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Abstract

We propose a computational model of a simple cell with push-pull inhibition, a property that is observed in many real
simple cells. It is based on an existing model called Combination of Receptive Fields or CORF for brevity. A CORF model uses
as afferent inputs the responses of model LGN cells with appropriately aligned center-surround receptive fields, and
combines their output with a weighted geometric mean. The output of the proposed model simple cell with push-pull
inhibition, which we call push-pull CORF, is computed as the response of a CORF model cell that is selective for a stimulus
with preferred orientation and preferred contrast minus a fraction of the response of a CORF model cell that responds to the
same stimulus but of opposite contrast. We demonstrate that the proposed push-pull CORF model improves signal-to-noise
ratio (SNR) and achieves further properties that are observed in real simple cells, namely separability of spatial frequency
and orientation as well as contrast-dependent changes in spatial frequency tuning. We also demonstrate the effectiveness
of the proposed push-pull CORF model in contour detection, which is believed to be the primary biological role of simple
cells. We use the RuG (40 images) and Berkeley (500 images) benchmark data sets of images with natural scenes and show
that the proposed model outperforms, with very high statistical significance, the basic CORF model without inhibition,
Gabor-based models with isotropic surround inhibition, and the Canny edge detector. The push-pull CORF model that we
propose is a contribution to a better understanding of how visual information is processed in the brain as it provides the
ability to reproduce a wider range of properties exhibited by real simple cells. As a result of push-pull inhibition a CORF
model exhibits an improved SNR, which is the reason for a more effective contour detection.
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Introduction

Visual information is of great importance for humans and

animals. In macaques, for instance, 55% of the neocortex is

dedicated to process visual information [1], this is 5 to 20 times

more than the resources dedicated to any other sensory

information.

The study of [2–4] was the first breakthrough in the

understanding of neurons in area V1 of the visual cortex. They

distinguished three types of neurons that they called simple,

complex and hypercomplex cells. Their work inspired many

researchers to study and unveil the properties of other kinds of

neurons in the same and other areas of the visual cortex [5,6].

The visual cortex of the brain may be understood as being

organized in a hierarchy [7], which is composed of layers of

neurons that perform similar as well as varied operations.

Neurophysiologists have identified two main pathways that process

visual information, the so-called dorsal and ventral streams or as

they are referred to, the ‘‘where’’ and ‘‘what’’ pathways,

respectively. The dorsal stream is responsible for motion analysis

and spatial arrangement while the ventral stream performs,

essentially, object detection and recognition. The complexity of

neuronal selectivity increases when going up the hierarchy. For

instance, in the bottom layer of the ventral stream, neurons in area

V1 respond to bars and edges, as well as spatial frequency, color,

motion and disparity while at the higher end, neurons in area IT

respond to whole objects independently of changes in location on

the retina, stimulus size, contrast, color and aspect ratio (related to

deph rotation invariance) [8,9].

The ongoing findings of such neurophysiological studies have

been the inspiration to computationally simulate how visual

information is analyzed in the brain. During the last three decades,

this has been the focus of many research groups in the computer

vision community. Their work may not only contribute to more

robust techniques but also to achieve a better understanding of

how the brain processes visual information. Computational

neuroscience and modeling address the big questions in computer

vision by mimicking the human visual system as well as providing

a ground where to test hypotheses on how the visual cortex works.

In [10] the first approach was proposed to model some properties

of simple and complex cells of the type reported by Hubel and

Wiesel. Computational neuroscientists have been adding layers of

functionalities to that pioneering work. Some of those works

consist of modelling simple cells [11], as well as modelling

hierarchies of simple and complex cells [12]. Other works have

been adding new neural types and functionalities, such as the

addition of lateral connections for contour grouping [13,14] or

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e98424

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0098424&domain=pdf


neurons that are selective to shapes [15] to name a few among the

extensive modeling bibliography.

In this work we focus on neurons in area V1 that respond to

edges and bars. These neurons integrate responses of cells that

reside in the lateral geniculate nucleus (LGN), an intermediate

area between the eye and the visual cortex. In area V1, there are

three main types of neuron that respond to bars and edges,

referred to as simple, complex and hypercomplex neurons. A

simple neuron responds to a bar or an edge of a given orientation

at a specific position in its receptive field. A complex neuron is also

orientation-selective but its response is invariant to the location of

the preferred stimulus within its receptive field. It is usually

considered as integrating responses from simple neurons [3] or

LGN neurons [16]. Finally, hypercomplex (also known as end-

stopped) cells are sensitive to the terminations of edges or bars

[17].

The class of simple cells is the most studied type of neuron in

neurophysiology, their detailed properties are very well known

today. Besides orientation selectivity, they respond to gratings [5]

and exhibit an orientation bandwidth which is invariant to the

contrast of a stimulus. Another property that is typical of simple

cells is called cross orientation suppression. This means that if two

stimuli are presented at the same time, one of preferred orientation

and the other one of orthogonal orientation, the response of the

concerned simple cell decreases with increasing contrast of the

orthogonally oriented stimulus [18].

While the 2D Gabor function [11] has gained particular

popularity as a model of a simple cell, it fails to reproduce contrast

invariant orientation tuning and cross orientation suppression. A

novel computational model of a simple cell was proposed in [19],

called CORF (Combination of Receptive Fields), that exhibits

these two important properties. The authors demonstrated that

the CORF model outperforms the Gabor function model in a

contour detection task [20]. The response of that CORF model is

based on excitatory synapses by a collection of afferent model

LGN cells, the receptive fields of which are co-linearly aligned.

A CORF model takes as input the responses of a group of model

LGN cells with center-surround receptive fields that are aligned

along a row. The colinear arrangement of center-on receptive

fields on one side and in parallel to a similar colinear arrangement

of center-off receptive fields on the other side determines the

orientation selectivity of a CORF model simple cell. This is in line

with a recent exhaustive study [21], which found that the

geometrical arrangement in the visual space of population

receptive fields of geniculate inputs can predict the dominant

orientation and spatial phase preferences of the simple cells in a

cortical column. The response of a CORF model simple cell is

computed as the weighted geometric mean of afferent LGN input.

This AND-type operation follows the hypotheses of Hubel and

Wiesel [22] as well as Marr and Hildreth [23] in that a simple cell

fires only when all the afferent LGN cells with appropriately

aligned receptive fields are activated. While the biological

underlying mechanism is still an open research question, the

AND-type operation proposed in the CORF model turned out to

be essential to achieve contrast invariant orientation tuning and

cross orientation suppression, as they could not be reproduced by

an OR-type operation.

A classical receptive field of a simple cell is a region of the visual

field where the presence of a visual stimulus with preferred

contrast, size and orientation triggers the firing of the concerned

cell. For instance, a simple cell that is selective for a vertical edge

has a receptive field which is divided into two main areas,

vertically oriented and elongated, parallel to each other, called the

ON and OFF sub-regions. It fires when a vertical edge is within its

receptive field and the light and dark parts of the stimulus are

appropriately located on the ON and OFF sub-regions of the

receptive field, respectively.

In neurophysiology, it is well known that simple cells receive

what is called antiphase or push-pull inhibition [24–29]. A push-

pull response of a simple cell with classical receptive field is

achieved when two stimuli of preferred orientation but of opposite

Figure 1. Model of push-pull inhibition. (a) Model of a (top) simple
cell that receives excitatory or push input from model LGN cells with
appropriately aligned receptive fields, and an inhibitory or pull input
from another (bottom) cortical neuron that receives input from LGN
cells with receptive fields of opposite polarity. Shaded light and dark
gray areas indicate ON and OFF subregions, respectively, within the
receptive fields of afferent model LGN cells. The solid lines indicate
excitatory synaptic connections and the dashed line indicates an
inhibitory synaptic connection. (b) Preferred stimulus that evokes
maximum response to the concerned model.
doi:10.1371/journal.pone.0098424.g001

Figure 2. Receptive field and orientation selectivity. (a) The
receptive field structure of a CORF model cell (of size 30630 pixels). The
solid and dashed circles represent sub-units that take as input the
responses of center-on and center-off LGN model cells, respectively. (b)
and (c) show a closer look at two types of sub-units. The image in (b)
illustrates a sub-unit whose output is a Gaussian-weighted summation
of the responses of a pool of center-on DoG functions, while the image
in (c) illustrates a sub-unit that integrates center-off DoG responses. The
radius of each sub-unit is a function that grows linearly with the
Euclidean distance from the receptive field’s center of the CORF model
cell. (d) A synthetic stimulus (of size 1006100 pixels) of bright-to-dark
vertical edge and (e) the corresponding response image obtained by
sliding the CORF receptive field in (a) across all locations of the stimulus
in (d).
doi:10.1371/journal.pone.0098424.g002

A Push-Pull CORF Model of a Simple Cell
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contrast evoke responses of the opposite sign; the stimulus of

preferred contrast evokes a push (positive) response and the

stimulus of opposite contrast evokes a pull (negative) response.

Some simple cells are also known to have non-classical receptive

fields [30–33] which receive inhibition from their surrounding. In

[34] a computational model of a simple cell with surround

inhibition was proposed, which is based on Gabor functions.

A popular model of the push-pull response of a simple cell is

depicted in Fig. 1. While there is not yet explicit biological

evidence of the involved wiring it continues to receive strong

neurophysiological experimental support [24,26,34–40]. It consists

of a cortical neuron which receives excitation from a relay of

thalamic LGN cells with center-surround receptive fields of

preferred polarity, as well as inhibition from another cortical

neuron, which receives input from LGN cells with center-surround

receptive fields of opposite polarities.

There is neurophysiological evidence that push-pull inhibition is

the most dominant form of inhibition received by simple cells

[26,29,41–43]. This type of inhibition can be so strong that it may

completely suppress the activation of a simple cell [41]. While the

speculative feedforward push-pull model mentioned above has

been evaluated with experimental data in neurophysiology, to the

best of our knowledge, it has not yet been implemented as a

computational model and evaluated in contour detection, which is

assumed to be the biological role of simple cells.

We propose a push-pull CORF model of a simple cell with

anitphase inhibition that takes as input the responses of two

CORF model cells of the type proposed in [19], one with preferred

polarity and the other one with opposite polarity, and compute its

response as a function of the difference between their responses.

We explore whether a push-pull CORF model exhibits the

following two biological properties: separability of spatial frequen-

cy and orientation, and sensitivity of spatial frequency tuning to

contrast [44,45]. Moreover, we study the effectiveness of push-pull

inhibition with regards to signal-to-noise ratio and to a contour

detection application. We also compare this model with other

biologically and non-biologically inspired contour operators.

The paper is organized as follows. First, we present the push-

pull CORF model followed by experiments that demonstrate that

it exhibits important properties of simple cells. Then, we present

the experimental results in contour detection for two benchmark

data sets of images with natural scenes. Finally, we provide a

discussion about some aspects of the proposed model and draw

our conclusions.

Computational Model

Overview
Fig. 1 illustrates the main setup of the push-pull CORF model of

a simple cell that we propose. The concentric circles illustrate

center-on (light central region with a dark surround) and center-off

(dark central region with light background) receptive fields of

model LGN cells. We use the CORF model that was proposed in

[19] to model the colinear spatial arrangement of the receptive

fields of model LGN cells. Its response is computed as the weighted

geometric mean of the responses of the involved model LGN cells.

The upper group of center-surround receptive fields is aligned in a

colinear manner and with a polarity that is appropriate for the

preferred stimulus shown at the bottom. The lower group

corresponds to another CORF model which takes input from a

group of model LGN cells of opposite polarity. Its response

suppresses (or pulls) the excitatory (or push) response that is

achieved with a CORF model of preferred polarity. The combined

responses of these two model cells are then used to activate the

corresponding model simple cell.

Figure 3. Automatic adjustment of a CORF receptive field for a
given b value. The black and gray dashed circles represent the original
and the shifted receptive field, respectively, of a center-off sub-unit that
is described by tuple i in the concerned CORF model. The new polar
coordinates (r’i ,w’i ), with respect to the ‘+’ marker (receptive field center
of the CORF model at hand), are determined by shifting the polar
coordinates (ri,wi) along the x-axis by half of the given b value.
doi:10.1371/journal.pone.0098424.g003

Figure 4. Relationship between the separation index B of the
ON and OFF subregions of the receptive field of a CORF model
cell (see inset) and the response to the preferred oriented edge
and the orientation bandwidth at half amplitude. For b = 0 the
ON and OFF sub-regions are organized as depicted in Fig. 2a. In this
case, the concerned CORF model cell achieves maximum response with
an orientation bandwidth at half amplitude of 45u. The orientation
bandwidth increases and the response decreases with an increasing b
value. The value of b for which the response disappears depends on the
size of the pool - if it does not touch the edge, there will be no
response.
doi:10.1371/journal.pone.0098424.g004

A Push-Pull CORF Model of a Simple Cell
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In the following sub-sections we explain the implementation

details of the proposed push-pull CORF model.

Implementation
We denote by S a CORF model simple cell that is selective for

vertical edges, of the type shown in Fig. 2d, that we configure with

the trainable method proposed in [19].

S ~
deff(di,si,ri,wi)Di~1 . . . ng ð1Þ

where every four-tuple (di,si,ri,wi) represents the properties of a

pool of afferent model LGN cells, which we call sub-unit. We

model an LGN cell by a difference-of-Gaussians (DoG) function,

which has been evaluated many times in neuroscience as an

appropriate model LGN cell [46]. In particular, di represents the

polarity of the center-surround receptive fields (21 for center-off,

and 1 for center-on) of a pool of DoG functions, si represents the

standard deviation of the outer Gaussian function of the involved

DoG functions (the standard deviation of the inner Gaussian

function is half of that of the outer Gaussian function), and (ri,wi)
are the polar coordinates of the sub-unit’s center with respect to

the receptive field’s center of the concerned CORF model cell.

The response of a CORF model cell at location (x,y), which we

denote by rS(x,y), is achieved by combining the responses of the n
afferent sub-units by weighted geometric mean. This computation

is explained in detail in [19]. Fig. 2a illustrates the receptive field

structure of a CORF model cell and Fig. 2e shows the response

image that it achieves to the preferred stimulus shown in Fig. 2d.

The excitatory and inhibitory regions within the receptive field

of a simple cell may either overlap or be separated in the direction

orthogonal to the orientation preference of the cell [47]. We refer

to the orthogonal distance between a pool of center-on and a pool

of center-off model LGN cells as the separation index, which we

denote by B. We consider the receptive field structure that results

from the automatic configuration of a CORF model cell, such as

the one shown in Fig. 2a, to have a separation index B~E. Below

we study the properties of the model for values of the separation

index larger than E: B~Ezb.

From the set S that corresponds to B~E, we form a new set Sb

that defines another CORF model simple cell, which has the same

preference for vertical orientations but has a separation index

B~Ezb:

Sb ~
deff(di,si,r’i ,w’i)DV(di,si,ri,wi)[Sg ð2Þ

where r’i~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xizc)2zy2

i

q
, w’i~arccos(

xizc

r’i
), xi~ri coswi,

yi~ri sinwi, c~b=2 when xiw0 and c~{b=2 when xiv0.

Fig. 3 illustrates the geometrical relationship between one pair of

(ri,wi) and its counterpart (r’i ,w’i).
The value of the parameter b effects the strength of the response

to the preferred stimulus as well as the spatial frequency and

orientation bandwidth of the concerned CORF model cell; the

response to the preferred stimulus and the spatial frequency

decreases, while the orientation bandwidth increases with an

increasing value of b, Fig. 4.

We use set Sb to define a new CORF model cell ŜSb that is

selective for vertical edges with opposite contrast:

ŜSb ~
deff({di,si,ri,wi)DV(di,si,ri,wi)[Sbg ð3Þ

The receptive field of a CORF model ŜSb is in antiphase to the

one of Sb. Push-pull inhibition is the result of combining the

responses of two models, S (push) and ŜSb (pull), defined above. We

use a non-negative b value only for the inhibitory part in order to

achieve an orientation bandwidth that is broader than that of the

excitation, a property that is supported by neurophysiological

evidence [48,49].

We denote by Pb a push-pull CORF model simple cell and

define it as a pair:

Pb ~
def

(S,ŜSb) ð4Þ

For b.0 the inhibitory CORF model has a smaller spatial

frequency than the excitatory counterpart. An alternative way to

achieve a similar effect is to use an inhibitory CORF model that

has afferent model LGN cells with larger receptive fields (i.e. larger

s values) than those of the excitatory CORF model. We choose to

work with the parameter b because it provides more flexibility to

the model.

We compute the response of a push-pull CORF model cell at

location (x,y) by subtracting a factor of the pull response rŜSb
from

the push response rS , and denote it by rPb
:

rPb
(x,y) ~

def
rS(x,y){krŜSb

(x,y) ð5Þ

where the parameter k represents the pull strength of the

inhibition.

Push-pull inhibition and signal-to-noise ratio
In the following we investigate the effect of push-pull inhibition

on the signal-to-noise (SNR) ratio of computed neural responses.

Figure 5. Construction of band-limited noisy images. (a) A test
image (of size 1006100 pixels) is the sum of a (b) noiseless edge image
and (c) a noise image. The noise image is a superposition of a constant
value N (here N = 8) and 100 sinusoidal gratings of randomly selected
orientations for the same spatial wavelength w (here w = 9 pixels). (d)
The 2D spectrum of the noise image in (c). (e) Response map that is
obtained by CORF model cells (with or without inhibition) to the
preferred stimulus in (b). (f) A horizontal profile within the enframed
region in (e). The label b (here b = 3 pixels) indicates the number of
CORF responses at half amplitude along the horizontal direction, which
is the direction orthogonal to the edge orientation.
doi:10.1371/journal.pone.0098424.g005

A Push-Pull CORF Model of a Simple Cell
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For this purpose we compare the SNR values of the responses of

CORF models with and without inhibition to synthetic test

images.

We generate a test image by summing an image of a vertical

bright-to-dark edge with full contrast and a noise image, Fig. 5(a–

c). We use the method proposed by [50] to generate a band-

limited noise image as a superposition of a constant value N and

100 sinusoidal gratings of randomly selected orientations, all with

the same given spatial wavelength w. The rationale of using band-

limited noise is that it is particularly effective for masking of

contours due to the responses it elicits from orientation-selective

model neurons. We set the amplitude of the gratings as one third

of the given average noise luminance N. The resulting test image

has an edge contrast C defined as C = 1/N.

Fig. 5e illustrates the response map obtained by a CORF model

cell without inhibition to the preferred stimulus shown in Fig. 5b.

For the same noiseless stimulus an equivalent result is achieved by

a push-pull CORF model cell that we propose. The maximum

responses are achieved along the edge and they rapidly decrease

with an increasing deviation from the edge until they disappear.

Figure 6. Experimental results of the SNR obtained with CORF model cells with no inhibition (CORF) and with push-pull inhibition
(CORF+PP). The first columns of (a–c) contain test images that are obtained by varying the spatial wavelength w and the contrast value C of band-
limited noise. The second and third columns of (a–c) are the response maps obtained by the concerned CORF and CORF+PP model cells, respectively.
A CORF model cell with push-pull inhibition systematically exhibits an improved SNR.
doi:10.1371/journal.pone.0098424.g006

Figure 7. Separability of spatial frequency and orientation. (a) Response maps of a CORF model cell without inhibition (b~0, k~0), to
gratings of different spatial frequency and orientation, (b) with moderate push-pull inhibition (b~0, k~6) and (c) with strong inhibition (b~0, k~21)
The red and green plots indicate the marginal (MARG) row- and column-wise sums, and singular value decomposition (SVD), respectively. These
results are comparable to the response of biological cells (see Fig. 3 in [51]).
doi:10.1371/journal.pone.0098424.g007

A Push-Pull CORF Model of a Simple Cell
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The label b in Fig. 5f indicates the width of the band around the

edge that contains responses greater than half of the maximum

response.

We create nine test images by using three contrast values

(C[f0:5,0:124,0:03125g) and three values of w (w[f10,20,30g).
For all the locations of a test image we apply two CORF model

cells, one without inhibition and the other with push-pull

inhibition (b~4,k~1) and obtain two response maps. For this

experiment both CORF models have the common parameter s set

to 2 and they both result in a band of width (b~)3 pixels to a

noiseless edge stimulus of preferred orientation.

For each map, we then compute the average of the responses of

a model cell along the band of width b that surrounds the edge and

call it the response to signal Asignal. Similarly, we compute the

average of the responses of the same model cell in the remaining

noisy areas and call it the response to noise Anoise. Finally, we

compute the SNR in decibels as follows:

SNR~20 log10

Asignal

Anoise

� �
ð6Þ

Fig. 6 shows the synthetic test images that we use along the

corresponding response maps that are obtained with the two types

of CORF model cells. These experimental results clearly show that

the proposed push-pull CORF model cell improves the SNR

substantially.

Tolerance to Rotation
The model configured above has an orientation preference for

bright-to-dark vertical edges, Fig. 2(d–e). This preference is

determined from a user-specified prototype edge by a configura-

tion process that is thoroughly explained in [19]. We form a new

set <y(S) that describes a CORF model simple cell to be selective

for edges that have an orientation of y radians:

<y ~
deff(di,si,ri,wizy)DV(di,si,ri,wi)[Sg ð7Þ

In order to obtain a response that is tolerant to any orientation

we take the maximum value of push-pull CORF models with

different orientation preference at a given location (x,y):

r̂rPb
(x,y) ~

def
max
y[Y
fr<y(S)(x,y){kr<y(ŜSb)(x,y)g ð8Þ

where Y is a set of nh orientations: Y~ 2p
nh

iD0ƒivnh

n o
. A value

of nh~12 is sufficient as a push-pull CORF model cell achieves an

orientation bandwidth at half amplitude of p=4, Fig. 4.

Testing Some Properties of Simple Cells

Separability of spatial frequency and orientation
The majority of simple cells exhibit an orientation tuning that is

separable (or independent) of spatial frequency [51]. However,

there are other cells whose orientation tuning is affected by the

spatial frequency of a stimulus [44,45].

We explore the separability properties of the proposed push-pull

CORF model. Fig. 7a shows a response map of a CORF model

cell without inhibition (b~0, k~0) to gratings of different

frequency and orientation. We computed two measurements, r2

and si, that were used in [51] in order to quantify the separability

between spatial frequency and orientation. The quantity r2 is the

squared correlation between measured and predicted spatial

frequency-orientation. Predicted values are obtained under the

assumption that both features (spatial frequency and orientation)

are independent. The other quantitity si~l(1)2=
P

i l(i)2 is

related to how much the first singular vector reconstructs the

original matrix after singular value decomposition. Both quantities

range between 0 (non-separable) to 1 (separable). We refer to [51]

for further technical details on the rationale of these quantities. We

obtained a value of 0.96 for r2 and a value of 0.99 for si. Such high

values (very close to 1) mean that the spatial frequency and

orientation are almost perfectly separable. Fig. 7b shows a

response map which we obtain by adding moderate inhibition

(b~0, k~6), and it results in r2~0:87 and si~0:93. This

scenario is very similar to the average over 52 neurons reported in

[51]. Fig. 7c shows another response map for much stronger

inhibition (b~0, k~21), which results in r2~0:82 and si~0:88.

These experiments indicate that the separability of spatial

frequency and orientation tuning decreases as the inhibition

strength increases.

Figure 8. Relationship of spatial frequency and orientation
selectivity. (a) A CORF model cell without inhibition (b~0, k~0) has
independent relations between the preferred spatial frequency and
orientation, while (b) a CORF model cell with push-pull inhibition (b~0,
k~3) shows a dependent relationship. This is similar to what is
observed in biological simple cells (see Fig. 1 in [45]).
doi:10.1371/journal.pone.0098424.g008

Figure 9. Spatial frequency sensitive to contrast. Spatial
frequency tuning curves as a function of contrast obtained by two
CORF model cells; (a) with no inhibition (b~0, k~0) and (b) with push-
pull inhibition (b~0, k~1). The dependence of spatial frequency
tuning and contrast changes is achieved only when the model LGN cells
are processed by a sigmoid function.
doi:10.1371/journal.pone.0098424.g009
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The studies in [45] and [51] share a common finding; they

report that some simple cells whose preferred spatial frequency

varies with orientation and other cells whose preferred spatial

frequency is independent of the orientation of the grating. Next,

we demonstrate how we can achieve both phenomena with the

proposed model by simply changing the push-pull inhibition factor

k in Eq. 8. In Fig. 8 we show the activity of the proposed model

that achieves comparable behaviour to the two most extreme cases

from the work of [45]. When no inhibition is applied (b~0, k~0)

we obtain a model cell whose preferred spatial frequency is

completely independent of the grating orientation (top) as in the

case of simple cell 3 studied in [45]. On the other hand, if we add

push-pull inhibition (b~0, k~3) (bottom) we obtain a model cell

whose preferred spatial frequency is dependent on the orientation

of the grating as in cell 16 studied in [45].

Spatial frequency tuning sensitive to contrast
Some simple cells in visual cortex have a spatial frequency

tuning that is sensitive to contrast [52]. We can also achieve this

property by incorporating a sublinear function, such as the

sigmoid function, to the responses of model LGN cells that provide

input to CORF model cells.

The resulting CORF model cells with and without inhibition

show dependence of spatial frequency tuning to contrast, Fig. 9.

Application to Contour Detection

In the following, we evaluate the proposed push-pull CORF

model in a contour detection task. First, we explain how we

transform a given image of a natural scene into a binary contour

map and then we present a quantitative procedure to evaluate the

quality of the resulting contour map.

Finally, we compare the performance of the proposed model to

several other computational models, including the basic CORF

model without inhibition, the Gabor Filter model of a simple cell

with and without surround inhibition, the Gabor energy model of

a complex cell with and without surround inhibition, as well as to

the classical Canny edge detector.

Data sets and ground truth
We use two benchmark data sets that were created by the

Universities of Groningen (RuG: the data set is online: http://

www.cs.rug.nl/,imaging) and Berkeley. The RuG data set was

originally introduced in [53] for the evaluation of the Gabor

(energy) filter model with non-classical receptive field. It consists of

40 colour images (of size 5126512 pixels) of objects in natural

scenes. Fig. 10 (first row) illustrates four examples of images taken

from this data set, and Fig. 10 (second row) illustrates the

corresponding ground truth contour maps that are hand drawn by

a person. The ground truth images depict only the contours of

objects (and shadows) and omit the sporadic contours of textured

background.

The Berkeley data set consists of 500 images (of size 4816321 or

3216481 pixels) of objects in complex scenes. Fig. 11 (first row)

shows four examples of images taken from this data set. While this

data set was mainly developed for the evaluation of segmentation

algorithms, it has also been used to evaluate various contour

detection operators. Each image in the Berkeley data set is

complemented with a collection of five ground truth contour maps

which were hand drawn by five different persons. Fig. 11 (second

row) illustrates the ground truth of superimposed contour maps

that correspond to the images in the first row. The bolder the

contour is the better the agreement is among the involved human

observers.

Next, we explain how we obtain binary contour maps from the

operators that we use here for comparison. Subsequently, we

define the performance measures that we use to quantify the

quality of the resulting contour maps with respect to the given

ground truth images.

Binary contour map
We apply a classical two-step procedure in computer vision that

was proposed by [54] and [55] to obtain a binary contour map

from the output of the concerned model. The first step consists of

edge thinning by non-maximum suppression to determine the

ridges in the given response image. Then, we apply hysteresis

thresholding to obtain a binary contour map. The latter step

requires a high and a low threshold value. Similar to the work in

[19] we set the low threshold value to a fraction (0.5) of the high

threshold. For a given image, we set the high threshold to be the

lowest value of the strongest f pixels in the thinned response

image. The given value of the parameter f is a fraction of the total

number of pixels in the image. The resulting binary map contains

the strongest fraction f of contour pixels together with any

connected ones that are achieved by hysteresis thresholding.

The images in the third to the seventh row of Fig. 10 and of

Fig. 11 show the contour maps of the proposed push-pull CORF

model, the basic CORF model without inhibition, the Gabor and

Gabor energy models with isotropic surround inhibition and the

classical Canny edge detector for the RuG and Berkeley data sets,

respectively. These maps are obtained for certain values of the

high threshold parameter that are explained below.

Quantitative performance measure
A binary contour map consists of two unbalanced sets of pixels,

a minority set of contour pixels and a majority set of non-contour

pixels.

We use the Matthews’ correlation coefficient (mcc) as a

quantitative measure to compare such unbalanced binary maps,

which are obtained by some contour operators, with the

corresponding ground truth. This performance measure, which

is appropriate even when the concerned classes are unbalanced,

considers the number of correctly detected contour pixels (true

positives or TP), the number of pixels that are incorrectly detected

as contour pixels (false positives or FP), the number of correctly

detected background pixels (true negatives or TN) and the number

of incorrectly missed contour pixels (false negatives or FN):

mcc~
TP=N{PSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PS(1{S)(1{P)
p ð9Þ

where N~TPzTNzFPzFN, P~(TPzFP)=N, and

S~(TPzFN)=N.

Figure 10. Examples of RuG images, their ground truth and the respective contour maps obtained by five operators. (First row)
Images of objects in natural scenes taken from the RuG data set. (Second row) The corresponding contour maps hand drawn by a person. Best
contour maps obtained by (third row) the proposed push-pull CORF model, (fourth row) the basic CORF model without inhibition, (fifth row) the
Gabor filter model with isotropic surround inhibition, (sixth row) the Gabor energy model with isotropic surround inhibition and by (seventh row) the
classical Canny edge detector.
doi:10.1371/journal.pone.0098424.g010
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The mcc values vary between 21 and +1. A value of +1 means

perfect prediction, a value of 0 means random prediction, while a

value of 21 indicates a completely wrong prediction.

We use the method described by [19] to deal with inexact

contour localizations between the given ground truth and binary

contour maps.

Experimental setup
In our experiments we perform various evaluations and

comparisons. First, we determine the best b value and inhibition

factor k for the model that we propose. This is achieved by

running a systematic set of experiments on the RuG data set, each

time using a different combination of the following parameters: 21

values of the scale parameter (s[f1,1:2, . . . ,5g), five f values

(f[f0:1,0:2, . . . ,0:5g), five b values (b[f0,2, . . . ,8g and 15

inhibition factors (k[f0:2,0:4, . . . ,3g). For 1ƒsv2:5 we use

three radii (r[f3,7,14g), for 2:5ƒsv4 we use four radii

(r[f3,6,13,25g) and for 4ƒsv5 we use five radii

(r[f3,5,9,18,34g). These r values are selected in such a way that

the resulting orientation bandwidth at half amplitude is p=4. For

each combination of (s,f,b,k) parameters we compute the mean

mcc (mcc) value for all the 40 images in the RuG data set. The

maximum mcc is achieved for s~2:2, f~0:1, b~4 and k~1:8.

The contour maps shown in Fig. 10 (third row) are obtained with

these parameter values. For the Berkeley data set we do not search

for the best b and k parameter values but we use the same ones

(b~4, k~1:8) that were determined from the RuG data set.

Next, we compare the proposed push-pull CORF-based

operator (CORF+PP) to the basic CORF-based operator without

inhibition. This experiment allows us to understand the effective-

ness of the addition of push-pull inhibition. Furthermore, we

compare our model with an alternative inhibitory model of a

simple cell called Gabor filter with isotropic surround inhibition

(GF+II). For the sake of completeness, we also make a comparison

with the Gabor energy filter model with isotropic inhibition (GEF+
II), which is a computational model of a complex cell in area V1

with non-classical receptive field inhibition. For the Gabor-based

operators [53] showed that isotropic surround inhibition is more

effective in contour detection than anisotropic surround inhibition.

Finally, we compare our results with the classical Canny edge

detector.

The five operators that we compare share a common

parameter, namely the scale parameter s. For the CORF-based

operators s represents the standard deviation of the outer

Gaussian function of the DoG filters that provide input, for the

Gabor-based operators it represents the standard deviation of the

envelope Gaussian function and for the Canny edge detector it

represents the standard deviation of a Gaussian smoothing kernel.

For the Gabor-based operators (GF+II, GEF+II), we set the

wavelength l~s=0:4 and the spatial aspect ratio c~0:5 as

suggested by [56]. Furthermore, we set the inhibition factor a~1
of the Gabor-based operators as it yielded the maximum mcc

value for the RuG data set. We consider 12 orientations (in

intervals of p=6) for the CORF- and Gabor-based operators.

Results

For every input image we apply the above five mentioned

contour detection operators with 21 different values of the

parameter s (s[f1,1:2, . . . ,5g) and five values of the parameter

f (f[f0:1,0:2, . . . ,0:5g).
Finally, we compute the mcc value for each value combination

of parameters s and f and for each data set. Table 1 reports the

parameter values of s and f that contribute to the maximum mcc
value. In the fourth to the seventh row of Fig. 10 and Fig. 11 we

show the binary contour maps of the CORF, GF+II, GEF+II and

Canny operators with the parameter values reported in Table 1 for

the RuG and Berkeley data sets, respectively.

Fig. 12 shows four scatter plots that illustrate pairwise

comparisons between the proposed CORF+PP operator with the

other four state-of-the-art operators for the RuG data set. The

labels in the x-axis are the RuG image names in descending order

of the corresponding mcc value that is achieved with the proposed

push-pull CORF model. We compare the mcc values of each

image that are achieved with the values of parameters s and th

reported in Table 1. For the majority of the images, the proposed

operator achieves a better mcc value. In particular, out of the 500

images of the Berkeley data set, the proposed CORF+PP operator

achieves better performance in 434, 377, 451, and 437 cases in

comparison to the CORF-based operator without inhibition, GF+
II, GEF+II and Canny edge detector, respectively.

On a statistical level, we apply a right-tailed paired-samples t-test

to the set of pairs of mcc values that are achieved by the proposed

CORF+PP operator and by each of the other four operators. The

CORF+PP operator that we propose outperforms all other

operators with high statistical significance for both the RuG

(CORF: t(39)~8:9491, pv10{10, GF+II: t(39)~5:7328, pv

10{6, GEF+II: t(39)~6:016, pv10{6, Canny: t(39)~6:696,

pv10 ){7 and the Berkeley (CORF: t(499)~18:494, pv10{58,

GF+II: t(499)~12:848, pv10{32, GEF+II: t(499)~26:7892,

pv10{98, Canny: t(499)~19:5834, pv10{63) data sets.

In order to test the generalization ability of the above

experimental method, we perform a 10-fold cross validation on

the Berkeley data set. For each fold we consider nine different sets

of 50 images and for each operator we apply a grid search to

determine the s and f parameter values that contribute to the

maximum average mcc score across the (9650 = ) 450 training

images. It turns out that for all the 10 folds and for each operator

we achieve the same s and f parameter values as reported in

Table 1 on the entire data set of 500 images. This result

demonstrates the generalization ability of the applied experimental

setup. Moreover, the fact that for the Berkeley data set we use the

b and k parameter values that were determined from the RuG

data set demonstrates the generalization ability of the proposed

CORF detector with push-pull inhibition.

In an iterative procedure we perform a grid search to every

possible combination of 9 sets of images, such that in each iteration

we leave a different set out of consideration. This procedure is

performed for the five operators. For the 10 grid searches, the

threshold parameters of the operators remain constant and match

the ones reported in Table 1 for the whole data set. The scale

parameter remains constant only for the proposed CORF detector

Figure 11. Examples of Berkeley images, their ground truth and the respective contour maps obtained by five operators. (First row)
Images of objects in natural scenes taken from the Berkeley data set. (Second row) The corresponding collection of superimposed contour maps
hand drawn by five persons. Best contour maps obtained by (third row) the proposed push-pull CORF model, (fourth row) the basic CORF model
without inhibition, (fifth row) the Gabor filter model with isotropic surround inhibition, (sixth row) the Gabor energy model with isotropic surround
inhibition and by (seventh row) the classical Canny edge detector.
doi:10.1371/journal.pone.0098424.g011
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with push-pull inhibition (sigma = 2.2), GF+II (sigma = 3.4) and

GEF+II (sigma = 2). For the basic CORF operator without

inhibition the scale parameter is 3.6 for six grid searches and 3.8

for the remaining four. For the same six and four grid searches the

scale parameter of the Canny operator is set to 2 and 2.2,

respectively.

Discussion

In contrast to other computational models of simple cells, in

particular the ones that rely on the Gabor function [11] and

difference-of-Gaussians [15,57–59], the proposed push-pull

CORF model cell is anatomically more realistic as it uses as

afferent inputs the responses of model LGN cells, rather than

intensity pixels as projected on the retina.

In other studies we demonstrated that by using orientation-

selective filters as afferent inputs we can form models that achieve

qualitatively similar responses to shape-selective neurons in area

V4, and showed that such models can be effectively used in various

computer vision applications [60,61].

The push-pull CORF model cell that we propose differs from

the Gabor-based models with non-classical receptive field inhibi-

tion (nCRF) in two main aspects. First, the proposed model uses

one model cell with opposite polarity to provide inhibition to the

concerned model simple cell. Second, the receptive fields of the

inhibitory neuron and simple cell models overlap each other. For

b~0 there is a complete overlap, and for bw0 the receptive field

of an inhibitory model neuron expands in all directions from the

center, resulting in a bigger receptive field than that of the simple

cell but with the same center. To the contrary, nCRF models

receive inhibition as a function of the total responses of many

model cells that are outside (no overlap) the receptive field of the

model cell at hand. This is also known as contextual modulation.

In previous work [19], it was shown that a CORF model

without inhibition exhibits contrast invariant orientation tuning,

cross orientation suppression and response saturation, three

properties that are typical of simple cells. Here, we demonstrate

that by adding push-pull inhibition we can extend the number of

properties that are observed in real simple cells. These include the

relationship between spatial frequency and orientation tuning and

spatial frequency selectivity that is sensitive to contrast. As a matter

of fact, push-pull inhibition may be at the heart of an ongoing

discussion in neurophysiology. A CORF model without inhibition

exhibits orientation tuning that is independent of spatial frequency

[51], but when we add push-pull inhibition the resulting model

exhibits less separability between orientation tuning and spatial

frequency. Similarly, by changing the strength of push-pull

inhibition we can control the sensitivity of contrast to spatial

frequency.

We demonstrated by quantitative experiments that the addition

of push-pull inhibition improves signal-to-noise ratio systematical-

ly. This is the reason why a contour operator based on the

proposed model outperforms the one without inihibition with high

statistical significance. The highest improvement is achieved in

images with high textured (noisy) background, such as the images

shown in Fig. 10(a–c), Fig. 11a and Fig. 11c. For images that

consist of only perceptually salient objects without noise, the result

will be the same. The contour detection experiments also

demonstrate that the proposed implementation of push-pull

inhibition is more effective than Gabor-based models with nCRFs.

Similarly, it outperforms the popular Canny edge detector.

The proposed model is conceptually simple and easy to

implement. A push-pull response is computed as the response of

a CORF model with preferred polarity minus a factor of the
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response of another CORF model with the same orientation but

opposite polarity.

Conclusions

Push-pull inhibition provides the ability to construct models of a

wider range of real simple cells with various properties that cannot

be reproduced by other computational models. Besides orientation

selectivity, cross-orientation suppression, contrast-invariant orien-

tation tuning and response saturation, the proposed method can

be used to implement a model cell whose relationships between its

selectivity for spatial frequency, orientation tuning and contrast

can be controlled by the strength of push-pull inhibition.

In addition, a push-pull CORF model cell improves SNR

substantially, and outperforms other brain-inspired (Gabor-based)

contour operators and the classical Canny edge detector.
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