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Abstract-This paper deals with properties of canonical 
controllers. We first specify the behavior that they implement 
It follows that a canonical controller implements the desired 
controlled behavior if and only if the desired behavior is 
implementable, We subsequently investigate the regularity of 
the controlled behavior. We prove that a canonical controller 
is regular if and only if every controller is regular. In other 
words, canonical controllers are maximally irregular. 

Keywords: Behalion, behavioral control, regular interconnec- 
tion, regular controller, canonical controller, implementahility. 

I. CONTROL I N  A BEHAVIORAL SETTING 

It is common in control theory to view a controller as a 
feedback processor that accepts the plant sensor outputs as 
its inputs and produces the actuator inputs as its outputs. 
We like to call 'intelligent control': the controller acts as 
an rutificially intelligent device that reasons how to react 
to sensory ObseNatiOnS. In behavioral control, on the other 
hand, the idea is to view a controller as a subsystem that is 
designed with the purpose of achieving good performance of 
the overall system in which it is embedded. 

(:owmoLLm 
sYslF;\I 

Fig. 1. Control as interconnection 

More concretely, we s m  with a (to-be-controlled) plant, 
having two kinds of variables: to-be-controlled variables and 
control vuriubles. A controller is a device that acts on the 
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control variables, and restricts their behavior. This restric- 
tion is tr"ined through the plant to the to-be-controlled 
variables. The resulting system (i.e. the behavior of the to-be- 
controlled variables with the controller attached) is called the 
controlled system. It is the behavior of this system that should 
meet the control specifications. This control architecture is 
shown in figure 1. 

The main advantages of the behavioral over the classi- 
cal feedback point of view, are (i) its practical generality: 
many control devices do not act as sensorlactuator devices 
(dampers, heat fins, acoustic noise insulators, appendages 
to enhance aerodynamic properties, etc., etc.), and (;i) its 
theoretical simplicity. Control in a behavioral setting has teen 
introduced in [IO] and further developed in [41, IS], [12]. We 
refer to these references and to [13] for further motivation 
and details. 

K 

N 

Fig. 2. n e  conmdled behavior 

The formal definitions of the plant controller, and con- 
trolled behavior are as follows. Let W and C denote the set 
of all signals w and c that are a priori possible, before we 
even modelled the plant. In dynamical systems, W and C 
are typically the set of (smooth) signals from the time axis 
to the signal spaces W of the to-be-controlled variables, and 
C of the control variables. In DES, W and C are typically 
all words with leners from alphabets W and @. 
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The full planr behavior is a subset PfuII of W x C:  it 
consists of those signals ( w , c )  compatible with the plant 
dynamics. A controller C is a subset of C: it consists of 
those signals c which the controller allows. The controlled 
behavior is then defined by 

K : = { u E W I  3 c ~ C  
such that (U, c )  E Pr,II and c E C}. 

This definition of K is illustrated in figure 2. If, for a given 
full plant behavior Pfu,I, there exists a controller C such that 
the resulting controlled system equals I ,  then we call IC 
implemeniable, or implemenied by C .  

The conimller synthesis problem is to find, for a given 
plant with behavior P~,II, a controller C such that the 
resulting controlled behavior K meets cenain performance 
specifications. In this paper, we will take this to mean that 
there is a desired controlled behavior V E W and that the 
control synthesis requirement is K = V. 

11. THE CANONICAL CONTROLLER 

The basic goal of the controller is to achieve a certain 
desired behavior of the to-be-controlled variables. The 
problem thus arises: 

Given a plant and a desired behavior, 
choose a controller that achieves this. 

In a recent paper [5],  [6],  van der Schaft proposed an 
eminent, universal candidate controller. It is constructed by 
taking the plant and attaching (on the side of the to-be- 
controlled variables!) the desired controlled system to it, as 
shown in figure 3. Note that since in the canonical controller, 

CANONICAL 
CONTROLLER 

Fig. 3. The canonical controller 

the terminals of the plant are reversed, we marked PLANT 
upside-down (the mirror image, unavailable, would have been 
better). Connecting this controller to the plant leads to the 
controlled system shown in figure 4. 

The definition of this canonical controller Ctcanonlcal is 

C'c.nonica~ := { c  E C I 3 U E V such that 
(U, C )  E Prull and v E 2)). 

Fig. 4. The canonically controlled systems 

However, there is a second canonical controller, C''canonical, 
that has better properties. It is defined by 

C&anonical := { c  E C I 3 v such that ( v , c )  E PruI1, 

and (U, C )  E PrUu + U E V}. 
The action of the second canonical controller is shown in 
figure 5 ,  where we have replaced the connectors by symbols 
suggesting 'implies'. 

.- 

Fig. 5. The second canonical controller 

The canonical conuollers have all the features of a con- 
troller that is based on an intemal model. Indeed, in deciding 
how to constrain the control variables, the canonical con- 
trollers achieve this by transmitting the imposed specification 
on the to-be-controlled variables through the plant to the 
control variables. The canonical controllers are a marvellous 
idea. The action of these canonical controllers is illustrated in 
figure 6. It is easy to see that these canonical controllers both 

i :  
; ;  i c  

C L V $  C L d  . 
I_ 

Fig. 6. The action of the canonical controllers 

implement V if and only if it is implementable. Moreover, 
the controlled behavior implemented by the second canonical 
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controller is actually the largest implementable controlled 
behavior contained in D. 
In [5] ,  [6] a number of the properties of the first canonical 

controller have already been discussed. In the present article, 
we go more deeply into these properties for linear time- 
invariant systems. 

111. IMPLEMENTABILITY 
We will hencefonh restrict attention to linear time- 

invariant differential systems. We refer to [9 ] ,  [4], [I31 for 
an extensive introduction to this class of systems. We will 
freely use the following notation that has become standard 
in this area. C" denotes the class of linear time-invariant 
differential systems with w variables. Thus by definition of 
C", C = (R, R", '23) belongs to C' if and only if there exists 
a polynomial matrix R E R*x'[<] such that the behavior B 
is the solution set of the system of differential equations 

d 
dt 

R( -)U = 0. 

Concretely, B is defined by 

d 
d t  '23 = {U E C-(R,R") I R(-)w = 0). 

We often write this as B E 2" instead of C E 2". Often, 
a behavior is defined in terms of auxiliary variables. In this 
case, we use the term manifest for the variables of interest, 
and latent for the auxiliary variables. If 23 E is a system 
involving the manifest variables w E Cm(LR,RY) and the 
latent variables e E Cm(R,R4), then it tums out that the 
manifest behavior '23" defined by 

8, := iw  E c-(w,R") I 3 e E  C ~ ( R , ] W ~ )  : (w,e) E '2323) 

is an element of P. This result, that the projection of a 
differential behavior is also a differential behavior, is called 
the elimination theorem, and of one of the central results 
in the theory of differential systems (see [9], or [4, section 
6.21). The Cm-assumption is made mainly for convenience, 
and the results do not depend on this assumption (see [4, 
chapter 21 for a discussion of this issue). The differential 
equation R($)w = 0 is called a &me/ representation for 
B. Sometimes, we use the notation ker(R(g)) for B. A 
kernel representation is called minimal if and only if R bas 
full row rank (meaning that its rank is equal to its number 
of rows). 

We now tnm to the control problem. Consider the plant 

Cplant = (R,R" x RC,Pf"l1) E e'+'. 
Hence the plant behavior PfU1l constrains the to-be-controlled 
variables w and the control variables c by a system of linear 
constant coefficient differential equations. The controller is 
now assumed to be a system 

Cc0"troIIer = (R,RC,C) E CC. 

Hence the controller behavior C constrains the control vari- 
ables c by a system of h e a r  constant coefficient differential 
equations. The controlled system is 

Ccontrolled = (KR", IC), 

with the controlled behavior K defined by 

K = (20 E C-(R,R") I 3 c E C such that (w,c) E Piua}. 
As a consequence of the elimination theorem, 

Ccontrolled E Cy. Hence K is also govemed by a system 
of h e a r  constant coefficient differential equations. If, for a 
given Cplant. Ccontroller leads to Ccontroiied. then we say the 
Ccontrolled is implemented by &ontro~~er, and that Ccontroiied 
is implementable. The question arises 

Which behaviors K E C" can be implemented by attaching 
a suitable controller C E Cc to a given Pfuii E e'+'? 

This question has a very concrete and intuitive answer. 

Theorem 1: Let Pr,a E be given. The behavior 
K E C' is implementable if and only if 

where N E C" is the hidden behavior defied by 

N := {w E Coo(R,R") I (w,O) E PF~II}, 
and P is the manifest plant behavior defrned by 

P := {w E Cm(R,R") I 3 c such that (w,c) E P("II}. 

Note that it follows from the elimination theorem that 
N , P  E 2". This theorem reduces (linear) control questions 
to finding a subspace that is wedged in between two given 
subspaces. This simple characterization was obtained after 
[lo], first announced in [Il l ,  has since been pursued in 
a number of publications [3], 171, but the most extensive 
exposition is given in [12]. 

We repeat the idea of the pmof of the 'if' part (the other 
direction is hivial), since it is of some relevance to the 
canonical controller. Let 

d d 
dt dt R(-)w = M ( - ) C  

be a kemel representation for Piull. Then R(&)w = 0 is 
obviously a kernel representation of N. Since N C K, 
it follows that K has a kernel representation of the form 
F ( $ ) R ( $ ) w  = 0 for a suitable F E Wx'[<]. It tums out 

d d  
dt  dt ~. 

F (  - ) A l ( - ) c  = 0 

is actually a controller that implements K (the proof of this 
uses X: C P). 

It is important to observe that the controller that imple- 
ments K may not be unique, for example, because F may not 
be unique. So, controllers that implement the same controlled 
behavior may have very different properties. 
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IV. THE CONTROLLED BEHAVIOR IMPLEMENTED B Y  THE 
CANONICAL CONTROLLER 

Consider, for a given plant Pruil E e"+', and for a given 
desired contmlled behavior, 2) E C" the associated canonical 
controllers. The first canonical controller is defined by 

with C,!anonical given by 

C,!a"onical := {c E e-(R, Re) 1 3 U E 'D 
such that (w,c) E Pr.11) 

In terms of kernel representations, C,!,,,,,,, is the manifest 
behavior (with c viewed as the manifest variable!) of 

d d d 
R ( ~ ) w  = M(-)c, dt D(-)U dt = 0 ,  

with D( $)U = 0 a kemel representation of 2). 
The second canonical controller is defined by 

with Ctanonia1 E Cc given by 

C:lsnonical := {c E Cm(R,Rc) I 3 U such that ( U ,  c )  E PrUn, 
and (u,~) E PrUii * U  E 2)). 

For h e a r  time-invariant differential systems there is little 
difference between these two canonical controllers. In fact, 

Lemma: C&onjcal E 6'. C:$nonicsl is non-empry if and 
only i fN  C 'D. rfN 

Proof: We first prove that C ~ , C Z  E C:anonical * c1 + 
cz E CZananonicd. Assume (c1, c2) E C:anonicd. Then there is 
w1 E B such that ( 2 ~ 1 ~ ~ 1 )  E 7Jruli. Therefore 
(w,ci + cz )  E Pruii 

=+ (w - wl) E 2) (since cz E C$nonjcal) 
=+ w E 2) (since 27 is linear). 

- I!  'D. then CAanonicd - Cc,,,i,,l. 

=+ (w - W I ,  c2) E 'Pfu,l (since Pruii is linear) 

Hence (c1,cd E C&,anonical * (CI + CZ) E C:anonical. 

(-w, -c) E Pr.11 * (w, c) E Pfd =+ w E 2) * -w E 'D. 

Next, observe that c E C~a,,,i,,, =+ -c E C&,nieal. This 
follows from 

This immediately implies that if C:anonical is non-empty, 
then 0 E C:ananonieal, and N G D. The latter is a consequence 
of w E N H (w.0) E Pruii =+ w E 'D. Hence C:'nonical is 
non-empty if and only N 2 'D. 

We now clinch the proof by showing that if N C 'D, then 

Then 3 w E 'D such that (U,.) E Pruprull. Assume now 
(U', c) E PruIi. Then 
(w' - w, 0) E Prupr,ll (since Pru1l is linear) 
=+ (w' - w) E N (by the definition of N, 
=+ (w' - w) E 'D (since N 
+ w' E 2) (since 'D is linear). 

- N 
C,!anonical - Ccanonical. To see this. assmle c E c,!a"o"icd. 

2)) 

Hence c E c:a"o"ic,,, m d  CA,,,ni,,l G c:a"o"id. 
The converse C~a,,,ic,, 5 C&,nical is obvious. 

This ends the proof of the lemma. 

Motivated by this lemma, we need henceforth only con- 
sider the first canonical controller CAanonical. Note that the 
canonical controller is well-defined even when 'D is not 
implementable. The question what controlled behavior is 
actually implemented by the canonical controller is settled 
in the following theorem. 

Theorem 2 Consider Pr,,ii E E"+' and V E 2". The 
controlled behavior implemented by the associated canonical 
controller C,!ano,nical E Cc is 

IK=N+'DDnPl 

with N the hidden and P the manifest plant behavior: 

fest w-behavior of 
Proof: The implemented controlled behavior is the mani- 

Pfdl : 

'Aanonical: 

R( ")w = A l (  ")c 
R ( ~ ) u  2 = M(,)c ,  j t  D($)v  = 0 

This has the same manifest w behavior as 
R( ,$)U = A l (  $)c, 
R ( z ) ( w  2 - w) = 0, D(&)v  = 0 

Now define w' = w - w, and obtain 

N :  R(g)w'  = 0 
'D n P : 
N+'DoP w = w ' + u .  

D( '2'  ,)w = 0, R( $)U = M (  $)c, 

This shows that indeed K = N + 'D n P 
The above theorem leads to the following corollary. It 

shows that the canonical controller always implements a 
desired controlled behavior, provided it is implementable. 

Corollary: The canonical controller implements 2) E 2' 
if and only if V is implementable, i.e. if and only if N 5 
2, c P. 

V. REGULAR CONTROLLERS 

Consider 23 E P. Then it is well-known (see [9], [4]) that 
the variables (wl, w2, .  . . , w.) in 18 allow a component-wise 
partition into free inputs and bound outputs. This input/output 
partition is put into evidence by the kernel representation 

with P,Q E R'x'[c], P square and det(P) # 0. In fact, 
the partition can even be chosen so that the transfer function 
G = P-lQ is proper. In this input/output partition of the w- 
variables, U, and y are not unique, but the number of input and 
output variables is invariant, i.e., this number is independent 
of the input/output partition, while the variables themselves 
are not. 

This leads to two maps m,p : C" 4 {0,1,. . . , w} with 
m(23) the number of inputs, and p(18) the number of output 
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variables in 23, and m + p = U. In terms of a kernel 
representation R(2 )m = 0 of B, p(23) = v - m ( B )  = 
rank(R). 

Recall that for a given plant PruIl E E"+' and a given con- 
troller C E Cc we defined the manifest controlled behavior 
K. In this section, we also need thefull controlled behavior 
Kfull G Pf,ll defined by 

Kruti := {(v,c) E Pfuii 1 c E C}. 
The controller C E Cc is said to be regular if the following 
relation holds 

Note that in a sense this means that the plant and the 
controller equations combined are independent of each other. 
It can be shown that a controller is regular if and only if it 
can actually be realized as a (possibly non-proper) transfer 
function from an output variable to an input variable in 
Pru,, for an inputloutput partition of c. In a very real sense, 
therefore, a controller is regular if and only if it can be 
viewed as an 'intelligent controller' that processes sensor 
inputs outputs into actuator inputs ([lo] for details). 

"'he question arises when a controlled behavior can be 
implemented by a regular controller. We shall call such a 
controlled behavior regularly implementable. It tuns out that 
regular implementability involves controllability [4, Chapter 
51. In fact, if P is controllable then every implementable K 
(i.e. N C K P )  is regularly implementable [IO], [2]. This 
result has recently been generalized to uncontrollable systems 
in [l]. Given a behavior P E 2.. we define Pcontrolla~le. the 
controllable part of P as the largest controllable sub-behavior 
contained in P. The main results on regular implementability 
obtained in these references are summarized in the following 
theorem. 

Theorem 3: Let P~"II E C'+', P , N  E 2" be the 
corresponding manifest plant behavior and hidden behavior 
respectively, and PControllable be the contmllable part of 
P.  X E C" is regularly implementable if and only if the 
following conditions are satisfied: 

I )  N E X c P 3  
2) K +?controllable = '7'. 
In particulas i f P  is controllable, then every implementable 
K is regularly implementable. Further; N is regularly im- 
plementable if and only if every implementable K E 2' is 
regularly implementable. 

Note that by definition, if K E Cw is regularly imple- 
mentable, then there exists a regular controller-that imple- 
ments K. This, however, does not mean that every controller 
that implements K is a regular controller. We shall now 
establish below a condition under which every controller is 
regular. As we shall see, this is an issue that depends solely 
on the plant, and not on the desired controlled behavior. In 
fact, unless every controller is regular, every implementable 

controlled behavior can be irregularly implemented (for ex- 
ample by the canonical controller). The condition is on the 
control variable plant behavior Pc E 2' defined as follows. 

I Pc := { c  I 3 w such that (w, c) E Pru,l}.] 

In other words, Pc is obtained from Pr,tI by eliminating w, 
and viewing the control variables c as the manifest variables. 

Theorem 4: Let Prutl E Cw+c be given, N E C" and 
P E 2" be the hidden and the manifest plant behaviors 
respectively, and Pc E 2' be the contml variable plant 
behavior Then every contmller C E Cc is regular if and 
only ifPC = P ( R , R c ) .  

ProoT: Let R($)w + M ( g ) c  = 0 be a minimal kernel 
representation of Pru,,. Note that P, = C-(R,R') is equiv- 
alent to R having full row rank. Suppose C E 2' is given 
by a minimal kernel representation C( $)c  = 0. Combining 
minimal kernel representations for PrulI and C leads to 

a kernel representation of Krull. 
(a: Suppose P, = Cm(R,RC), equivalently, that R has 
full row rank It follows that rank([:: gl) = rank(R) + 
rank(C) = rank([R MI) + rank([O C]).  Hence, the 
controller is regular. 
(only ifl: We need to show that if every controller is regular 
then P, = Cm(R,Rc). Assume, to the contrary, that P, # 
Cm(R, RC). This implies that R does not have full row rank. 
Then there exists an equivalent minimal kernel representation 
of Prutl of the form 

with RI  and 0 # M2 having full row rank. We see that 
the controller C E 2' with minimal kemel representation 
&($)c = 0 is a controller that is obviously not regular. 
This contradiction establishes that P, = Cm(B,WC). 0 

VI. REGULARITY OF THE CANONICAL CONTROLLER 

We now come to the issue of regularity of the canon- 
ical controller. The following theorem shows that P, = 
Cm(R,R') is a necessary and sufficient condition for 
C&,nical to be a regular controller. In other words, the 
canonical controller is maximally irregular: it is regular if and 
only if every controller is regular, and this does not depend 
on the desired controlled behavior that is being implemented 
by the canonical controller. 

desired 
controlled behavior K E 2", assumed implementable (N C 
K C P), and the associated canonical contmller C&ical E 
2'. The canonical controller implements K regularly if and 
only ifPC = Cw(R,Rc), 
Proof : (ifl: If Pc = Cw(!R,RC), then, by the previous 
theorem, every controller is regular. 

Theorem 5: Consider the plant PfuIl E 2"y+ci 
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(only 8: Without loss of generality, assume that Pf,ll has 
a minimal kemel representation of the form 

with RI and Mz of full row rank. Since N 2 E, E has a 
.minimal kemel representation of the form 

d d  
dt dt 

F(-)R1(-)w = 0 

Then, the following is a latent variable representation of the 
canonical behavior (with latent variable w). 

d d  
dt dt 

F ( - ) R ~ ( - ) v  = 0. 

Eliminating w from the equations of C:,,,,,, (and using the 
full row rank condition on R I )  yields a kemel representation 
of the canonical controller C,,, of the form: 

d d d 
dt dt dt 

M z ( - ) c = O  F(- )Af1( - - )c=O 

We see that C,, always repeats some laws of 'PfU11, namely 
the rows in Mz. Thus C,, is a regular controller only if the 
equation M z ( $ ) c  = 0 is absent from the equations of Prull. 

0 This is equivalent to 'Pc = C"(W, Rc). 

Recapitulating, we have shown that the following are 

1) Pc = Cm(R,Wc): the plant control variables are free: 
2) Every controller is regular; 
3) The canonical controller is regular. 
The condition P, = Cm(lR,IRc) is not particularly restric- 

tive. It is satisfied in the standard LQG-like setting, with 
additive 'noise' sjectively entering the observed output. 

VII. CONCLUSIONS 

equivalent for a plant behavior 'Prun E ,WC: 

The canonical controller is a very attractive idea, the 
controller par excellence that carries out internal model based 
&&king. We showed that it always implements an imple- 
mentable controlled behavior, hut that it is, unfortunately, 
maximally irregular. It is regular only if every controller 
is. One issue that is worth investigating in the future is the 
excessively large dynamic order of the canonical controller. 
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