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L,-Gain Analysis of Nonlinear Systems and 
Nonlinear State Feedback H, Control 

A. J. van der Schaft 

Abstruct-Previously obtained results on L,-gain analysis of 
smooth nonlinear systems are unified and extended using an 
approach based on Hamilton-Jacobi equations and inequalities, 
and their relation to invariant manifolds of an associated Hamil- 
tonian vector field. Based upon these results a nonlinear analog 
is obtained of the simplest part of the recently developed state- 
space approach to linear H ,  control, namely the state feedback 
H ,  optimal control problem. Furthermore, the relation with 
H ,  control of the linearized system is dealt with. 

I. INTRODUCTION 
RECENT breakthrough in linear control theory has A been the derivation of state-space solutions to standard 

H, optimal control problems; see [ l ]  and the references 
quoted therein. A particularly nice feature of the approach 
taken is that it basically relies on simple state-space tools 
familiar from LQ and LQG theory, such as “completion of 
the squares” arguments, Riccati equations, and connections 
between frequency domain inequalities and spectral factoriza- 
tions on the one hand, and Riccati equations and Hamiltonian 
matrices on the other hand (see, e.g., [l],  [41, [35], [121). 

Now in the classical paper by Willems on least-squares 
optimal control [35] the relations of this machinery with the 
fundamental notion of dissipativity were being stressed, 
while in [36] dissipativity was not only defined for linear 
systems but as a general system property, generalizing the 
notions of passivity in (nonlinear) electrical networks, and 
Lyapunov and input-output stability of nonlinear (feedback) 
systems. Subsequently, in [23], [16] (see also [24]) the notion 
of dissipativity was crucially used in the stability analysis of 
(differentiable) nonlinear state-space systems. (Recently, the 
importance of these techniques for stabilization of nonlinear 
systems was recognized in [9].) The aim of the present paper 
is to continue this line of research, and to use this framework 
in order to develop a nonlinear analog of the most straightfor- 
ward part of the current state-space theory of linear H, 
control, namely the solution of the state feedback H, control 
problem (see, e.g., [21], [28], [40]). A word concerning 
terminology is certainly in order here, since the H, norm is 
defined as a norm on transfer matrices and so does not 
directly generalize to nonlinear systems. However, when 
translated to the time domain, the H, norm is nothing else 
than the L,-induced norm (from the input time-functions to 
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the output time-functions for initial state zero). This latter 
norm is also eminently suited to nonlinear systems, and in 
fact is commonly called the L,-gain of the nonlinear system 
(see, e.g., [lo], [33]). Hence, instead of using the terminol- 
ogy “nonlinear H, optimal control” as in [6], [7], [30] or 
Section I11 of the present paper, it would be more correct (but 
maybe less clear) to use a phrase like “nonlinear L,-gain 
optimal control. ’ ’ 

Of course, the solution of the nonlinear state feedback H, 
control problem constitutes only a first step in the develop- 
ment of a full state-space theory of nonlinear H, control, 
which has to be concerned with the much more involved 
problem of dynamic measurement feedback (where the 
measurements are corrupted by disturbances). Indeed, in the 
original motivation for linear H, design (see, e.g., [39], also 
[ 121, [ 191, and the references quoted therein) the assumption 
that only corrupted measurements are available for feedback 
(instead of full knowledge of the state) was essential. On the 
other hand, in the state-space approach to linear H, control, 
the solution of the state feedback H, problem has proved to 
be instrumental, and we expect this to be true in the nonlinear 
case as well. 

A relatively new tool as compared to [35], [36], [23], [161, 
which will be employed throughout this paper, is the strict 
relation between Hamilton- Jacobi equations (the nonlinear 
analog of Riccati equations) and invariant manifolds of 
Hamiltonian vector fields, although in the linear case this 
relation reduces to the well-known connection between solu- 
tions of Riccati equations and existence of invariant sub- 
spaces of Hamiltonian matrices. In the context of the nonlin- 
ear infinite horizon optimal control problem, this relation has 
already been recognized in [22], [5] in deducing the existence 
of a locally well-behaved stable invariant manifold for the 
Hamiltonian vector field corresponding to the optimal Hamil- 
tonian from the existence of the stabilizing solution to the 
Riccati equation corresponding to the linearized problem. 
However, we feel that the full (geometrical) significance of 
this relation has not been really appreciated also in nonlinear 
optimal control (see also [32]). Since the required mathemat- 
ics for formulating this relation (stable and unstable invariant 
manifolds, Lagrangian submanifolds , generating functions) 
are not very well known we have devoted an Appendix to this 
material. 

Another major theme in this paper will be the relation of 
the L,-gain of a nonlinear system with the L,-gain (or, H, 
norm) of its linearized system. In fact, we will show that if, 
roughly speaking, the H, control problem for the linearized 
system is solvable then locafly one obtains a solution to the 
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nonlinear H, control problem. Some first results of the 
approach taken in the present paper have been already re- 
ported in [30]; see also [31]. 

Notation: The notation used is fairly standard. We denote 
by zrz or 11 z I( the square norm of a vector z E R k .  The 
notation L,(O, T )  will be also used for vector-valued func- 

instead of the supply rate w ( y ,  U )  = y2 11 U 11 - 11 y 11 as 
used in Definition 1 arbitrary supply rates w ( y ,  U )  are being 
considered. 

Notice that condition (3) can be equivalently expressed as 

tions, i.e., we say that z : (0, T )  --* k k  is in L,(O, T )  if UEL, (O,T) ,  inf TzO 1' (Y211~112 - IIYl12) d t r  0 .  (4) 

1)  z( t )  1)  dt < 03. For a differentiable function V : GI -+ X ( 0 )  = X" 

W we denote by ( d V / a x ) ( x )  the row-vector of partial 
derivatives, and by ( a T  V / d x ) ( X )  the corresponding Furthermore, it is easily seen (see, e.g., [35, remark 2 after 
column-vector . theorem 21 that (4) is equivalent to 

Furthermore, the solution at time t ,  of the system i = 
f ( x )  + g ( x ) u  with initial condition x ( t l )  = x I  and input 
U ( * )  : ( t l ,  f2),R;lm will be denoted by x ( f Z )  = 

cp( t,, t x ,  , U ) .  By G- and G +  we denote the open left-half, 
respectively, open right-half, of the complex plane. Further- 
more, a( A )  denotes the set of eigenvalues of a square matrix 
A .  W+ is the set of nonnegative reals. 

Some additional notation concerning cotangent bundles, 
differential one-forms, and Hamiltonian vector fields will be 
given in the Appendix. 

lim inf /'T(y211u/12 - IIy112) dt 2 0 .  ( 5 )  
T+m ueL2(0 ,T)  0 

X ( 0 )  = X" 

We start with the following theorem, which is basically a 
restatement of fundamental results obtained in [36], [23], 
1161. 

Theorem 2: Consider the system (2 )  and let y > 0. We 
have the following list of implications ( A )  --+ ( B )  ++ ( C )  -+ 

(D). 
11. THE L*-GAIN OF NONLINEAR SYSTEMS ( A ) :  There exists a smooth solution I/: M -+ R+  (i.e., 

In this paper we consider smooth, i.e., C", nonlinear v ( X )  0 for all x € M )  of the Hamilton-Jacobi equation 

a r  v 1 

a x  2 

j =  1 

y j = h j ( x ) ,  j =  l ; . * , p ,  y =  ( y , , * * * , y p ) € R p  a - ( . )  + - h T ( x ) h ( x )  = 0 ,  v ( x O )  = 0. 

(6) 
( 1 )  

where x = ( x I ,  - . , x n )  are local coordinates for a smooth 

the existence of an equilibrium x ,  E M ,  i.e., f( x, )  = 0, and 
state-space manifold denoted by M ,  Throughout, we assume ( B ) :  There a smooth ' Of the Hami'- 

ton-Jacobi 

av 
abbreviate (1) as a x  

y = h ( x ) ,  f ( x , )  = 0 ,  h ( x , )  = 0 (2) 

without loss of generality we assume that h, (xo)  = 0, j = 
1 ,  . , p.  For simplicity of notation throughout we will - ( x ) f (  x )  -t 

a r  v 
x = f ( x )  + g ( x ) u ,  U € R r n ,  y € w p ,  X E M ,  .- 

ax  
x )  + - h T ( x ) h ( x )  1 I O ,  v ( x 0 )  = 0.  

2 

(7) 
where g ( x )  is an n x m matrix with jth column given as 

following definition of finite L,-gain. 
g j ( x ) .  Following, e.g., [lo], [17], [33] we will give the (c l :  There exists a smooth Of the dissipa- 

tion inequality 

Definition I :  Let y z 0. System ( 2 )  is said to have av av 1 
L,-gain less than or equal to y if - ( X ) f ( X )  + - ( x ) g ( x ) u  5 ~ Y 2 1 1 4 Z  a x  a x  

for all T 2 0 and all U E L,(O, T ) ,  with y ( t )  = 
h ( v ( t ,  0, x , ,  U ) )  denoting the output of (2) resulting from U 

for initial state x(0) = x,.  (Note that in particular this re- 
quires that y ( t )  exists for all t E (0, T ) . )  The system has 
L,-gain e y if there exists some 0 I 7 < y such that (3) 
holds for 7.  

Remark: Definition 1 is a special case of the general 
definition of dissipativity as given in [36], [35], [16], where 

1 
-511Yl12j  v ( x 0 )  = 0 (8) 

for all U E R ' " ,  with y = h ( x ) .  
(D): The system has L,-gain less than or equal to y. 
In fact, any solution of (6) is a solution of (7) ,  any solution 

of (7) is a solution of (8), and any solution of (8) is a solution 

Conversely, suppose (D) holds, and assume the system is 
reachable from x ,  [i.e., for any Js E M there exists a i L 0 
and input u such that JT. = cp(i, 0, x,,  U)]. Then the func- 

of (7). 
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tions ( C )  -+ ( D )  follows by integration of (8) (see [36]) 

are well defined for all x E M  (i.e., are finite). Moreover, Vu 
and V,  satisfy 

0 I Vu I V, ,  vu(.,) = V,(xo) = 0 .  (11) 

(12) 

Furthermore, any solution V of (6), (7), or (8) satisfies 

0 I vu I V I  V,. 

The functions Vu and V, satisfy the integral version of (8), 
i.e., the integral dissipation inequality 

-IIY(t)1I2) d t ,  V ( x 0 )  = 0 (13) 

for all t ,  I to and all U € L 2 ( t O ,  t J ,  where x ( t , )  = 

If we assume that Vu and/or V, are smooth, then Vu 
and/or V, satisfy the Hamilton-Jacobi equation (6), and thus 
( A )  holds. 

Proof: ( A )  -P ( B )  is trivial. For ( B )  f* ( C )  let V 
satisfy (7). Then by “completing the squares” (see [30]) 

d t , ,  t o ,  x(to), U). 

av 1 1 av TaTv 
+--f+ ---gg - 

ax 2 Y 2  ax ax 
1 

+ ? Y 2  II UII 

and thus upon substituting (7) 

1 

from which (8) follows. Conversely, let V satisfy (8). Then 
again by completing the squares 

for all U, and thus also for U = ( l / Y 2 ) g T ( a T V / a x ) ,  yield- 
ing (7). 

x(0) = xo and using V( xo)  = 0 and V L 0 immediately 
yields (3). The well-definedness of Vu and V,, the inequali- 
ties (1 l) ,  (12), as well as the fact that Vu and V, satisfy (13) 
have been shown in [36]. Finally, if V, and/or V, are 
smooth, then, (see, e.g., [23]) it follows from the theory of 
dynamic programming that Vu and/or V, satisfy (6). 

Remark I :  The functions Vu and V, are called the avail- 
able storage, respectively, required supply in [36]. 

Remark 2: If ( C )  holds, then (cf. 1361) Vu is well defined 
even without the reachability assumption. 

Remark 3: For linear systems x = A x  + Bu, y = Cx 
the Hamilton-Jacobi equation (6) comes down to an alge- 
braic Riccati equation, the Hamilton- Jacobi inequality (7) 
reduces to a quadratic matrix inequality [35], while the 
dissipation inequality (8) yields the linear matrix inequality of 
the bounded real or Kalman-Yacubovich-Popov lemma [ 11, 
[351, Wl. 

Remark 4: The dissipation inequality (8) may also be 
factorized as in [16], [23]. 

We collect the following facts from [16], [23], [35]. 
Proposition 3: Suppose xo is a globally asymptotically 

stable equilibrium of the drift vector field f in (2). Then any 
solution V of (6), (7), or (8) automatically satisfies V I 0. 
Furthermore, the available storage has the following modified 
expression: 

I T  
Vu(.) = - ueL,(O,T), inf T>O ? 1 ( Y 2 1 1 4 I 2  - IIY1I2) dt. 

x ( O ) = x ,  
IirnT-- x ( T ) = x ,  

(15) 

Proof: The first part immediately follows from the 
inequality ( a  V / a x ) (  x ) f (  x )  I 0 (see 1231, 1161). Expres- 
sion (15) follows from Remark 2 after [35, theorem 21. 0 

Remark: Note that by Milnor’s theorem global asymptotic 
stability of f implies that M is diffeomorphic to Eln.  

The “converse” of Proposition 3, finite gain implying 
(global) asymptotic stability, was being pursued in [23], [ 161, 
[17], [34], leading to the following definition and theorem. 

Definition 4 [23], [16]: The system (2) is called zero-state 
observable if for any trajectory such that U( t )  = 0,  y (  t )  = 0 
implies x ( t )  = xo,  i.e., for all X E M  

h( p( t ,  0 ,  X ,  0 ) )  = 0 ,  t L o 
p( t ,O,  x , O )  = x 0 ,  r I 0 .  (16) 

(N.B. There is some confusion of terminology in the litera- 
ture; we follow [9].) 

Theorem 5 [16], [23]: Assume (2) is zero-state observ- 
able. Suppose there exists a smooth solution V L 0 to either 
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(6), (7), or (8). Then V ( x )  > 0, x # x o ,  and the free 
system k = f ( x )  is locally asymptotically stable. Further- 
more, assume that V is proper (i.e., for each c > 0 the set 
{ x e M  10 5 V ( x )  5 c} is compact), then x = f( x )  is 
globally asymptotically stable. 

Proof: (Sketch; see [16, lemma 1 and theorem 21 for 
details.) Let V z 0 satisfy (8). By zero-state observability we 
have V J x )  > 0 and thus V ( x )  > 0 for x # xo. Then for 
u( t )  0 

av 1 
- f  I - -hTh 
ax 2 

and (global) asymptotic stability follows by LaSalle's invari- 

Remark: Properness of V can be assured by requiring a 
stronger form of observability (see [16], [34]). For applica- 
tions of Theorem 5 to the stability of interconnected systems 
we refer to, e.g., [25], [29], and the references quoted 
therein. 

Theorem 2 is somewhat unsatisfactory in the sense that if 
we want to conclude ( A )  from (D), then we have to check 
smoothness of the functions V, and V,, which are usually not 
readily given (also verifying reachability of the system (2) is 
generally a difficult task). We will now show how the geo- 
metric approach as proposed in [30] yields at least the local 
existence of a smooth solution V 2 0 of (6) if the L,-gain is 
less than y. First we have to relate the L,-gain of the system 
(2) to the L,-gain of the system linearized at xo ,  i.e., 

ance principle. 0 

where 

Proposition 6: Suppose the system (2) has L,-gain 5 
(<)y, then the linearized system (17) has L,-gain 5 (<)y. 

Proof: Consider an input U(.) to (17), and define 
u( t ,  E )  = e E ( t ) ,  E small, as a one-parameter family of inputs 
to (2). Denote the resulting family of outputs of (2) for 
x(0) = xo by y ( t ,  E ) ,  and define Y ( t )  = ( d / d E ) y ( t ,  E )  I E = O .  

Suppose (2) has L,-gain 5 y, then 

Theorem 7: Consider the linearized system (17), and 
assume F is asymptotically stable. The L,-gain of (17) is 
less than or equal to y if and only if there exists a solution 
P 2 0 of the algebraic Riccati equation 

1 

Y 
FTP + PF + T P G G T P  -t HTH = 0. (20) 

Furthermore, the &-gain of (17) is less than y if and only if 
there exists a solution P 2 0 of (20) satisfying additionally 

Remark: Notice that (20) is the Hamilton- Jacobi equation 
(6) for the linear system (17) and a quadratic function 

1 

2 
V(X)  = -XTPX. 

Now the basic observation made in [30] is the following; 
see the Appendix for further details. Consider the nonlinear 
system (2), and let y > 0. Define the following Hamilto- 
nian function on T*M, with natural coordinates ( x ,  p )  = 
( x l , .  . . , x,, p , ,  . . , p, )  (see Appendix I) 

1 1  
H,(X> P )  = P T f ( X )  + - T P T g ( x ) g T ( x ) P  

2 7  
1 
2 

+ - h T ( x ) h ( x ) .  (22) 

The corresponding Hamiltonian vector field X ,  on T*M 
(see Appendix 111), in local coordinates ( x ,  p )  given as 

' - 1, a H- 

has equilibrium ( x o ,  0), and the linearization of X H ,  in 
( xo , 0) is given by the linear Hamiltonian differential equa- 
tion 

with F,  G ,  and H a s  in (17). Now it is well known, and can 
be readily checked (see, e.g., [12]), that P = P T  is a 
solution of (20) if and only if 

- H T H  -FT 
Differentiating (18) twice to E ,  and setting E = 0, yields 

and thus P = PT is a solution of (20), (21) if and only if 

and thus (17) has L,-gain 5 y. If (2) has L,-gain < y, then 
(181, and thus (19), hold for some 7 < y, and we conclude 

0 
For the linearized system (17) the following result is well 

known (see [351, [ll, [ll],  [21], [14], and for the uncontrol- 
lable case [28]). 

that also (17) has L,-gain < y . 

1 
- - T ~ ~ T  

span [ i] = stable eigenspace of [ -:TH '-FT 1 
(25 1 

and in particular the Hamiltonian matrix in (25) does not 
have imaginarv eigenvalues (see. e.g.. 1121). Since (24) is the 
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linearization of (23), we conclude from Appendix 111 (Pro- 
position A.7) that the existence of a solution P = P T  of (20) 
implies that the stable invariant manifold N -  of X H ,  
throu h ( x,, , 0)  is n-dimensional and is tangent at ( x,,, 0) to 
span ri]. Furthermore, by Appendix I11 it follows that lo- 
cally around x,, the manifold N -  is given as 

ax  

where V is a (local) solution of the Hamilton-Jacobi equa- 
tion (6), with (d2V/ax2)(0)  = P (cf. Proposition A.8). We 
obtain the following theorem, which extends [30, lemma 51. 

Theorem 8: Consider the linearized system (17), and let 
y > 0. Assume that F is asymptotically stable. Suppose the 
&-gain of (17) is less than y, then there exists locally about 
x,, a smooth solution V > 0 of the Hamilton-Jacobi equation 
(6). Furthermore, there exists a solution V L 0 such that the 
vector field f + ( l / y 2 ) g g T ( a T V / d x )  is locally exponen- 
tially stable. 

Proof: By Theorem 7 there exists a solution P 2 0 of 
(20), (21). By Proposition A.7 this yields the local existence 
of a smooth solution V to (6) such that f + 
(1 / y2) gg '( 1 3 ~  V / a x )  is locally exponentially stable. Since F 
is asymptotically stable the vector field x = f ( x )  is locally 
asymptotically stable, and thus by Proposition 3 we have 

We call the vector field X H ,  hyperbolic in ( x,,, 0) if its 
linearization at ( x,, , 0)  does not have purely imaginary eigen- 
values. From Proposition 6 and Theorem 8 we immediately 
deduce the following. 

Corollary 9: Consider (2) and its linearization (17). Let 
y > 0. Suppose (2) has L,-gain < y and F is asymptotically 
stable. Then there exists a neighborhood W of x,, and a 
smooth function V :  W -+ W+, satisfying (6) on W .  Also 
f + (1 /y2) gg '( a ' V /  13 x )  is locally exponentially stable on 
W ,  and XH,  is hyperbolic in ( xo ,  0). 

Remark 1: If the linear system (17) is detectable, then the 
asymptotic stability of F is implied by the fact that (17) has 
L,-gain < y (compare to Theorem 5 ) .  

Remark 2: If (2) has L,-gain I y (instead of < y)  then 
the vector field XHT need not be hyperbolic, i.e., the 
Hamiltonian matrix in (24) may have purely imaginary eigen- 
values. (In fact (see [35]) this will be the case if and only if 
the L,-gain of (17) equals 7.) If this happens, then there 
exists a nontrivial center manifold of X H ,  which may, or 
may not, yield a solution of the Hamilton-Jacobi equation. 

locally V L 0. 0 

We have the following converses to Corollary 9. 
Theorem 10: Consider the system (2) and its linearization 

(17). Assume F is asymptotically stable. Suppose that X H ,  
is hyperbolic in (x,,, 0). Then there exists a neighborhood W 
of x,, and a smooth function V-  L 0 on W satisfying (6), and 
such that f + ( l / y 2 ) g g T ( d T V - / d x )  is locally exponen- 
tially stable on W .  Furthermore, 

for all T L 0 and all U E L,(O, T )  such that the state-space 
trajectories x(  t )  = cp( t ,  0 ,  x,,, U ) ,  t E (0, T )  do not leave W. 
(In other words, the system restricted to W has L2-gain 
5 7.) Furthermore, if additionally ( F ,  G )  is controllable, 
then there exists a neighborhood W of x,, and a smooth 
solution V+L 0 of (6) on I@ such that - (  f + 
( L/ y ') gg '( a V+ / 8 x ) )  is locally exponentially stable on 
W ,  and (27) holds with W replaced by W .  

Proof: By hyperbolicity it follows that 

does not have imaginary eigenvalues. It is well known (see, 
e.g., 111, lemma 21) that, since F is asymptotically stable, 
this implies the existence of a P = PT L 0 to (20), (21), and 
thus the L,-gain of (17) is less than y. Then the local 
existence of a smooth V-L 0 satisfying (6) such that f 

+ x g g T ( a T  V -  / a x )  is locally exponentially stable follows 

from Theorem 8 (see also Appendix 111). The inequality (27) 
follows by the same arguments as used in the implication 
(C) + (D) in the proof of Theorem 2, cf. (14). Finally, if 
( F ,  G) is controllable, then it is easily seen from, e.g., [ 11, 
lemma 21, that, since Ham, does not have imaginary eigen- 
values, there exists a solution P = P T  to (20) satisfying 

a ( F  + ,GGTP) C C+. By the same arguments as used in 

the proof of Theorem 8, but now with regard to the unstable 
invariant manifold, the final statements of Theorem 10 fol- 
low. 0 

Corollary IZ: Suppose XHT is hyperbolic and F is 
asymptotically stable. Let W and W be the neighborhoods of 
x,, as constructed in Theorem 10. Then the stable invariant 
manifold N -  of XH7 is such that a : N- n T* W + W is a 
diffeomorphism (with a : T* W -+ W denoting the canonical 
projection ( x ,  p )  - x ;  see Appendix I). If, additionally, 
( F ,  G )  is controllable, then the unstable- invar_iant manifold 
N+ of X H ,  is such that a : N'n T* W + W is a diffeo- 
morphism. 

Proof: N - n T * W  = { ( x , ( d V - / a x ) ( x ) l  X E  W }  with 
V-  as obtained in Theorem 10. Analogously for N+. Cl 

We have the following global version of Theorem 10. 
Proposition 12: Consider the system (2). Let y > 0. 

Assume f is globally asymptotically stable. Suppose X, is 
hyperbolic and its stable invariant manifold N -  is such that 

1 

1 

is a diffeomorphism. Then there exists a global smooth 
solution V - 2  0 to (6) (and thus the system has gain I y by 
Theorem 2). The same conclusion follows (with V-  replaced 
by V+) if (29) holds for the unstable invariant manifold N+. 

Proof: By Proposition A.5 N -  is a Lagrangian sub- 
manifold of T*M. Since a : N-+ M is a diffeomorphism it 
follows that N -  is the graph of a closed one-form U- on 
M .  By global asymptotic stability of f we have M = W", 
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and thus by Poincare's lemma there exists a smooth function 
V-  : M + W such that a- = dV-.  It follows by Proposition 
A.6 that V-  satisfies the Hamilton-Jacobi equation (6). 
Finally, by Proposition 3 V-2 0. The same holds for N+, 

0 
Actually, the functions V- ,  respectively, V+ , correspond- 

ing to the stable, respectively, unstable, invariant manifold of 
X ,  have a very clear interpretation, as shown by the 
following theorem. 

Theorem 13: Take the same assumptions as in Proposition 
12. Then the function Vu [cf. (9)] is well defined and actually 
Vu = V-.  Furthermore, assume additionally that the function 
V, [cf. (lo)] is well-defined, then V, = V+. Hence, the 
stable and unstable invariant manifolds of X H ,  are 

leading to a global solution V + r  0 of (6). 

with initial condition x(ro) ,  and where the right-hand side of 
(32) is evaluated along the solution of (33) for t E ( t o ,  t l ) .  
Since V-  satisfies (6) it follows by Theorem 2 and Remark 2 
after Theorem 2 that Vu is well defined and satisfies the 
integral dissipation inequality (14) for every U. Thus, by 
taking the feedback control u ( t )  = ( l / y 2 ) g T ( x ( t ) ) ( a T V /  
ax) (  x( t ) ) ,  x( t )  being the solution of (33), we obtain (replac- 
ing 0 and T in (14) by to ,  respectively, t , )  

VU(X(t1)) - VU(X(t0)) 
1 I av- aTv- 1 

a x  2 

Subtracting (32) from (34) we obtain 

N-= [(  x ,  s ( x ) j / r r z M ]  (vu - V - ) ( x ( f , ) )  - (Vu - v - ) ( x ( t o > )  5 0 .  (35) 
a x  

Letting t ,  + 03, and using global asymptotic stability of 
f +  ( 1 / Y 2 ) g g T ( a r V - / a x )  (since V -  corresponds to the 
stable invariant manifold) we obtain (30) 

vu( X) 1 v- (F)  (36) In particular, Vu and V, are smooth. 
Remark 1: In the linear case, the equalities Vu = V - ,  

V, = V+, were established in [35]. 
Remark 2: Recall that V, is well defined if additionally ( 2 )  

is reachable from xo .  Note that Theorem 13 makes the slight 
asymmetry in the definition of Vu and V, clear. 

Proof: The theorem follows from Pontryagin's mini- 
mum principle by showing that 

for every point X = x(  to )  E A 4 .  Now by global asymptotic 
stability of f we have (ProPosition 3) V -  2 0,  and thus by 
Themem 2 we obtain Vu 5 v-. Combining this with (36) 
leads to the desired equality Vu = V- .  The equality V,  = V+ 
follows similarly by noting that for any t1 2 t o ,  

( 5  - v + ) ( x ( t , ) )  - (v - V ' ) ( x ( f o > )  5 0 
OD 

V - ( x )  = - min (Y211 u ( t )  1 1  - 11 Y ( t )  11 '1 dt where x ( t , )  is now the solution at t = t ,  of 

1 aT v+ x(O)=x 
x( m) = xo 

,t = f ( x )  + 1 g ( x ) g T ( x ) a x ( x )  (37) 
Y 

with initial condition x( to ) ,  and letting to + - 03. 

linear statement in [35]). 

rem 13. Then vu = 

Finally, we have the following proposition (compare to the 

Proposition 14: Take the same assumptions as in Theo- 

V + ( x )  = min 
U ~ L ~  

x(-m)=x, 
x(O)=x 

/-o,(Y21"(t)"2 - I I Y ( f ) 1 1 2 )  dt 

(31) 

However, a completely elementary proof can be given as 
follows. We have by (6) 

and v, = Satisfy 

V , ( x )  > Vu(.), for all x + x o .  (38) 
1 Proof: Since I/- and V+ satisfy the Hamilton-Jacobi 

equation (6) it follows that P- := ( a 2 V - / a x 2 ) ( x , ) ,  P +  
: = ( a 2  V + / a x 2 ) (  xo )  satisfy the algebraic Riccati equation 

a T v -  (20); see Proposition A . 8 .  Furthermore, a ( F  + 

1 

a x  

+ - 
2 2 a x  -ggT- a x  ' ( ~ / Y ~ ) G G ~ P - )  c e- and a ( F  + ( l /y2)GGTP+)  c G+. 

It follows that for any t ,  2 to It follows from V, 2 Vu that P+? P - .  However, by hyper- 
bolicity P -  ( P + )  corresponds to the stable (unstable) 
eigenspace of (24). Since the intersection of the stable and 
unstable eigenspace is just the origin we have P + >  P - .  
Hence, near xo we have V + ( x )  > V - ( x ) ,  x # xo .  Further- 

v - ( x ( t l ) )  - v - ( x ( t o ) )  

= lof'( -;h'h + - 2 - g g  2 a x  ax  more, by using (6) 
dt (32) 

where x ( t , )  = d t l ,  t o ,  x( t , ) ,  4 t )  = (1/r2)gT(x(t))  a(v+- v-) 1 aTv- 
( d T V / a x ) ( x ( t ) ) ) ) ,  i.e., x ( t l )  is the solution at t = I ,  of a x  
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and thus V+ - V -  is nonincreasing along solutions 
of the globally asymptotic stable vector field f + 
( i / y 2 ) g g T ( a T v - / a x ) .  It foliows that v + ( x )  > v - ( x ) ,  
for all x # xo.  0 

a(v+- v-) 1 

Remark I :  By using (6) we also have 

ax  

Comparing (40) to (39) we obtain the following nonlinear 
analog of [35, lemma 81: 

a(v+- v-) 
ax 

I 
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+ a(v+- v-) [f + $...$I = 0. (41) 

ax 

Remark 2: In analogy with the linear case we can expect 
that violation of the strict inequality (38) corresponds to 
nonhyperbolicity of XH,; see also Remark 2 after Corollary 
9. 

111. NONLINEAR STATE FEEDBACK H, OPTIMAL 
CONTROL 

Let us now consider a smooth nonlinear system (2), which 
additionally is affected by (unknown) disturbances d in the 
following way: 

X = f ( x )  + g ( x ) u  + k ( x ) d ,  
UER'", dEWq,  y e w p ,  X E M ,  

Y = h ( x ) ,  f ( x o )  = 0 ,  h(x , )  = 0 (42) 

with k ( x )  denoting an n x q matrix with entries depending 
smoothly on x .  Now for any smooth state feedback 

U = l ( x ) ,  I (xo )  = 0 (43 1 
we can consider the closed-loop system (42), (43) and con- 
sider its L,-gain from the disturbances d to the block vector 
of outputs y = h(x)  and inputs U = l ( x ) ,  i.e., the L,-gain 
of 

closed-loop system [ e ]  = [ h( X )  ] 
d +  w 

In analogy with the linear state-space H, theory (see, e.g., 
[21], [28], [40], [l l])  we will define the (standard) nonlinear 
state feedback H, optimal control problem as follows. 

Definition IS-Nonlinear State Feedback H, Optimal 
Control Problem: Find, if existing, the smallest value y* 1- 
0 such that for any y > y* there exists a state feedback (43) 
such that the L,-gain from d to [ E ]  is less than or equal to 
7. 

This definition is somewhat different from the definition 
used in linear H, control where it is also required that the 

closed-loop system is asymptotically stable. Certainly also 
in the nonlinear case we would like the closed-loop system 
considered in Definition 15 to be asymptotically stable in 
some sense; however, as in Theorem 5, often asymptotic 
stability will be implied by the finite gain property of the 
closed-loop system (see Corollary 17), and we will find it 
easier to consider first the H, control problem as formulated 
in Definition 15 without any a priori conditions on closed- 
loop stability. 

We start with the following theorem, which extends a 
result obtained in [30]. 

Theorem 16: Consider the nonlinear system with distur- 
bances (42). Let y > 0. Suppose there exists a smooth 
solution V 2 0 to the Hamilton-Jacobi equation 

1 + - h T (  2 x ) h (  x )  = 0 ,  v( xo)  = 0 (45) 

or to the Hamilton-Jacobi inequality 

1 
2 

+ - h T ( x ) h ( x )  5 0 ,  V ( X , )  = 0 (46) 

then the closed-loop system for the feedback 

(47) 

has L,-gain (from d to [ E ] )  less than or equal to 7. 

(46) we obtain [30] 
Proo) By "completing the squares" and using (45) or 

d av av av 
dt ax  ax  ax  
- v = - f + - g ~ + - k d  

1 1 1 
--IIY1l2 2 - $ I l 2  + ~ Y 2 l l d l I 2  (48) 

where y = h(x) .  Choosing U as in (47), and integrating 
from t = 0 to t = T 2 0, starting from x(0)  = x,, we 
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obtain for all T 2 0 closed-loop system (50) for the feedback u = 
- g T ( x ) ( a T V / a x ) ( x )  also has L,-gain I y. 

Hamilton- Jacobi equation 
Proof: By Theorem 2 V L 0 satisfies the 

av I 1 av aTv 
ax 2 y 2  ax ax 
- ( f  + g l )  + ---kkT- 

+ V(X0) - V ( X ( W  1 1 + -hTh + -1'1 = 0 (52)  and since V( xo)  = 0 and I/ L 0 the result follows. 0 
Remark: Note that for an arbitrary initial condition x(0) 

2 2 
and thus 

we obtain the useful inequality 

ax 
av 

I y 2 1 T l l  d (  t )  11 dt + 2 V (  x ( 0 ) ) .  (49) 

1 I av aTv I 
- - - - - -kkT- - -hTh 

2 y 2  ax ax 2 
In particular, by letting in (49) we immediately 
obtain that for every d E L,(O, 03) the resulting input function 

T - t  00 

u ( t )  = -gT(x( t ) ) (aTV/ax) (x( t ) )  and output function 
y ( t )  = h ( x ( t ) )  are in L,(O, m) for every x(0). 

With regard to (global) asymptotic stability of the 
closed-loop system, we obtain the following from Theorem Therefore, 
5 .  

Corollary 17: Suppose there exists a solution V 2 0 to 
(45) or (46). Assume the system 2 = f ( x )  with outputs 
y = h ( x ) ,  U = - g T ( x ) ( a T V / a x ) ( x )  is zero-state observ- 
able (see Definition 4). Then V ( x )  > 0 for x # x ,  and the 
closed-loop system (42), (47) (with d ( t )  E 0) is locally 
asymptotically stable. Assume additionally that V is proper, 
then the closed-loop system is globally asymptotically stable. 

Proof: Consider the closed-loop system 

X =  f - ggT- ( x )  + k ( x ) d  [ "ay] 
[ Y  = h ( x )  

aT v i ax 
U = -gT(x) - - (x )  

with inputs d,  and outputs ( y ,  U ) .  Clearly, the system 
is zero-state observable. Application of Theorem 5 to this 
system now yields the result. [Note that by (45) or 
(46) ( a v / a x ) [ f  - ggT(aTv/ax) l  5 - (1/2)(av/ax)ggT 
. (aTv/ax)  - (i /2)hFh.] 0 

Let us now proceed to a (partial) converse of Theorem 16. 
Theorem 18: Consider the system (42), and let y > 0. 

Suppose there exists a smooth feedback U = l( x ) ,  l( x,) = 0,  
such that the L,-gain [from d to ( y ,  U ) ]  of the closed-loop 
system 

2 = f ( x )  + g ( x ) l ( x )  + k ( x ) d  

(51) 

1 av aTv 
2 ax ax 

+-hTh 1 + --ggT- I 0 (53)  
2 

and the Hamilton-Jacobi inequality (46) follows. The last 
0 

Remark 19: The existence of a smooth solution V 2 0 to 
the Hamilton-Jacobi equation (45) may be pursued by the 
following iterative procedure. Consider the system (5 1) with 
1 replaced by l , ( x ) : =  - g T ( x ) ( a T V / a x ) ( x ) ,  i.e., (50). By 
(53) this system has gain I y (Theorem 2), and thus by 
Theorem 2, if we assume that the available storage is 
smooth, there exists a smooth solution VI 2 0 to 

statement immediately follows from Theorem 16. 

1 1 av, aTv, 
2 y 2  ax ax 

-[f+ a VI gl,] + ---kk'- 
ax 

1 1 

2 2 
+-hTh + -lTII = 0 .  (54) 

Since V satisfies the corresponding inequality (i.e., = 0 
replaced by I 0) Theorem 2 yields VI I V.  Now, using 
(54) we obtain 

ax 

a VI 
ax 

= -[ f + gl,] + 

1 1 av, aTv, 1 

Assume additionally that (51) is reachable from x,. Then by 2 y 2  ax ax 2 

Vu or V, are smooth. Then V := Vu or V := V, satisfies - - - g g T L  
the Hamilton-Jacobi inequality (46). Furthermore, the ax 

[with inputs d and outputs ( y ,  U)] is less than or equal to y. - - - -_  -kkT- - -hTh 

; 2 a r v  Theorem 2 ,  V, and V,  for (51) are well defined. Assume 
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and thus, compare (53), Hamiltonian 

1 1 av, aTv, 1 H,(X, P )  = P T [ f ( X )  + s ( x ) l ( x ) ]  
+ y T a x k k " r  + -hTh 1 1  1 ax  + - > p T k (  x )  kT( x )  p + -hT( X )  h( X )  

2 7  2 
1 av, aTv, + - -ggT- I O .  ( 5 5 )  1 
2 ax ax + - l T ( x ) l ( x )  2 (59) 

Defining 1 2 ( X )  := - g T ( X ) ( a T  / a x > ( x ) ,  we conclude that and suppose X ,  is hyperbolic, and its stable invariant 
the system ( 5 1 )  with 1 replaced by 12 again has gain I 7 .  manifold is diffeohorphic to A4 under the canonical projec- 
Thus, by Theorem 2,  if we assume that the available storage tion : T*M + M.  Then there exists a global solution V 2 0 
for this system is smooth, there exists a smooth solution to (46). 
V, 2 0,  with V, I V , ,  to Proof: Apply Corollary 9 and Proposition 12 to the 

system (51), yielding the local (Corollary 9 )  or the global 
a v2 1 1 av, aTv2 (Proposition 12) existence of a smooth solution to (52). 0 -[ f + gl,] + ---kkT- Finally, we will give the analogs of Theorems 7 and 8 to ax 2 y 2  ax ax 

this situation. Denote the linearization of (42) at x,, as 
1 1 + -hTh + -lTI - 0.  (56) f = + ~ i j  + K J ,  U E ~ m ,  J E ~ q ,  x , = ~ n ,  
2 2 2 2 -  

J = K x ,  J E W P  (60) 
The iterative procedure is now clear, and if the smoothness 
assumption at every step of this procedure is satisfied, then 
we obtain a sequence of smooth functions 

where F ,  G ,  are defined in (17), while K = Q ~ , ) .  First 
we recall from linear H, theory (cf. [28], [38], [21], [ l l ] )  
the following basic theorem (compare to Theorem 7 and the 
previous Theorems 16, 18, and Remark 19). 

(57 )  Theorem 21: Assume ( H ,  F )  is detectable. Let y > 0. v 2 v , z v 2 2  * . *  2 y 2  a . .  2 0  

satisfying 
Then there exists a linear feedback 

U = LE (61) 
- 

a*<:-, + - 1 - 1 ay -kkT> aTv. such that the closed-loop system (60), (61) [with inputs zand  
outputs ( J ,  U ) ]  is asymptotically stable and has L,-gain less 
than or equal to y if and only if there exists a solution P 2 0 

2 y2 ax ax 

1 a v , - ,  ay:, to the algebraic Riccati equation 

ax 1 
1 + -hTh + --ggT- = 0 .  ( 5 8 )  

P + H ~ H  = 0 .  (62) 

2 2 ax ax 

By (57) we have pointwise convergence to a function I/* 2 0, - 
i.e., V * ( x )  = limi-m V,(x),  and if we assume V* to be 
smooth, then, taking the limit i .+ 03 in (58 ) ,  we see that I/* Furthermore, the L,-gain is less than y, if and only if there 
satisfies the Hamilton-Jacobi equation (45). Furthermore, it exists a p to (62), additionally satisfying 
follows from Theorem 2 and Theorem 13 that if all the 
involved Hamil tonians H i  = p T [  f + g l , ]  + 
( 1 / 2 ) ( l / y 2 ) p T k k T p  + (1/2)hTh + ( 1 / 2 ) f T f ,  are hyper- 
bolic, then all the vector fields f + gl, + 
( l / y 2 ) k k T ( a T y  / a x )  are globally asymptotically stable. 
Assuming additionally that the Hamiltonian H* = p T [  f + 
gl*] + ( 1 / 2 ) ( l / y 2 ) p T k k T p  + (1/2)hTh + (1/2)l*TI*, with 
I* = -gT(aTV*/ax) ,  is hyperbolic, it thus follows that 
f - ggT(aTv*/ax)  + ( l / y 2 ) k k T ( a T l / * / a x )  is globally 
asymptotically stable. 

Of course, the assumptions made in the previous theorem 
(especially reachability from x ,  by the disturbances) are not 
particularly satisfying. Partial remedy is provided by the 
following analogs of Corollary 9 and Proposition 12. 

Proposition 20: Suppose the L,-gain of ( 5 1 )  is less than 
7, and assume F + GL with L = ( a f / a x ) (  x,) is asymptot- 
ically stable, then there exists a neighborhood W of x ,  and a 
smooth function V 2 0 on W satisfying (46). Alternatively, 
assume f + g f  is globally asymptotically stable. Define the 

Moreover, if P B 0 is a solution to (62), then if we choose 

L = - G T P  (64) 

the closed-loop system (60), (61) is asymptotically stable and 
h_as L,-gain I y [respectively < y if there exists a solution 
P to (62), (63)]. 

We state the following analog of Proposition 6 with regard 
to state feedback H, control of (42) and its linearization 
(60). 

Proposition 22: Let y > 0. Suppose there exists a smooth 
feedback U = I (  x ) ,  l( x,) = 0,  for (42) such that the L,-gain 
of the nonlinear closed-loop system (51) is I (<)y. Then 
the linear feedback U = LE, with L : =  (al /ax)(x , ) ,  for 
(60) results in a linear closed-loop system having gain I 
(<)Y. 

I --- 
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Proof: Notice that the linearization of the nonlinear 
closed-loop system (42) with U = 1(x) is given as the 
closed-loop system (60) with U = L3. Then apply Proposi- 
tion 6. 0 

The analog of Theorem 8 was basically already derived in 

Theorem 23: Consider the linearized system (60), and 
assume (H, F )  is detectable. Let y > 0. Suppose there 
exists a feedback U = LF such that the L,-gain of the 
closed-loop system [from d to ( J ,  U)] is less than y and the 
closed-loop system is asymptotically stable. Then there exists 
a neighborhood W of xo and a smooth function V 2 0 
defined on W such that V is a solution of the Hamilton-Jacobi 
equation (45). Furthermore, the feedback U = 

-g ' (x)(a 'V/ax)(x)  for (42) has the property that the 
closed-loop system has locally L,-gain I y, in the sense that 
(with x(0) = xo)  

[301. 

for all T L 0 and all d e  L2(0, T )  such that the state-space 
trajectories x ( t )  starting from x(0) = xo do not leave W 
(i.e., the state feedback H, control problem for y is solved 
on W ) .  

Proof: By Theorem 21 there exists a solution P 2 0 to 
(62), (63). It follows (Appendix 111) that ( x u ,  0) is a hyper- 
bolic equilibrium of X H y ,  where 

1 
H , ( x , P ) : = P T f ( x )  - YP' 

1 

+ 2 hT( x )  h ( x )  (66) 

and that its stable invariant manifold N- is tangent to span 
[ i] in ( x o ,  0). This implies that locally about xo there exists 
a smooth solution V to (45) satisfying ( a 2  V / a x 2 ) ( x o )  = P. 
Furthermore, since F - GGTP is asymptotically stable (see 
Theorem 21) the vector field f - ggT(aT V p x )  is locally 
asymptotically stable. Rewriting (45) as 

1 av arv 1 

2 ax ax 2 
- I - - & ' -  + -h'h = 0 (67) 

this implies by Proposition 3 that locally about xo V 2 0,  
and by Theorem 2 that the closed-loop system has gain 5 y 
for all disturbance functions d ( - )  such that x ( t )  remains in 
the domain where V is defined and is nonnegative (see also 
the proof of Theorem 10). 0 

Remark: Notice that the linearization of the feedback 
U = - g T ( X ) ( a T v / a x ) ( x )  at xo is given as U = - G T p ~ ,  
which is (cf. 64) a solution of the state feedback H, problem 
for the linearized system. 

The main problem with Theorem 23 is that it does not give 
us any a priori information about the size of W .  In particu- 
lar, if y approaches the optimal value y*, then W may even 
converge to just the point xo, as shown by the following. 

Example [31J: Consider the nonlinear system 

x = u + x x d ,  y = x .  (68) 

Clearly, its linearization in xo = 0 is not affected by distur- 
bances, and thus y* = 0. Furthermore, the Riccati equation 
(60) for every y is P2 = 1, yielding the stabilizing solution 
P = 1 .  The Hamilton-Jacobi equation (45) takes the form 

and clearly only has a solution for 1 x 1 < y , namely V(  x )  
= y2 - y2(1 - x * / Y ~ ) ' / ~ ,  yielding the feedback 

U = - ( 1  - xz/y ' ) l '2x .  (70) 

Remark 24: With regard to Theorem 23 we also note that 
generally the feedback U = -g ' (x ) (aTV/ax) (x)  is not the 
only feedback U = I (x )  resulting in a closed-loop system 
(51) having locally gain 5 y. In fact, also the linear feed- 
back 

U = -GTPx (71) 
with P 2 0 a solution of the Riccati equation (62) will result 
in a closed-loop system having locally gain 5 y. (This obser- 
vation is due to Prof. J. W. Grizzle and Prof. P. P. Khar- 
gonekar [ 151 .) Indeed, the Hamilton-Jacobi equation (6) for 
the closed-loop system resulting from this linear feedback is 
given as 

aV 1 1 aV a V  
ax 2 y2  ax ax 
- [ f - gG'Px] + - - -kkT- 

1 1 

2 2 
+ -x'PGGTPx + -hTh = 0 (72) 

which by Th_eorems 8 and 21 has a local solution V 2 0 
of the form V( x )  = ( 1  /2)xTPx + h.  0. f (see also Proposi- 
tion A.8). However, we conjecture that the domain of defi- 
nition of V will be always contained (and in general be 
strictly contained) in the domain of definition of the solu- 
tion V-L 0 of (45) such that f - gg'(d'V-/ax) + 
( l /y2)kkr(aTV-  /ax> is asymptotically stable. A clue to a 
proof of this conjecture may be given by the fact that by 
rewriting (72) V satisfies the Hamilton-Jacobi inequality 

a r t  1 

ax  2 
+ -hTh .- 
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Now by Remark 19 it follows basically that V >  V - .  Since 
the main obstruction for extending a local solution I/ 1 0 of 
(45) into a global one seems to be the fact that V ( x )  can 
become infinite for finite x (see the previous example), this 
suggests that the solution I/- (and thus the resulting feedback 
U = - g T( aT V -  / a x ) )  has the largest domain of definition. 
Note that for the preceding example the linear feedback (70) 
is given as U = - x ,  resulting in the Hamilton-Jacobi equa- 
tion (72) 

a f  I 1 aV 
- ( x ) ( - x )  + -2 - ( x )  x 2  
a x  2 Y  [ a x  I’ 

1 1 

2 2 + - x 2  + - x 2  = 0 (74) 

which only has a solution f 2 0 for I x I < A y ,  i.e., a 
domain of definition which is indeed smaller than the one 
obtained for (69). 

We will now indicate how Theorem 23, showing that 
solvability of the state feedback H, control problem for the 
linearized system (60) implies local solvability of the state 
feedback H, control problem for the nonlinear system (42), 
can be extended to the case of H, control by measurement 
feedback. To this aim let us consider (42) together with the 
additional measurement equations 

Y m  = c ( x )  + U ,  y ,  ERS,  U E R S ,  c ( x o )  = 0 (75) 

where y ,  are the measured outputs and U are extra distur- 
bances, leading to linearized measurement equations 

ac 
a x  

y ,  = cz+ V ,  J,EWS, F E W S ,  c =  - ( x o )  

(76) 
for the linearized system (60). 

Proposition 25 (Based on [15]): Consider the nonlinear 
system (42), (75), and its linearization (60), (76). Assume the 
triples ( F ,  G ,  H )  and ( F ,  K ,  C) are stabilizable and de- 
tectable. Let y > 0. Suppose there exists a solution P ? 0 to 
(62), (63), or equivalently (cf. Theorem 23), a neighborhood 
W of xo and a smooth function I/ 2 0 on W such that V is 
a solution of (45) with (a2  V / a x 2 ) (  xo)  = P .  Suppose addi- 
tionally there exists Q L 0 satisfying 

(77) 

and such that the maximal singular value of PQ is less than 
y2. Consider the following compensator: 

aT v 
az U = - g T ( z ) - ( z ) ,  Z E W ” .  (78) 

Then there exists a neighborhood F? C M x R” of ( xo ,  z = 
0) ,  such that the closed-loop system (42), ( 7 3 ,  (78) is 
asymptotically stable on F? and 

s,r( II Y ( t >  1 1 2  + II u ( t >  11’) dt 

5 Y 2 p ( t ) l l 2  

for all T 2 0 and all d ,  U EL,(O, T )  
ries ( x ( t ) ,  z ( t ) )  of the closed-lotp 
x(0) = xo ,  z(0) = 0 do not leave W .  

such that the trajecto- 
system starting from 

Proof: Consider the closed-loop system 
I a r  v 

X = f ( x )  - g ( x ) g T ( z ) % ( z )  + k ( x ) d  

Y = h ( x )  

U = - g T ( z ) - ( z )  
arv . (80) 
a z  

The linearization of (80) at ( x o ,  z = 0) is precisely the 
closed-loop system that would arise if we apply the compen- 
sator (78) with U = - g T ( z ) ( a T V / a z ) ( z )  replaced by E = 
- GTPz to the linearized system (60), (76). However, this is 
precisely the “central controller” of [ l l ] ,  and thus this linear 
closed-loop system is asymptotically stable and has &-gain 
[from (2, V) to ( J ,  ti)] less than y. The result now follows 
from Theorem 8 .  

Remark 26: The construction of the compensator (78) is 
not really satisfactory. Indeed we could have taken any 
compensator whose linearization equals the linearization of 
(78) in order that Proposition 25 continues to hold. The issue 
is therefore (see Remark 24) to choose a compensator which 
maximizes the size of W. This is certainly related to finding 
the proper nonlinear analog of the “dual” Riccati equation 
(77). 

Finally, from Lukes [22] (see also [13]) we recall the 
following approach for obtaining an approximate solution of 
the Hamilton-Jacobi equation (45). (In [22] the 
Hamilton- Jacobi-Bellman equation from optimal control was 
considered; however, the approach remains the same.) Sup- 
pose there exists a solution P r 0 to (62), (63). Now write 

v ( x )  = +XTPX + v , ( x )  

f ( x )  = Fx + f h ( X )  
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where Vh( x ) ,  f h (  x ) ,  Rh(  x ) ,  and e,( x )  contain higher order 
terms (beginning with degrees 3, 2, 1, and 3, respectively). 
Then the Hamilton-Jacobi equation (45) splits into two parts: 
the first part is the Riccati equation (62) while the second part 
is the higher order equation 

(82) 

where F*:= F - GGTP + ( l / y 2 ) K K T P .  The mth order 
terms V'") (x )  of V ( x )  can now be computed inductively 
for m = 3,4, .  * a ,  as follows. Denote the mth order terms on 
the right-hand side of (82) by Hm(x) .  It follows that 

a v(") 
( x ) F * x  = Hm( X )  (83) ax  

-- 

and thus by (63) we have that Vcm)(  x) = /," H,( eF*'x) d t ,  
and so V'"'(x) is determined by H J x ) .  Now it is easily 
seen that H J x )  only depends on V ( " - ' ) ,  l /("- ,)  3 ,  * * V(,) 
= ~x'Px,  and therefore (83) determines V c m ) ( x )  induc- 
tively starting from V(,)( x )  = (1 12) xTPx. This approxima- 
tion scheme is especially useful in the present context of 
(state feedback) H, control since (see, e.g., [40]) the exis- 
tence of a solution P 2 0 to (62), (63) is equivalent to the 
existence of a solution P > 0 to (62) with equality replaced 
by strict inequality < . Hence, there exists E > 0 such that 
also the modi2ed Riccati equation 

+ H T H  + 6'1 = 0 (84) 

has a solution P 2 0 satisfying (63). Using the above ap- 
proximation scheme we may now obtain approximate solu- 
tions of the modified Hamilton-Jacobi equation 

av 1 av 
- ( X ) f ( X )  ax  + y z ( x )  

1 1 
+ - h T ( x ) h ( x )  2 + - € , X T X  2 = 0 ( 8 5 )  

and for x sufficiently small these will be solutions to the 
Hamilton-Jacobi inequality (46). 

IV. CONCLUSIONS 

We have unified the results obtained in [36], [26], [23] for 
finite L,-gain systems. Furthermore, by using the properties 
of invariant manifolds of Hamiltonian vector fields, we have 
been able to extend these results in several directions and 

have provided a geometrical interpretation of them. This also 
allowed us to generalize some linear results of [35] to the 
nonlinear case. Further work needs to be done on the optimal 
case (L,-gain = y), where stable and unstable manifolds 
partly deteriorate into center manifolds (see the Remark after 
Corollary 9). 

In Section 111 we have treated the standard (i.e., nonsingu- 
lar) nonlinear state feedback H, optimal control problem 
using the results of Section 11. A major challenge will be the 
extension to the nonlinear H, problem with dynamic meas- 
urement feedback and the nonlinear H, filtering problem 
(see, e.g., [ l l ] ,  respectively, [20]). Among the next prob- 
lems to be tackled are the singular nonlinear state feedback 
H, problem (i.e., the L,-gain from disturbances d to out- 
puts y and a part of the inputs U is considered), and its 
relation with the nonlinear (almost) disturbance decoupling 
problem (see, e.g., [18], [27], [26]). On the theoretical side 
the connections with an operator and game-theoretic ap- 
proach (see, e.g., [6]-[8]) need to be investigated. 

Also much work has to be done regarding the formula- 
tion of the nonlinear H, problem, since in most applications 
the system (42) will not be the real physical system but 
instead some redefined system (as in the mixed sensitivity 
problem; see, e.g., 1121, [19]). 

Finally, it is hoped that the nonlinear state feedback H, 
optimal controllers as obtained in Section I11 have favorable 
robustness properties; however, this needs further investiga- 
tion (see also [13] for a survey on the robustness of state 
feedbacks obtained from nonlinear optimal control). 

APPENDIX 

In Appendices I and I1 some mathematical background is 
summarized; for details we refer to, e.g., [3], [2]. The 
material in Appendix I11 is also partly taken from [30]. 

APPENDIX I 

PRELIMINARIES (COTANGENT BUNDLE, ONE-FORMS, 
SYMPLECTIC FORMS) 

Let M be an n-dimensional manifold, and let TqM 
denote the tangent space to M at q E M .  Since TqM is a 
linear space (in fact, TqM = 3') we can define its dual 
T,*M, called the cotangent space at q E M .  

The space T*M:= U q e M  T,*M is called the cotangent 
bundle over M ,  just like T M : =  U q c M  TqM is called the 
tangent bundle. 

Recall that a smooth vector field X on M is defined by a 
smooth mapping X : M -+ TA4 satisfying a 0 X = identity, 
where a : TM --t M is the natural projection taking an ele- 
ment X q  E TqM C TM to its base point q E M .  Similarly, a 
one-form (or covector field) U on M is defined by a smooth 
mapping U : M + T*M satisfying a o u  = identity, where 
a: T*M+ M is a similarly defined projection. (All this 
simply means that X ( q )  E TqM and a ( q )  E T:M for every 
qEA4, and that X ( q )  and a ( q )  depend on q in a smooth 
manner.) 

Let x ,  , . * , x ,  be a set of local coordinates for M ,  then 
for every q in the coordinate neighborhood U we have a 
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basis { ( a / a x , )  I q , - e . ,  ( a / a x , )  1 q }  for TqM, where 
( a / a x i )  I q f  = ( a f  / a x i ) ( X , ( q ) , .  - ,  x , ( q ) )  for any smooth 
function f on M.  Thus, a vector field X on M can be 
locally (i.e., on a coordinate neighborhood U) expressed 

( a  / a x , )  I q ,  for certain smooth functions XI, * e ,  X ,  on 
W '. We also denote X = (XI, . . , X,)'. Similarly, if we 
denote the dual basis for T,*M by { dx,  I q , .  . * ,  dx,  I q } ,  

then a one-form a on M can be expressed on U as a(q )  = 

a,( x( q ) )dx ,  I + * * + a,( x(  q ) )dx ,  1 q ,  for certain smooth 
functions a,, - * e ,  a,. We call a = (a,,. . . , a,,) the local co- 
ordinate expression of a. In local coordinates we define for 
any a on M the two-form da  as d a ( q )  = C y , j = l ( a a i /  
a x  j)(x(q))dx A dx I q. Here dxi A dx denotes the skew- 
symmetric bilinear form on T q M  defined by 
dx;Adxj  I ,JX1(q), X 2 ( q ) )  = X ! ( x ( q ) ) X j ( x ( q ) )  - 
X : ( x ( q ) ) X j ( x ( q ) )  for any two vectors X ' ( q ) ,  X 2 ( q )  E 
TqM. We say that a is closed if d o  = 0. Clearly, this is 
equivalent to ( d a i / a x , )  = ( a a j / a x i )  for i ,  j = I;. . ,  n .  
Then locally (or globally if M is simply connected, e.g., if 
M = R") Poincare's lemma yields that a , ( x )  = 
( a V / a x , ) ( x ) ,  i = l;.., n ,  for some function V ,  and we 
write U = dV (= ( a V / a x , ) d x ,  + - - .  + ( a V / a x , ) d x , ) .  

Given local coordinates x , ; .  * ,  x ,  for M ,  we define 
natural coordinates for T*M by attaching to any a(q )  E 
T,*M the coordinate values ( x , ( q ) ;  * * ,  x , ( q ) ,  
a,( x ( q ) ) ,  e ,  a,( x ( q ) ) )  (where a = (a,, 9 * , a,) is the local 
coordinate expression of a). We denote the natural coordi- 
nate functions on T*M as x , ;  . e ,  x , ,  p , ;  a ,  p , ,  i.e., 

In the above natural coordinates for T*M we define two 

a) the canonical one-form 8 on T*M given as 

as X ( q )  = X , ( x ( q ) ) ( a / a x , )  I q + * * .  + X n ( x ( q ) )  

x , ( a ( q ) )  = x i (q ) ,  p ; ( a ( q ) )  = q ( x ( q ) > ,  i = 1,* . * ,  n.  

natural objects 

n 

e ( a ( q ) )  = C p i ( a ( q ) ) d x i  I q ( A 4  
i =  1 

b) the canonical two-form w = de ,  i.e., 
n 

a ( a ( q ) )  = C dPiAdXiI o ( q ) '  ( A 4  
i =  1 

APPENDIX I1 

LAGRANGIAN SUBMANIFOLDS 

Dejhition A.l :  A submanifold N C T*M is called a 
Lagrangian submanifold if dim N = dim M and w re- 
stricted to N is zero [i.e., w ( q ) ( X , ( q ) ,  X , ( q ) )  = 0 for 
every q E N  and every X , ( q ) ,  X 2 ( q )  E TqN(C TqT*M)].  

Now let us consider submanifolds N C T*M which are 
projectable on M in the sense that ?r : N -, M is a diffeo- 
morphism (with U : T*M -+ M being the natural projection); 
in particular dim N = dim M .  Then it is clear that N = 
graph a for some one-form a on M .  

Proposition A.2: Consider a submanifold N c T*M 
which is projectable on M ,  i.e., N = graph a. Then N is a 
Lagrangian submanifold if and only if a is a closed one-form. 

Proof: w = d8 being zero on graph a means precisely 
0 that da = 0, since 8 lgraph a = a. 

Corollary A.3: Suppose N C T*M is projectable on M 
and Lagrangian. Furthermore, assume M is simply con- 
nected. Then N = graph d V ,  for some smooth function 
V :  M - t  W. ( V  is called the generating function of N ) .  

APPENDIX I11 

INVARIANT MANIFOLDS OF HYPERBOLIC HAMILTONIAN 
VECTOR FIELDS 

Consider T*M, dim M = n ,  with symplectic form w .  Let 
H : T*M -+ W be a smooth function, called a Hamiltonian 
function. Then the Hamiltonian vector field X ,  on T*M 
corresponding to H is defined by setting w ( X , ,  Z )  = 

- d H ( Z )  for every vector field Z on T*M. In natural 
coordinates ( x ,  p )  for T*M we obtain the familiar Hamilto- 
nian equations 

x i  

Suppose ( xo ,  p o )  E T*M is an equilibrium for X,, or 
equivalently dH( x o ,  p o )  = 0 ,  then the linearization of X ,  
at ( xo ,  p o )  is given by the Hamiltonian matrix 

a2H a2H 

a x a p  ap2 
~ 

a2H a2H 
ax2 apax 

-- -- 

(Notice that DX,( x o ,  po)  defines a linear Hamiltonian 
vector field corresponding to the quadratic Hamiltonian given 
by the quadratic terms in the Taylor expansion of H ( x ,  p )  
around ( x o ,  pol.) 

The equilibrium ( x o ,  p o )  is called hyperbolic if 
DX,  ( xo , p o )  does not have purely imaginary eigenvalues. 
By the fact that DX,( x o ,  p o )  is Hamiltonian it follows that 
DX,( xo ,  p o )  has n eigenvalues in @ -  and n eigenvalues in 

Proposition A.4: Suppose ( x o ,  p o )  is a hyperbolic equi- 
librium for X,. Then there exists a unique maximal (im- 
mersed) submanifold N-C T*M through ( x o ,  p o )  satisfy- 
ing the following: 

1) N -  is invariant for X ,  (i.e., X, (q )  E TqN- for 
every q E N - ) ;  

2) X ,  restricted to N -  is globally asymptotically stable 
[with regard to ( xo ,  po)] .  (In fact, N -  is the set of all points 
T*M converging to ( xo ,  po) . )  

Furthermore, N -  satisfies the following tangency prop- 
erty. 

3 )  N -  is tangent at ( xo ,  p o )  to the stable eigenspace of 

N -  is called the stable invariant manifold of X,. 
Analogously, there exists a unique maximal (immersed) sub- 

(in fact if X is eigenvalue, then so is -A).  

DXH( X O ?  PO) (cf. A.3)' 
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manifold N+C T*M through ( xo,  p o )  satisfying the follow- 
ing: 

1) N+ is invariant for X,; 
2 )  - X ,  restricted to N+ is globally asymptotically sta- 

3) N+ is tangent at ( x o ,  p o )  to the unstable eigenspace of 

N+ is called the unstable invariant manifold of X,. 
Proposition A.5 /30/: Suppose ( x o ,  p o )  is a hyperbolic 

equilibrium for X,. Then the stable and unstable invariant 
manifolds N -  and N+ are Lagrangian submanifolds. 

Proof: See [30] for N - .  Note that N+ is the stable 
invariant manifold for the Hamiltonian vector field X -  , = 

Combining Proposition A.5 and Corollary A.3 we will 
show that the stable and unstable invariant manifolds of X ,  
correspond to solutions of a Hamilton- Jacobi equation. 

Proposition A.6  BO]: Suppose ( x o ,  p o )  is a hyperbolic 
equilibrium for X,. Suppose N -  and N+ are projectable 
on M ,  with A4 simply connected. Then N-= graph dV-,  
N+= graph dV+ for some smooth functions V - ,  Vf : M 
--t R, satisfying the Hamilton-Jacobi equation 

ble; 

D X H ( x O ,  PO). 

- X,. 0 

In particular, if H( x ,  p )  is of the form H( x ,  p )  = p r f (  x )  
+ (1/2)pTR(x)p + s ( x ) ,  with f ( x o )  = 0, s (xo )  = 0 
( R ( x )  being a symmetric n x n matrix), then V-  and V+ 
are solutions of 

av 1 av arv 
ax 2 ax ax 
- ( x )  f ( X )  + - - ( ~ ) R ( x ) - ( x )  + S ( X )  = 0 ,  

V ( X , )  = 0 ,  d V ( x o )  = 0 .  (A.5) 

Remark: Conversely, if V is a solution of (A4), then the 
submanifold N = { ( x ,  p = ( a T V / a x ) ( x ) )  I X E M }  is an 
invariant submanifold for X,, cf. [30]. 

Using the fact that N- and N+ are tangent at ( xo,  p o )  to 
the stable, respectively, unstable, eigenspace of 
OX,( xo ,  p o )  we immediately obtain the following /oca[ 
statement. 

Proposition A .  7: Suppose ( xo ,  p o )  is a hyperbolic equi- 
librium for X,. Suppose the stable and unstable eigenspace 
of DX,(xo, p o )  are of the form span , respectively, 

span [;+I, for some matrices P-, respectively, P’. Then 
there exists a neighborhood W of xo and functions V - ,  Vt 
defined on W such that Proposition A.6 holds on W .  

Proof: By tangency of N -  and N+ to span [ i . 1 ,  
respectively, span , it follows that there exists a neigh- 

borhood W of xo such that N - n T * W ,  respectively, 
N+ n T* W are projectable on W .  

[A 

[;+I 
Finally, we have the following linearization result. 
Proposition A.8: Let I /  satisfy (A.4). Then P = 

( a 2  V / a x 2 ) (  x,,) satisfies the algebraic Riccati equation 

ATP + PA + PRP + Q = 0 ( A 4  

with A := ( a 2 H / a x a p ) ( x o ,  p o ) ,  R := ( a 2 H /  
ap2)(xo,  p o ) ,  Q := (d2H/ax2)(xo ,  po) .  In particular, 
P -  := ( a 2 v - / a x 2 ) ( x o ) ,  P+ := ( a 2 v + / a x 2 ) ( x  ) satisfy 
(A.6) and are such that span [It-] and span [;+I are the 
stable, respectively, unstable, eigenspace of DXH( xo, po) .  
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