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a b s t r a c t

Stress in daily life can lead to severe conditions as burn-out and depression and has a major impact on
society. Being able to measure mental stress reliably opens up the ability to intervene in an early stage.
We performed a large-scale study in which skin conductance, respiration and electrocardiogram were
measured in semi-controlled conditions. Using Learning Vector Quantization techniques, we obtained up
to 88% accuracy in the classification task to separate stress from relaxation. Relevance learning was used
to identify the most informative features, indicating that most information is embedded in the cardiac
signals. In addition to commonly used features, we also explored various novel features, of which the
very-high frequency band of the power spectrum was found to be a very relevant addition.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Daily life becomes increasingly stressful. While certain levels of
psychological stress help us perform optimally, prolonged expo-
sure to stressors can have severe effects on wellbeing. Chronic
stress is known to contribute to the development of, among
others, cardiovascular diseases [1,2] and has been found to con-
tribute to high societal costs. In the US, for example, it has been
estimated that job stress costs “over $300 billion annually due to
increased absenteeism, employee turnover, diminished productiv-
ity, medical, legal and insurance expenses, and workers’ compen-
sation payments” [3].

The fine balance between the positive effects of short term
stress and the detrimental effects of chronic stress on the one
hand, and an increasingly demanding society on the other hand,
indicate the need for assistance in balancing workload. Various
products are available to help regulate mental stress [4,5] includ-
ing various biofeedback systems. One such biofeedback method is
the stimulation of alpha-frequency brain waves, i.e., alpha neuro-
feedback [6]. Alpha brain waves are related to relaxation during
wake, and stimulation of these waves is known to increase
relaxation levels [7]. The effects have been studied in the lab quite
extensively, but only limitedly in circumstances that better reflect
daily life. The application of neuro-feedback in a consumer device
using the paradigm of music listening was researched [8] in a

double-blinded experiment with two types of control, as one aim
of a comprehensive study. The effectiveness of such methods can,
however, be further improved by providing them at the right
moment to the right people. To that end, an objective method of
measuring stress using easily and unobtrusively measurable phy-
siological parameters is needed. This lead to the second aim of the
aforementioned study: the development of such a method; which
is subject of the present manuscript.

Several studies have attempted to classify stress from physiolo-
gical measurements [9–14] using various classification techniques.
Among the more popular are Support Vector Machine (SVM) and
Artificial Neural Network (ANN) [15]. Learning Vector Quantization
(LVQ) is a relatively novel technique that has been applied success-
fully to a wide range of classification challenges [16], but rarely to
classification of affect, and to the best of our knowledge, not yet to
stress classification. The family of LVQ classification techniques use
prototypes that are defined in the same mathematical space as the
input data. The intuitive nature and ease of inspection give LVQ an
advantage over less open-box methods such as SVM and ANN. We
exploit this property of LVQ to gain new insights in the field
of mental stress detection, where further understanding of the
domain can help improve descriptive models [15].

In the present study, we set out to build classifiers to distinguish
stress from relaxation using the three modalities of Electrocardio-
gram (ECG), Galvanic Skin Response (GSR), and Respiration (RSP).
Moreover, we set out to explore the application of LVQ methods in
this domain. As a reference method we also apply SVM. We will use
these methods to explore their performance as affective classifiers,
to compare uni-modal and multi-modal classifiers in order to find
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out which signal is most rich in information to distinguish stressful
reactions and to investigate how individual features contribute. In
the following, we will first create an overview of published affective
and stress classifiers, then we describe the methods used, followed
by results, discussion and conclusion.

2. Affect and stress classification

Whereas there are multiple definitions of stress that differ in
various subtleties, an often used definition is that of Lazarus &
Folkman: “Psychological stress is a relationship between the
person and the environment that is appraised by the person as
taxing or exceeding his or her resources and endangering his or
her well-being” [17]. Stress can be measured through a variety of
physiological signals, among which Skin Conductance (SC), Skin
Temperature (ST), ECG, Blood Volume Pulse (BVP), Blood Pressure
(BP), Electroencephalogram (EEG) and Electromyogram (EMG)
[15]. Because emotions and other affective states can also be
measured using these signals, it is worth positioning our work in
the light of other affective classifications as well.

Table 1 shows a snapshot of ten affect classification studies
from physiology. It can be seen that a variety of physiological
modalities is used as input, various techniques are applied and a
variety of target classes are used. Because the number of classes,
number of participants, prior probability of classes and methods
used for validation vary between these studies, their performance
cannot be compared directly. Nevertheless one can observe that
there is room for improvement in terms of performance, which
ranges between 61% and 86%, with the majority of performances
between 70 and 80%.

Table 2 shows a detailed overview of studies that specifically
classify mental stress. We observe that the performances reported
are slightly higher than those reported for other affective states
(Table 1). We observe that most studies report ‘ordinary’ cross
validation in which data of participants is shared over training and
test set, only a limited number of studies report participant-wise
cross validation results in which participants are strictly separated
over training and test set (i.e., no data of test-participants is used
for training). The latter is generally more difficult than the former,
which becomes also apparent in the performances in Table 2, but
does better reflect the generalization performance (i.e., perfor-
mance of the method for unseen users).

The study of Healey and Picard [9] provided an exceptionally
high performance of 97%. It should, however, be noted that their

study is limited in the number of participants used (13) as well as
using only one task for each stress level. Therefore, the high
performance they obtained is likely biased by the specific set of
participants and might reflect distinctions between the tasks
rather than the stress levels. In general, we observe that the
number of participants used in the studies is relatively limited: the
studies included data from 3 to 32 participants. In our study we
gathered data from more participants to have a more representa-
tive set of participants. We repeated measurements in 15 sessions
to introduce temporal effects and environmental changes in the
dataset that happen in daily life and influence the physiological
measurements. Furthermore, we use multiple stressful tasks to
induce more variety to better represent stressful situations in
daily life.

Sharma and Gedeon [15] made an extensive inventory of
various aspects of stress detection. They conclude that “Models
developed to date that describe stress are quite simplistic. Gen-
erally, established techniques such as ANN and SVM have been
used to model stress. Novel or more complex computational
techniques are needed for stress models”. We believe that the
application of LVQ classifiers can be such a novel computational
technique and help gain more direct insight into the stress
classification challenge and thereby provide valuable input to
develop models that describe stress.

3. Method

The experiment performed to obtain the data that will be used
in the analysis that is subject of this work is further described in
[8]. The following sections describe the most important details.
The current problem is defined as a binary classification problem
in discerning stressful from relaxation episodes from human
physiological signals. Stressful episodes were operationalized as
various mentally demanding tasks, relaxation episodes were
operationalized as listening to favorite music. Human physiologi-
cal signals entail the following modalities: ECG, GSR and RSP.

3.1. Participants

Participants were recruited by means of a website that
explained the procedures involved in the research in great detail.
A total number of 171 persons indicated on the website that they
wanted to participate in the research. 110 persons either did not

Table 1
Review of ten machine learning studies employing different physiological signals to recognize various affective states.

Reference Modalitiesa Ssb Feat.c Technique Targets Perfd (%)

Sinha and Parsons [18] M 27 18 LDA 2 emotions 86
Picard et al. [19] C, E, R, M 1 40 LDA 8 emotions 81
Kim et al. [20] C, E, S 175 SVM 3 emotions 73
Lisetti and Nasoz [21] C, E, S 29 kNN, LDA, ANN 6 emotions 86
Rani et al. [22] C, E,S, M, P 15 46 kNN, SVM, RT, BN 3 emotions 86
Kim and André [23] C, E, M, R 3 110 LDA, EMDCe 4 emotions 79
Chanel et al. [24] C, E, R 11 18 3 emotions 66

B 18,720 3 emotions 73
B, C, E, R 18,738 3 emotions 70

Hosseini et al. [25] C, E, R 15 38 SVM 2 arousal levels 77
B 15 21 LDA, SVM 2 arousal levels 85

Van den Broek et al. [26] E, M 21 10 kNN, SVM, ANN 4 emotions 61
Katsis et al. [27] C, E, M, R 10 15 SVM, ANFIS 4 affect states 79

a Abbreviations used: B, Brain activity (EEG); C, Cardiovascular activity (e.g., ECG and BVP); E, Electrodermal activity (EDA); M, Electromyogram (EMG); P, Blood pressure;
R, Respiration; S, Skin temperature

b Number of subjects.
c Number of features.
d Performance (accuracy).
e A tailored ensemble of binary classifiers.
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follow up on our request, turned out to be unavailable at the time
of the research, or decided to cancel their participation. The
remaining 61 (20 male, 41 female) provided written informed
consent. Their age ranged from 18 to 28 years (mean 21.2 years).

3.2. Design and procedure

Each participant returned 15 times within a period of 4 weeks
for a session during which their physiology was measured. The
sessions took place in a normal office room, in which each
participant was seated in a comfortable reclining chair in front
of a small table with a laptop on it. There were five such chairs and
tables with laptops in the room, separated by wooden partitions,
so that 5 participants could be trained at the same time by a single
experimenter. The whole session was automated as much as
possible. The experimenter supervised the sessions, and only took
action in case something was wrong (usually bad electrode
contacts, which were automatically signalled).

A training session on a particular day always consisted of the
same sequence of tasks. After the signals were determined to be
valid, a baseline measurement of five minutes rest with eyes
opened was recorded, followed by 5 min with eyes closed. After
that, 3 relaxation intervals of 8 min duration were interspersed by
cognitive tasks lasting about 5 min each. The sequence of tasks are
graphically represented in Fig. 1. The (fixed) sequence was: Flanker
task, relaxation 1, Stop-signal task, relaxation 2, Stroop task,
relaxation 3, N-back task. During the relaxation intervals subcon-
scious neuro-feedback was provided in three different ways, two
of which are control conditions.

The interleaved task sequence was chosen for several reasons.
First, it represents daily life stress, secondly it enhances changes in
stress level which are particularly of interest for practical applica-
tions, and thirdly it provides a platform to test the relaxation effect
of neuro-feedback.

3.2.1. Relaxation with Neuro-feedback
The participants were given a set of headphones that they used

for listening to their favorite music. Participants could either bring
their own music for that particular day on an MP3 player, or they

could select that day's music from a playlist containing thousands
of songs from various artists. There was no limitation to the kind of
music participants could listen to. Categories included genres like
hard rock, easy listening and classical music.

As one part of this comprehensive study, the effects of neuro-
feedback on relaxation were studied [8]. To that end, three
conditions were used: alpha training and two types of controls,
where one applies the same stimulation but at different (beta)
frequencies that are not associated with relaxation and another
control type where no stimulation is performed. Note that the
stimulation was performed in a very subtle manner, as is described
in the next paragraph, uses exactly the same setup over the three
conditions, and has no direct effect on the peripheral physiological
measurements taken (see Section 3.3).

Table 2
Review of machine learning studies employing different physiological signals to recognize stress.

Reference Modalitiesa Ssb Technique Targets Val.c Perfd(%)

Healey and Picard [9] C, E, R, M 9 LDA 3-level CV 97
Zhai et al. [10] E, C, O 6 SVM (linear kernel) 2-class CV 57

SVM (RBF kernel) 60
SVM (sigmoid kernel) 80

Zhai and Barreto [11] E, C, O, S 32 SVM 2-class CV 90
C, O, S 90
E, O, S 90
E, C, S 61
E, C, O 89

Choi and Gutierrez-Osuna [12] C, R 3 Unspecified 2-class CV within pp 83
pp-wise CV 69

Wijsman et al. [13] C, R, E, M 21 Linear Bayes Normal 2-class CV 78
Quadratic Bayes Normal 78
kNN 76
Fisher's Least Square 79

Giakoumis et al. [14] E 24 LDA 2-class CV 83
C 74
E, C 95
E, C pp-wise CV 86

a Abbreviations used: B, Brain activity (EEG); C, Cardiovascular activity (e.g., ECG and BVP); E, Electrodermal activity (EDA); M, Electromyogram (EMG); O, Ocular
Response (e.g., Pupil diameter); P, Blood pressure; R, Respiration; S, Skin temperature.

b Number of subjects.
c Type of validation.
d Performance (accuracy).

Fig. 1. Schematic outline of the experiment.
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The participants were randomly assigned to one of three
groups: alpha training (A), random beta training (B), or control
(C, music only); which was used for all sessions for this partici-
pant. Participants in group C listened to unaltered music, the
music for the other two groups was altered by a high-pass filter of
which the cut-off frequency was dynamically chosen. The cut-off
frequency was adapted at real time based upon the frequency
spectrum of the participants' EEG. To that end, the power in a
target frequency range is calculated as relative to the total power
(i.e., the power in the range 4–35 Hz). The higher this relative
power, the lower the cut-off frequency was chosen. The resulting
effect is that lower (relative) power in the target frequency bands
causes the low frequencies of the music to be filtered out, while
high (relative) power in the target frequency will pass the music
without much change (in the lower music frequencies). The target
frequency ranges in the EEG spectrumwere chosen as follows: The
range for group A was based upon the power of alpha waves
(8–12 Hz), and for group B it was based upon beta waves
(a randomized 4 Hz bin in the range 16–36 Hz). The alpha training
was expected to increase relaxation while the other two types
were not expected to have any effect on relaxation. These
expectations were confirmed by Van Boxtel et al. [8].

From the 61 participants, 50 completed all training sessions
(and without technical problems). The participants were distrib-
uted over the three groups as follows: A (alpha training): N¼18
(12 female; mean age 20.771.8 years); B (random beta training):
N¼12 (9 female; mean age 20.671.5 years); C (control, music
only): N¼20 (15 female; mean age 21.072.1 years). Further
details on the neuro-feedback training can be found in [8], the
present study focusses at the stress and relaxation aspects of
this study.

The mentally demanding tasks are further detailed in the
following, taken from the study protocol [28].

3.2.2. Stop-signal task
“The stop-signal task basic choice reaction time task. A green

triangle (0.050 of screen width) on a black background is pre-
sented on the computer screen. Subjects have to indicate as fast as
possible the direction of the triangle. For a triangle to the left,
subjects press the most left button of a button box and when it
points to the right, the most right button has to be pressed. In one-
third of the trials the green arrow becomes red for 100 ms and no
answer has to be given, as depicted in Fig. 2. When subjects are
able to stop their response, the next time the stop signal will be
given 50 ms later to make it more difficult. When subjects give a
response despite the presence of a stop signal, the signal appears
the next trial 50 ms earlier to make it easier for the subject to stop
the response. The task starts with a stop signal delay time of
250 ms and depending on the reaction of the subject, the stop
signal delay time changes. Logan and colleagues [29] fitted
performance on this task in a formal model. The present task will
use staircase tracking of response rate to arrive at 50% of success-
fully stopped trials, which is an optimal value for estimating
inhibitory efficiency (Stop Signal Reaction Time (SSRT)). After

one trial was finished, a fixation cross of 0.004 of the screen width
appeared between 1 and 2 s on the screen before the next trial
started” [28].

3.2.3. Stroop task
“The computerized version of the Stroop Color Word Test

(SCWT) [30] is used as a measure of executive functioning. In
the Stroop task, subjects have to indicate whether the meaning of
a word is the same as the color of which another word is printed
in. Both words are not presented at exactly the same time to make
it more difficult for the subject. In our version of the Stroop task,
both words are printed above each other and the first word is
presented 150 ms before the other word. In the case of Fig. 3, the
word “geel” is presented 150 ms before the word “rood”. Both
words are visible during 500 ms. In this period, subjects have to
indicate whether the color of the upper word is the same as the
meaning of the lower word. This requires inhibition of the
automatic response to read the color word [31]. Hence, this test
is considered a measure of ’disinhibition’ and it generally has high
reliability [32].

In the example, the color of the word “geel” is red and the
meaning of the lower word is red, so the trial is correct. When the
color and color name correspond subjects press with their index
finger the ‘yes’-button, if not, they press the ’no’-button. Whether
the right or left index finger will be used for the yes and no
response is counterbalanced between sessions. Congruent trials
are trials in which the color of the upper word is the same as the
meaning of this word. For example, the word “Blue” is written in
blue ink and it means blue. When the color of the upper word is
not the same as its meaning, the trial is called incongruent. In our
experiment, four colors and the corresponding color names are
used, namely red, yellow, blue and green. However, also the sign
“XXXX” is used as an upper word. The expectation is that subjects
will make fewer mistakes when “XXXX” is used as the upper word,
because this word has no meaning and therefore subjects only
have to deal with the color and not the meaning of the word. To
keep between trials the attention of the subjects, a fixation cross
with a variable duration between 1 and 2 seconds is presented on
the computer screen. The duration of the fixation cross is variable
to prevent a fixed rhythm of predicting and answering to the
stimulus.” [28]

3.2.4. N-back task
“The N-Back task is a working memory task, introduced by

Kirchner [33], and requires subjects to decide whether each
stimulus in a sequence matches the one that appeared N items
previously. For example in a 3-back task subjects have to decide
whether a letter currently presented on the screen is the same as
three letters earlier. Our version of the N-back task is a 2-back task,
meaning that subjects should decide whether the letter on the
screen was the same as two letters ago. The used test set consists
of 8 letters, namely B, F, K, H, M, Q, R and X. We decided not to use
vowels to prevent the formation of words, which are more easily
remembered than single letters. Furthermore, we use letters who
are spatially different to be sure that when subjects make an error,

Duration at 
least 50 ms. 100 ms

Start EndStop signal

Fig. 2. Example of a Stop-signal task. The trial starts with a green arrow that
depending on the subject's performance is green for a certain amount of time (at
least 50 ms). After this time, the stop signal is initiated and the arrow becomes red
for 100 ms. This is followed by a green arrow that marks the end of the trial. It is
the aim of the task that subjects do not give a response when the arrow becomes
red. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

150 ms 500 ms 1000-2000 ms1000-2000 ms

Fig. 3. An example of an incongruent matching trial in the Stroop task. The word
“geel” means yellow but is written in red ink, so it is incongruent. The upper word
is presented 150 ms before the lower word. Both words are visible during 500 ms.
Between trials, a fixation cross with a duration between 1 and 2 s is presented on
the computer screen. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)
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it is caused by the difficulty of the task and not by confusion
whether a letter was a V or W for example. Each letter will be
presented for half a second on the computer screen. Between the
end of a stimulus and the beginning of the next one, a fixation
cross appeared on the screen. Except the 2-back trials, also lure
trials were included in the task, such as depicted in Fig. 4. These
were trials in which the trial was 1-back or 3-back. When a trial
was 2-back, subjects respond to the target by pressing the ‘yes’
button with their index finger. Whether the right or left index
finger has to be used for the yes response is counterbalanced
between sessions.” [28]

3.2.5. Flanker task
“The Eriksen Flanker task [34] is a basic choice reaction time

task. In the task, five horizontally aligned arrows (size arrows:
0.050 of the screen width, space between arrows: 0.050 of the
screen width) are presented on a 15 in computer screen (resolu-
tion 1440�900 pixels, refresh rate 60 Hz) and subjects have to
indicate the direction of the middle arrow (see Fig. 5). Subjects can
indicate this direction with a button box of which the most left
button is pressed for an arrow pointing to the left and the most
right button for an arrow pointing to the right. The two arrows on
the left and right side of the middle arrow are flanker arrows and
presented 150 ms before the middle arrow. These arrows are
meant to distract the subject. The four flanker arrows always
point in the same direction to the left or right. In this way, two
situations can occur, namely that the flankers point in the same
direction as the middle arrow (congruent) or that the flankers
point in the opposite direction of the middle arrow (incongruent).
The middle arrow with flankers will be present for 500 ms. After
this period, a fixation cross (0.004 of screen width) appears at the
same position as the middle arrow, namely in the center of the
screen. To prevent that subjects learn when the next trial will start,
the duration of the fixation cross will vary between 1 and 2 s.” [28]

For the classification analysis described in the Section 3.4, we
selected the data gathered during the three relaxation tasks and
the Stop-signal, Stroop and N-back tasks (as mentally stressful
tasks). We did not include the Flanker task in the analysis as it
turned out that participants were able to master the Flanker task

very well after only a few attempts, thereby strongly reducing the
mental stressfulness of the task in subsequent sessions. After each
task the participants were asked to rate their level of stress vs
relaxation on a visual analogue scale. Effectiveness of the induc-
tion of stress vs relaxation was tested by applying an ANOVA with
repeated measures to these reported levels of stress.

3.3. Measurements

GSR was recorded from the left index finger, ECG was recorded
from an electrode placed on the left wrist, and RSP was measured
using a chest belt with stretch sensor. The signals were sampled at
a rate of 1024 Hz (ECG), and 256 Hz (GSR, and RSP) by a 24 bit A/D
converter on a Nexus-10 portable device (MindMedia B.V., The
Netherlands).

For each participant there were 15 sessions scheduled totalling
915 (¼ 61n15) sessions, of which 46 were discontinued due to
technical problems or unconformity of participants, yielding 869
sessions. Due to bad signal quality (e.g., signals out of range of the
measuring equipment) we further excluded, 96, and 121 sessions
for GSR and RSP respectively, resulting in 772, and 748 sessions
from analyses for these signals. No ECG sessions needed to be
excluded. In total 662 sessions contained valid signals for all
modalities. Fig. 6 depicts the data selection (or exclusion)
schematically.

3.3.1. Preprocessing & feature extraction
The steps taken during preprocessing and feature extraction

are schematically depicted in Fig. 7. As a first step of preproces-
sing, the signals were downsampled to 512 Hz (ECG), and 128 Hz
(GSR, and RSP). Subsequently, signals were analyzed through the
following dedicated preprocessing methods:

ECG preprocessing consisted of the following steps (as outlined
in [35]): R-peak detection, IBI outlier removal, and Heart Rate
Variability (HRV) analysis. R-peak detection was performed using a
pattern matching technique [36]. The resulting intervals between
the R-peaks, called Inter-Beat Intervals (IBI), are filtered for outliers
by using a sliding window histogram. In order to estimate
frequency domain HRV features, an Autoregressive-Moving Aver-
age (ARMA) time series model was used to derive power in the
frequency bands defined in the HRV guidelines paper [37], ranging
from 0.04 to 0.15 Hz, which is known to vary with parasympa-
thetic nervous system activity [38]. Next to the frequency domain
HRV features, a variety of time domain HRV features is calculated,
given that no ’golden standard’ for HRV has been defined [39], as
well as several features based on plain IBIs.

GSR was preprocessed using the SCRGauge method described
in [40] which first subsamples the GSR signal to 1 Hz, uses cubic
splines interpolation followed by a dedicated local maximum

Fig. 5. Stimuli used in the Flanker task. The two arrows on the left and right side of
the middle arrow are the flanker arrows and presented 150 ms before the middle
arrow appears. The arrows are white and presented on a black background.
Subjects have to indicate the direction of the middle arrow. (a) Congruent situation.
The flanker arrows point in the same direction as the middle arrow. (b) Incongruent
situation. The flanker arrows point into the opposite direction of the middle arrow.

Fig. 6. Schematic outline of the data selection/exclusion process. Left branches
show exclusion, and right branches inclusion of sessions.

Fig. 4. An example of a sequence of letters in the N-back task. The last X matches
the letter that was presented two items ago (X) and is therefore a 2-back. In this
case subjects have to press the “yes”-button on the button box, indicating that it
was a 2-back. The letter B on the fourth position of the sequence is the same as the
first one and is an example of a 3-back lure trial.
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detection which is triggered by exceeding a certain gradient.
Backward and forward searches are subsequently applied to detect
the onset of Skin Conductance Responses (SCRs), and half recovery
times. The raw GSR signal was used to derive several Skin
Conductance Level (SCL) features from, the extracted SCRs to
derive SCR features from, and from the residual signal that resides
after subtracting SCRs from the raw signal, using the technique
described in [41] we derived features that represent purely the
tonic part of GSR.

RSP signals were first lowpass filtered (cut-off 0.5 Hz) and then
analyzed for individual breaths. Using a localized min/max filter
[42], local minima and maxima are detected. When found in the
right order, they characterize a single breath. Based upon the
distribution of identified breath amplitudes in a signal, too small
or too large breaths (outliers) are removed. After this preproces-
sing the RSP signal is characterized by a sequence of breaths
similar to the IBI signal for ECG.

All features have been calculated over equal length time
intervals in order to avoid bias in duration dependent features
(such as standard deviations) towards certain tasks. To this end,
the first 5 min (which is the minimal duration of tasks) of
measured signals from each task was taken to derived the feature
values. A complete overview of extracted features can be found in
Table 3. The specific features have been chosen such that they
express the dynamics known to be relevant [43–45] as they are
modulated by the Autonomous Nervous System (ANS) that
responds to stress. From this large set of features, we compiled a
subset of features representing the most often used features in
literature (inspired by the list in [46]). They are marked with an
asterisk in Table 3. In order to combine the data gathered from the
different physiological signals to be used by a single classifier, we
applied feature level fusion.

As highlighted in [47], there are many different techniques for
normalization. In addition to the choice of which correction
formula to use, the choice in defining the baseline period, there
is also the choice of correcting on signal or feature level. The aim of
normalization is to reduce the variance that occurs due to
differences in physiology between participants, but also the
long-term changes in physiology over time within participants,
e.g., due to differences in physical fitness or the environment (such
as temperature and humidity) [48,49]. We have chosen for
z-correction, a technique that compensates both for baseline level
and variation, and is not too sensitive to outliers. Rather than
applying the correction to the raw signals (which would only
make sense for the skin conductance level), we apply it to the
features derived, and we use the entire recording (all tasks) as
reference signal, as suggested for e.g., SCR amplitude in [48,49].

Hence, after computing the features per task, we applied z-
correction (xcorr ¼ ðx�μÞ=σ) to compensate for differences in
physiological baselines between people and sessions. In this
formula, μ represents the mean of a feature's values over all tasks
within a single session (for a single participant), and σ the
respective standard deviation.

3.4. Classification analysis

In order to answer our research question of discerning stress
from relaxation using physiology as input, we applied a selection
of classifiers and further optimized their parameter settings using
data from the individual physiological modalities (GSR, ECG and
RSP) as well as the combined multi-modal datasets consisting of
pairwise combinations of modalities as well as all modalities
combined. Finally, we used the trained LVQ classifiers to derive
which features were most influential in distinguishing stress from
relaxation.

Learning Vector Quantization (LVQ) comprises a family of
classifiers that is of open box nature, that is, they provide direct
insight into the information learned by the classifier. LVQ, initially
proposed by Kohonen [50], defines prototypes wT ARN in the
same (mathematical) space as the data (samples ξARN) to
represent the classes. These prototypes are directly interpretable
as they show characteristics of classes in terms of the features
chosen. During training, samples are presented sequentially, and
for each sample the closest prototype(s) are updated by moving
them towards or away from the presented sample. Several variants
have been proposed, amongst which Robust Soft Learning Vector
Quantization (RSLVQ) [51], which introduces soft prototype
assignments which act similarly to a soft window around the
decision boundary [52], and Generalized Matrix Learning Vector
Quantization (GMLVQ) [53], which introduces relevance learning.
Where typically in LVQ squared Euclidian distance, i.e.,
dðξ;wT Þ ¼ ðξ�wT Þ> ðξ�wT Þ, is used to measure distance between
a data sample ξ and a prototype wT indexed by T, GMLVQ uses
pairwise weighing of the distance components through the
following distance measure: dΛðξ;wT Þ ¼ ðξ�wT Þ>Λðξ�wT Þ. The
relevance matrix ΛARN�N is trained along with the prototypes
during the training phase and can be interpreted as a relevance
matrix that indicates per pairwise combination of input dimen-
sions how relevant they are to the classifier. To allow for regular-
ization through the parameter MrN, we define Λ¼Ω>Ω, with
ΩARM�N . For further details on the GMLVQ algorithm, we refer to
Schneider et al. [53].

We have trained GMLVQ both with 2�N and 5�N sized
relevance matrices Ω, but since we observed identical perfor-
mances, we will only report results of 2�N sized Ω. We will
present results for RSLVQ and GMLVQ using one prototype per
class as using more prototypes per class did not improve the
results. In addition, we apply SVM [54], a very popular technique
in this domain of biomedical engineering. Next to linear SVM (of
type C-SVM), which will be reported in the results, we also applied
SVM with an Radial Basis Function (RBF) kernel, which however,
did not improve upon the results. Hyper-parameters were opti-
mized per method per parameter set using grid search.

3.4.1. Cross validation
In order to estimate generalization performance, we employed

a cross validation scheme. Because physiological data shows large
variation between participants [55,48,49], the most applicable, but
also most challenging classification task is to separate training and
test data not only per sample, but per subject. Hence we used 10
fold participant-wise cross validation, which divides the set
of participants tenths and repeatedly uses data from 90% of

Fig. 7. Schematic overview of the feature extraction process.
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participants for training and the rest for testing. The results
reported are means and standard deviations over 10�10-fold
participant-wise cross validations. In addition to the participant-
wise cross validation, we also performed ‘ordinary’ cross valida-
tion in which data of single participants can be split over both
training and test set, thereby leaking some information from
‘training participants’ to the test set.

4. Results

Per participant, we have 15 sessions comprising 3 repetitions of
2 tasks, one operating in a stress condition and one operating in a
relaxation condition. As dependent variable, we asked participants
to report stress level using a visual analogue scale from zero to one
(mean for relax condition: 0.29; for stressful condition: 0.38). It is
evident that mean reported stress levels are derived from same
participants measured in different sessions, repetitions and tasks,
not from different participants. This refers to a within-subject or
repeated measure design for statistical analysis. To demonstrate the
induction of stress by means of mental and relaxation tasks, the aim
of the analysis is to reject the null hypothesis of no difference in
mean ‘reported stress level’ between stress conditioned tasks and
relaxation conditioned tasks. We conducted an ANOVA with
repeated measures with ‘reported stress level’ as dependent vari-
able, and session (15), repetitions (3) and tasks (2) as within-subject
independent variables. Missing values in reported stress levels were

dealt with by means of case-based exclusion. We found a significant
main effect for tasks (Fð1;36Þ ¼ 38:3, po0:001) allowing us to
reject the null hypothesis of no difference in reported stress levels.

Table 4 shows the means and standard deviations per task for a
selection of features. They indicate, e.g., that the number of SCRs
observed in the relaxation tasks is generally lower than in the
mentally stressful tasks, as is the average SCL, respiration rate and
amplitude. The heart rate variability, measured e.g. through IBI
Root Mean Square of Successive (RMSSD), is generally higher in
the stressful tasks. Within the mentally stressful or relaxation
tasks the three subtasks show similar feature values.

The classification results are shown in Table 5. It can be observed
that the performances are very similar over different classification
techniques. Comparing the single modalities, the classifiers perform
best on ECG, followed by GSR and RSP. Combining features from the
three modalities improves performance, and adds an additional
3.5 percentage points on top of the performance obtained using
only ECG features. This, however, only when including more than
just the set of commonly used features. For the richest data set
covering all features, GMLVQ performs best with just under 87%
accuracy. Using ‘ordinary’ cross validation, performance is slightly
higher with accuracies up to 88%.

The diagonal elements of the relevance matrix trained by GMLVQ
indicate relevance of individual features to the classifier's decisions.
Fig. 8 shows these relevances and indicates that most informative
features come from the ECG modality, followed by GSR and RSP. The
most important individual contributions come from the time domain

Table 3
Features extracted from the raw and preprocessed signals.

ECG IBI min Minimal IBI
IBI max Maximal IBI
IBI meana Mean IBI
IBI stda Standard deviation of IBIs, also referred to as SDNN
IBI amp Amplitude of IBIs (max–min)
IBI power VLFa Power of IBIs in very low frequency band ((0–0.04 Hz)
IBI power LFa Power of IBIs in low frequency band (0.04–0.15 Hz)
IBI power HFa Power of IBIs in high frequency band (0.15–0.4 Hz)
IBI power VHF Power of IBIs in very high frequency band (0.4–1 Hz)
IBI power LHa Ratio between IBI power LF and HF
IBI RMSSDa Root mean square of successive differences of IBIs
IBI PNN50 Proportion of IBIs 450 ms
IBI SDSD Standard deviation of successive differences of IBIs

GSR SCL meana Mean SCL
SCL stda Standard deviation of SCL
SCL grad Gradient of SCL (estimated by best linear fit)
SCL min Minimal SCL
SCL max Maximal SCL
SCR freqa Number of SCRs per second
SCR max amp Maximal amplitude of SCRs
SCR mean ampa Mean amplitude of SCRs
SCR sum amp Sum of amplitudes of SCRs
SCR mean rise timea Mean rise time of SCRs
SCR mean rec timea Mean half recovery time of SCRs
SCR mean rise rec Mean ratio of rise time and half recovery time of SCRs
SCR mean rise amp Mean ratio of rise time and amplitude of SCRs
SCR mean rec amp Mean ratio of half recovery time and amplitude of SCRs
SCRc SCL mean Mean SCL after correcting for SCRs
SCRc SCL std Standard deviation of SCL after correcting for SCRs
SCRc SCL grad Gradient of SCL after correcting for SCRs (estimated by best linear fit)
SCRc SCL min Minimal SCL after correcting for SCRs
SCRc SCL max Maximal SCL after correcting for SCRs

RSP Mean ratea Mean respiration rate
Median rate Median respiration rate
Mean ampa Mean amplitude of respirations
Mean inhalation time Mean inhalation time
Mean exhalation time Mean exhalation time
Mean cycle Mean respiration time
Mean duty cycle Ratio between mean inhalation time and cycle
Mean inhalation exhalation Ratio between mean inhalation and exhalation time

a This feature is included in the commonly used set of features representing all modalities.
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HRV measures Standard Deviation of Differences (SDSD) and RMSSD,
followed by the frequency domain HRV measured by the power in
the Very High Frequency (VHF) range. The most influential GSR
feature is the minimum SCL and for RSP the mean rate.

5. Discussion

The classification performances for uni-modal stress classifica-
tion range from 71% for RSP, to 83.4% for ECG indicating that most
information can be found in the ECG signal. By combining these
three modalities the performance is further increased to 86.7% in
participant-wise cross-validation. Using ‘ordinary’ cross-validation
we obtained an accuracy of 87.7%. The performances when using
two out of the three modalities are better than unimodal perfor-
mances but lower than the performance when using three mod-
alities and confirm the finding that ECG contains most information
to which features from GSR or RSP can provide complimentary
information. Both LVQ methods we employed (RSLVQ and GMLVQ)
performed well and slightly outperformed the popular SVM, that
we included for reference.

With these accuracies, our methods outperform the affective
classifiers that are listed in Table 1. They also outperform the
participant-wise validated stress-classifiers in Table 2 as well as
most others using other cross validation schemes. In comparison
to other studies, we used data obtained from a larger number of
participants, and also repeated measurements for every partici-
pant in 15 sessions spread over several weeks. Thereby, we used a
more representative sample of participants and obtained reliable
estimates of generalization performance.

The most important feature was found to be the RMSSD.
Although it reflects high frequency modulation of heart rate that,
in general, is affected by Respiratory Sinus Arrhythmia (RSA),
RMSSD has been shown to be unaffected of breathing [56]. The
second most influential measure was the related SDSD. The
Proportion of IBIs 450 ms (PNN50) that correlates with RMSSD
[45], was also identified as quite relevant. It is worth noting that
the two most influential features (RMSSD and SDSD) have been
found earlier to be most reliable measures for short term intervals
[57], i.e., in the order of 5 min, which reflects the measurement
time in our experiments. The importance of various HRV measures
for distinguishing can be explained by the fact that they reflect
parasympathetic (HF power, RMSSD) and sympathetic (Low Fre-
quency (LF) power, Standard Deviation of IBIs (SDNN)) nervous
system responses which are known to relate to the fight-or-flight

Table 4
Statistics (means and standard deviations) per feature per task of non-normalized data. See Table 3 for explanation of the feature names used.

Feature name j Task Relax 1 Relax 2 Relax 3 N-back Stop-signal Stroop

SCR freq 0.02970.034 0.02970.036 0.03170.036 0.05770.057 0.05970.059 0.06270.063
SCL mean 2.04371.398 2.12271.454 2.18471.460 2.44771.537 2.30471.518 2.41671.554
SCL std 0.24870.201 0.24470.197 0.24270.193 0.21570.184 0.24070.209 0.23770.195
RSP rate 15.43273.827 15.08073.867 14.95173.877 16.30373.700 16.48873.391 16.39973.580
RSP mean amp 6.36774.755 6.45275.016 6.41974.978 6.94775.124 6.78175.114 7.04875.766
IBI mean 0.82570.112 0.83970.113 0.85370.116 0.84270.115 0.83570.113 0.83670.114
IBI RMSSD 0.05370.034 0.05770.039 0.06070.038 0.07370.056 0.07170.052 0.07170.050

Table 5
Generalization performance for the three classifiers on the five feature sets for both
cross validation schemes. The numbers listed are means and standard deviations
over 10x10-folds of validation.

pp-wise cross validation

SVM RSLVQ GMLVQ

RSP 71.0%70.2% 70.9%70.3% 71.0%70.3%
GSR 74.8%70.3% 74.8%70.2% 74.4%70.3%
ECG 83.2%70.1% 83.1%70.1% 83.4%70.2%
RSP & GSR 77.5%70.2% 77.6%70.2% 77.2%70.2%
RSP & ECG 85.2%70.2% 84.8%70.2% 85.4%70.2%
GSR & ECG 85.5%70.1% 85.2%70.2% 85.6%70.2%
RSP & GSR & ECG-selection 81.4%70.3% 81.6%70.3% 81.6%70.2%
RSP & GSR & ECG-all 86.6%70.2% 86.6%70.2% 86.7%70.2%

Cross validation
RSP 71.8%70.1% 71.6%70.1% 71.8%70.1%
GSR 75.3%70.1% 75.4%70.1% 75.0%70.2%
ECG 83.6%70.1% 83.5%70.1% 83.6%70.1%
RSP & GSR 78.4%70.2% 78.5%70.2% 78.2%70.1%
RSP & ECG 86.0%70.1% 85.8%70.1% 86.2%70.2%
GSR & ECG 86.0%70.1% 85.8%70.1% 86.2%70.1%
RSP & GSR & ECG-selection 82.7%70.1% 82.5%70.1% 82.6%70.1%
RSP & GSR & ECG-all 87.6%70.1% 87.7%70.2% 87.6%70.1%
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Fig. 8. Relevances trained by GMLVQ. For explanation of the feature names used,
see Table 3.
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response and dampening response, respectively [45]. Training
SVM and LVQ2.1 after removing irrelevant features, as identified
by GMLVQ, did not significantly increase performance. The reduc-
tion in noise, however did reduce training times.

Out of the frequency domain HRV measures VHF power we
found most influential. Many studies that include cardiac activity
as measure for stress only use features from the lower frequency
(up to HF) ranges and do not usually consider frequencies above
0.4 Hz. This might be due to various reasons. First, the mechanisms
that affect VHF power are not well understood. Second, higher
frequency ranges cannot be measured reliably through the most
commonly used modality BVP which has less sharp peaks, thereby
not allowing for a very accurate detection of heart beats which is
reflect particularly in inaccuracy in the higher frequencies of HRV.
Our use of ECG enabled the reliable use of VHF power as a measure
of stress.

We also inspected the prototypes trained by GMLVQ to verify
that the stress prototype, as compared to the relax prototype, is
characterized by higher heart rate and generally higher HRV
values with the exception of RMSSD. Especially for HRV there are
varying results published [58–60], which is confirmed by Bernt-
son and Caciopo, who observed that “it is clear that no single
pattern of autonomic adjustments and associated changes in
heart rate variability will apply universally across different
stressors” [61]. In our study we included three different stressors
to induce stressful situations, thereby creating more robustness
against this effect. Further, the stress prototype is characterized
by more SCRs, higher maximum SCL and faster, though deeper,
breathing. These findings are in line with observations made by
others [49,62].

6. Conclusion

We have successfully built classifiers of stress from three
physiological modalities and observed that the cardiac activity
made the strongest uni-modal classifier with over 83% accuracy.
Combining the three modalities into a multi-modal classifier
improved performance further up to 88% accuracy. By using data
from a large sample of participants and repeated sessions we
ensured good generalizability to unseen users. The LVQ techniques
slightly outperformed well-known techniques such as SVM. These
open-box methods allowed us to observe the most important
features for stress detection. These were the time domain HRV
measures RMSSD and SDSD. The third most important features
were found to be very high-frequency HRV from ECG. Most other
studies use BVP to measure cardiac activity, however that does not
allow for accurate VHF HRV measurements. Therefore it might be
advisable for methods that aim at stress detection to use ECG
rather than BVP as measurement modality of cardiac activity.

The classifiers built and the knowledge gained on important
features for the distinction between stress and relaxation using
physiological parameters have brought us one step closer to the
realization of a system that can monitor physiology during the day
and help its users to monitor their stressful moments during the
day. In case a certain quota has been reached or a stressful period
reaches a certain duration such a system could trigger the user and
offer a means to relief the stress, e.g., a paced breathing exercise [5].

While we have setup our experiments such that they represent
daily life as well as possible, the measurements were taken during
semi-lab circumstances. Future work should look into the applica-
tion of the developed classifiers in daily-life measurements and
observe their performance. This brings the challenge of reliable
ground truth measurements, however this might become more
and more feasible with the rapid development of various technol-
ogies such as Google Glass [63] that can capture context. It would

be interesting to expand the classifier to also be able to classify
other affective phenomena such as emotions and moods.
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