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Abstract

Symbolic, rule-based systems seem essential for modeling
high-level cognition. Subsymbolic dynamical systems, in con-
trast, seem essential for modeling low-level perception and ac-
tion, and can be mapped more easily onto the brain. Here we
review existing work showing that critical features of sym-
bolic production systems can be implemented in a subsym-
bolic, dynamical systems substrate, and that optimal tuning of
connections between that substrate’s analog circuit elements
accounts for fundamental laws of behavior in psychology. We
then show that emergent properties of these elements are re-
flected in behavioral and electrophysiological data, lending
support to a theory about the physical substructure of produc-
tions. The theory states that: 1) productions are defined by
connection strengths between circuit elements; 2) conflict res-
olution among competing productions is equivalent to optimal
hypothesis testing; 3) sequential process timing is parallel and
distributed; 4) memory allocation and representational binding
are controlled by competing relaxation oscillators.
Keywords: Production system; neural network; diffusion
model; random walk; reinforcement learning.

A subatomic structure for productions
Production systems underlie the most successful theories of
high-level cognition, exemplified by such capabilities as plan-
ning, problem-solving, reasoning and language. Productions
— if-then rules that test the contents of a working memory
and trigger actions or changes to working memory as a re-
sult — have accordingly been characterized as the ‘atomic
components of thought’ (Anderson & Lebiere, 1998). The
implication is that the complex chemistry of mental life arises
from, and can more easily be understood in terms of, the inter-
actions of these simple atoms. To make the most of this anal-
ogy, however, requires a biologically plausible theory about
the subatomic structure that defines these interactions. Here
we propose a subatomic theory in which productions arise
from the behavior of ‘elementary particles’ — leaky integra-
tors, or classic neural network units — whose interactions
with each other are defined by connection strengths and struc-
tured network topologies.

Any computational theory of cognition faces several chal-
lenges: How well does it conform to known laws of behavior
and classic patterns of brain activity? How well does data
conform to new predictions entailed by it? And how much
functionality does it give you (e.g., is it computationally com-
plete)? Here we progressively build up a design for a neural
network structure that emulates the most important features

of production systems. We start with a critical core for indi-
vidual productions, and then add on control mechanisms that
adapt the core’s behavior in order to maximize a reward func-
tion. We will attempt to show how each addition accounts for
known laws, entails new (in some cases, successfully tested)
predictions, and moves the resulting architecture toward full,
production-system functionality. The result falls short of en-
abling the automatic translation of arbitrary production sys-
tem programs into equivalent neural networks, but it suggests
that such translations will be possible for a constrained set of
such programs (and that the constraints thus identified may
be of theoretical importance).

For the core, we review a specific, structured neural cir-
cuit with heuristically reward-maximizing connections that
has previously been proposed as an implementation of pro-
ductions (Polk, Simen, Lewis, & Freedman, 2002; Simen &
Polk, in press). After outlining the remaining mechanisms
underlying key features of a neural production system archi-
tecture, we review separately published results showing the
conformance of its behavioral predictions to the matching law
of operant conditioning, to the logistic/softmax choice func-
tion used in reinforcement learning, and to recent, tested the-
ories of optimal perceptual decision making. We also review
new evidence supporting its predictions regarding the later-
alized readiness potential (LRP) that is observed in human
electroencephalography (EEG).

To the core production implementation, we add a simple
timing mechanism (allowing controlled sequential process-
ing), and we outline a proof that it conforms to the law of
scalar invariance in interval timing (Gibbon, 1977). We show
that this mechanism predicts behavior observed in the differ-
ential reinforcement of low rates of responding (DRL) task.

We conclude the addition of mechanisms by outlining a po-
tential solution to two major challenges facing a connectionist
production system architecture: one is the need for a flexible
memory management system; the other is the variable bind-
ing problem. This problem afflicts any system in which the
semantics of a representation depend only on what is con-
nected to what, so that the components of different represen-
tations must be shared. Our proposed solution involves re-
laxation oscillators with tunable frequencies and duty cycles.
These enable the recruitment of memory resources through
fast Hebbian learning by tagging and reserving allocated net-



work units. The result is the sort of oscillatory activity that is
invariably observed in invasive electrode recording and scalp
EEG.

The elementary particles
The basic building block we will use is a stochastic neu-
ral network unit. We begin its description by considering
it as a deterministic system. At each moment, it computes
a weighted sum of its current inputs, then computes an ex-
ponentially decaying average of recent weighted sums, and
finally amplifies the result by a gain function that is approxi-
mately linear (but which saturates at very low and very high
input levels). This quantity is broadcast to other units, over
connections whose strengths determine their relative contri-
bution in those units’ weighted sum computations. Formally,
the output of the ith unit is Vi, the leaky integral of summed
input is xi, and the dynamics are defined as follows:

0.8

0.6

0.4

0.2
0

Recurrent weight

Equilibrium Output

Input

2

1.5

1

1

0.5

0

-0.5

0

0.5

1

wii

O
ut

pu
t V

O
ut

pu
t V

a b

c d

Self excitation = 1;  = 4;  = 1;  = 1 Self excitation = 2;  = 4;  = 1;  = 1

1 0.5 0 0.5 1 1 0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

B

O
ut

pu
t V

O
ut

pu
t V

SETRESET HOLD

1

0

A(A-B)/2
Input I

Input IInput I

Catastrophe
manifold

Input I

Figure 1: a, b: A neural network unit’s rate of activation
change (dV/dt) as a function of input I and output V for
units with fixed I and balanced (a) or strong (b) excitatory,
recurrent connections. Equilibrium curves are solid; veloc-
ities dV/dt are indicated by arrows and shading (light > 0,
dark < 0). c: ‘Catastrophe manifold’ formed by the equilib-
rium curves of Eq. 3 as the self-excitatory, recurrent weight
strength wii ranges from 0 to 2. Three network symbols are
also illustrated. Sigmoid: weak self-excitation, leaky integra-
tion (wii < 1 for a unit with λ = 4). Rounded step-function:
balanced self-excitation, perfect integration (wii = 1). S sym-
bol: strong self-excitation, hysteresis and bistable switching
(or ‘latch’) behavior (wii > 1). d: A latch based on hystere-
sis. States above the dashed curve converge to the upper solid
curve; states below converge to the lower solid curve. This
latch can store a 1 (upper gray region) or a 0 (lower gray re-
gion) as long as input is held between A and B. Bit-flipping
during constant I is least likely when I = (A+B)/2.

Ii =
n

∑
j=1

wi j ·Vj, (1)

τ · dxi

dt
= −xi + Ii, (2)

and Vi(t) = f (xi(t)) = [1+ exp(−λ · (xi−β))]−1. (3)

Parameters λ and β determine the steepness and position of
the sigmoidal activation function f , and τ determines the de-
cay rate of exponential averaging (large τ gives slow decay).

In addition to deterministic dynamics, we assume that
noise enters the system from units that have direct sensory
inputs, and also from the connections between units them-
selves. To model these assumptions, we use stochastic dif-
ferential equations, in which we represent white noise with
a useful abuse of notation as η ≡ dW/dt (multiplication by
dt then gives the standard notation dW in our equations; cf.
Gardiner, 2004). This quantity represents the time-derivative
of a Brownian motion, or Wiener process, W (t).1 The stan-
dard deviation of η is 1, but can be changed to any value c by
multiplying by c. Here, we multiply η by the square root of
the weighted input, an assumption which is consistent with an
even more microscopic level of neural modeling: we assume
that spiking neurons are Poisson processes, and that leaky in-
tegrators model their population-level behavior. The variance
of sums of these independent processes is the sum of their
variances. Thus, if we consider increases in a given weight
wi j to be equivalent to the addition of independent Poisson
processes (because of the addition of noisy synaptic connec-
tions), we get a noise standard deviation equal to the square
root of net input. Formally, then, the full, stochastic unit de-
scription is as follows:

τ · dxi

dt
= −xi +

n

∑
j=1

(
Ii + ci j

√
Ii ·η

)
⇒ τ ·dxi =

(
−xi +

n

∑
j=1

Ii

)
dt + ci j

n

∑
j=1

√
Ii dWi j

⇒ τ ·dVi ≈ (−xi + f (Ii)) dt + ci j

n

∑
j=1

√
Ii dWi j (4)

(See Simen and Polk (in press) for justification of the last
approximation, which moves the noise term outside the non-
linear function f .)

This system can be numerically simulated on a computer
(and perhaps be more easily understood) as a discrete-time
difference equation (Gardiner, 2004):

τ ·Vi(t +∆t)≈Vi(t)+(−xi + f (Ii)) ∆t +ci j
√

∆t
n

∑
j=1

√
Ii. (5)

It is now critical for our purposes to consider the effects of
recurrent excitation of a unit by itself (wii > 0). The strength

1W in fact is non-differentiable, but it is the limit of a sequence
of slightly smoother, differentiable noise processes, so it can be used
without danger.



of this self-excitation determines which of three, qualitatively
distinct types of behavior a unit exhibits (Simen & Polk, in
press). For wii < 1, the system acts like a leaky integrator;
as wii grows, the leak is reduced. When the self-excitation
exactly balances the leak (wii = 1), the unit acts like a per-
fect integrator (until it saturates). For wii > 1, the system is
unstable and is forced upward against the upper ceiling on its
activation (1), or downward toward its lower floor (0); thus it
acts like a binary switch. Furthermore, such a unit displays
hysteresis, so that it can both trigger abrupt changes and also
store a bit. Fig. 1 shows the dynamics of such a unit.

In general, leaky integration (weak self-excitation) is use-
ful because it low-pass filters its input, thereby removing
much of the high frequency noise contributed by connections
and by the environment. Perfect integration (balanced self-
excitation) is needed for optimal hypothesis testing (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006). Bistability
(strong self-excitation) is needed for triggering subsequent
steps of sequential processes and for maintaining the current
state of working memory. The behavioral and electrophysi-
ological data we consider bears on the predictions made by
these bistable units and the integrators that feed into them.

Neural productions, timers and oscillators
Fig. 2 shows the basic building blocks of the proposed ar-
chitecture; in the remainder of the paper, we explain how
each block functions, and assess how well each accords with
known laws and new empirical data. The left column shows
the 3 unit types (a,b,c). Simen and Polk (in press) detail how
a complete set of logic operations (AND, OR, NOT) can be
built from the bistable units in c by parameterizing their in-
put strengths. Panel d shows a simple if-then rule structure:
the leaky integrator filters noise from its inputs, and if the
sum exceeds a critical level, the bistable unit switches from
(approximately) 0 to (approximately) 1. This is analogous to
the process of ‘matching’ the contents of working memory
(which can be made to depend on arbitrarily many symbolic
preconditions using a cascade of logic gates). The degree of
match may be an analog quantity, and whether this is suffi-
cient to cause a bit flip in the output unit determines whether
the production will ‘fire’. Furthermore, the weights on inputs
to the if-stage may also encode preferences between produc-
tions that have an equal degree of supporting evidence.

If more than one production matches, however, there may
be conflict between them. At least at the motor output stage
(e.g., SOAR’s ‘operators’), such conflict must be resolved.
Here we consider conflict resolution as a process of com-
petition between matching productions (Fig. 2 e), with the
outcome biased toward selection of the production with the
strongest amount of preference-weighted evidence. Since
noise is everywhere, this reduces to a well-defined hypothesis
testing problem, for which simple, near-optimal algorithms
exist. These algorithms — sequential probability ratio tests
(SPRTs) — can be parameterized to maximize expected util-
ity in the case of two-alternative choices (Bogacz et al., 2006),

A: Leaky integrator D: Typical production F: Timer Circuit

G: Relaxation 
Oscillator

Start switch Ramp Trigger

B: Perfect integrator

C: Bistable switch

IF THEN

E: Conflict-resolving production

IF THEN

Figure 2: Basic building blocks. Arrowheads indicate exci-
tation, circleheads inhibition. a, b, c: Elementary particles;
arrows: excitatory inputs. d: Production topology. e: Con-
flict resolution via lateral inhibition (circles: inhibition). f:
Interval timer. g: Relaxation oscillator added to production
output unit.

and can approximately maximize utility for a greater number
of competing alternatives (McMillen & Holmes, 2006). For
a difficult decision, the process of deciding via lateral inhi-
bition (a form of attractor dynamics) can be parameterized
to implement an SPRT. This requires only that the lateral in-
hibitory strengths between input units equal -1. An example
of these dynamics is shown in Fig. 3. Thus, the firing of a
single production is equivalent to a statistical hypothesis test.
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Figure 3: Hypothesis testing via lateral inhibition. The 2D
system in the bottom layer reduces to a single dimension,
along which a random walk to threshold occurs (implemented
by attractor dynamics in the top layer).

A critical question facing the proposed architecture, how-
ever, is whether the timing of these firings can be coordi-
nated and sequentialized without reference to a central sys-
tem clock. Our problem is the same as that facing digital



circuit designers, who have long relied on a central clock and
synchronous updating to preclude critical race conditions and
other signal timing hazards. Our solution is to use these pro-
duction implementations to form processing bottlenecks, and
to use handshake completion signals between computing ele-
ments for asynchronous, distributed timing control (Simen &
Polk, in press). The most difficult question is whether we can
implement productions of the form: If A, Then B and Not A.
Naively wiring up a system to implement such a production
can cause critical race conditions or metastability.

Our solution derives from the hysteresis properties of our
bistable units. Fig. 4 shows that a sequence of such units can
be wired up so that an input unit stays active long enough to
trigger an output unit, which in turn inhibits the input. If the
input unit did not resist this inhibition, it could fail to latch
the output before shutting off. Elsewhere we have detailed
the specific conditions that ensure proper sequential latch-
ing. To ensure that timing issues can be handled, we use the
timer circuit in Fig. 2 f to implement an analogue of the de-
lay gates used in digital logic. This mechanism activates a
‘start’ switch unit on the left, then integrates that signal in
a ‘ramp’ unit, weighted by the start-to-ramp weight, until it
triggers the ‘trigger’ unit to flip from 0 to 1. The delay du-
ration is equal to this threshold value divided by the start-
to-ramp weight. These dynamics are very similar to those
implementing hypothesis-testing in Fig. 3, but now the only
evidence is the passing of time.
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Figure 4: A production that negates its own if-condition. Bot-
tom layer: input signal (red). Middle layer: IN unit activation.
Top layer: OUT unit activation.

With these building blocks in hand, we can build arbi-
trarily complex circuits that implement logic gates and finite
state machines, and thus special-purpose production systems.
However, we still face the same critical problems facing all
connectionist systems: if the semantics of a representation
depend on what is connected to what, then how do separate
representations share subcomponents? Or if their subcompo-
nents conflict, then how are the proper subcomponents bound
with the proper parent representation? Temporal synchrony
has been widely considered to be a potential solution. The

architectural assumptions are made that whatever is simulta-
neously active refers to the same entity, and distinct entities
share different oscillation phases. We focus on a mechanism
that implements these assumptions using the same machinery
underlying productions that cancel their own if-conditions.

Fig. 2 g shows that for each production trigger, we can
assign an inhibitor. If a production fires, its output unit ac-
tivates and triggers its own cancellation after a controllable
delay (depending on connection strengths). However, the fir-
ing of a production can trigger a stored, hidden variable in a
third bistable unit, which forces reactivation of the production
after the inhibitor falls silent. This process repeats, trigger-
ing oscillations. When productions compete with each other,
they push their active periods out of phase with each other, as
shown in Fig. 5. When they do not, excitation causes them
to entrain to the same phase. Thus conflicting representations
locally decide which gets to broadcast information globally.
If we allow for a plasticity signal that globally increases the
learning rate of Hebbian connection plasticity between units,
and if we activate this signal only at critical times, then we
can burn in connections (possibly temporary connections) be-
tween units simply by activating them.
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Figure 5: Relaxation oscillations among competing represen-
tations, allowing sharing of a single broadcast channel. Each
solid color corresponds to one representation’s bistable out-
put unit; dashed curves correspond to the output’s inhibitor.

More work will be needed to determine the scope of this
approach to dynamic symbol and rule creation, to the imple-
mentation of a data type system such as exists in ACT-R, and
to the binding problem more generally. With enough addi-
tional assumptions about the structure of the basic building
blocks, it would be possible to translate between any given
symbolic architecture and an architecture built from the com-
ponents we have outlined. This must be the case in a trivial
sense because our components are equivalent to circuits of
resistors, capacitors and transistors. To stand as a psycholog-
ically plausible mapping, however, any subsymbolic theory
will have to account for empirical data. We now focus on the
kind of data for which our subsymbolic approach has some-
thing definite to say, leaving a more detailed investigation of
the dynamics of connection-strength change for future work.



Laws of behavior
Two laws of behavior bear directly on the plausibility of the
architectural building blocks. The first, known as the ‘match-
ing law’, states the following: that the ratio of rates of two
(or more) different types of behavior that an animal engages
in equals the ratio of the rewards earned for those behaviors.
We showed in Simen and Cohen (2009) that the network in
Fig. 3 reproduces this behavior. That network involves con-
flict between two productions that are supported by exactly
the same amount of perceptual evidence. The exponentially
weighted reward history of each response is encoded in the
weight between the input unit and output unit of a produc-
tion. This effectively changes the random walk thresholds
for each response, while the walk itself is unbiased toward
any response. The average result, in the case of two alterna-
tives, is a state of exact matching of the behavior and reward
ratios. When, instead, the reward history is encoded in con-
nections from sensory inputs to the laterally inhibiting units,
and input-output unit weights are held fixed, the model im-
plements a softmax or logistic choice function defined on the
difference between the reward histories. Evidence abounds
for one or the other choice function in the instrumental con-
ditioning literature since the time of Skinner. Thus the ba-
sic implementation of preferences for certain responses over
others in the architecture meets a well-known psychological
constraint on learning from reinforcement.

The other law regards timed behavior. A variety of differ-
ent timing experiments show that the standard deviation of
response times in such tasks is equal to a constant times the
mean. The distribution of such responses is usually approxi-
mately Gaussian. The timing model in Fig. 2 f, accounts for
this law. When a unit balances its self-excitation against its
leak, it acts as an integrator. The model uses a simple error-
correction rule to set the connection strength w from the start
switch unit so as to ramp up to a level sufficient to trigger a
switch from 0 to 1 in the output trigger. The integrator acts
as a drift-diffusion process, since it integrates a constant drift
term, w, corrupted by noise of amplitude c

√
w:

dV = w ·dt + c ·
√

w ·dW. (6)

The trigger unit at the end of the chain defines a threshold on
this diffusion process; call it z. Such a process produces a
Wald, or inverse Gaussian, distribution of first-passage times
(Luce, 1986). The mean RT of this process is z/w, and the
standard deviation σ is c

√
z/w. Given that the ramping inte-

grator unit cannot rise above a certain activation because of its
saturation nonlinearity, then if we wish to minimize RT vari-
ability, we have the choice of minimizing z or maximizing w.
The square root in the numerator indicates that increasing w
will effect a larger reduction in variability than an equal in-
crease in z. This implies that for all intervals, we should set
z to a constant value that is as large as possible, without re-
quiring the integrator to enter its highly nonlinear activation
range. This in turn implies that σ = γz/w, with γ = c/

√
z.

That is, RT standard deviation is in constant proportion to the

mean. Furthermore, as long as c is not too great — with a
psychologically plausible value of 0.1 to 0.2, for example –
the Wald distribution has very little skewness, and looks al-
most normal (and a slight positive skewness is often observed
in timing data anyway). Thus the model reproduces scalar
invariance, and meets a second strong, empirical constraint.

Other behavioral and EEG predictions
We now examine two new predictions that regard the specific
mechanism used to implement thresholds. In most decision
making models (e.g., Bogacz et al., 2006), such thresholds
are simply assumed to exist as a step function or Heaviside
function, with a sharp discontinuity at the threshold. The
bistable trigger mechanism described in Fig. 1 makes no such
assumption, but nevertheless acts approximately as an all-or-
none, digital device. Its hysteresis properties are critical for
sequential processing, as we have shown, but does it make
any testable predictions?

One is that if an input to a trigger unit with strong self-
excitation is just below the point needed to trigger a transition
from low to high activation, there will nevertheless be occa-
sional triggerings due only to noise. This phenomenon —
known as the escape from a double-well potential (Gardiner,
2004) — produces escape-time distributions defined in terms
of exponential functions of the well depth (in our case, the
remaining distance to the threshold).
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In fact, a nearly exponential component of response times
shows up in rat data collected in the differential reinforce-
ment of low rates of responding (DRL) task. In this task,
an animal must wait some minimum amount of time before
making a response. Any response after this time is rewarded;
any response that occurs prior to this waiting time relative to
their last response resets the clock. Animals learn to wait in
this task until shortly after the deadline, but they also emit a
proportion of very fast responses that are apparently not con-
trolled by a timer. Our model of this task involves using the
timer circuit in Fig. 2f to implement the nearly Gaussian com-
ponent of such RT distributions, but it also allows for direct
connections between the start-switch and response trigger.
This produces a proportion of fast responses that are nearly
exponentially distributed. We reason that such a connection
exists because of the way these task are acquired by animals:
first, a contingency between some input stimulus and the re-
sponse mechanism must be learned; second, a learned delay



between responses is shaped through training.
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volts) from 8 human participants performing left vs. right
dot-motion discrimination, with stimulus odds equal to 60:40
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cur at time 0. Data is baseline-corrected to align peaks. b:
Model LRP (left threshold unit activation subtracted from
right in Fig. 3, followed by a bilateral shutoff signal), with
constant bias toward the right. The order of LRP differences
between conditions is captured, but (as shown by the y-axis
limits) capturing the smaller magnitude of the empirical peak
requires additional assumptions.

The second prediction the bistable trigger mechanism
makes regards the lateralized readiness potential (LRP) ob-
served in any task with a motor response that occurs on one
side of the body. Prior to the movement, a voltage builds
up over the part of motor cortex that is contralateral to the
movement. A voltage also builds up on the same side as
the movement, but not to the same degree. Then, just be-
fore the response is made, the LRP returns to baseline, be-
cause the voltage on both sides of the head over motor cortex
becomes large and equal. We hypothesize that motor cortex
houses response triggers, and we examined what would hap-
pen to a circuit in which a prior probabilities favored, say,
a left button press rather than right button press. Although
our bistable switches are nearly binary, they do involve slow,
graded changes in activation level prior to the point at which
they transition to a high activation. Because of this, and be-
cause this happens to a greater extent for the response trig-
ger that is about to activate than for a trigger for the other,
competing response, a difference in trigger activations devel-
ops, as shown in Fig. 7 a. We interpret this difference as a
readiness potential. As a result, a consistent bias toward one
response over the other should show up as an LRP both be-
fore and after the response. Such biases are expected in two-
alternative perceptual decision making tasks with rewards for
correct responses in which one stimulus is more frequently
presented than the other (Bogacz et al., 2006). Simen et al.
(2009) showed that human behavior in such tasks is consistent
with the predicted bias toward the more frequent stimulus.

New LRP data from the same task shows the predicted
physiological signature of such a constant bias: for a con-
dition in which a right button-press response is always more
likely to be correct than a left button-press, a persistent LRP
should occur, with magnitude increasing as the prior proba-
bility increases for a given response. Data from 8 participants

confirms this stimulus bias prediction (Fig. 7).

Conclusion
Here we have shown strong behavioral and electrophysiolog-
ical evidence for key components of a neurally implemented
production system architecture. These include bistable re-
sponse units, and competitive response selection and hypoth-
esis testing that are equivalent to random walk attractor dy-
namics. Thus the assumptions we made in order to achieve
basic production system functionality seem to be justified.
Much work remains to determine just how much produc-
tion system functionality can truly be emulated by such sys-
tems. However, it is clear from working examples that simple
cognitive models of problem solving can be so implemented
(Polk et al., 2002; Simen & Polk, in press), and we have
outlined a mechanistic implementation of the temporal syn-
chrony solution to the binding problem and the problem of
dynamic linking among representations — problems which
bedevil neural network architectures, but which are handled
easily in standard production systems. We hope that future
work on this topic will illustrate what constraints need to be
imposed on production system programs in order for them to
be ‘compiled’ into an equivalent neural network.
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