Description of Bimodal Systems with Multiple Criteria

Let us start with the following example:

mode if

mode if .
(21)

Since smooth continuation in each mode is possible, that is, both
-matrices belong to , this system is well-posed. Then let us

consider what is the original system of this . So from
mode 1, we can see that . However, in this case,

and , and so is observable but
is not observable. This implies that the system of the

form (1) given by is not equivalent to the system
, and so is not the original system of .

How can this well-posed bimodal system be characterized by
our framework? In fact, the original system for in (21) is
given in terms of two criteria and
where and as follows.

mode if

mode if .
(22)
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In this section, we will generalize this example to consider the
following bimodal system:

mode if
mode if

(23)

where

...
...

and and are -dimensional vectors. In this definition,
note that it is at least required for well-posedness that

.
First, we give an equivalent representation to the above

system, as in Section II. So we introduce the following rule
matrices:

...
...

(24)

where

...

...

and each is the maximum value of the rank
such that has a row-full rank. Similarly for

. Note that and , and then
rank and rank .

Using these rule matrixes, we consider the system given by

mode if
mode if

(25)

where and ( ) is defined by (7), where
and are given by (24). Then, similar to Lemma 2.3, we can
prove that the system is equivalent to the original system

. Therefore, we focus on the well-posedness of .

B. Well-Posedness Conditions

We consider the general case that both pairs are not neces-
sarily observable. Let be the set of matrices

such that is nonsingular, that is,

is nonsingular (26)

Let also be defined in the same way.
Theorem 5.1:Suppose that the rank of and given by

(24) are and , respectively, and . Then the
following statements are equivalent.

i) (or equivalently ) is well-posed.
ii) The following conditions are satisfied.

a) rank for some
.

b) for some .
c) for all Ker .

iii) The following conditions are satisfied.

a) rank for some
.

b)
for some

.
c) for every

, where ,
, and .

d) for all Ker .

Proof: i) ii). From i), it follows that ,
which implies by Lemma 3.4 that and satisfy

for some . In addition, let

two new coordinates be defined by
and , where and

for any and any . Then
is transformed into

mode if
mode if .

(27)

Here and are given by

(28)

(29)

Let be denoted by where and
. So let us consider the case of

and , which also implies because
. From (28) and (29), smooth continuation in each

mode is possible from this state, and the solution in mode 2
is in the dimensional unobservable invariant subspace
with , namely, Ker . Thus due to uniqueness of
the solution, the solution in mode 1 must satisfy
as far as holds. Hence a) follows from this. Further-
more, the vector fields in both modes must be the same on
Ker . From the property of linear sys-
tems, this implies that for all Ker .

ii) iii). We only have to show b) and c) in iii). It follows
from ii)b) that

(30)

where is the same as (29). From Lemma 3.6, this implies
, namely, iii)b). Moreover, letting
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be the element of in ii)b), the relation
implies that, for ,

Since , we have iii)c).
iii) i). First, we show for some .

From b) and c) in iii), it follows that

Thus by calculating similarly , , , , ,
, , and , we can derive

for some . In addition, since
, is equivalent to

mode if
mode if .

(31)

In the new coordinates , where

for any , is transformed into

mode if
mode if .

(32)

Note here that is given by (28). On the other hand, it
follows from b) that, in mode 2,

where is the -dimensional vector defined by
. Thus, smooth continuation in each mode is

possible. Furthermore, from a) and d), which mean that the
vector fields in both modes are the same on Ker, i.e., the
invariant subspace given by , it follows that the
solutions in both modes are the same when and

. Therefore, is well-posed.
Compared with Theorem 4.2, ii)a) or iii)a) in Theorem 5.1

implies that the dimension of the invariant subspace Kerin
mode 2 must be the same as either of the dimension of the
invariant subspaces given by Ker

in mode 1. By this condition and ii)c) or iii)d),
when solutions exist in both modes, they are necessarily the
same. iii)c) comes from the relation betweenand on the

th row in ii)b).
Remark 5.1:When and , Theorem 5.1 is reduced

to Theorem 4.2, although is replaced by in iii)b). In
the proof of Theorem 5.1, the condition iii)b) in Theorem 4.2
comes from the fact that in (30) is given by

...
...

...
...

. . .
. . .

Remark 5.2:When in Theorem 5.1 we consider the case that
the pairs and are observable (i.e.,

), the condition ii) is reduced into , and the
condition iii) is reduced into and iii)c).

Remark 5.3:The conditions in Theorem 5.1 can be checked
as described in Remark 4.4. Namely, the conditions iii)b) and d)
are replaced by (19) with instead of , and (20).

Remark 5.4: In terms of and given in the
proof of Theorem 5.1, where

every well-posed bimodal system given by (23), or equivalently
(25), with rank and rank can be
transformed into the following canonical form:

mode

if

mode

if

where for some
, for some ,

and

...
...

...
. . .

. . .

. . .
...

...
. . .

. . .

. . .
...

...
...

. . .
. . .

...
... for
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...
...

...
...

. . .
. . .

...
... for

From Lemma 3.5, we see that and are the same as the
form (9) of all -matrices for which the system has the smooth
continuation property with respect to .

Example 5.1:Let us check the well-posedness of the fol-
lowing simple example:

mode if

mode if

where

Then we obtain and from

Thus ii)a) is satisfied. From , we obtain ii)b).
In addition, noting and , c) is
satisfied. Therefore, this system is well-posed, although
is observable and is not observable.

VI. EXTENSIONS TOMULTI-MODAL CASES

In this section, we extend several results for the case of bi-
modal systems given by (1) to the case of multi-modal sys-
tems with multiple criteria and multi-modal systems based on
affine-type inequalities. We only discuss the observable case, as
a first step to investigate to what extent our framework can be
generalized, although the unobservable case may be extended
in a similar way.

A. Multi-Modal Systems with Multiple Criteria

We here consider multi-modal systems with multiple criteria.
For any matrix where ,
let the criterion vector be . We
assume throughout that there exists no constantsuch that

for each . Let be
the index set satisfying for and for .
The index set represents the mode (location) of the system.
Note that there are possible choices for the index set, and

so there exist modes. Moreover, let be a subset of
defined by

for for (33)

By numbering the index setsfrom 1 to , we use the number
in place of to express the mode.

Then we consider the original -modal system given by

mode if
mode if

...
...

...
mode if

(34)

where . For example, for , we have the 4 modal
system given by

mode
mode
mode
mode

(35)
In addition, we assume that every pair

is observable. So the rule matrices

...

are all nonsingular. So let be a subset of defined by

for for

Using the sets , we also define the -modal system as
follows:

mode if
mode if

...
...

...
mode if

(36)

For a vector , the notation expresses
for all . Similarly for the other notation , , and . For a
closed convex polyhedral cone where

is an real matrix, let int be the interior of and let
be the boundary of .

Then the following result is a natural extension to that for
bimodal systems.

Theorem 6.1:Suppose that every pair
is observable. Then the

following statements are equivalent.

i) is well-posed.
ii) is well-posed.
iii) and for all

.
Proof: i) ii) can be proven in the same way as Lemma

2.3. i) iii). Since is a set of all initial states from which
smooth continuation is possible in mode, it follows that

. In order to prove the latter part of iii),
we assume that there exists someand such that
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and . So let be an element
of . Then for some , the solution in mode from
the initial state satisfies int for all ,
while the solution in mode from satisfy int
because of observability. This implies that the solution is not
unique, which is in contradiction with ii). Hence the latter part
of iii) holds. iii) i) follows from the multi-modal version of
Lemma 2.1.

From Theorem 6.1, it turns out that the well-posedness of
is characterized by condition iii). When is condition iii) sat-

isfied? It seems difficult to interpret condition iii) in terms of
some simple algebraic relation between the matricesas in
the case of bimodal systems. However, we give below an algo-
rithm to check condition iii).

First, the following simple lemma is useful for the algorithm.
Lemma 6.1:Let be a set defined by

where is an real matrix, and
let be a set defined by where is a
real matrix. Then there exist matrices

such that

(37)

Proof: In the new coordinates where
is nonsingular for some , and

and , we have . So when
, this yields

(38)

Then by applying Lemma 3.1 to (38), we can derive an
matrix in (37).

In order to clarify the idea of the algorithm, let us first discuss
the necessity of condition iii) in Theorem 6.1.

Suppose that condition iii) in Theorem 6.1 holds. Then we
have

or

(39)

where is given by (33). Next, let us consider a necessary
condition for condition iii) with respect to the set of satis-
fying , which is given by

. So for each , we consider
the set defined by

(40)
Note here that, from Lemma 6.1, is a set in which
is expressed by

where is an matrix. Concerning ,
a necessary condition for condition iii) is that for each

(41)

Noting that the condition (41) has a similar form to that of con-
dition iii), we will repeat the above discussion for (41). So let

be the first row vector of the matrix , and let

be defined by

(42)

Then if (41) holds for each , the following
relation on the first row of the lexicographic inequalities must
hold for each :

or

(43)

Next let us consider a necessary condition for (41) with respect
to the set of satisfying .
Note that this set is included in the union of the sets given by

for all ,

where is given by for some , and
is some finite number. So if we define the set

(44)

a necessary condition for (41) is given by for each

(45)

and also concerning the first row of the lexicographic inequali-
ties in , (45) implies

or

(46)

where is defined in a similar way to (42).
Thus in a similar way, for , we define

the set as

(47)

where implies ,
with , , and
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. Note that is expressed using some

(see Lemma 6.1). Furthermore, let be the

first row vector of the matrix , and let be defined
by

Then we can show that for each
, the following relation must hold:

or

if

if
(48)

From the converse argument of the above one, we see that if
(48) holds for each and each

, then condition iii) in
Theorem 6.1 holds.

Next, let us show how to check (48). The first condition of
(48) is equivalent to

(49)

So letting

...

where implies , (49) is rewritten by

(50)

Thus we only have to solve the feasibility problem of the form
. An answer of this kind of problem is given, for

example, by solving the following linear programming: min
subject to or min subject to
and , where is some vector with all elements
positive. Letting be an optimal solution, if , then the
set is empty, and if , then it
is not an empty set.

Concerning the second condition of (48), on the other hand,
the following lemma is obtained.

Lemma 6.2:Let be a set defined by
where is an real matrix. Then the

following statements are equivalent.

i) or .
ii) int int , i.e.,

.

Proof: i) ii) is trivial. ii) i). We only have to show that
if ii) holds, then there also exist no elements in the intersection of
the boundary of a closed convex polyhedral cone and the interior
of another cone. Let be the 1st row vector of and let
be the matrix such that . Then we will show

where

int

Assume , and let be an element of .
Note that an element of can be expressed by

an element of Ker , where and
(the th element of is 1 and the others are 0). So

is expressed by an element of Ker
where . Now for where is
sufficiently small, we have int int , which implies
that ii) is not true. Hence, it follows that if ii) is true, then

. For any other boundary of , similar discussion holds.
This completes the proof.

Thus by Lemma 6.2, the second condition of (48) can be also
checked using, e.g., the linear programming.

Based on the above discussion, an algorithm for checking
condition iii) is given as follows.

Step 1: Set .
Step 2: Set . For each

and each
derive and .

Step 3: Check whether (48) is true or not for each
. If it is true

for all cases, then go to Step 2 if , or
we conclude that condition iii) holds if
. Otherwise, we conclude that condition iii) is not

satisfied.
Since (39) is always satisfied, the statement on (39) is

omitted in the above algorithm. The proposed algorithm in-
cludes some redundant calculations, so it will have to be refined
from the viewpoint of its computational complexity. However,
the algorithm is meaningful in the sense that it provides one of
approaches to determine systematically the well-posedness in
the sense of Carathéodory of any multi-modal piecewise-linear
system (34).

Finally, we give a simple example to illustrate the idea of the
proposed algorithm.

Example 6.1:Consider the 4-modal system of (35) where
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and, and . Then we have

Step 2 : For , we have in

and in

For , and are obtained simi-
larly. Step 3 : It can be easily verified that (48) holds
for . Step 2 : For , we obtain ,
and for . Then we have in

On the other hand, for , we obtain , and

for and for . Then

similarly we can derive (= ) for
. Step 3 : It is verified that (48) is satisfied

for and for every . Thus

we conclude that condition iii) of Theorem 6.1 is satisfied for
this system, and so the system is well-posed.

B. Multi-Modal Systems with Affine Inequalities

We here start with the bimodal system given by

mode if
mode if

(51)

where , , and is any given con-
stant. Note that the inequality constraint is affine. This system
is equivalent to the following system:

mode if

mode if
(52)

where

and , and and are defined
by (12). In fact, if in on some time interval,
then on that interval. Conversely, if
on some time interval, then on that interval, and if

, then . The same argument holds in mode
2. Thus each mode in is identified with each mode in

. Denote by the element of a matrix .
Theorem 6.2:Suppose that both pairs and are

observable. Then for any given constant , the following
statements are equivalent.

i) is well-posed.
ii) is well-posed.
iii) The following conditions are satisfied.

a) is well-posed.
b) , .
c) (c1) and

, or (c2)
and , or (c3)

and
.

Proof: i) ii) has already been proven. ii)iii). In the two
new coordinates and , where

, is described by

mode

if

mode

if

(53)
So from ii) it follows that

, which implies that for all . Since
, this means that .

On the other hand, from ii) it follows that for all ,
which means that . Therefore, we have
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, which leads to iii)b). In addition, from
Lemma 3.3, we have for some .

Now let us consider , where both modes may be
admissible because of . For mode 1, if

, smooth continuation is (not) possible, while for mode 2,
if , smooth continuation is (not) possible.
From Lemma 2.1, smooth continuation in both modes is not
possible at the same time, except for the origin .
Hence iii)c) holds.

iii) ii). Consider (53), where and are defined above.
iii)a) and b) imply for some . Thus in each
case of and , smooth continuation in only one
of the two modes is possible. In addition, when , iii)c)
guarantees smooth continuation in only one of the two modes
or . From Lemma 2.1, this implies ii).

This theorem asserts that the well-posedness of for
all is characterized by that of , provided that iii)c)
holds. In iii)c), (c1) implies that, whenever , smooth
continuation in mode 1 is possible, while not in mode 2. (c2)
implies the converse situation of (c1). In addition, (c3) corre-
sponds to the case that smooth continuation in both modes is
possible and their solutions are the same.

Remark 6.1:Let , , and be defined by

Then the system is rewritten as

mode if
mode if

which has the same form as the system of equations (1).
Thus an alternative approach to derive a well-posedness condi-
tion of will be to directly apply the results derived in the
previous sections. However, it is noted that the proof based on
this approach is not straightforward (although possible), since
we have to take into account the following points: an additional
condition is required in this case, and also a pair

may not be observable even when the pair is
observable.

Remark 6.2: In the case of polyhedral sets, instead of the
constraints sets given by affine inequalities, some extension
may be possible by considering the intersection of sets such
as . Furthermore, the case such as or

may be discussed. These extensions are topics for further
research.

Based on the above result, we consider the well-posedness of
the following -modal system:

mode if
mode if

...
...

...
mode if

(54)
where , are any real numbers,
and

and . Let us also introduce the bimodal system given
by

mode

if

mode

if

(55)

for . Then noting that we only have to
focus on smooth continuation from the initial statesatisfying

to show the well-posedness of
the system , the following fact will be
straightforwardly obtained.

Theorem 6.3:The multi-modal system
is well-posed if and only if the

bimodal system is well-posed for all
.

Using Theorem 6.3, we can determine whether the multi-
modal system is well-posed or not, as
shown in the example below.

Example 6.2:Consider the physical system in Fig. 3. As-
sume that , , and . Then the dynamics
of the system is given by

mode

if

mode

if

mode

if

where , , and

Then for we obtain
where ( is the

rule matrix. Thus for , since and ,
is well-posed. For , on the other hand,
implies iii)a) in Theorem 6.2. In addition, we

have and ,
which implies that iii)b) holds for any . Thus

is also well-posed for any . Hence
from Theorem 6.3, the 3-modal system is
well-posed for any . From this, it turns out that the
well-posedness of , which expresses the
system with the discontinuity between and , depends
on the values of , on the other hand, does not depend on the
values of and . Furthermore, if , the dynamics
in mode 3 is given by the affine form. An extension of the
well-posedness condition to the affine form is seen in [31].

Remark 6.3:Consider the system

mode if ,
mode if ,

(56)
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Fig. 3. 3-modal system.

which may appear as the closed loop system resulting from the
use of switching controllers. From Theorem 6.3, we can show
that this system is well-posed if and only if the bimodal system

mode if ,
mode if

(57)

is well-posed. Thus the well-posedness problem for the system
given by (56) is reduced to that for the system given by (57).

VII. A PPLICATION TO WELL-POSEDNESSPROBLEM IN

CONTROL SWITCHING

The well-posedness conditions as obtained in the previous
sections can be applied to several issues in hybrid systems
theory. Especially, by combining a stability condition of
piecewise-linear systems by Johansson and Rantzer [16] with
our result, we can determine stability of those systems where
the existence of a unique solution without sliding modes is
guaranteed.

As another application, we discuss in this section a well-
posedness problem of switching control systems where the state
feedback gains are switched according to a criterion depending
on the state.

Consider the stabilization problem for the control system
given by

if ,
if

(58)

where , , , and and are
feedback gains. Consider a simple example given by

and , , and . Then let-
ting and be the rule matrices (i.e., the observ-
ability matrices) for the pairs and ,
and assuming that these matrices are nonsingular, we obtain

where . Thus
from Theorem 4.2, we conclude that the closed loop system is
well-posed if and only if . This example shows that even
if each controller stabilizes each system in the usual sense, the
total system is not necessarily well-posed. For example, con-
sider the case of , , , ,
and . Then and are stable, but

. Note that such a case is not rare and the stability in the
usual sense for each mode does not automatically provide the
well-posedness of the closed loop system.

As shown in the above example, for any given closed loop
system, the well-posedness can be determined by checking
the corresponding conditions derived in the previous sections.
Moreover, we can give an parametrization of all feedback gains
which guarantee the well-posedness of the closed loop systems
in question. Such a parametrization provides a clear structure
in the parameter space of all admissible feedback gains in the
study of stabilizability with well-posedness, and also will be
useful to find a feedback gain which stabilizes the system with
well-posedness, using the numerical methods such as the LMI
techniques.

For the closed loop system with two modes given by (58),
letting and denoting by again, we
have

mode if
mode if .

(59)

For the single-input control system (59), we will use the infor-
mation on the relative degree of the pair , which ex-
presses at what stage the effect of , which leads to the
discontinuity of vector fields, on the output appears.

Theorem 7.1:Assume that the pair is observable and
the relative degree for the triple is (i.e.,

and ).
Then the following statements are equivalent.

i) The system is well-posed.
ii) span

.
Proof: i) ii). From Theorem 4.2, i) implies that
is observable. Thus from Theorem 4.1, there exists an

such that , where and
are the observability matrices for the pairs

and , respectively. Noting that
and ,

we obtain

where is the element of , and
. This implies that

where and
. From , ii) follows.

ii) i). Let and let be given by
where are

any values and . Then simple calculations show
that there exists a matrix such that
Furthermore since is nonsingular, the pair is
observable. Hence by Theorem 4.1, is well-posed.

Remark 7.1: It follows from Theorem 7.1 that for the
closed loop system is well-posed for any. Note also that the
case corresponds to the vector field of the closed loop
system being Lipschitz continuous.

Remark 7.2:Theorem 7.1 can be extended to the multi-input
case. If the relative degrees for all inputs are different from
each other, the extension is straightforward. On the other
hand, if some relative degrees are the same, the condition
for well-posedness becomes more complicated. Furthermore,
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Theorem 7.1 can be extended to the case of affine inequalities
as given below:

mode if
mode if .

VIII. C ONCLUSION

We have discussed the well-posedness problem in the sense of
Carathéodory for a class of piecewise-linear discontinuous sys-
tems, and we have derived necessary and sufficient conditions
for those systems to be well-posed. The obtained results are
based on the lexicographic inequality relation and the smooth
continuation property. As an application to switching control
problems, we have given a necessary and sufficient condition
for two state feedback gains, which are switched according to a
criterion depending on the state, to maintain the well-posedness
property of the closed loop system.

There are several open problems on well-posedness of dis-
continuous systems to be addressed in the future. We will have to
discuss well-posedness of multi-modal systems in the unobserv-
able case as an extension of Section VI. In addition, extensions
to the case of nonlinear systems should be addressed. It will be
also interesting to discuss some relations with the well-posed-
ness of complementarity systems as mentioned in Remark 2.3.
Finally, basic results derived here such as the smooth continu-
ation property may be useful to solve well-posedness problems
arising in the framework of hybrid automata as exposed e.g., in
[8].
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