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Summary: To test the hypothesis H0 : f = ψ that an unknown density f is equal to a specified
one, ψ, an estimate f̂ of f is compared with ψ. The total variation distance || f̂ − ψ||1 is used as
test statistic.

The density estimate f̂ considered is a peculiar one. A table of critical values is provided, this
table is applicable for arbitrary ψ.

Relations with other methods, Neyman’s smooth tests in particular, are discussed and power
comparisons are performed. In certain situations, our test is recommendable. An example from
practice is provided.

1 Introduction
After Karl Pearson’s breakthrough paper (1900) about his χ2-test, many improvements
were suggested. Neyman (1937), for example, considered continuous analogues of Pear-
son’s problem. We concentrate the attention on such analogue.

Problem. Given are the ordered outcomes x[1] < x[2] < . . . < x[n] of an independent
random sample X1, . . . , Xn from a probability distribution onRwith a ‘smooth’ density f ,
not unlike a given density ψ = �′. Required is a statement about the truth or falsity of
the hypothesis H0: f = ψ of equality.

The statistician who has to solve this problem may be appalled by the abundance of
proposals. Pearson’s test depends on a classification of the data. Neyman’s smooth test
(1937) (see Section 6) requires that one specifies an orthonormal basis for an L2 space and
restricts the attention to the first k + 1 basis vectors. The Kolmogorov test (Kolmogorov,
1933) is yet another possibility. In the past decade, pre-test procedures (cf. Albers et al.,
2000, 2001) and data-driven tests (cf. Ledwina, 1994, Kallenberg and Ledwina, 1995,
Inglot and Ledwina, 1996) were developed.

We start from the idea that it is natural to choose some estimate f̂ of f and to
compare this estimate with the postulated density ψ by rejecting H0 if f̂ and ψ are ‘too

AMS 2000 subject classification: 62G10, 62H15
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4 Albers -- Schaafsma

3.89 7.44 8.65 9.40 10.00 11.27 11.52 14.23 15.52 15.63
16.39 17.33 18.37 21.12 21.76 22.54 23.29 23.36 24.17 24.57

Table 1.1 Data of the example considered in Section 1.

different’. This idea, dating back to Bickel and Rosenblatt (1973), is commonly used in
goodness-of-fit theory (see Hart (1997) for a summary). In our construction, H0 will be
rejected if the area || f̂ − ψ||1 = ∫ | f̂ (x) − ψ(x)| dx between the graph of ψ and that
of f̂ is sufficiently large. The density estimate f̂ (see Albers and Schaafsma, 2003) we
recommend will be constructed in Section 2. It is not a kernel estimate in the usual sense.
The null distribution of the test statistic is studied to determine P-values and to construct
a table of critical values. This table will be reported in Section 5 which, together with
Section 2, contains the essence of this paper. (Sections 3 and 4 provide elaborations for
special cases useful in making interpretations.)

Our estimate f̂ depends on the sample size n and on the degree m of a specific
polynomial. That is why the notation f̂ = f (m)

n is used, together with t(m)
n = || f (m)

n − ψ||1
for the outcome of the test statistic T (m)

n . In Section 8 we shall recommend choice of
m = �n1/3�. The P-value P0(T

(m)
n ≥ t(m)

n ) = α(x) will be used as degree of belief in H0.
Here P0 refers to the distribution of T (m)

n under H0. If H0 is rejected for α(x) smaller than
some nominal level, then one is acting according to the general Neyman–Pearson theory.
In practice, this is often fairly natural.

If H0 is maintained then one will usually proceed under the assumption that f = ψ.
If H0 is rejected then one will sometimes proceed on the basis of an estimate of f . We do
not recommend to use the density f m

n with m = �n1/3� which we use in testing H0, but

the density f (m)
n with m = �n1/2� (as outlined in Albers and Schaafsma (2003)). (The

use of the P-value as ‘degree of belief’ is considerably questionable from a foundational
point of view. See, e.g. Salomé et al. (1999)).

Applying the probability transform xi → ui = �(xi) we obtain

u[0] = 0, u[i] = �(x[i]) (i = 1, . . . , n), u[n+1] = 1.

Note that �(Xi) has distribution function G = F ◦ �−1, quantile function B = G−1 =
� ◦ F−1, density function g(u) = f(�−1(u))/ψ(u), quantile density b(p) = B′(p),
etcetera. The hypothesis H0: f = ψ is equivalent to H0: g ≡ 1 and to H0: b ≡ 1. It is
interesting to note that the distribution of the test statistic || f (m)

n − ψ||1 does not depend
on the density ψ to be tested. If applications are made then the density estimate f (m)

n is
displayed together with the null density ψ.

Example. Throughout this manuscript, we shall work with the following theoretical
example (a concrete application is considered in Section 10). Consider the data x[1], . . . ,
x[20] given in Table 1.1. The information is provided that the underlying density f is
such that the support {x; f(x) > 0} = (0, 25). We want to test H0: f = ψ where ψ

is the density of the uniform distribution of (0, 25). Figure 1.1 presents graphs of the
density estimates f (m)

20 to be specified in Section 2 (m = 1, 2, 3, 4). To test H0: f = ψ,
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Goodness of fit testing using a specific density estimate 5

Figure 1.1 Density functions for the data of Table 1.1, for m = 1 (left) to m = 4 (right). Shaded

areas are the test statistics t(m)
20 . (In practice, we recommend to use m = �201/3� = 2 to test H0

and m = �201/3� = 4 to estimate f .)

we consider either one of the shaded L1 areas || f (m)
20 − ψ||1 (m = 1, 2, 3, 4) which are

.141, .212, .252, and .277. The data in Table 1.1 have actually been obtained by sampling
from the distribution on (0, 25) with density f(x) = x/625 + 1/50. The density estimate
f (2)
20 is closer to f than f (1)

20 , and f (4)
20 is even closer, whilst in this example, f (3)

20 is the
‘best estimate’ of f . Table 5.1 (properly extended) provides the P-values .029, .028, .032,
and .034 if one uses the shaded areas || f (m)

20 − ψ||1 (m = 1, 2, 3, 4) to test H0. These
P-values are less different than one might expect. The reason is that the underlying test
statistics T (m)

20 are strongly correlated (see Section 4).
Note that Karl Pearson’s test requires the specification of the number k + 1 of cells

such that the χ2
k -distribution applies. If we take k = 1, then we arrive at the two-sided

sign test which, for our data, provides P = .263. If we take k = 2, then we have to work
with the exact null distribution of Pearson’s statistic. Computations provided P = .14.

An elementary discussion. Confronted by the differences between these P-values, the
reader will, hopefully, appreciate the following preparation to more sophisticated discus-
sions Sections 7, 8, and 9 (the quick reader might continue with the last sentence of this
section). The data of Table 1.1 were obtained by sampling from the distribution indicated
because this allows computation of powers using formulas from elementary analysis. The
first step is to apply the probability transform where xi is replaced by ui = �(xi) = xi/25.
The true distribution of Ui = �(Xi) has distribution function G = F ◦ �−1 where
G(u) = F(25u) and g(u) = f(�−1(u))/ψ(u) = 25 f(25u) = 1

2 + u. We concentrate
the attention on the formulation H0 : g ≡ 1 or, equivalently, H0 : b ≡ 1, where b is the
quantile density.

If a simple alternative is considered, e.g. H1: g(u) = 2u, then we can apply the
Neyman–Pearson Fundamental Lemma. For this special alternative H1 we reject H0 if∏n

i=1 ui is sufficiently large or, equivalently, if −2
∑

log(ui) is sufficiently small. It
is well known that the distribution of −2

∑
log(Ui) is χ2

2n if H0 is true. The P-value
P

(
χ2

2n ≤ −2
∑

log(ui)
) = P

(
χ2

40 ≤ 21.62
)

thus obtained, for the example, is equal to
.0078. Hence H0 is rejected at all levels of significance α ≥ .0078.
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6 Albers -- Schaafsma

In practice we do not know which simple alternative to choose. That is why we study
the omnibus test based on some test statistic T (m)

n with outcome t(m)
n = || f (m)

n − ψ||1.
In the present context, || f (1)

20 − ψ||1 happens to coincide with |ū − 1/2| = .141 because

ū = 20−1 ∑20
i=1 ui = .641. It is of interest for later interpretations to note that, due to

chance fluctuations, this outcome is considerably larger than the value
∫ 1

0 u(u + 1
2 ) du =

.583 to be expected if one samples from the true density f .

Elementary power computations (for the true density f , and the corresponding den-
sity g) were made for the tests based on the test statistics with outcomes

∏
ui ,

∑
ui ,∏

(ui + 1
2 ), and

∑
sign(ui − 1

2 ) or, equivalently, for those with outcomes
∑

h(ui) with
h : (0, 1) → R defined by h1(u) = log u, h2(u) = u, h3(u) = log(u + 1

2 ), and
h4(u) = sign(u − 1

2 ), respectively. If one rejects H0: f = ψ or, equivalently, H0:
g ≡ 1 if

∑
h(ui) is sufficiently large, then one is using a level-α test which is Uni-

formly Most Powerful (UMP) level-α for testing H0 against all alternatives of the form
g(θ) = c(θ)exp(θh(u)) with θ > 0. The maximum power in the true density gθ(u) = 1

2 +u
is obviously achieved if h3(u) = log( 1

2 + u) is used. Using the asymptotic normality of∑
h(Ui), both under H0: g ≡ 1 and under H1: g(u) = 1

2 + u, approximate powers can
be computed analytically. Using µ = E0(h(U)) and σ2 = Var0(h(U)) to denote mean
and variance of h(U) under H0, and µ′ = E1(h(U)) to denote the mean under H1, the
power of the one-sided level-α test is approximately given by 1 − �(zα − δ) where �

is the distribution function of the standard-normal distribution, zα = �−1(1 − α), and
δ = n1/2(µ′ − µ)/σ . For h = hi and n = 20 as in Table 1.1, we obtain δi ≈ 1.12,
1.29, 1.28, and 1.12 respectively. Powers 1 − �(zα − δi) in the true distribution are
approximately equal to 1 − �(1.645 − δi) = .30, .36, .36, and .30 if α = .05 and the
one-sided level-α tests are used. They are about 1 − �(1.960 − δi) = .20, .25, .25, and
.20 if the two-sides size-α tests are used (with equal tail probabilities). That H0 was
rejected at all levels of significance α > .0078 if h1 is used and at all levels α > .029 if
h2 or h3 is used is more surprising than the non-occurrence of statistical significance if
Pearson’s χ2-test is used. (Due to chance fluctuations, the sample reported in Table 1.1 is
such that, as already observed, ū = .641 is considerably, but not significantly, larger than
Eh2(U) = .583.)

A peculiar drawback of the two-sided tests based on h1, h2, h3, and h4 (either with
equal tail probabilities under H0 or with adapted values such that unbiasedness is achieved
for all alternatives of the form gθ(u) = c(θ)exp(θh(u)) with θ �= 0) is that these level-α
tests are not unbiased size-α for testing H0 against the omnibus alternative A: densities
f �= ψ exist beyond the exponential family such that the probability of rejecting H0 is
less than α if this density is the true one. (This drawback is not restricted to tests of the
form indicated, see the end of Section 8.) Finally, we note that the correlations computed
under H0 and presented in Table 1.2 indicate that the tests based on h2 and h3 are almost
equivalent whereas, in spite of δ1 ≈ δ4, the tests based on h1 and h4 are considerably
different.

The intuitions following from these computations are in line with the discussions to
be presented in Sections 7, 8, and 9.
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Goodness of fit testing using a specific density estimate 7

i j ρi j

1 2 1
2

√
3 = .866

1 3
−π2+12−3(log2)2−6Li2(− 1

2 )

6
√

4−3(log 3)2
= .915

1 4 log 2 = .693

2 3 4−3 log(3)
2

√
3

4−3(log 3)2 = .990

2 4 1
2

√
3 = .866

3 4
3
2 log 3−2 log 2√

1− 3
4 (log 3)2

= .850

Table 1.2 Correlations ρi, j for the four types of test statistic. (The computation ρ13 uses∫ 1
0 log(u) log(u + 1

2 ) du = − 1
2 Li2(− 1

2 )+2− 1
12 π2 − (log

√
2)2 − log

√
27+ log 2 (cf. Lewin,

1991) where Li2(z) = ∫ 0
z t−1 log(1 − t) dt is the second polylogarithmic function).

2 Specification of the proposed test statistic
To test H0: f = ψ, consider the area

|| f̂ − ψ||1 = ||ĝ − 1||1 = ||b̂ − 1||1
between the graph of ψ and that of f̂ (= f (m)

n ). Note that the first equality follows from
the fact that the L1 norm corresponds to the total variation norm which is invariant under
bimeasurable bijections. (This invariance is the main reason why we consider the L1 norm
as more ‘natural’ than, e.g., the L2 norm which is behind the smooth tests of Neyman,
that of Pearson included, see Section 8.) The second equality can be established by noting
that ||b − 1||1 is equal to∫ 1

0

∣∣B′(p) − 1
∣∣ dp =

∫ 1

0

∣∣∣(G−1)′(p) − 1
∣∣∣ dp

=
∫ 1

0

∣∣∣∣ 1

g(G−1(p))
− 1

∣∣∣∣ dp

=
∫ 1

0

∣∣∣∣ 1

g(u)
− 1

∣∣∣∣ dG(u)

= ||g − 1||1.
To define the special estimate f (m)

n , we start from the Bernstein polynomial approxi-
mation

Bn(p) =
n+1∑
i=0

u[i]
(

n + 1

i

)
pi(1 − p)n+1−i
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8 Albers -- Schaafsma

of degree n + 1 to the empirical quantile function (see Muñoz Perez and Fernández Pala-
cı́n, 1987, De Bruin et al., 1999). This special estimate Bn(p) of B(p) is attractive because
the derivative

bn(p) =
n∑

i=0

(u[i+1] − u[i])
(

n

i

)
(n + 1)pi(1 − p)n−i

is a true probability density function: it is positive and integrates up to one. By numerical
transformation (via Fn = B−1

n ◦ �), an estimate fn of f is obtained. To increase perfor-
mance, Albers and Schaafsma (2003) replaced bn by a smoothed version b(m)

n (the degree
of Bn is lowered from n + 1 to m + 1, and, hence, that of bn from n to m). In the density
estimation case it was suggested to take m = �n1/2�. In the present context of testing H0:
b = 1 some further smoothing is indicated. We recommend a choice of m = �n1/3� if
an omnibus test is required. For motivation behind our recommendation, see Sections 8
and 9.

The idea to use some quantile-function estimate in hypothesis testing is not new, and
dates back to Parzen (1979). LaRiccia (1991), for example, gives an approach using such
quantile function to test H: F ∈ F where F is some class of distribution functions. We,
however, are fascinated by the crucial problem of testing the simple (i.e. not composite)
hypothesis H0: f = ψ. (Our test, with m = �n1/3�, is not recommendable if ψ is obtained
by using the data to specify some particular � ∈ F ; the rationale behind our fascination
is primary ‘philosophical’: we are interested in ‘the limits of reason’, see Section 9 and
Albers (2003).

The definition of B(m)
n (and, hence, of b(m)

n , g(m)
n , f (m)

n , etcetera) is as follows. Let
Bm(p|u1, . . . , um) correspond to Bn(p) if n = m and the outcomes u1, . . . , um (un-
ordered) have to be evaluated. Define the U-statistic

B(m)
n (p) =

(
n

m

)−1 ∑
1≤α1<...<αm≤n

Bm(p|uα1, . . . , uαm ).

This can be rewritten as the L-statistic

B(m)
n (p) = pm+1 +

m∑
j=1

(
m + 1

j

)
p j(1 − p)m+1− j

n−m+ j∑
i= j

( i−1
j−1

)( n−i
m− j

)
(n
m

) u[i].

Differentiation provides b(m)
n as a convex combination of densities of Beta(i+1, m+1−i)

distributions (i = 0, . . . , m). (See the beginning of Section 6 for explicit expressions.)
Note that B(m)

n is the distribution function of a probability distribution on (0, 1) (with
a density) and that, hence, F(m)

n = (B(m)
n )−1 ◦ � is such that its derivative f̂ = f (m)

n
is a genuine probability density function: it is nonnegative everywhere and integrates
up to one. In practice, computations of b(m)

n and of f (m)
n are performed via numerical

differentiation of B(m)
n and of F(m)

n . (In Albers (2003, Chapter 4) results can be found
about the asymptotic distribution of b(m)

n and f (m)
n if m = n; for other values of m,

suggestions are made.)
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Goodness of fit testing using a specific density estimate 9

Though we are primarily interested in using T (m)
n with outcome

t(m)
n = || f (m)

n − ψ||1 = ||b(m)
n − 1||1

as test statistic (and with m = �n1/3�), some other test statistics could be discussed as
well, e.g. that based on the Kolmogorov distance with outcome

t̃ (m)
n = ||F(m)

n − �||∞ = ||B(m)
n − I ||∞

where I(p) = p (see the end of Section 3 for an elaboration in the case m = 1). Note that
t̃ (m)

n is an analogue of the test statistic of Kolmogorov’s test (see Section 7). The quick
reader is invited to continue with Section 5. The Sections 3 and 4 are about the special
cases m = 1 and m = 2. Although of limited practical interest, they do provide a useful
basis for interpretations, both for m = 1, 2 as for larger m.

3 The case m = 1
Ignoring the degenerate case m = 0 where the smoothing is so strong that B(0)

n (p) = p
and, hence, f (0)

n equals ψ and does not depend on the data, we start with m = 1 where

B(1)
n (p) = (1 − ū)p2 + ū(2p − p2)

is a convex combination of the quantile function 2p − p2 of the Beta(1, 1/2) distribution
and the quantile function p2 of the Beta(1/2, 1) distribution. (Note that this does not
imply that the inverse G(1)

n of B(1)
n is a convex combination of Beta distributions.) For

ū = 1/2 the uniform distribution appears.

Theoretical intermezzo. It is of some theoretical interest to consider the quantile func-
tions Bθ(p) = (1 − θ)p2 + θ(2p − p2) for arbitrary θ ∈ [0, 1]. Here B(1)

n (p) corresponds
to Bθ(p) if θ = ū. An elementary analysis provides

Gθ(u) =
⎧⎨
⎩

(2θ − 1)−1(θ − √
θ2 − (2θ − 1)u) if θ > 1/2

u if θ = 1/2
(1 − 2θ)−1(−θ + √

θ2 + (1 − 2θ)u) if θ < 1/2

with density

gθ(u) = 1

2
√

θ2 + (1 − 2θ)u
(0 < u < 1)

(for θ = 0 the distribution function of Beta(1, 1/2) is obtained, for θ = 1 that of
Beta(1/2, 1)). It is possible to extend this family {gθ|θ ∈ [0, 1]} of densities by allowing
arbitrary θ ∈ R. This extension, however, serves no practical purpose because we are
interested in the testing of H0: g ≡ 1 and, hence, in obtaining good power properties for
densities ‘not too far from g1/2’. If Xθ is a random variable with density function gθ ,

then (for arbitrary θ ∈ R) E Xθ = ∫ 1
0 ugθ(u) du = 1

3θ + 1
3 . In a parametric approach to

the testing of H0 : g ≡ 1, the attention might be concentrated on level-α tests which are
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10 Albers -- Schaafsma

‘optimal’ if g belongs to the parametric family {gθ|θ ∈ �} of densities just considered.
The locally most powerful unbiased size-α test rejects H0: θ = 1

2 if ū is sufficiently far
from 1

2 . The most stringent size-α test may be obtained by rejecting for large values of∏n
i=1(gθ(ui) + g1−θ(ui)) with θ chosen such that the shortcoming is maximum. This

will correspond to the most stringent somewhere most powerful unbiased size-α test.
Elaborations are not presented because, just like the tests studied at the end of Section 1
(for exponential subalternatives), these ‘optimal’ tests (for alternatives of the form gθ)
will fail to be unbiased size-α for testing H0: g ≡ 1 against the omnibus alternative A:
g �= 1. Alternatives g exist (beyond the one-parameter subalternatives), where the power
is substantially smaller than the nominal level of significance α (we return to this at the
end of Section 8). (End of intermezzo)

In Section 2 the test statistics T (m)
n and T̃

(m)

n were defined. For m = 1 we have

t(1)
n = ||b(1)

n − 1||1
= |2ū − 1|

∫ 1

0
|1 − 2p| dp

= |ū − 1
2 |

and

t̃ (1)
n = sup

p

∣∣∣B(1)
n (p) − p

∣∣∣
= sup

p
|2ū − 1|p(1 − p)

= 1
2 |ū − 1

2 |.

Conclusion. If one chooses m = 1, then both T (m)
n and T̃

(m)

n lead to using the deviation
of ū from 1/2 as test statistic. The corresponding P-value is, approximately, given by
P(χ2

1 ≤ 12(ū − 1
2 )2) = 2�(−√

12n|ū − 1
2 |). This test corresponds to that of Neyman

(1937) if a polynomial of degree 1 is used. A drawback is that the test is not unbiased
size-α for testing H0: f = ψ against the omnibus alternative A: f �= ψ.

4 The case m = 2
The exact equivalence with a Neyman smooth test vanishes if m = 2 because then we
have that

B(2)
n (p) = p3 + 3p(1 − p)( n

2

) n∑
i=1

(n − i + p(2i − n − 1))u[i]

= p + 3p(1 − p)ε + 3p(1 − p)(p − 1
2 )δ

where ε = ū − 1
2 is based on the sample mean ū and

δ = 1

n(n − 1)

n∑
i=1

n∑
j=1

|ui − u j | − 1
3
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Goodness of fit testing using a specific density estimate 11

is based on Gini’s mean difference

1

n(n − 1)

n∑
i=1

n∑
j=1

|ui − u j | = 2

n(n − 1)

n∑
i=1

(2i − n − 1)u[i].

Note that both the sample mean ū and Gini’s mean difference are U-statistics as well as
L-statistics. We introduced ε and δ because, under H0,

L n1/2
(

ε

δ

)
−→ N2

((
0
0

)
,

[
σ2 0
0 τ2

])
,

with σ2 = 1/12 and τ2 = 1/45, we exactly have Var (ε) = n−1σ2 and Cov(ε, δ) = 0
(Nair, 1936). Locke and Spurrier (1978) suggests that instead of ū and g other statistics
(e.g.

∑
(ui − 1

2 )2/n, and − ∑
log(ui(1 − ui))) could equally well be used to provide

goodness-of-fit tests for uniformity. See Section 8 for further discussion (and note that
the examples just considered are of the same form as those already considered at the end
of Section 1, namely with h(u) = (u − 1

2 )2 and h(u) = log(u − 1
2 )− log u, respectively).

It follows from the limit theorem just established that, under H0,

L n
(

12ε2 + 45δ2
)

→ χ2
2 = Gamma(1, 1

2 ),

and that, hence, using any positive multiple of 12ε2+45δ2 as test statistic, the approximate
P-value

P(1)
2 = P(χ2

2 ≥ n(12ε2 + 45δ2)) = exp(−n(3ε2 + 11.25δ2))

is obtained. We, however, prefer an ‘exact’ approach based on the test statistic T (2)
n with

outcome

t(2)
n = ||b(2)

n − 1||1 = 3
∫ 1

0

∣∣∣−3δp2 + (3δ − 2ε)p + (ε − 1
2δ)

∣∣∣ dp

In practice ε and δ are known, and the numerical computation of this integral is straight-
forward. Deriving distributional properties of T (2)

n for given ε and δ is straightforward as
well.

The exact distribution of T (2)
n , under H0 has been studied using simulation experi-

ments. Table 5.1 provides critical values t(2)
n,α, for α = .10, .05, and .01.

Conclusion. With respect to the example of Section 1 we have ε = .141, δ = −.038. The
χ2

2 -test discussed in this section provides the approximate P-value P(1)
2 = .023. Using (an

extension of) Table 5.1, it follows from t(2)
n = .212 that P2 = .029.

5 The general case
The results of the previous two sections can be generalized to arbitrary m ≤ n. In Section 4
exact representations were given in terms of the sample mean and Gini’s mean difference.
For m ≥ 3 theoretical results can still be derived but they are too complicated to be of
interest. In practice, the numerical computation of t(m)

n = || f (m)
n − ψ||1 = ||b(m)

n − 1||1
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12 Albers -- Schaafsma

and obtaining distributional properties of T (m)
n , for a given sample, are straightforward.

To test H0: f = ψ, one can use the simulation-based critical values reported in Table 5.1.
(We recommend the choice m = �n1/3�.)

α = 10 %
n m

2 3 4 5 6 7 8 9 10
10 .227 .278 .314 .344 .371 .397 .421 .443 .466
20 .161 .196 .221 .240 .258 .272 .286 .299 .311
50 .102 .123 .138 .151 .161 .170 .178 .185 .191

100 .072 .087 .098 .106 .113 .119 .125 .130 .135

α = 5 %
n m

2 3 4 5 6 7 8 9 10
10 .269 .328 .368 .401 .427 .456 .479 .501 .525
20 .191 .231 .260 .281 .300 .315 .329 .342 .355
50 .121 .146 .164 .177 .188 .197 .205 .213 .220

100 .085 .103 .115 .125 .132 .139 .145 .150 .155

α = 1 %
n m

2 3 4 5 6 7 8 9 10
10 .347 .423 .473 .512 .548 .575 .600 .624 .643
20 .249 .302 .338 .364 .387 .405 .418 .433 .445
50 .158 .191 .212 .231 .242 .254 .263 .268 .278

100 .112 .134 .150 .162 .170 .178 .184 .191 .196

Table 5.1 Some critical values for m = 2, . . . , 10. For a more extensive table, see
http://mcs.open.ac.uk/cja235 .

The figures in Table 5.1 were obtained as follows. Given some choice (m, n), a sample
of size n was drawn from the standard uniform distribution providing an outcome t(m)

n of
the test statistic T (m)

n . This process was repeated 100 000 times. Percentiles taken from
the empirical distribution of T (m)

n were reported.

6 Relation with Neyman’s smooth tests

As indicated at the end of Section 2, the quantile density estimate b(m)
n = (B(m)

n )′ is
a positive polynomial function on [0, 1]; it is a convex combination of the densities of
Beta(i + 1, m + 1 − i) distributions (i = 0, . . . , m). This representation is very fortunate,
because it implies that the b(m)

n and, hence, the density estimates g(m)
n and f (m)

n are genuine
probability densities. Note that the weight of the density (m + 1)

(m
i

)
pi(1 − p)m−1 of

Beta(i + 1, m + 1 − i) can be obtained by elaborating on

b(m)
n =

(
n

m

)−1 ∑
1≤α1<...<αm≤n

b(m)
m (p | uα1, . . . , uαm )
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Goodness of fit testing using a specific density estimate 13

or, equivalently, by differentiating B(m)
n (p). The first approach provides the weight(

n

m

)−1 ∑
1≤α1<...<αm≤n

(
u[αi+1] − u[αi ]

)

which, obviously, is positive. It is a matter of elementary combinatorics to write

∑
1≤α1<...<αm≤n

u[αi+1] =
n+1−m+i∑

h=i+1

(
h − 1

i

)(
n + 1 − h

m − i

)
u[h]

and to establish that the weights thus obtained correspond to those obtained by differen-
tiating B(m)

n (p).
The mathematician might discuss an alternative basis of the linear space of functions

on [0, 1], e.g. that of orthogonal (ordinary, or trigonometric) polynomials. This can be
done with respect to the estimation of b but is of particular interest if we are discussing
the estimation of the density g = G′ of U1 = �(X1) (with G = F ◦ �−1 = B−1).

Let ϕ0 ≡ 1, ϕ1, ϕ2, . . . be any system of linearly independent functions on L2[0, 1].
(Note that L2[0, 1] ⊂ L1[0, 1]. We do not regard it as a severe restriction if the density
g to be estimated is supposed to be in L2[0, 1].) The Gram–Schmidt orthogonalization
process provides the orthonormal basis ψ0, ψ1, ψ2, . . . of (a subspace of) L2[0, 1]. Note
that

ψ0 ≡ ϕ0 ≡ 1,

ψr+1 =
(

ϕr+1 −
r∑

i=0

(ϕr+1, ψi)ψi

(ψi , ψi)

)/∣∣∣∣
∣∣∣∣ϕr+1 −

r∑
i=0

(ϕr+1, ψi )ψi

(ψi , ψi)

∣∣∣∣
∣∣∣∣
2
,

(r = 1, 2, . . . ,). If a function h ∈ L2[0, 1] (a quantile density or a probability density)
can be written as a linear combination of ϕ0, . . . , ϕk then it can equally well be written as
a linear combination of ψ0, . . . , ψk . A useful orthonormal basis is that of the normalized
shifted Legendre polynomials

ψr(u) = (−1)r
√

2r + 1
r∑

k=0

(
r

k

)(
r + k

k

)
(−u)k, r = 0, 1, . . .

which is obtained by applying the Gram–Schmidt process to ϕh(u) = uh, (h = 0, 1, . . . ).
We elaborate on two lines of thought.

(1) Focussing on the quantile densities, and starting from the estimate b(m)
n , we can

consider ϕh(p) = ph (h = 0, 1, . . . ) and determine the weights wn,h such that
b(m)

n (p) = ∑
wn,h ph . The deviations from the ‘ideal’ weights wn,0 = 1, wn,1 =

. . . = 0, corresponding to H0: b ≡ 1, are

(2ū − 1) = 2ε, 2(1 − 2ū) = 4ε

in case m = 1 (see Section 3),

3(ε − 1
2δ), −6ε + 9

4δ, −9δ

Brought to you by | provisional account
Unauthenticated

Download Date | 1/8/20 11:35 AM



14 Albers -- Schaafsma

in case m = 2 (see Section 4), etc. They can be used as the basis of a χ2
m-test (see

the title of Pearson’s original paper). It is obvious, however, that in practice more
weight should be attached to earlier standardized deviations than to later ones. This
is done in a (more or less) ‘natural’ way if we use T (m)

n as test statistic. (Motivation is
primarily mathematical; the discussion in Section 4 shows that the weight assigned
to the first squared standard deviation is much, perhaps too much, larger than that
assigned to the second.)

(2) Focussing on probability densities in L2(0, 1), Neyman (1937) provides a general
approach to the problem of testing H0: g ≡ 1 on the basis of the outcome u1, . . . , un
of an independent random sample U1, . . . ,Un from a distribution with density g.
The structure of L2(0, 1) was used by choosing a number k and some system ϕ0 ≡
1, ϕ1, . . . , ϕk of linearly independent functions on (0, 1) or, preferably,the system
ψ0, . . . , ψk obtained from ϕ0, . . . , ϕk via orthonormalization. Assuming that g ∈
L2(0, 1), one can think about the projection 1 + ∑k

j=1(g, ψ j)ψ j of g on the k + 1
dimensional subspace spanned by ϕ0, . . . , ϕk or, equivalently, by ψ0, . . . , ψk . Here
the inner-products (Fourier-coefficients) (g, ψ j) correspond to the expectations θ j =
Eψ j (Ui) = ∫

ψ j (u)g(u) du which can nicely be estimated by using the sample
means θ̂ j = n−1 ∑n

i=1 ψ j (ui), providing the estimate ĝ = 1 + ∑k
j=1 θ̂ jψ j of the

true density g. In this L2-approach it is convenient to use n||ĝ − 1||22, i.e.

n
k∑

j=1

θ̂2
j =

k∑
j=1

{
n−1/2

n∑
i=1

ψ j (ui)

}2

as test statistic because its distribution under H0 is approximately that of χ2
k . (Note

that E0ψ j (U) = (ψ j , 1) = 0, etc.) This suggests to use the P-value

P

⎛
⎝χ2

k ≥ n−1
k∑

j=1

(
n∑

i=1

ψ j (ui)

)2
⎞
⎠

as degree of belief in H0. The choice

ϕ0 ≡ 1, ϕ1 = 1[p0,p0+p1), ϕ2 = 1[p0+p1,p0+p1+p2), . . . , ϕk = 1(1−pk,1]

provides Karl Pearson’s P-value

P

⎛
⎝χ2

k ≥
k∑

j=0

(n j − n p j)
2

n p j

⎞
⎠

where n j is the number of observations in cell j ( j = 0, . . . , k).

Many authors have discussed the choice of the number k. Karl Pearson himself stated
‘Thus, if we take a very great number of groups our test becomes illusory. We must confine
our attention in calculating P to a finite number of groups, and this is undoubtedly what
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Goodness of fit testing using a specific density estimate 15

happens in actual statistics. The number k of degrees of freedom will rarely exceed 30,
often not greater than 12’, (see Pearson, 1900). Later generations of statisticians, dealing
with Neyman’s smooth tests, have made other recommendations about k. Kallenberg
et al. (1985) states with respect to Pearson’s test: ‘In a classical paper by Mann and Wald
(1942), a rule is given to let k increase with n roughly at the rate n2/5 when using intervals
with equal probability under H0. More recent numerical work, however, has shown that
for particular alternatives, a small fixed value of k often gives much better power (cf. Best
and Rayner, 1981)’. Regarding the choice of the number of components k in Neyman’s
test, Rayner and Best (1989) states that ‘k ≤ 4 will usually suffice’. (See Inglot et al.
(1990, 1994), Kallenberg et al. (1985) for extensive analyses in this respect.)

All χ2
k -tests considered have in common that the k underlying test statistics (in Sec-

tion 4 the sample mean and Gini’s mean difference) are used as the basis of the considera-
tion: all other possibilities are ignored. With respect to Neyman’s smooth test this implies
that the first basis vectors ϕ0, . . . , ϕk (or, equivalently, ψ0, . . . , ψk) are incorporated and,
hence, an intuitive idea exists that the earlier basis vectors (lower degree polynomials) are
more important than later ones. This suggests that it may be advantageous to replace the

unweighted combination of the χ2
1 -statistics

{
n−1/2 ∑n

i=1 ψ j (ui)
}2

by a weighted sum
providing the P-value

P

⎛
⎝w1 Z2

1 + . . . + wk Z2
k ≥

k∑
j=1

w j

{
n−1/2

n∑
i=1

ψ j (ui)

}2
⎞
⎠

where Z2
1, . . . , Z2

k are independent χ2
1 -variables. With respect to an idealized context,

the choice w j = j−1/2 is discussed in Schaafsma and Steerneman (1981) as one of the
possibilities to obtain a substantial improvement of power properties in the subalternative
defined by δ2

1 ≥ δ2
2 ≥ . . . ≥ δ2

k where δ j = (ψ j , g). It follows from Section 4 that using

T (m)
n as test statistic is in line with this idea of using decreasing weights. (The fact that

T (m)
n is an L1-norm difference whereas n||ĝ − 1||22 is an L2-norm difference is of minor

interest.)

Remark. The estimate ĝ of the unknown true density g is usually not a probability density
itself: it is true that

∫ 1
0 ĝ(u) du = 1 but usually not true that ĝ(u) ≥ 0 (0 < u < 1). There

are many ways to adapt ĝ such that a probability density is obtained. Using approach
(1) is one of the possibilities. Another one is the maximum-entropy approach described
in Jaynes (2003): suppose we have estimates θ̂ j = n−1 ∑n

i=1 ψ j (ui) of the expectations
θ j = (ψ j , g) and are interested in the true density g of Ui (i = 1, . . . , n). Our estimate ĝ

of g ‘should’ satisfy the restrictions
∫ 1

0 ψ j (u)g(u) du = θ̂ j , ( j = 1, . . . , k) and be such
that the (Shannon) entropy

−
∫ 1

0
g(u) log(g(u))du

is maximum. The solution to this optimalization problem is, somewhat surprisingly, that
ĝ = g

θ̂
where

gθ(u) = exp (θ1ψ1(u) + . . . + θkψk(u) − c(θ))
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16 Albers -- Schaafsma

defines an exponential family and θ̂ is the maximum likelihood estimate of θ . If one
imposes the model that g ∈ {gθ; θ ∈ Rk} and tests H0: θ = 0k versus A: θ �= 0k by
applying the Wilks–Wald asymptotics to the Neyman–Pearson likelihood-ratio principle,
then one arrives at the χ2

k -test based on n||θ̂||22 described.

7 Relations with other goodness of fit tests
We are fascinated by the total-variation (or L1) distance || f − ψ||1 and the Kolmogorov
distance ||F − �||∞. The underlying motivation is largely mathematical: the total-var-
iation distance is invariant under bijective mappings while the Kolmogorov distance
is invariant under monotonous transformations. Under certain additional assumptions
we have that || f − ψ||1 = 2||F − �||∞. We always have || f − ψ||1 ≤ 2||F − �||∞
(see, e.g., Loève, 1955). Both distances are such that they do not change if distribution
functions G = F◦�−1 are replaced by correspondingquantile functions. The test statistic

T̃
(m)

n = ||F(m)
n − �||∞ is obtained by replacing the unknown true quantile function B

in ||F − �||∞ = ||B − 1||∞ by the corresponding estimate B(m)
n which is a continuous

and increasing analogue of the empirical quantile function. Kolmogorov’s test (1933) is
based on ||B̂ − 1||∞ where B̂ is the empirical quantile function. As the true quantile
function is smooth, the estimates B(m)

n will be closer to the truth, on the average, than
the discontinuous functions B̂ on which they are based. That is why it is reasonable to
expect that the power properties of the tests based on || f (m)

n − ψ||1 and ||F(m)
n − �||∞

are somewhat better than those based on Kolmogorov’s test. Much will depend, however,
on the alternative hypotheses to be considered and on the choice of m to be made.

A delicate issue is as follows. If one accepts that the context asks for a test statistic
of the form || f̂ − ψ||1 then the question arises which nonparametric density estimate f̂
one should use. In De Bruin et al. (1999) it was made very clear that the estimator fn =
f (n)
n studied there is ‘not unreasonable though some further improvement is possible’.

Such improvement can be achieved by using f (m)
n instead of fn , or by using a kernel

estimator kn , preferably with the bandwidth determined such that the method is optimal
for estimating ψ itself (note that ψ is given). The comparison between the tests based on
the specific statistic || f (m)

n − ψ||1, with m = �n1/3� recommended, and ||kn − ψ||1 will
depend on a large number of specifications with respect to kn , e.g. of the basic kernel and
its bandwidth. The comparison will also depend on the alternative hypotheses for which
power comparisons are made, etc. Arguments in favor of T (m)

n = || f (m)
n − ψ||1 (and

T̃
(m)

n = ||F(m)
n − �||∞) include that the distribution of the test statistic under H0 does

not depend on ψ. Critical values of the distribution of T (m)
n can be found in Table 5.1.

(T̃
(m)

n has not yet been considered.) For the test statistics ||kn − ψ||1 additional simulation
studies would be needed for any kn and ψ of interest.

Conclusion. A plethora of methods exists to test H0: f = ψ. One class of methods is
that of χ2

k -tests. These tests have in common that they are based on k ‘deviations from
the probable’ see the title of Pearson, 1900). These deviations t j − µ j have their origin
in test statistics Tj with expectations µ j under H0. If these Tj constitute a ‘correlated
system’ (see, again, the title of Pearson, 1900), as is the case in general, then they can be
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Goodness of fit testing using a specific density estimate 17

combined by using (T − µ)′�−1(T − µ) as omnibus statistic. Here � is the covariance
matrix of T under H0 and the (asymptotic) distribution under H0 is that of χ2

k . Even
for fixed value k, many χ2

k -tests exist because the attention can be restricted to different
(k + 1) dimensional subspaces of L2([0, 1]) (see Section 6 and note that the χ2

k -tests
corresponding to different bases (ϕ0, ϕ1, . . . , ϕk) of such (k + 1)-dimensional subspace
are not equivalent). Section 4 shows that χ2

k -tests may also appear in a different manner.

Other tests have their origin in the mathematical argument that || f̂ − ψ||1, or ||F̂ −
�||∞, or

∫
(F̂ − �)2 d�, etc., ‘should’ be chosen as test statistic. Note that || f̂ − ψ||1

is invariant under bimeasurable bijections and that ||F̂ − �||∞ and
∫
(F̂ − �)2 d�

(= ∫ 1
0 (G(u) − u)2 du) are invariant under monotonous transformations.

The practical statistician has to choose one specific testing method from this plethora.
Followers of the Neyman–Pearson theory will argue that the choice of test statistic
should depend on the alternatives to ψ which have to be taken into account. At the
beginning of Section 1 we deliberately did not specify any alternative because we hoped
that a test statistic || f (m)

n − ψ||1 with specific value of m, e.g. m = �n1/3�, is ‘universally
recommendable’ if H0: f = ψ has to be tested in the case of sufficient smoothness and
regularity of f and ψ. We shall see in Section 8 that such ‘universally recommendable’ test
does not exist. For alternatives with density g (after the probability transform) symmetric
around 1/2, our test is less ‘usually’ powerful than Neyman’s smooth test based on
ϕh(u) = uh (h = 0, . . . , k). Our test, however, has very good power properties if H0:
f = ψ has to be tested against alternatives where g is a monotonous function of u or,
equivalently, where the likelihood ratio f/ψ is monotonous. This conclusion, however,
affects the idea that T (m)

n with m = 3
√

n is ‘universally recommendable’. Other test
statistics of the form ||F̂ − �||∞ or

∫
(F̂ − �)2d�, etc., either with F̂ = F(m)

n or with F̂
the empirical distribution function, will also not be ‘universally recommendable’.

8 Power comparisons
In Miller and Quesenberry (1979) and Inglot et al. (1994), power properties were deter-
mined for χ2

k -tests in order to study the choice of k that is most appropriate. It is in this
respect that the attention is concentrated on the alternatives

• g1(u) = 1/(2
√

u )

• g2(u) = 2 − 4|u − 1/2|
• g3(u) = (1/

√
u + 1/

√
1 − u )/4

• g4(u) = 4|u − 1/2|

discussed in Miller and Quesenberry (1979) and the alternatives

• g5 = 2/
√

9 − 8u, which is gθ with θ = 3
4 , and

• g6 = eu/(e − 1), which is g̃θ with θ = 1,
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18 Albers -- Schaafsma

Figure 8.1 Top row, from left to right g1, g2 and g3. Bottom row, from left to right g4, g5
and g6. All horizontal axes go from 0 to 1, the vertical axes from 0 to 2.

altern. n Neyman Using t(m)
n

k = 1 2 3 4 m = 1 2 3 4 5 6 7 8

g1 10 47 51 52 53 57 49 50 49 48 47 47 48
20 74 77 78 78 73 73 74 74 74 74 74 73
50 98 99 99 99 98 98 98 98 98 98 99 99

g2 10 0 21 11 11 1 1 1 2 4 8 11 13
20 0 62 48 39 1 1 2 8 16 26 37 40
50 0 99 97 95 1 0 19 57 77 86 91 93

g3 10 10 30 30 35 10 11 12 13 13 14 16 19
20 10 45 44 52 10 11 12 13 14 18 21 24
50 10 79 76 84 10 12 14 19 30 39 49 55

g4 10 11 26 23 19 11 12 13 15 16 17 21 25
20 11 63 58 59 11 12 13 16 18 23 31 38
50 11 96 94 96 11 11 15 25 44 59 70 78

g5 10 15 13 13 12 15 16 16 16 16 16 15 15
20 25 21 19 18 25 26 26 26 26 25 25 25
50 54 47 43 39 53 56 56 56 56 55 55 55

g6 10 14 10 9 9 14 15 15 15 15 15 14 14
20 24 18 15 14 25 25 25 25 25 25 24 24
50 52 42 36 54 52 54 53 53 53 52 52 52

Table 8.1 Rejection percentages (at α = 5 %) for Neyman’s smooth tests (with ϕ j (u) = u j ,

j = 0, . . . , k) with k = 1, . . . , 4 and the tests based on t(m)
n with m = 1, . . . , 6. The Neyman

data for g1, . . . , g4 are obtained from Miller and Quesenberry (1979). The numbers in column
m = 1 are obtained using the method described in Section 8. All other percentages are based
10 000 Monte Carlo-replications. The correspondence between columns k = 1 and m = 1
suggests that the simulations and the asymptotic results are sufficiently reliable (except for the
result for g1 and m = 10 where the asymptotics is unreliable).
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Goodness of fit testing using a specific density estimate 19

which appeared in the theoretical intermezzo of Section 3 (and at the end of Section 1)
(see Figure 8.1). Note that g1 and g3 are not in L2(0, 1). Powers for various choices
of k and m and various sample sizes are reported in Table 8.1. As Neyman’s test for
k = 1 (and ϕ0 ≡ 1, ϕ1(u) = u) is in exact agreement with our test for m = 1 (see
Section 3), the differences between the columns under k = 1 and under m = 1 are caused
by randomization and approximation errors, respectively. The column under m = 1 is
obtained as follows. For the monotonous alternatives g1, g5, and g6 we computed the
noncentrality parameters δi as in Section 1 providing δ1 = 3−1/2n1/2, δ5 = 12−1/2n1/2

and δ6 = |(e − 1)−1 − 1
2 |121/2n1/2 = .0811/2n1/2 for the test based on |ū − 1

2 | (see the
end of Section 1 and Section 3). From these δ’s the powers under m = 1 were obtained
by using the formula �(−1.960 + δ).

The results for g1, g5 and g6 reported in Table 8.1 are in line with what one should
expect: the alternatives g5 and g6 were chosen (see Section 3) such that it is ‘optimal’
to choose k = m = 1. For increasing k, Neyman’s test looses power faster than our test
does for increasing m. The reason is obvious: our test stays closer to the test studied in
Section 3 (see Section 4). The alternative g1 is such that Neyman’s test is a bit better
because it is faster in picking up additional information.

For the symmetric alternatives g2, g3 and g4 we computed the variances σ2 of
(Ū − 1

2 )n1/2 and compared these with the variance σ2
0 = 12−1 under H0. The powers

in the column under m = 1 are next computed by using the formula 2�(−1.960σ0/σ).
For g2 we have σ2 = 24−1 and, hence, 2�(−1.960

√
2) = .006. For g3 and g4 we have

σ2 = 7/60 and σ2 = 8−1 with corresponding powers approximately .098 and .110,
respectively.

The results for g2, g3, and g4 reported in Table 8.1 are in line with what one should
expect: the lack of dispersion of g2, compared with the uniform density, has the effect
that the power is less than 5 % if the choice k = m = 1 is made. This shows that the
test based on |ū − 1

2 | is not unbiased size-α. For k = m ≥ 2, Neyman’s test is preferable
for these symmetric alternatives because our test puts relatively more weight on the
deviation |ū − 1

2 |. It is not true, however, that, e.g., Neyman’s test for k = 2 is unbiased
size-α. To establish this, we considered the case where U has the discrete distribution
1
2 11/2−1/

√
12 + 1

211/2+1/
√

12. We do not suggest that our test is unbiased size-α.

9 General conclusions
The problem of testing H0: f = ψ against A: f �= ψ, or A: || f − ψ||1 > 0, is too ‘ill-
posed’ to be settled satisfactorily. Classical χ2

k -tests like those of Pearson or of Neyman
(and those studied in Section 4) are asymptotically of size-α, but they are not ‘optimal’
in an overall sense.

The choice of the number of degrees of freedom k in these χ2
k -tests is difficult to

make. In Section 1 we cited Kallenberg et al. (1985) which claims that a small fixed
choice of the number of cells in a χ2-test gives best power. Rayner and Best (1989) made
a similar statement. Ledwina (1994) stated that ‘recommendations in statistical literature
are sometimes confusing’. Schaafsma and Steerneman (1981) considered an idealized
context where ‘decreasing weights’ are assigned to the χ2

1 -distributed components of χ2.
Recent papers (Ledwina, 1994, Inglot and Ledwina, 1996, Kallenberg and Ledwina,
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1995, Inglot et al., 1994) on Neyman’s test prescribe the use of data-driven methods,
where the choice of k depends on the data set. One of the suggestions is to use Schwarz’s
Bayesian Information Criterion to choose the dimension for the appropriate exponential
model for the data, and to use this dimension as k.

Fascinated by the mathematical formulation A: || f − ψ||1 > 0 of the alternative
hypothesis we started our investigations in the hope that a satisfactory compromise would
be achieved by rejecting H0 for sufficiently large outcomes of

t(m)
n = || f (m)

n − ψ||1
and a specific choice of m, e.g. m = �n1/3�. The power computations in Section 8
indicate that (1) the choice of m is much less crucial than the choice of k in χ2

k -tests, (2)
for m = k ≥ 2 the χ2

k -test is definitely preferable if alternatives f �= ψ are considered
such that the corresponding density is symmetric around 1

2 as is the case with g2, g3, and
g4 in Table 8.1, (3) for alternatives f with f/g monotonously increasing or monotonously
decreasing (see g1, g5, and g6 in Table 8.1) rejecting H0 for large outcomes of t(m)

n with
m = �n1/3� seems to provide the ‘satisfactory comprimise’ we are looking for. However,
Table 8.1 suggests that a data-dependent approach for finding m might yield a more
satisfactory compromise.

Conclusion. Testing H0: f = ψ versus A: f �= ψ is a Pandora’s box. Consensus
about a testing method cannot easily be attained. Note that in the approach of Section 6
a specific choice of basis functions ϕ0, . . . , ϕk is needed. Our test, with m = �n1/3�,
provides a ‘very reasonable’ approach if H0 has to be tested against the subalternative A′
of A defined by monotonicity of f/ψ. We suggest that it is also a reasonable approach if
H0 has to be tested against the wider subalternative A′′ defined by stochastic inequality,
i.e. by F ≥ �. If the alternatives of interest are different, e.g. because ψ has been adapted
to location/scale characteristics of the sample, then one should not proceed with our test
(at least not with the choice m = �n1/3� indicated). It will then be difficult to compromise
between the plethora of tests available.

10 An example from archaeology
Starting with Van Giffen (1925, 1926), many scientists made statements about the prefer-
ence direction of Dutch passage mounds or, more precisely, the chamber in the interior of
such dolmen. An east-west preference direction was documented. Various definitions of
the main direction of (the chamber of) passage mounds are proposed and corresponding
‘azimuth measurements’ are reported in literature. The azimuth of an (undirected) line
segment is obtained by measuring the number of degrees, from south via west and north,
to provide a value between 180◦ and 360◦. In some protocols it was mentioned that the
actual azimuth measurement reported is the average of two azimuth measurements, one
derived from the eastern end of the mound and one from the western end.

Table 10.1 reports n = 52 ordered azimuth measurements, collected by Bom (1978).
We regard these values x[1], . . . , x[52] as the outcomes of the order statistics corresponding
to an independent random sample from a distribution with density f on [180, 360] (such
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193 195 205 213 219 224 241 245 246 247 248 250 252
252 253 254 256 257 258 265 266 267 267 268 269 269
270 270 272 272 276 276 276 280 280 283 283 284 285
288 289 290 291 293 297 299 299 300 305 318 335 347

Table 10.1 Azimuth measurements by Bom (1978).

that limx↘180 f(x) = limx↗360 f(x); we shall ignore this additional information). We
shall test the null hypothesis

H(1)
0 : f(x) = 1

180 , 180 < x < 360,

of uniformly distributed azimuth values, as well as the null hypothesis

H(2)
0 : f(x) = 1

90

(
1 − 1

90 |x − 270|
)

, 180 < x < 360,

that f is the density of the mean 1
2 (X1 + X2) of two independent random variables,

both uniformly distributed on [180, 360]. The motivation for formulating H(2)
0 originates

from the remark that azimuth values were sometimes obtained by taking the average
of two values, one from the eastern end and one from the western end. (The testing of
H(2)

0 should be regarded as a mathematical exercise rather than as something of genuine
archaeological interest.)

Test H(1)
0 H(2)

0

T (3)
52 2 40

T (4)
52 0 29

Neyman (k = 3) 0 8

Neyman (k = 4) 0 3

χ2 (k = 3) 0 14

χ2 (k = 4) 0 2

Table 10.2 P-values (in %) for the testing of H(1)
0 orH(2)

0 on the basis of the data in Table 10.1.

The Neyman tests are applied with ϕ j (u) = u j , j = 0, . . . , k, and k = 3 and 4. Pearson’s
χ2-test results are based on (k + 1) = 4 and 5 equiprobable classes.

Table 10.2 provides results in the form of P-values. Our test is used with both m = 3
and m = 4 because 3 <

3
√

52 ≈ 3.73 < 4. We compared this with other tests discussed
in this paper. All tests considered for H(1)

0 have P-values below 2 %. Neyman’s test (with
k = 4) and Pearson’s χ2-test (with 5 equiprobable classes and, thus, k = 4 degrees of
freedom) reject H(2)

0 at α = 5 %. The other tests considered, do not reject this hypothesis,
and our test (both with m = 3 as m = 4) has considerably larger P-values than the other
ones. This illustrates the conclusion of Section 9.
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