

 University of Groningen

4th SC@RUG 2007 proceedings
Smedinga, Rein

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R. (Ed.) (2007). 4th SC@RUG 2007 proceedings: Student Colloquium 2006-2007.
Rijksuniversiteit Groningen. Universiteitsbibliotheek.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-06-2022

https://research.rug.nl/en/publications/dafc99ce-16df-4557-a1df-659c70787382

SC@RUG 2007 proceedings

Rein Smedinga
editor

2007
Groningen

ISBN 978-90-367-3098-3
Publisher: Bibliotheek der R.U.

Title: Proceedings 4rd Student Colloquium 2006-2007
Computing Science, University of Groningen

NUR-code: 980

Contents

1 A comparison of database and Web Service Transaction Management – G. Biemolt, H. Groefsema 6

2 Real-Time Atmospheric Rendering From Any Viewpoint – Emil Loer, Thomas ten Cate 12

3 The Continuation of Visualization – Writser Cleveringa, Liewe Kwakman 23

4 Contour detection by suppression of texture edges – Pjotr Svetachov, Arjan Somers 28

5 Contour detection improved by surround suppression – Piet den Dulk, Roelof Anne Schoenmaker 38

6 Web Service Composition Review – Ilkka Harmanen, Moses Matovu 44

7 Linking the customer to the software development process – R. Krooman, M. de Jong 53

8 Approaches for Integrating Architecture Knowledge in Architectures – Wouter-Tim Burgler, Marnix Kok 63

9 Solutions and motivations for preserving architectural knowledge – Adam Loorbach, Erik Staal 69

10 A different approach on comparing ADLs – M.R. Fremouw, H. Lenting 75

11 Software Architecture Description Options: UML or ADLs – Ahmad Waqas Kamal, Callo Trosky 85

12 Multi-dimensional Transfer Function Design Automation for Volume Rendering – Cherian Mathew, Jõao
Mimoso 95

13 Three Methods for Classifying Volume Data – Tiemen Rozeboom, Jordy Oldenkamp 102

14 Modelling the search for salient locations in images – Jan-Jaap Bakker, Hessel Hoogendorp 107

15 Visual Salience: A Method for Rapid Scene Analysis – Gerard van der Lei 113

16 Visualization: at a crossroad – Menno Nijboer, Ceesjan Luiten 119

17 Structural Similarity in Image Quality Assessment – Frans Delvigne 125

18 Assembling Protocols for Sharing Secrets – Jasper van de Gronde, Twan van Laarhoven 131

19 Verifying knowledge without revealing it – Ando Emerencia, Eamon Nerbonne 137

Contents

4

SC@RUG 2007 proceedings

About SC@RUG

Introduction SC@RUG (or student colloquium in full)
is a course that master students in computing science fol-
low in the first year of their master study at the University
of Groningen.

In the academic year 2006-2007 SC@RUG was orga-
nized for the fourth time as a conference. Students wrote a
paper, participated in the review process, gave a presenta-
tion and were session chair during the conference.

The organizer Rein Smedinga would like to thank all
colleagues, who cooperated in this SC@RUG by collecting
sets of papers to be used by the students and by being an
expert reviewer during the review process. He would also
like to thank Femke Kramer from the Faculty of Arts for
her help in organizing this course and Janneke Geertsema
for her workshops on presentation techniques and speech
therapy.

In these proceedings all accepted papers are published.

Organizational matters SC@RUG 2007 was organized
as follows. Students were expected to work in teams, con-
sisting of two persons. The student teams could choose
between different sets of papers, that were made available
throughNestor, the digital learning environment of the uni-
versity. Each set of papers consisted of three papers about
the same subject (within Computing Science). Soms sets
of papers contained conflicting meanings. Students were
instructed to write a survey paper about this subject includ-
ing the different approaches in the given papers. The paper
should compare the theory in each of the papers in the set
and include own conclusions about the subject.
Some teams proposed their own subject.

After submission of the papers individual students were
assigned one paper to review using a standard review form
(see Appendix A of the first StudColl2004 proceedings).
The colleagues who had provided the set of papers were
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors of the paper throughNestor.

All papers could be rewritten and resubmitted, inde-
pendent of the conclusions from the review. After resub-
mission each reviewer was asked to re-review the same pa-
per and to conclude whether the paper had improved. Re-
reviewers could accept or reject a paper. All accepted pa-
pers can be found in these proceedings.

All students were asked to present their paper at the
conference and act as a chair and discussion leader during
one of the other presentations. Half of the participants were
asked to organize one of the conference days (i.e., to make
the time tables, invite people etc.) The audience graded

both the presentation and the chairing and leading the dis-
cussion.

Femke Kramer of the Faculty of Arts gave an intro-
ductory lecture about general aspects of presentation tech-
niques to help the students with their presentation. She
also did a workshop on writing scientific papers. Janneke
Geertsema gave workshops on presentation techniques and
speech therapy that was very well appreciated by the par-
ticipants.

Students were graded both on all three aspects: the
writing process, the review process and the presentation.
Writing and rewriting counted for 50% (here we used the
grades given by the reviewers and the re-reviewers), the re-
view process itself for 15% and the presentation for 35%
(including 5% for the grading of being a chair or discus-
sion leader during the conference). For the grading of the
presentations we used the judgements from the audience
and calculated the average of these.

On January 22nd and 23th, the actual conference took
place. Each paper was presented by both authors. Both
days, we had ten presentations, each consisting of a total
of 30 minutes for the presentation and 10 minutes for dis-
cussion. As mentioned before, each presenter also had to
act as a chair and discussion leader for another presenta-
tion during that day. The audience was asked to fill in a
questionnaire and grade the presentations, the chairing and
leading the discussion. Participants not selected as chair
were asked to organize both days. They did an excellent
job and even provided coffee and tea and a lunch on both
days.

Thanks We could not have achieved the ambitious goal
of this course without the invaluable help of the following
expert reviewers:
– Marco Aiello
– Jos Roerdink
– Nicolai Petkov
– Ahmad Waqas Kamal
– Anton Jansen
– Paris Avgeriou
– Michel Westenberg
– Ronald van der Berg
– Gerard Renardel

Also, the organizer would like to thank theSchool for
Computing Sciencefor making it possible to publish these
proceedings.

Rein Smedinga

5

Transaction Management

A comparison of database and Web Service Transaction

Management

G. Biemolt

S1510266

G.A.Biemolt@rug.nl

H. Groefsema

S1514059

H.Groefsema@student.rug.nl

Abstract. Web Services are self-contained units of work, ranging from simple

functions to complicated business processes. These Web Services communicate

with other Web Services to do business. Such a loosely coupled system is

regarded as being a Service Oriented Architecture (SOA). To operate and do

business in a consistent way Web Services make use of Transaction

Management (TM) to ensure a save and agreed upon outcome of the individual

units of work.

The TM used in the Web Services (WS) stack is divided in WS-Atomic

Transaction (WS-AT) and WS-Business Activity (WS-BA). WS-AT is

inherited from the database TM that is built upon the ACID properties:

Atomicity, Consistency, Isolation, and Durability. WS-BA is commonly

implemented in an asynchronous way and is different from the more traditional

WS-AT. WS TM thus makes use of non-ACID properties due to its loosely

coupled architecture.

This paper looks into the four ACID properties inherited from database TM and

investigates how they can be implemented in WS TM. WS-AT and WS-BA are

to be compared to the ACID properties and this ultimately leads to an

explanation for the differences between these standards.

Keywords: Transaction Management, Web Services, Databases, WS-

AT, WS-BA, Service Oriented Architecture

1. Introduction

The original ACID standard of database Transaction Management (TM) has been

adapted to work in the area of Web Services, due to the absence of TM in this field.

This paper focuses on the differences between these types of TM, and why changes

had to be made to make it function as needed.

In order to understand the concept of TM it is required to define what a

transaction exactly is in this context. ‘A transaction reflects the idea that the

activities of a particular user are isolated from all concurrent activities, but restricts

the degree of isolation and the length of the transaction’ [Hear83]. Where an object

can be read as a record in a conventional database. Transaction management is

needed to keep these objects consistent to prevent other users or services from

working with inconsistent or outdated data.

There have been several suggestions for WS TM standards, but this paper

focuses on the ones contained within the WS stack [Figure 1]. One of these two

specifications is WS-Atomic Transaction (WS-AT), which is based upon the

common ACID (described in Section 3) transactions. The other one is WS-Business

Activity (WS-BA) that supports loosely coupled asynchronous non-ACID

transactions.

The main difference between database transactions and WS transactions is the

domain in which they operate. Database transactions occur in a single controlled

domain and are synchronous, whereas WS transactions can spread several business

domains and are thus loosely coupled and not necessarily synchronous. WS-BA is an

example of a specification that fulfils the need for such non-atomic transactions.

This paper starts explaining database TM and what Web Services are in Section

2 and 3. Based on those facts we give the explanation for the need of changing and

elaborating on the traditional ACID database transactions in Section 4, which also

6

holds the description of the WS TM standards, WS-AT and WS-BA. While we

finally will give an overview of the major advantages and disadvantages of the

elaborated standards and the shortcomings that they still have.

2. Web Services

Web Services (WS) are self-contained units of work. These can range from large

business processes to simple functions. The Web Service stack is a technology based

upon the concepts of Service Oriented Architecture (SOA), which defines a loosely

coupled architecture consisting of services that can call upon each other independent

of implementation. They form the building blocks for creating distributed

applications[Papa06].

Figure 1: The Web Service stack.

The Web Service stack (Figure 1 [Dust06]) consists of a multitude of standards.

Each standard fills a separate, unique and important role in the WS stack and can

reside in one or more layers of the Web Service stack. The bottom layer is the

Transport layer and consists of well-known transport standards such as TCP/IP,

HTTP, SMTP, FTP and more. On top of the Transport layer resides the Messaging

layer, this layer consists of the Simple Object Access Protocol (SOAP) and WS-

Addressing standards, which allow for transmission. The Web Service Description

Language (WSDL) and WS-Policy standards reside one layer up, in the Description

layer. These standards provide for means of describing the Web Service and its

functions. The Quality of Service layer consists of WS-Reliable Messaging, WS-

Security, and WS-Transaction. The latter shall be the focus of Section 4 and provides

the means for getting an agreed upon and consistent outcome of a transaction within

the Web Services stack. The last layer, the Composition layer, consists of the

Business Process Execution Language (BPEL) and the WS-Choreography

Description Language (CDL) standards. These form the choreography specification

and implementation for the web services [Biegr06]. The standards on the left reside

on all the top four layers and consist of the Universal Description, Discovery, and

Integration (UDDI) and WS-Addressing standards, which provide means for finding

Web Services.

When a Web Service first starts, it needs to be found in some way by the

programs that wish to make use of its services. In order to do this, the Web Service is

published in an UDDI supported repository. Other programs then search the UDDI to

find suitable services for their needs, and use the information in the UDDI to contact

SC@RUG 2007 proceedings

7

the Web Service. A connection is then made with the Web Service by means of a

XML based SOAP connection to overcome possible compatibility problems between

the two systems. SOAP again relies on protocols such as HTTP and SMTP for the

actual message transportation. SOAP however would require information about the

Web Service its interface i.e., its calls, their parameters, and their returns. The

WSDL provides this functionality. Each Web Service defines a WSDL document

that describes how to invoke a service and provides information on the data being

exchanged, the sequence of messages for an operation, protocol bindings, and the

location of the service [Papa06]. Through such a connection Transactions can be

made between different Web Services.

3. Database Transaction Management

Database transactions are based on the ACID properties. Using these properties will

guarantee that transactions do not lock records for a long time, and that the outcome

is consistent and expectable. If for whatever reason a problem occurs during the

transaction then a recovery action has to be performed to force the transaction to a

consistent outcome.

The acronym ACID stands for:

• Atomicity: Either all of the changes happen exactly once or none of the

changes happen.

• Consistency: State changes of objects in a transaction should be consistent

before and after the transaction.

• Isolation: During a transaction the effects of an object are not effected by

other concurrent operations on other objects and intermediate states are not

externally visible.

• Durability: The result of a transaction should persist and not be undone.

These requirements ensure that transactions can be executed in parallel and have

an expected consistent outcome. A recovery action should be taken if a transaction

meets a failure. Such an action has to make sure that the outcome remains consistent

and atomic. Thus the actions that have been executed before the failure are undone

and the transaction rolls back to the initial state.

There are three type of failures [Hear83]. A transaction failure occurs when a

transaction does not commit due various reasons related to the data in the system,

e.g. aborting the transaction or exceeding timing constraints. System failure occurs

when there is fault in the code of the database, a system fault or hardware problem. If

there is a problem writing to the disk(s) or fatal crashes in the hardware it is called a

media failure. There are several ways of anticipating these failures [Hear83]. But

these are outside the scope of this paper.

The most well known transaction protocol in the world of database transactions

is the Two Phase Commit (2PC) Protocol. 2PC can be used for both single and

composite transactions. It is based on the ACID properties [Gran99] and works in

two phases. At first it determines if the change can be executed. If it is a single

transaction, it can be committed or aborted directly, which makes the transaction end

in a consistent state. In a composite transaction, all the dependant changes must be

executed or not, to enforce atomicity. Rollback on the other changes has to be

performed if not all changes are able to commit. This results in the initial state in

which none of the changes of the transaction have happened. The disadvantage of the

2PC protocol is that it locks the resources while it uses them. Thus the length of the

transaction directly relates to the usability of the resource. Other concurrent

transactions are more likely to exceed their timing constraints while waiting on the

availability of the resource.

A comparison of database and Web Service Transaction Management – G. Biemolt, H. Groefsema

8

4. Transaction Management with Web Services

In the Web Services stack (Figure 1) there are several standards which relate to

transactions, but the most important ones are WS-Coordination and WS-Transaction.

WS-Coordination defines a framework for coordinating the actions of distributed

applications via context sharing [Papa03], where WS-Transaction defines the actual

protocols used in the transaction.

WS-Coordination offers a framework for coordinating the transaction. In order

to do this it offers the following three services:

• An Activation Service, which defines a CoordinationContext which in turn

is used to set up the communication between the Web Services.

• A Registration Service that allows Web Services to register at the

Coordinator.

• And a Coordination Protocol Services, which holds one of the transaction

protocols described in WS-Transaction.

WS-Transaction consists of two transaction protocols: WS-Atomic Transaction

(WS-AT) and WS-Business Activity (WS-BA). The first is directly related to the

classic Database TM as it is a fully ACID protocol. The second however is only

ACID based and uses several other mechanisms in order to satisfy the needs of the

loosely coupled environment of Web Services.

4.1 WS-Atomic Transaction

WS-Atomic Transaction is a fully ACID transaction protocol. To achieve this it uses

the 2 Phase Commit (2PC) protocol as discussed in Section 3. The statechart of the

WS-AT 2PC protocol is shown in Figure 2. Due to the constant re-affirming of the

protocol it ensures that all participants are in a mutually agreed upon state. This in

turn ensures that the protocol is atomic and predictable.

Figure 2: WS-AT State Chart

However, due to the nature of the protocol, this means that such a transaction

can only be a short lived (synchronous) transaction. Since it requires all participants

to lock the resources required for the transaction, using it for a long running

transaction is simply unadvisable and expensive. The locking of resources however

is required in this protocol because else the participants can not guarantee a mutually

committed outcome after entering the commit state. I.e., the resources could have

simply been taken by other concurrent transactions. Since aborting is not possible at

this point, a different solution is required for such transactions.

SC@RUG 2007 proceedings

9

4.2 WS-Business Activity

WS-Business Activity supplies the WS stack with a means of a more flexible

transaction protocol that is capable of handling longer-running transactions over

different trust domains. This transaction protocol is based upon the ACID properties,

but is not fully atomic. This non-atomicity is the result of the fact that it allows

selective confirmation (commit) or cancellation (rollback) of participants (even if

they are capable of committing) [Papa03]. This again, implies that such a transaction

consists of several smaller transactions, which each can be committed or cancelled.

Such a transaction can be regarded as a nested transaction.

Figure 3: WS-BA State Chart

The transaction protocol of WS-BA is shown in Figure 3. In contrast with WS-

AT it uses a compensation state instead of a rollback. This compensate state change

allows a transaction to return a participant to its original, or an almost equal to the

original, state from before the transaction. This is different from a rollback because a

rollback is initiated when the transaction has not yet committed its resources, and

when a compensating action is initiated the transaction has committed at least some

of the resources. The compensating action will try to undo the changes made as well

as it can.

As mentioned, WS-BA follows some unconventional atomicity properties for

business transactions. These atomicity properties can be classified into three

categories; system-level atomicity, operational-level atomicity and business

interaction level atomicity [Papa03]:

1. System-level atomicity.

• Service request atomicity.

A single operation occurs completely or not at all.

2. Business interaction level atomicity.

• Non-repudiation atomicity.

A participant can not deny that the transaction has occurred. This is

achieved by signing the content at application level.

• Conversation atomicity.

This is a non-repudiation atomic primitive that allows a pair of

collaborating services to correlate sequences of requests within a

logical unit of work [Papa03].

• Contract atomicity.

If the transaction is successful it is regarded as legally binding.

A comparison of database and Web Service Transaction Management – G. Biemolt, H. Groefsema

10

3. Operational-level atomicity.

• Payment atomicity.

This atomicity covers the transfer of funds between the participants.

• Goods atomicity.

Goods atomicity protocols are payment-atomic, and also affect an exact

transfer of goods for money. Goods atomicity implies that the (tangible

or non-tangible) goods will be received only if payment has been made

[Papa03].

• Certified delivery atomicity.

Goods atomicity guarantees delivery of goods, but not if the right

goods were delivered. Certified delivery atomicity allows the

participants to prove which goods were delivered.

 These types of atomicity are related to different levels of a business transaction.

Business transactions can be separated in the above categories for better

understanding of the atomicity level in the transaction.

5. Conclusion

The paper shows that the original database transaction management works fine for

the simple short lived synchronous transactions in the Web Service environment.

The 2PC protocol that is usually used in such transactions, that first prepares a

transaction and then finally commits the transaction, however is not useful for long

lived (asynchronous) transactions. Due to long term locking of the resources, WS-

BA starts immediately with asynchronously completing the transaction and closes it

afterwards. This means that the connection is not blocked the entire time. The

disadvantage of intermediate states that are visible to the outside world throughout

the entire transaction is not a problem, because the transaction can be seen as a

composition of two transactions that do not have intermediate states.

Thus WS-BA is based on ACID DB transactions but with adapted atomicity and

without isolation. WS-BA supports asynchronous messages, loose coupling and

long lived transaction which are not traditionally atomic. Also intermediate states are

not allowed by isolation.

The next step in this research could be to investigate how to use transaction

management for web services in the real world by implementing a working example

or how other transaction protocols and standards relate to the WS-T. Such a protocol

could be the Business Transaction Protocol.

References

[Biegr06] G Biemolt, H Groefsema. Web Service Transactions. 2006.

[Dust06] S Dustdar. Lecture notes Information Systems. 2006.

[Hear83] T Hearder, A Reuter. Principles of Transaction-Oriented Database

Recovery. In Computing Surveys, Vol.15, No. 4, December 1983.

[Gran99] M Grand. Transaction Patterns. In PLoP conference 1999.

[Papa03] M Papazoglou. Web Services and Business Transactions. In World

Wide Web: Internet and Web Information Systems, 6, 49-91, 2003.

[Papa06] M Papazoglou. Web Services Technologies and Standards. In

Computing Surveys, 2006.

SC@RUG 2007 proceedings

11

Real-Time Atmospheric Rendering From Any
Viewpoint

Emil Loer and Thomas ten Cate

Rijksuniversiteit Groningen

Abstract We will describe an algorithm that uses modern graphics
hardware to render a realistically looking approximation of the atmo-
sphere at interactive frame rates. We will base our method on an algo-
rithm by Dobashi, Yamamoto and Nishita (2002) and adapt it to work
equally well from any viewpoint.
Rendering the atmosphere in a realistic way is essential in virtually any
rendering of outdoor scenes, from landscapes to pictures of the solar
system. The atmosphere in landscapes provides the typical colour gra-
dations in the sky, whereas displaying the atmosphere as seen from outer
space adds to the sense of realism. Atmospheric rendering is a difficult
problem because of the scattering of light that travels through air or
another gaseous medium.
A great amount of work in this field has been done by T. Nishita in co-
operation with several other authors, building on earlier work by R. Vic-
tor Klassen, amongst others. The focus can either be on physically correct
modelling or on creating a visually appealing picture without strict re-
quirements of accuracy, where only the latter is feasible to do in real-time
on current hardware. Some authors focus only on rendering the atmo-
sphere from a certain point of view, e.g., only from the ground. Assuming
only a limited range of viewpoints is insufficient if one wants to display,
for example, the launch of a space rocket. These problems are tackled by
the described algorithm.

1 Introduction

Realistic image synthesis is a very important research topic in the field of com-
puter graphics. One of the greatest challenges in this subject is rendering the
earth and its surrounding environment. When rendering planets and their land-
scapes one of the key factors to creating a realistically looking image is the
presence of an accurate rendition of the atmosphere.

A phenomenon playing a large role in the lighting of a planet is atmospheric
scattering. This is caused by light rays being reflected off dust and other particles
that are present in the air. Scattering gives typical blue hues in the sky and
reddening at sunset, when viewing from the Earth surface, and blueish tones
from outer space. It is also responsible for a small amount of surface illumination.

Rendering this atmosphere can be done using simple approximative tech-
niques such as a flat colour, a simple gradient or a texture created from a pho-
tograph. However, in order to archieve a realistically looking atmosphere from

12

both the surface and from outer space, these techniques will not suffice. On the
other hand, when rendered using high quality ray tracing techniques one can not
reach interactive frame rates necessary for applications like games and (space)
flight simulators. This means a compromise has to be made.

Using the mathematics behind the scattering process we will give an expla-
nation of a proposed real time scattering algorithm by Dobashi et al. [1]. The
described algorithm is capable of rendering planetary atmospheres from any
point of view, maintaining interactive frame rates at all times.

2 Theory

The nature of light scattering in the air is described in detail by R. Victor Klassen
[2]. We summarize the parts of his work that are relevant to this paper, drawing
some more recent results from Nishita et al. [3]. Some of the equations do not
match theirs exactly; moreover, we added as parameters to functions every sym-
bol that is not constant for the entire atmosphere. This will prove useful later
when lookup textures are introduced.

The intensity Iv(λ) of the light of wavelength λ that reaches the eye from a
certain direction is the sum of two components:

– the intensity Ir(λ) of the light reflected by the object we’re looking at, at-
tenuated accordingly (if there is no object and we look at infinity, e.g., up
into the sky, this intensity will of course be zero), and

– the intensity Is(λ) of the light scattered ‘into’ the view ray at each point,
attenuated accordingly and then integrated over the view ray.

Therefore,
Iv(λ) = Ir(λ) + Is(λ).

This is illustrated in the figure below, where the rays have been drawn a little
apart for clarity.

The computation of Ir and Is will be treated in sections 2.2 and 2.4. First
we will discuss the details of light attenuation, needed in both these sections.

2.1 Attenuation

Part of the light that travels through the atmosphere from point A to point B
is scattered. This results in attenuation of the original light. The fraction g of

SC@RUG 2007 proceedings

13

light that remains, g ∈ [0, 1] can be computed using

g(AB, λ) = e−τ(AB,λ),

τ(AB, λ) =
∫ B

A

βR(λ)ρR(h(t)) + βM (λ)ρM (h(t))dt. (1)

The function τ is called the optical depth. βR(λ) and βM (λ) are the extinction
coefficients for Rayleigh and Mie scattering respectively; see section 2.3. The
integral

∫ B

A
means we integrate over a straight line segment from A to B.

In the case of a planetary atmosphere, the densities ρR and ρM are exponen-
tial functions of the height h:

ρR(h) = e
−h
HR

ρM (h) = e
−h

HM

HR and HM are scaling constants depending on the atmosphere. Note that there
is no boundary to the atmosphere; in practice, we will apply a sufficiently large
cutoff height above which no air exists.

Using g, we can compute the intensity IB(λ) at the end from the intensity
IA(λ) at the beginning from

IB(λ) = g(AB, λ)IA(λ)

2.2 Reflected Light Ir

We now compute how much light is reflected in the viewing direction from the
planet we look at. Suppose Pg is the point where the view ray intersects the
ground and E is the position of the eye:

The amount of light Iin(Pg) reaching Pg is the light intensity of the sun Isun,
attenuated by a factor gl:

Iin(Pg, λ) = gl(Pg, λ)Isun(λ) (2)

For any point P in the atmosphere, we can rotate and translate our coordinate
system in such a way that the planet’s centre is at the origin, P is on the
positive y axis and the sun is in the xy plane. From this transformation it can
be observed that gl only depends on the height h(P) of this point and the angle
θsun(P) between the light and the vertical (which becomes the y axis after said

Real-Time Atmospheric Rendering From Any Viewpoint – Emil Loer, Thomas ten Cate

14

transformation) at P . We will therefore write gl = gl(h, θsun, λ). In this case,
h = 0 so gl only depends on the angle θg between the light and the vertical on
the ground.

The light reflected diffusely by the planet is computed by Lambertian shad-
ing (but any other shading model could be used) using the angle θg and the
reflectivity of the object r(Pg, λ):

Iout(Pg, λ) = cos(θg)r(Pg, λ)Iin(Pg, λ)
= cos(θg)r(Pg, λ)gl(0, θsun, λ)Isun(λ).

Finally, this light is again attenuated while travelling from Pg to the eye at
E. We call this attenuation factor gv. This gives us the final result for Ir:

Ir(Pg, E, λ) = gv(PgE, λ)Iout(Pg, λ)
= gv(PgE, λ) cos(θg)r(Pg, λ)gl(0, θg, λ)Isun(λ). (3)

2.3 Scattering

Imagine a light beam travelling through the atmosphere. At any point of the
beam, some of the light rays it consists of will be reflected on particles in the air.
One simplifying assumption is made here: no beam of light is scattered more than
once (no ‘multiple scattering’ occurs).1 Because of this, we can assume that all
light scattered into the view ray comes from a single direction only: the sun. This
greatly simplifies computation, as we do not need to integrate over all possible
directions. (For multiple light sources, each one can be treated separately.) Also,
because the sun is very far away, incoming light rays are considered parallel.

How much of the light is scattered in a particular direction depends on the
angle ϕ between the original and the scattered light ray:

We call this dependency the ‘angular scattering function’.
Define Iin(P, λ) to be the intensity of the light coming into point P (called

the scattering centre) for a given wavelength λ. Define Iout(P,ϕ, λ) to be the
intensity of the light scattered at an angle ϕ at P . Two types of scattering
occur:

– Rayleigh scattering is scattering by air molecules. This shows a strong de-
pendence on wavelength. The intensity Iout,R(P,ϕ, λ) of the light scattered

1 The effect of multiple scattering can be approximated [1] by introducing an appro-
priate ambient term.

SC@RUG 2007 proceedings

15

in the direction ϕ is given by

Iout,R(P,ϕ, λ) = KR(λ)ρR(h(P))FR(ϕ)Iin(P, λ),

KR(λ) =
K

λ4
,

FR(ϕ) =
3
4
(1 + cos2 ϕ)

where K is a constant depending on certain properties of the atmosphere. FR

is called the phase function for Rayleigh scattering. The amount of Rayleigh
scattering depends on the wavelength λ of the light. For example, blue light
is scattered more than the other colours, which causes the sky to look blue.
Moreover, the amount of scattering obviously depends on the density of
particles in the atmosphere.

– Mie scattering is scattering due to larger particles in the atmosphere (such as
dust and water droplets), so-called aerosols. The dependence on wavelength
for this type of scattering can and will be neglected. The scattered light
intensity Iout,M is given by

Iout,M (P,ϕ, λ) = KMρM (h(P))FM (ϕ)Iin(P, λ),

FM (ϕ) =
3(1− g2)(1 + cos2 ϕ)

2(2 + g2)(1 + g2 − 2g cos ϕ)
3
2

where KM is an atmosphere-dependent constant and g is given for Earth
conditions by [4,3]:

g =
5
9
u− (

4
3
− 25

81
u2)x−1/3 + x1/3,

x =
5
9
u +

125
729

u3 +
(

64
27
− 325

243
u2 +

1250
2187

u4

)1/2

.

(The authors are glad that physicists had figured this out already.) Here, u
is a constant dependent on atmospheric conditions and ranges between 0.7
and 0.85.

The total scattering of light in a particular direction is the sum of the
Rayleigh and Mie scattering. We define R as the sum of the scattering factors,
resulting in

Iout(P,ϕ, λ) = Iout,R(P,ϕ, λ) + Iout,M (P,ϕ, λ)
= R(h(P), ϕ, λ)Iin(P, λ),

R(h, ϕ, λ) = KR(λ)ρR(h)FR(ϕ) + KMρM (h)FM (ϕ) (4)

2.4 Scattered Light Is

Besides light reaching the eye from the object, for every point on the view ray
there is also a certain amount of light scattered from the light source towards
the eye. Consider a point P along the view ray where a scattering event occurs:

Real-Time Atmospheric Rendering From Any Viewpoint – Emil Loer, Thomas ten Cate

16

The intensity of the light reaching P is, as before in (2),

Iin(P, λ) = gl(h(P), θsun(P), λ)Isun(λ).

Part of this light is scattered in the view direction as in (4):

Iout(P, λ) = R(h(P), ϕ, λ)gl(h(P), θsun(P), λ)Isun(λ).

Finally, this scattered light is attenuated by gv in the same way as (3):

Is(P, λ) = gv(PE, λ)Iout(P, λ)
= gv(PE, λ)R(h(P), ϕ, λ)gl(h(P), θsun(P), λ)Isun(λ).

This gives us only the amount of light scattered into the view ray at a single
point P . To find the total intensity of the scattered light for each point along
the view ray, we need to integrate over the ray:

Is(λ) =
∫ T

0

Is(P (t), λ)dt

= Isun(λ)
∫ T

0

gv(P (t)E, λ)R(h(P (t)), ϕ, λ)gl(h(P (t)), θsun(P (t)), λ)dt.

(5)

3 Optimization

One way of rendering a scene involving lighting based on the principles of atmo-
spheric scattering is by using a ray tracing method. The results of ray tracing are
very realistic. However, because of the lack of speed of ray tracing techniques, it
is not suitable for real time purposes.

Dobashi et al. [1] have proposed an efficient algorithm that is able to make
a good approximation of the ray traced model using the capabilities of modern
graphics hardware. This algorithm applies a technique often used for rendering
volumetrically lit scenes, e.g., beams of light in a foggy room, using multiple
planes.

3.1 Sampling Spheres

The general idea of the algorithm is to speed things up by using a layered
sampling approach. This approach uses n concentric sampling spheres numbered

SC@RUG 2007 proceedings

17

1 . . . n, each representing a spherical ‘shell’ of air of a certain thickness. Sampling
sphere k is at height hk above the earth surface. Sphere 0 coincides with the
planet surface and is not actually rendered.

Using these sampling spheres we can split into segments the part of our view
ray that passes through the atmosphere. Let us call the intersections with the
sampling spheres, ordered from back to front, P0, . . . , Pm:

This subdivision can be used to compute the reflected and scattered light Ir

and Is.

3.2 Reflected Light Ir

Using the subdivision of the view ray, we can split up our attenuation function
gv into separate attenuations ∆gv for each segment:

gv(PgE, λ) =
m−1∏
i=0

∆gv(PiPi+1, λ) (6)

This neglects the attenuation on the first segment of the view ray (from E to
Pm), but with a sufficient number of sampling spheres this part will be relatively
short or, if E is outside the atmosphere, not contribute at all.

Like gl(h, θsun, λ) before, ∆gv(PiPi+1, λ) depends only on the height hk of
the corresponding sampling sphere and the angle θv between the view ray and
the vertical, and can therefore be stored in one precomputed one-dimensional
texture per sampling sphere.

Now (3) for the reflected light can be rewritten as:

Ir(Pg, E, λ) =

(
m−1∏
i=0

∆gv(PiPi+1, λ)

)
cos(θg)r(Pg, λ)gl(0, θg, λ)Isun(λ). (7)

Real-Time Atmospheric Rendering From Any Viewpoint – Emil Loer, Thomas ten Cate

18

3.3 Scattered Light Is

In a similar fashion, we split the integral from (5) into a sum, again neglecting
the first segment of the view ray:

Is(λ) = Isun(λ)
m−1∑
i=0∫ Pi+1

Pi

gv(P (t)E, λ)R(h(P (t)), ϕ, λ)gl(h(P (t)), θsun(P (t)), λ)dt.

If we assume that gl is nearly constant over a segment (which will be true when
using sufficiently many layers) we can take it out of the integral:

Is(λ) = Isun(λ)
m−1∑
i=0

gl(h(Pi+1), θsun(Pi+1), λ)

∫ Pi+1

Pi

gv(P (t)E, λ)R(h(P (t)), ϕ, λ)dt.

We can also take out a large part of the attenuation gv:

Is(λ) = Isun(λ)
m−1∑
i=0

gv(Pi+1E, λ)gl(h(Pi+1), θsun(Pi+1), λ)

∫ Pi+1

Pi

gv(P (t)Pi+1, λ)R(h(P (t)), ϕ, λ)dt.

Now we can split up gv like in (6):

Is(λ) = Isun(λ)
m−1∑
i=0

 m−1∏
j=i+1

∆gv(PjPj+1, λ)

 gl(h(Pi+1), θsun(Pi+1), λ)

∫ Pi+1

Pi

gv(P (t)Pi+1, λ)R(h(P (t)), ϕ, λ)dt.

Finally, the integral can be rewritten:

Is(λ) = Isun(λ)
m−1∑
i=0

 m−1∏
j=i+1

∆gv(PjPj+1, λ)

 gl(h(Pi+1), θsun(Pi+1), λ)

(FR(ϕ)∆IR(hk, θv, λ) + FM (ϕ)∆IM (hk, θv, λ)).

(8)

Dobashi et al. [1] provide the details of this step. The essence is that ∆IR and
∆IM , like gl and ∆gv before, only depend on two variables and can therefore be
stored in lookup textures.

We now have equations for Ir and Is that no longer use integrals, and only
require additions, multiplications, trigonometry functions and lookups in two-
dimensional tables.

SC@RUG 2007 proceedings

19

4 Implementation

4.1 Precalculation

In order to achieve interactive frame rates we have to precalculate as much data
as possible. This data will be stored in look-up tables which will, during the
initialization of the graphics hardware, be uploaded to a number of textures. We
will calculate each function three times using appropriate λ values for red, green
and blue wavelengths. These three resulting tables can be fit into the individual
color components of the texture. Using the fixed values for λ, we can generate
look-up tables for gl(h, θsun, λ), ∆Ir(h, θv, λ), ∆Im(h, θv, λ) and ∆gv(h, θv, λ)
that only cover up to two dimensions.

4.2 Rendering the Frames

The actual rendering of the individual frames is done in two passes. The first
step is to render the scene geometry as usual. This geometry includes the earth,
sun, stars and other heavenly bodies. No attenuation of any objects (including
the earth) need to be taken into account here: this will be resolved in the next
pass. Concretely, we ignore the product term in (7).

The second pass renders the atmosphere. This is done with depth testing
enabled, to avoid drawing atmosphere behind objects, but with depth writing
disabled to prevent depth buffer fighting between atmospheric layers.

Each layer is rendered twice. First we apply multiplicative blending to atten-
uate the light from the objects and layers behind it. Second we apply additive
blending to add the scattered light to the light intensity that is already there.
Because this scattered light will be attenuated again by drawing later layers in
front of it, we ignore the product term in (8).

As attenuation is done by drawing additional layers, we need to make sure
that the layers are rendered in back-to-front order. For this the spherical layers
are split into two caps in a viewpoint-dependent way. The rear caps are rendered
in descending order, followed by the front caps in ascending order. The rendering
order for 3 layers and a viewpoint outside the atmosphere would look like this:

5 Results

When implemented properly the proposed algorithm can produce a realistically
looking rendition of a planetary atmosphere while still archieving interactive

Real-Time Atmospheric Rendering From Any Viewpoint – Emil Loer, Thomas ten Cate

20

frame rates. Our proof of concept application produced a framerate that was
always in the 20-30 frames per second area. These rates were archieved on an
NVIDIA GeForce 7800 GS graphics card using settings matching the conditions
of the earth. The atmosphere was rendered in 32 layers. Some screen captures
of our implementation are supplied below.

6 Conclusion and Future Work

We have explained the different formulae behind the atmospheric scattering con-
cept. Using these mathematical constructions we have examined the character-
istics of the scattering algorithm proposed by Dobashi et al. This algorithm has

SC@RUG 2007 proceedings

21

proven to be suitable for the real time rendering of atmospheric environments
on current graphics hardware.

In the future, taking into account the continuous improvements in graphics
hardware architectures, this algorithm can become increasingly useful for larger
simulations, such as entire solar systems. Because the algorithm is sufficiently
fast for interactive frame rates it can be used for demanding purposes such as
astronaut training simulators.

Future work on this subject could include implementing multiple scatter-
ing. The computing capabilities and programmability of graphics hardware is
continuously improving, meaning that development of an efficient algorithm for
multiple scattering might become more feasible. The addition of high dynamic
range imaging technologies to recent graphics cards also presents a very promis-
ing possibility for adapting this algorithm to create even more realistic images.

References

1. Dobashi, Y., Yamamoto, T., Nishita, T.: Interactive rendering of atmospheric
scattering effects using graphics hardware. In: HWWS ’02: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on graphics hardware, Aire-la-
Ville, Switzerland, Eurographics Association (2002) 99–107

2. Klassen, R.V.: Modeling the effect of the atmosphere on light. ACM Transactions
on Graphics 6(3) (1987) 215–237

3. Nishita, T., Sirai, T., Tadamura, K., Nakamae, E.: Display of the earth taking into
account atmospheric scattering. In: SIGGRAPH ’93: Proceedings of the 20th annual
conference on computer graphics and interactive techniques, New York, NY, USA,
ACM Press (1993) 175–182

4. Cornette, W., Shanks, J.: Physical reasonable analytic expression for the single-
scattering phase function. Applied optics 31(16) (1992) 3152–

Real-Time Atmospheric Rendering From Any Viewpoint – Emil Loer, Thomas ten Cate

22

 1

The Continuation of

Visualization

Writser Cleveringa, s1346032

Liewe Kwakman, s1351214

Abstract.

Visualization is the field in computer science

dealing with the problem of representing and

exploring masses of data effectively. The

visualization discipline is currently reaching its

maturity. Common interest in the research of

visualization is decreasing, mainly because for

most general problems standard commercial

solutions are available.

Some feel that the field of visualization has

drifted too far away from its practical uses.

Visualization is, after all, a tool to help other

people with analyzing data. These scientists feel

that they should collaborate with medical

specialists and businessmen to design software

that is more practical to end-users. Others feel

that they should work together with the field of

Computer Vision, trying to automatically detect

features in datasets.

There is a lot of discussion about what

research should be focused on now. In this

article we talk about the future of visualization.

We based our research upon three different

papers. First we tell something about the history

of visualization. How and why the discipline did

come to existence. We consider a few viewpoints

on how the discipline should continue in the near

future. What should happen to renew interest for

the discipline? How can visualization be brought

to the next level?

Background

We could say 1987 is the year in which

visualization was born. Before, the computer

graphics field already existed, but mainly

focused on the entertainment industry. Scientific

and biomedical communities needed ways to

visualize the huge data masses that they were

generating and felt that appropriate research was

lacking. The visualization field was established

to meet the requirements of these communities.

Visualization was born to satisfy a need to

explore masses of scientific data. Acquisition

devices like MRI-scanners, large-scale

simulations on supercomputers, but also stock

exchanges produce very large amounts of data.

Visualization methods allow researchers,

analysts, engineers and the general public to

obtain insight in data in an efficient and effective

way, using the human visual system. This system

has unique capabilities to detect interesting

features and patterns effectively.

Problem statement

Nowadays a lot of methods for visualization

have been developed and some of them are

routinely used in practice. However, most

methods developed recently are considered

incremental and conferences are rarely visited by

customers and users anymore.

There is a consensus that the visualization

field needs to be reconsidered. In the way the

visualization community is now, there is little

interest from potential customers. Most things

customers are interested in have become

common knowledge or are at least commercially

available.

Another reason for reconsideration is the fact

that the field is getting more specialized and

critical. In the beginning there were a lot of

things that had to be found out, nowadays it is

harder to find relevant subjects and most work is

incremental. The big problems are mostly solved

already. What can we do about this?

In this document we review three articles.

First we give a brief overview of the background

of visualization. After that we discuss how the

discipline should go on. We do this by looking at

the viewpoints of each article and point out how

they complement each other.

The future of visualization

Now that the field has reached its maturity

one could ask: how should we go on? Lorensen

23

 2

1) states that if nothing changes, the visualization

community is going to pass away. According to

him, the community has drifted to far away from

its customers. In his paper he gives some

solutions for this problem. Suggestions made in

the other two articles could also help increasing

the chance of continuation of the community.

Van Wijk 2) tried to develop a method to asses

the value of visualization methods. This way we

could understand what is going wrong nowadays

and what we can improve in the near future.

Duke, Brodlie and Duce 3) suggest that the field

of scientific visualization should be formalized

to improve communication and standardization.

Embrace the customer

In his paper "On the death of visualization"

Lorensen 1) states that Scientific Visualization

has lost its customers. At one side of the

spectrum customers have disappeared because

they can buy solid applications that do the tasks

they are expected to do.

Not much spectacular breakthroughs have

been achieved in the last few years and

customers are satisfied with the software they

can currently buy on the market.

More important is that at the other side of the

spectrum customers have disappeared because

researchers are not responsive to their wishes.

This is only the surface of the problem though.

The main issue is that scientists do not

‘understand’ the problems of their customers and

vice versa. The scientist thinks about efficient

volume rendering using ray casting, good

transfer function design and hardware

acceleration. Granted, these might be very

important points while implementing an

algorithm, but for the customer this is not

important at all. He or she is not interested in the

visualization itself.

For example, a surgeon might want to scan for

tumors in a medical image. He does not care

about the way the visualization is created, he

only wants to spot tumors as fast and easy as

possible.

A meteorologist working at the NASA is not

interested in tumors, but in displaying cloud

movements. He is not looking for details, but

wants to see the global movements of clouds.

The surgeon and the weather forecaster use

scientific visualization for completely different

goals. But they both see visualization as a tool,

not as a goal in itself. We cannot expect them to

be both happy with the same program, since they

want to use it for very different purposes.

Researchers in the field of Scientific

Visualization should realize this. Instead of

going their own way they should actively

collaborate with the customers that use (or could

use) their technology. Find out what problems

customers are facing, instead of searching for

problems yourself. Ask customers where they

see innovation playing a role. Organize

congresses where both customers and researchers

meet and can discuss problems and possible

solutions. The author of the article suggests that

this way Scientific Visualization will become

more useful again.

We have some doubts about this though. Of

course communication with the customer is very

important. But should we really do everything

the customer wants? What about fundamental

research? For our customers money usually is the

driving factor. We believe that should not be the

case for scientists.

Form alliances with other fields

 Lorensen also suggests that researchers in the

field of Scientific Visualization should form

alliances with researchers in other fields.

Let's go back to the example of the surgeon

again. Wouldn't it be great if the visualization

algorithm can detect and show possible tumors

itself? This would spare a lot of time and could

prevent human errors (like a tired surgeon

overlooking a small tumor). A researcher in the

field of Scientific Visualization has usually not

enough knowledge about the human body to do

this. On the other side, a medical image analyst

could possibly help with detecting a tumor but

cannot present a compelling visualization to the

surgeon. That is why the two of them should

work together. Again, Scientific Visualization is

a tool, not a goal. Working together with

researchers in other fields can increase the value

of this tool.

The example with the surgeon is just that, an

example. But there are countless other

The Continuation of Visualization – Writser Cleveringa, Liewe Kwakman

24

 3

possibilities. Think about a meteorologist that

enhances a hardware-based visualization

algorithm to also do weather forecasting. The

possibilities are endless.

On the other hand, we think that methods like

volume rendering are fundamental and require

research of their own. To us, working together

with scientists from other fields sounds like a

good idea. But we will have to watch out not to

become a lapdog of other researchers. Our field

is interesting and important enough to warrant

research itself.

Grand Challenges

One other way to revitalize the field of

Scientific Visualization would be to define one

or more Grand Challenges. These are long-term

projects for researchers across multiple fields. A

classical example of a grand challenge might be

the race to the moon. Physicians, programmers,

researchers and other specialists combined all

their forces to tackle a huge problem. A similar

approach could be used to produce interesting

results in the field of Scientific Visualization,

though probably on a smaller scale. In his paper

Lorensen poses several ideas:

• The Digital Human. Produce a complete

working, viewable model of the human body

with working simulations of all major systems

within. Include systems on all scales, from

organ level to cell level to molecular level.

• The Digital Medical Illustrator. Produce

patient-specific illustrations of a (partial) body

that match images drawn by an expert medical

illustrator (see Figure 1).

Fig. 1. Will computers ever be able to produce such

drawings?

The value of visualization

In his paper van Wijk 2) promotes good

assessment of visualization for an application

beforehand. A model is presented to contribute

to this. In short it comes down to this; the full

model is presented in 2).

To assess the value of visualization, one could

look at the knowledge gained by using

visualization. For this you can visualize three

entities:

• The data to assess.

• The specification on how to visualize.

• The knowledge of the user.

The data is transformed recording to the

specifications into an image (or other form of

visualization); this image is perceived by a user

and increases the user’s knowledge. The user

could change the specification in order to explore

the data further. How knowledge is gained

depends on the image, the knowledge of the user,

the perception and cognition of the user.

When one wants to know if a visualization

method is worthwhile, you can look at the initial

development costs of the visualization, the initial

costs per user, the initial costs per session and

the perception and exploration costs. If the total

costs are lower than the value of the gained

knowledge, the visualization method is

interesting.

However, it is not easy to assess the value of

the gained knowledge. The traditional aim of

visualization is insight. With insight users are

enabled to see things they were not aware of and

it helps them to define new questions,

hypotheses and models of their data. The

problem with assessing the value of gained

insight is that it is unknown how much insight

there is to be gained from a certain amount of

data, so it is unknown how successful it is.

Another way to approach the value of

visualization is to measure whether it influences

decision-making. For example: does a

visualization method sometimes help a surgeon

SC@RUG 2007 proceedings

25

 4

to decide his course of action? If it never does,

there is a good possibility that the visualization

in question is not very valuable. If the decisions

to be taken are known, one can assess the value

of the method by measuring whether it

influences the decision-making process. Of

course the importance of this influence depends

on the importance of the decision itself.

A visualization method could be seen as

having a high value, but that does not directly

guarantee that it will be used in practice. If there

are other visualization methods with a higher

value, or there are already existing methods, it

might be more profitable to use these. It is also

possible that there is a non-visual method that

can extract the relevant information automated.

New visualization techniques are often not

used in practice. First of all it is not always

obvious to realize visualization could help one to

understand his data. When the realization is

made, the choice is often to use inferior

visualization features of commercial simulation

tools. Of course when these are sufficient these

are highly cost-effective. When not available or

not sufficient enough, one has to study research

papers or get in contact with an expert, because,

although there books with basic techniques, there

are no books that present and compare the latest

novel visualization techniques. After that the

development of the visualization is often very

costly and takes lots of time and effort while it is

often unclear if it will solve the problem.

Visualization is not very objective. The

increase in knowledge is very dependant on the

skill and current knowledge of the user and the

specifications used. The results will differ very

much between different users. Visualization

should not be used to verify the final truth but

rather to inspire to new hypothesis.

When developing a visualization tool one has

to realize more interaction is not always better. It

can lead to lots of time spend on resetting

parameters and re-rendering. Also it is possible

to tune specifications to get a desired outcome

thus compromising subjectivity.

Visualization can be used for presentation or

exploration. Most researchers see exploration as

the main reason to use visualization and

presentation as something extra. Presentation

however is just as important. It is very useful to

use to show to other people how and why

something is scientifically sound. Lots of people

can gain knowledge with it, so the value of

visualization used this way could be high.

Formalization

Duke, Brodlie and Duce 3) believe that the

time has come to develop a rigorous foundation

for the field of Scientific Visualization. Their

suggestion is to introduce an ontology to

formalize aspects of the visualization process.

Ontology means, literally, the study of existence.

The authors want to create formal definitions of

data sets, interfaces and theories. To clarify: they

suggest developing a standard to define

Scientific Visualization concepts, based on

XML. This could help in sharing scientific

problems and solutions. Also, the standard could

be used to create Visualization web services and

would make it much easier to create, for

example, distributed visualization grids.

Collaboration between researchers themselves

and between researchers and the public will

receive a huge boost.

Discussion

The authors of this article feel the three

articles are a complement of each other. The

main issue is how to go on in the future.

Although 2) and 3) aren’t claiming their

suggestions are contributing to the continuation

of the community, they do help to achieve the

goals mentioned in 1). In 1) is stated the

community can’t go on like it does, it needs to

embrace customers, communicate with them. In

2) is suggested before beginning with

visualization an assessment of the value of

visualization in a particular application is useful.

Embracing of the customer and assessing the

value of visualization will go better with

improved communication. According to 3), to

improve communication, formalization is

necessary. An ontology should be developed

which is generally used so everybody talks about

the same thing when using a term.

Conclusion

In the field of Scientific Visualization a

critical point has been reached. The field is

The Continuation of Visualization – Writser Cleveringa, Liewe Kwakman

26

 5

getting mature, and we have to determine what to

do in the future. The consensus is that Scientific

Visualization is part of a larger process.

Visualization in itself is not a goal but a tool to

reach a bigger goal. That is why researchers must

works together with other researchers, experts

from other fields and customers. Collaboration

needs improvement and in this article we have

given several possible ways to achieve this.

• Work more closely with customers and

experts from other fields to make our research

more useful.

• Define grand challenges to stimulate

collaboration between researchers.

• Assess the value of using a visualization

method for a given application more

elaborate.

• Formalize Visualization concepts in an

ontology to create a standard way in which

people and machines can communicate about

aspects of visualization.

For every method we have given advantages

and disadvantages. But the question still remains:

what to do in the future? To be honest, we do not

know. In this paper we treated several possible

solutions. It is now up to the field to determine

what to do. The field is too interesting to let it

pass away

Bibliography

1) B. Lorensen: "On the Death of Visualization. Can It

Survive Without Customers?" Position Papers

NIH/NSF Proc. Fall 2004 Workshop Visualization

Research Challenges, 2004.

http://visual.nlm.nih.gov/evc/meetings/vrc2004/pos

ition_papers/lorensen.pdf

2) J.J. van Wijk: "The Value of Visualization". In: C.

Silva, E. Groeller, H. Rushmeier (eds.), Proc. IEEE

Visualization 2005, p. 79-86, 2005. Best paper

award.

http://www.win.tue.nl/~vanwijk/vov.pdf

3) D.J. Duke, K.W. Brodlie, D.A. Duce, I. Herman.

"Do You See What I Mean?". IEEE Computer

Graphics & Application, 25(3), May/June, pp. 6-9,

2005.

http://www.cwi.nl/~ivan/AboutMe/Publications/IE

EEOntology.pdf

SC@RUG 2007 proceedings

27

Contour detection by suppression of texture
edges

Pjotr Svetachov and Arjan Somers

Rijksuniversiteit Groningen

Abstract. Classical contour detection algorithms, such as the Canny
edge detector, are receptive to edges in the texture of the objects in an
image, thus giving poor result when trying to process natural or noisy
images, such as a photograph of a cluttered scene. We show a contour de-
tection algorithm that was proposed by N.Petkov and M.A.Westenberg
which uses a biologically motivated (by mimicing the human visual sys-
tem) approach to suppress edges that are part of a texture. This method
is called nonclassical receptive field (non-CRF) inhibition, or surround
suppression. The method is based on mathematical models of the work-
ings of the visual cortex. The algorithm is actually an extra compu-
tational step, which can be used to extend traditional edge detection
algorithms, such as the Canny operator. We also show a biologically mo-
tivated operator, called the Gabor energy operator. This results in an
algorithm that extracts isolated edges but doesn’t extract edges that are
part of a texture. To give an understanding how the method performs
we will use natural images with associated desired output contour im-
ages. When using surround inhibition better approximation of the desired
contour images are generated compared to algorithms without surround
inhibition. So the proposed method can extract contours better than
traditional methods making it very usable in practice.

1 Introduction

Edge detection is a fundamental operation in image processing and computer
vision, in which a lot research has been done. While a large number of edge
detection algorithms are proposed, there is still much progress made today. Pop-
ular current edge detection algorithms, such as the Canny edge detector [1],
define edges as a local change in luminance of a certain strength, for which a
gradient can be defined, without looking at it’s context. This means there is
no distinction is made between object contour edges, and texture edges. For
most computer vision applications only contour edges are needed, and texture
edges can often be considered noise in these applications. These edge detectors
are known as non-contextual edge detectors [2]. There are also contextual edge
detection algorithms, that take in account additional information such as local
image statistics, image topology, perceptual differences in local cues, edge con-
tinuity and density. These contextual edge detectors use this extra information
to make a distinction between object contour edges, and texture edges. There is

28

Fig. 1. (Upper-row) Stimuli. (Lower-row) Surround inhibited responses

evidence that the human visual system also makes this distinction in it’s early
stages of visual information processing.

The human visual system has orientation selective neurons which respond to
lines or edges at a certain position. Initially two types of orientation selective
neurons where found. One type of neurons which was sensitive to the contrast
polarity of edges and lines, called simple cells, and a type which was not, called
complex cells [3], [4]. These cells only respond to edges and lines in their
receptive areas, also called the classical receptive field (CRF). As opposed to
non-CRF which would include the surrounding area.

As said before, the human visual system makes an early distinction between
isolated edges, such as object contours and region boundaries, and edges in a
group, such as edges in a texture. Psychophysical studies show that the percep-
tion of stimuli, such as line segments can be influenced by the presence of other
stimuli in its neighborhood. There is a reduced response of orientation selec-
tive neurons to line segments in their receptive fields when there are other line
segments with the same orientation in it’s neighborhood. The response depends
on the contrast in orientation of the different line segments. This is called the
pop-out effect [5]. These effects are shown in figure 1. Here different images are
shown with their surround inhibited responses. These responses are similar to
the response the human visual system has to these images. In the first image
the line with the different orientation pops out. In the second image we humans
see two squares just like the surround imhibited response. And there is a similar
effect int the thirdh image set. So all the surround inhibited responses are like
the mental image humans get when looking at an image, where certain features
get a high response, while other parts are supressed. This reduction in response
is referred to as non classical receptive field (non-CRF) inhibition, or surround
suppression. Using surround suppression there is large response to edges which
are part of a contour, while edges that are part of the objects texture are sup-
pressed.

SC@RUG 2007 proceedings

29

The reviewed papers [6], [7], and [8] all use non-CRF inhibition. In [6]
the perception of lines with varying stroke widths and sizes with band spectrum
noise using non-CRF is discussed. [7] continues with a more general discus-
sion of non-CRF inhibition. It proposes a biologically motivated combination of
a Gabor energy edge detector and non-CRF inhibition is proposed, creating a
computational model of the human visual system. In this paper a performance
measure is defined, and performance is discussed. [8] continues the discussion
of [7], using Canny instead of Gabor, and proposes a better binary map com-
putation method. We discuss the methods and results of these papers. Section
2.1 discusses how non-CRF can be combined with the Canny edge detector and
the biologically motivated Gabor energy edge detector which models the simple
and complex cells. In section 2.2 non-CRF inhibition is discussed. Two types of
inhibition are discussed, anisotropic inhibition, where only responses to lines and
edges in the with the same orientation as the CRF contribute to the suppres-
sions and secondly anisotropic inhibition, where all responses outside the CRF
contribute to the suppression. In section 4 the performance is discussed. To do
so a performance measure is defined and experimental results are compared to
the results of other edge detection algorithms.

2 Methods

In this section non-CRF inhibition will be presented. Non-CRF inhibition re-
quires a edge magnitude and orientation map of an image. Therefore in section
2.1 two methods which calculate those maps will be described. In section 2.2
those maps will be used with non-CRF inhibition.

2.1 Contour detection operators

This section presents two edge detection algorithms that can produce edge mag-
nitude and orientation maps. First we will discuss the well known Canny edge
detection operator. Then we will discuss the biologically motivated Gabor energy
operator.

Canny The Canny edge detector works by computing the gradient of an image.
Areas with high gradient usually contain an edge. This approach doesn’t give
good results when there is noise in the image so the image is first smoothed by
a convolution with the following Gaussian function:

gσ(x, y) =
1

2π(σ)2
exp

(
−x2 + y2

2(σ)2

)
(1)

After the image is smoothed the gradient is calculated. This can be done by
calculating the gradient of gσ(x, y) first and then convolving the image by the
result.

∇fσ(x, y) = (f ∗ ∇gσ(x, y)) (2)

Contour detection by suppression of texture edges – Pjotr Svetachov, Arjan Somers

30

Now let ∇xfσ(x, y) and ∇yfσ(x, y) be the x and y components of Eq. (2)

∇xfσ(x, y) = (f ∗ ∂gσ

∂x
)(x, y) (3)

∇yfσ(x, y) = (f ∗ ∂gσ

∂y
)(x, y) (4)

Now we can define the gradient magnitude Mσ(x, y) and orientation of the gra-
dient Θσ(x, y) as

Mσ(x, y) =
√

(∇xfσ(x, y))2 + (∇yfσ(x, y))2 (5)

Θσ(x, y) = atan
(
∇xfσ(x,y)
∇yfσ(x,y)

)
(6)

The higher the magnitude the more likely that an edge is present. We will use
the orientation later for anisotropic non-CRF inhibition.

Gabor The Gabor operator is a biologically motivated edge detection operator.
This operator was used both in [6] and [7]. In [8] this operator was dropped and
it was shown that non-CRF inhibition can also yield good results with standard
gradient-based edge detectors like the above mentioned Canny operator.

The Gabor operator uses a modified Gabor function to take into account
restrictions found in experimental data. Two types of cells are modeled using
the modified Gabor functions, simple cells and complex cells.

Simple cells The impulse response of a simple cell can be modeled by the fol-
lowing function:

gλ,σ,θ,ϕ(x, y) = e−
X2+γ2Y 2

2σ2 cos
(

2π
X

λ
+ ϕ

)
X = x cos θ + y sin θ

Y = −x sin θ + y cos θ

Here γ = 0.5 is a constant that controls the ellipticity of the input response. σ
determines the size. θ determines the orientation and ϕ the phase offset. λ is
here the wavelength and the ratio σ/λ determines the how many striped zones
the input response has, see figure 2 for an example. In [8] the ratio σ/λ was
set to σ/λ = 0.56. And like with Canny we just convolve the image with our
operator so our response rλ,σ,θ,ϕ(x, y) is

rλ,σ,θ,ϕ(x, y) = (f ∗ gλ,σ,θ,ϕ)(x, y)

Complex cells Complex cells are modelled using two simple cells with a phase
difference of (π/2). This results in the operator Eλ,σ,θ(x, y)

Eλ,σ,θ(x, y) =
√

r2
λ,σ,θ,0(x, y) + r2

λ,σ,θ,−π
2
(x, y) (7)

this operator is called the Gabor energy operator. No orientation function is
presented because the operator can be evaluated for different orientations.

SC@RUG 2007 proceedings

31

Fig. 2. A Gabor filter. The ellipse specifies the boundary of the receptive field outside
the boundary the function takes negligibly small values.

2.2 Non-CRF inhibition

One of the above filters can now be extended by adding a term that takes the
surroundings of a given point into account. This term is a weighting function

wσ(x, y) =
H(DoGσ(x, y))
||H(DoGσ)||1

where

H(z) =

{
0 z < 0
z z ≥ 0,

(8)

and ||.||1 is the L1 norm.
The function DoGσ(x, y) is the difference of two Gaussian functions:

DoGσ(x, y) =
1

2π(4σ)2
exp

(
−x2 + y2

2(4σ)2

)
− 1

2π(σ)2
exp

(
−x2 + y2

2(σ)2

)
To summarize wσ(x, y) is just the difference of two Gaussian functions,

capped at the bottom so z > 0 and normalized so the integral of wσ(x, y) is
1. See figure 3 for the plot.

Anisotropic non-CRF inhibition Anisotropic inhibition takes into account
the difference in the directions of the gradient in the central point and the
surrounding points. This is done using the function

∆Θ,σ(x, y, u, v) = | cos(Θσ(x, y)−Θσ(u, v))|

Contour detection by suppression of texture edges – Pjotr Svetachov, Arjan Somers

32

-100 -50 0 50 100
-100

-50

0

50

100

Fig. 3. Impulse response of wσ(x, y).The brighter the point the more we consider that
point.

Here Θσ(x, y) is the gradient orientation in point (x, y). So if the gradient ori-
entations are identical ∆Θ,σ will be (at it’s maximum of) 1 and this function
decreases to 0 when the gradient orientations of point (x, y) and (u, v) are or-
thogonal. Lets take one of the filters described in section 2.1 and it’s outputted
gradient magnitude Mσ(x, y) (equation (5) and (7)). Now for every point (x, y)
the anisotropic term tAσ (x, y) can be defined by

tAσ (x, y) =
∫ ∫

Mσ(x− u, y − v)wσ(u, v)

×| cos(Θσ(x, y)−Θσ(x− u, y − v))|
dudv

where the integral is over the domain of the picture. Now we can introduce
the operator CA

σ (x, y) as

CA
σ (x, y) = H(Mσ(x, y)− αtAσ (x, y))

with H(z) defined as in (8) and where α controls how much effect the suppression
term has. So when there are a lot of nearby edges that have the same orientation
as the point (x, y) then the anisotropic suppression term tAσ (x, y) will be strong
and this may cancel out the gradient magnitude Mσ(x, y) of the point (x, y).
And if there are less nearby edges that have the same orientation as the point
(x, y), the anisotropic suppression term will be low and we will find an edge at
that point. So the operator will still respond strong to isolated edges and lines
but the operator will not respond to edges that have nearby edges with the same
orientation.

SC@RUG 2007 proceedings

33

Isotropic Non-CRF Inhibition Isotropic inhibition works almost the same as
anisotropic inhibition except that isotropic inhibition does not take into account
the orientation of nearby edges when calculating the suppression for a point
(x, y). So now the term tIσ(x, y) is defined as

tIσ(x, y) =
∫ ∫

Mσ(x− u, y − v)wσ(u, v)dudv

And the operator CI
σ(x, y) is defined as

CI
σ(x, y) = H(Mσ(x, y)− αtIσ(x, y))

So again α is used to control the strength of the suppression. So the operator
will still respond strong to isolated edges and lines but the operator will not
respond to edges that have nearby edges invariant of the orientation.

3 Binary map computation

The described algorithm outputs grey scale images. To create images like the
canny algorithm, where only lines are outputted, using a binary image, the im-
ages have to be converted. During this step, the points on the outputted grey
scale images which are likely to belong to an edge have to be connected to neigh-
boring points, in order to create lines which represent the edges. This is done
using a algorithm described in [8], which connects points depending on the ori-
entation of edges. This step is needed to be able to compare the algorithm to
the Canny algorithm.

4 Results

4.1 Performance measure

To measure the performance of this algorithm natural images (e.g photographs)
are used with predefined desired operator outputs. The desired operator output
is manually created and therefore subjective. The desired output in this case
are the contours of the input image. A pixel belongs to a contour in the desired
output if it’s part of an occluding contour of an object or it belongs to a contour in
the interior of an object or if it makes part of a boundary between two (textured)
regions (e.g. sky and grass or water and sky).

The following performance measure function is used:

P =
N

N + FP + FN

Here N is the number of correcly detected pixels. FP is the number of false
positives, that is the number of pixels the edge detectors detects as an edge while
they belong to the background in the desired output. FN is the false negatives,
that is the number of pixels the edge detector missed and thus didn’t detect as
the an edge.

Contour detection by suppression of texture edges – Pjotr Svetachov, Arjan Somers

34

Fig. 4. Input image, desired output, and the best output of the Canny algorithm and
the anisotropic and isotropic non-CRF inhibited Gabor results

SC@RUG 2007 proceedings

35

4.2 Performance

The before mentioned performance measure is used to compare the results of
the outputs of the different algorithms. Two test images, the desired outputs of
those images, and the best outputs from different algorithms are shown in figure
4. Fig. 5 shows comparative statistical box-and-whisker plots for five test images.
The plots reveal a consistent better performance of the contour operators using
surround inhibition. In all cases, the best performance (the top end of a whisker)
is higher in comparison to the best performance of the Canny edge detector and
the Gabor energy operator without surround inhibition, and the plots show that
in most of the cases, the isotropic inhibition gives the most effective results. In
the first boxplot this is not the case, here anisotropic inhibition scores better.

Fig. 5. Box-and-whisker plots of the performance of the Canny edge detector (denoted
by C), the Gabor energy operator (denoted by G), the contour operator with anisotropic
inhibition (denoted by B1) and isotropic inhibition (denoted by B2) for five of the test
images. The first boxplots are from the triangle seen in figure 1, the thirdh and fourth
boxplots are the results for the images shown in 4 and the second and fifth boxplots
belong to test images not shown in this paper.

5 Conclusion

It is shown that the biologically motivated step of surround inhibition can be
used in conjunction with gradient based edge detection algorithms, and a better
performance is achieved using this extra step on all the images of the test set. In
[6] and [7] the Gabor operator was used. But later in [8] the Canny operator
was used because it required less computation (you don’t need to evaluate the
operator for more orientations) while giving pretty good results. Also a better

Contour detection by suppression of texture edges – Pjotr Svetachov, Arjan Somers

36

binary map computation model was given in [8]. So while it’s less biologically
motivated it is more practical to use. And probably in the future this method
will be extended to for special cases of edge detection becoming less biologically
motivated but more practical to use.

References

1. Jan-Mark Geusebroek, Arnold W. M. Smeulders, and J. van de Weijer. Fast
anisotropic gauss filtering. In ECCV (1), pages 99–112, 2002.

2. D. Ziou and S. Tabbone. Edge detection techniques - an overview. International
Journal of Pattern Recognition and Image Analysis, 8:537–559, 1998.

3. D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. Journal of Physiology-London, 160(1):106,
1962.

4. David H. Hubel and Torsten N. Wiesel. Sequence regularity and geometry of orien-
tation columns in the monkey striate cortex. The Journal of Comparative Neurology,
158:267–294, 1974.

5. H.C. Nothdurft. Texture segmentation and pop-out from orientation contrast. Vi-
sion Research, 31(6):1073–1078, 1991.

6. N. Petkov and M. A. Westenberg. Suppression of contour perception by band-
limited noise and its relation to non-classical receptive field inhibition. Biological
Cybernetics, 88(10):236–246, 2003.

7. C. Grigorescu, N. Petkov, and M. A. Westenberg. Contour detection based on
nonclassical receptive field inhibition. IEEE Transactions on Image Processing,
12(7):729–739, 2003.

8. C. Grigorescu, N. Petkov, and M. A. Westenberg. Contour and boundary detection
improved by surround suppression of texture edges. Image and Vision Computing,
22(8):609–622, 2004.

SC@RUG 2007 proceedings

37

Contour detection improved by surround suppression
Piet den Dulk (1470639), Roelof Anne Schoenmaker (1603078)

Computer Science Department, University of Groningen

Abstract. Our review paper discusses the part of the visual cortex (part of brain) that
only has to do with detection of contours. This part does some low-level processing
which can be expressed in terms of a system. The paper attributes also to NON-Classical
Receptive Field (NON-CRF) suppression in the visual area called V1. This visual area V1
is suggested as the possible origin of various perceptual effects.

Research has recently been done with humans and macaque monkey's. The results have
delivered points of interest for today's contour detection algorithms. We will review three
papers and construct from the Gabor Energy filter two new operators, one with an
Anisotropic suppression term and one with an Isotropic suppression term as proposed in
these papers. Also we will review results from the performance of these two new
operators and compare them with performance results of the SUSAN and Canny
operators.

1 Introduction

The human brain can do various tasks. Some tasks resides in a part of the brain. When
a person does some activity like watching TV, then a part of the brain gets active and
processes information that belongs to that certain human activity. The part of brain
that maps to human vision is called the “visual cortex”. When one watches TV the
visual cortex gets active and processes information in order to fulfill a certain task.
The whole brain exists of certain cells which we call neurons. Neurons are connected
to each other and work together to manifest intelligence. When a certain action is
performed like watching TV, then the neurons that work together light up and process
information in order to do the task “watching TV”. You can consider the neurons like a
group of ants that work together to do a certain task like bringing food to their nest.

Our review paper is about contour detection, thus everything we discuss in this
article implies to the “visual cortex” of the brain. The visual cortex exist of smaller
sub-parts, where each of them are responsible to a collection of tasks. Those parts do
various processing steps like detecting colors or detecting contours for example.
Contour detection is our topic of interest, it resides as a low-level processing step and
is done in the the visual area called “V1”. V1 exists (for our review) of two types of
cells: simple cells and complex cells, which will be explained in section 2.

We will review in this paper the reports [1], [2] and [3]. They all discuss contour
detection with surround suppression terms. We first explain the two most important
features from the three papers (mainly based on [1] & [2]), so that we have (at the end
of section 3) a clear view over the two proposed suppression terms.

To give an outline of the structure of this paper: In section 2 we discuss “Classical
Receptive Field” (CRF) with Gabor filters. In section 3 we discuss “Non-Classical
Receptive Field” (NON-CRF). Here we will extend the knowledge from section 2
with the proposed suppression terms: Isotropic and Anisotropic. Furthermore we will
review the results from all three papers in section 4, and in section 5 we will briefly
discuss the results we have found with this review.

38

2 Classical Receptive Field

In this section we will model the simple and complex cells. We will model the simple
cells through the Gabor filter and model the complex cells through the Gabor Energy
filter. The simple cells will finally give the base for modeling the complex cells.
Where the complex cells on their turn will give base for further modeling in section 3.

2.1 Simple cells

A simple cell can be represented by a classical receptive field (CRF) function and this
function can be mathematically expressed by a Gabor Filter. The Gabor Filter is
composed by a Gaussian function and a harmonic function, which are multiplied and
form the following formula:

g , , ,λσθ ℘ x , y =e

−x2y 2γ2
2σ2

cos 2π x
λ

℘
x=xcos θ +ysin θ
y=−xsin θ +ycos θ (1)

The formula consists of the following five parameters: is the ellipticity of theγ
neuron, the size of the neuron is stated by and is the standard deviation of theσ
Gaussian part of the formula. The wavelength is represented by , the phase offset byλ

 and the preferred angular orientation of the neuron by .φ θ
The Gabor Function models the simple cell, but excitement comes when the

neurons receives an input signal. So eyes receive an input signal and convert it as a
signal to the brain. Where the neurons, in V1 of the visual cortex, responds and thus
process the image.

To model this response we use the next formula:

r , , ,λσθ℘ x , y = f∗g , , ,λσθ ℘ x,y (2)

The response of the neuron is a convolution between the input image with
luminance distribution f(x,y) and the Gabor Function.

2.2 Complex cells

The other type of V1 cells are the complex cells. A complex cell consist of a pair of
simple cells. A pair of simple cells only forms a complex cell when they are in phase
difference to each other. The function that belongs to complex cells is called the Gabor
Energy Filter and is expressed as:

Eλ ,σ ,θ x,y =r , , ,0 λσθ
2 x , y +r , , ,λσθ −π/2

2 x , y (3)

The formula takes the response function of each of the two neurons in phase
difference. The response of a complex cell is a Gabor Energy function.

SC@RUG 2007 proceedings

39

3 NON-CRF inhibition models

Now we extend the complex cell model with a suppression term. This reproduces the
influence of suppression that surround texture could have in a qualitative way. It
actually means that we qualitative reproduce the NON-CRF suppression behaviour of
almost all orientation-selective cells. This suppression term is calculated by the
balanced summation of the other neurons responses in a ring-formed area surrounding
the involved neuron (CRF), centered at the concerned point in the image (see fig. 1
from [1]).

Fig. 1. Non-CRF suppression is caused by the surrounding neurons of the CRF, which is
defined by the weighting function.[1]

We are using the normalized weighting function defined as:

w x , y =
H DoG x , y
∥H DoG ∥1

, H z ={ 0, z0
z , z0} (4)

The construction ||.||1 denotes the L1 norm and gives the normalizing of the
operator. The L1 norm is also called the Manhattan or city block distance. The H(z)
function is called the halve-wave rectification and it ensures that the operator has only
positive responses.

For completeness; the Difference of Gaussian function or DoGσ is computed by:

DoG x , y = 1
242

e
− x2 y2

2 4 2

− 1
22 e

− x2 y2

22

 (5)

Two types of suppression will be considered in this paper: a) Isotropic, here all
responses of the orientation-selective cells outside the CRF (concerned neuron)
contribute, independently from the preferred orientation of the cells, in an equal way
to the suppression. b) Anisotropic, here only the responses from the same oriented
cells as the concerned neuron, are contributing to the suppression. We first consider
the Anisotropic suppression and then the Isotropic suppression.

3.1 Anisotropic inhibition

The Anisotropic inhibition will be computed by the suppression term:

t , , i

A x , y = E, , i
∗w x , y (6)1

This term is a convolution of the weighting function wσ(x,y) and the Gabor energy
E , ,λσθi (x,y) for each orientation θi.

1 A in formula = Anisotropic! It will also be used for other formula to give a difference
between Anisotropic and Isotropic.

Contour detection improved by surround suppression – Piet den Dulk, Roelof Anne Schoenmaker

40

To make the Anisotropic inhibition model complete, a new operator is introduced:
b , , i

A, x , y = H E , ,i
x , y − t , ,i

A x , y (7)

This operator is using the H(z) as defined in (4). Also it uses α as a factor that
controls the strength of the suppression of the surroundings on the Gabor Energy
operator. Another important feature of α is: when taken negative values for α, it can
model enhancement.

Fig. 2. In contour point A, the suppression term is small. In texture point B, this term could
become very strong. [2]

The function of this new operator can be interpreted as follow. Suppose there is no
texture in the surrounding of a given point (see fig. 2 point A from [2]), then this
operator will respond equally to the Gabor energy operator (because there is no
suppression). On the other end of the spectrum, when there are other textures (for
example edges in case of point B in fig. 2 from [2]), then the suppression term could
become so huge that it will completely cancel the Gabor energy operator and the
response of our new operator will be zero.

From this new operator we will construct the contour operator:

b ,
A , x , y = max { b , ,i

A , x , y ∣i=1, , N } (8)

This contour operator will give maximum response values over all orientations.
Because the operator is defined this way, we could say that it responds to isolated
textures (such as edges and bars) of any orientation and that it not responds to groups
of same oriented textures (see fig. 3c from [3]).

Fig. 3. (a) The input image (b) The complex cell detects all edges (c) The complex cell with
Anisotropic surround suppression (d) The complex cell with Isotropic surround suppression[3]

SC@RUG 2007 proceedings

41

3.2 Isotropic inhibition

To construct the Isotropic suppression term we first need to construct an energy map:
E , x , y = max {E, , i

x , y∣i=1, , N} (9)

The energy map gives maximum Gabor Energy response values, with this energy
map we construct the Isotropic suppression term:

t ,
I x , y = E ,∗w x , y (10)2

As before by the Anisotropic suppression model, we have a convolution with the
weighting function. Also we construct a contour operator for the Isotropic suppression
model:

b ,
I , x , y = H E, x , y− t ,

I x , y (11)

Again is H(z) defined as in (4) and factor α controls the strength of the
suppression of the surroundings on the maximum energy map. This contour operator
will respond in the same way as the contour operator with Isotropic suppression to
isolated textures (such as edges and bars). It actually differs from the Isotropic
suppression contour operator, because it gives a reduced or no response at all to
groups of any oriented textures (see fig. 3d from [3] on the previous page).

4 Results

Our results will be based on the results from the papers [1], [2] and [3]. First we will
look how we can interpret the different results from the three papers and after that we
will try to compare them.

4.1 Interpretation of the three papers

When we are looking at the three papers, then we conclude that [1] and [2] are based
on simple cells (with Gabor filter) and complex cells (with Gabor Energy filter). As a
matter of fact the authors continued with two suppression terms based on the complex
cells. In [3] they propose two gradient-based contour detection operators that
incorporate surround suppression. They use a similar technique as Canny [3] has
proposed.

We could say that [3] is more different from the other two, then [1] and [2] from
each other. Still we would like to compare the results of them. We discovered that it is
possible to compare [2] and [3] on the basis of the performance, because they used the
same performance measure formula. Nevertheless it should be said that under the
bonnet they still have a different approach. In contrast; [1] has no explicit performance
measure formula for the results.

So we could compare [2] and [3] on the performance measure (formula), but for [1]
we don't have it. The papers [1] and [2] have more or less the same base models and
suppression terms. Therefore we could make a good assumption of the differences in
the results, to only compare the performance measures from [2] and [3].

2 I in formula = Isotropic! It will also be used for other formula to give a difference between
Anisotropic and Isotropic.

Contour detection improved by surround suppression – Piet den Dulk, Roelof Anne Schoenmaker

42

4.2 Comparison of the three papers

The performance measure in [2] and [3] are done by having man-made and natural images.
From these images is indicated what the desired output should be. After this, the performance is
evaluated for the different operators. In [2] these operators are: a Canny operator, a Gabor
Energy filter without suppression term, one with the Anisotropic and one with the Isotropic
suppression term. In [3] these operators are: a SUSAN operator, a Canny operator without
suppression term, one with the Anisotropic and one with the Isotropic suppression term.

The just mentioned performance measure formula is defined as:

P=
card E

card E card E FPcard E FN
 (12)

Card(Y) will give the number of elements of set Y. E is defined as the set of correctly
detected contour pixels, EFP is defined as the set of false positives (operator indicates it as pixel
of contour, but it belongs to the background of the desired output) and EFN is defined as the set
of false negatives (desired output contour pixel missed by operator). When the performance
measure P=1, then all the desired output contour pixels are detected and no false positive or
false negatives are detected by the operator. Because the P-value will be on the interval [0,1],
then the outcome will mean that the performance is less optimal when P is lower then 1.

When we look at the results mentioned in [2] and [3], then the general result is that man-
made images have the best Performance measure with Anisotropic suppression (see P for the
Triangle of table 1 from [2]). In contrast with this; when having tested several different natural
images, then at first instance (supported by table 1 from [2]) the best Performance measure is
taken by the operator with Isotropic suppression.

Taking a closer look to the results of [3], then they learn us that the scale of the images is
influencing the result of the operator. But when there is no information for picking the best set
of parameters (for instance one of the parameters could be the scale) for one of the operators,
then there is a higher probability that the surround suppression operators are delivering a better
result then the Gabor Energy filter, Canny and SUSAN operators (supported by [2] and [3]).

5 Discussion

This review has delivered the conclusion that the two proposed suppression terms (Isotropic
and Anisotropic) are usable for Gabor filter, Gabor Energy filter and Gradient based operators.
The Isotropic suppression term delivers us an equal suppression for the surrounding of the
concerned neuron, no matter which orientation the surrounding neurons have. In contrast the
Anisotropic suppression term gives us only suppression for the same oriented neurons,
surrounding the concerned neuron.

The three reviewed papers ([1], [2] and [3]) have delivered us the result that the surround
suppression operators proposed in these reports are generally better, then the Canny, SUSAN,
Gabor filter and Gabor Energy filter operators.

References

1. N. Petkov, M. A. Westenberg, “Suppression of contour perception by band-limited noise and
its relation to Non-Classical Receptive Field inhibition”, 28 February 2003
2. C. Grigorescu, Student Member, IEEE, N. Petkov, and M. A. Westenberg, “Contour
Detection Based on Non-Classical Receptive Field Inhibition”, 7 July 2003
3. C. Grigorescu, N. Petkov, M. A. Westenberg, “Contour and boundary detection improved by
surround suppression of texture edges”, 16 December 2003.

SC@RUG 2007 proceedings

43

Web Service Composition Review

Ilkka Harmanen1 and Moses Matovu2

1 ilkka.harmanen@nic.fi - Student number: 1666800
2 M.Matovu@student.rug.nl - Student number: 1655655

Univertity of Groningen, The Netherlands

Abstract. The Web services model is used to develop and implement

network distributed business processes using standard interfaces and pro-

rocols. The aim of this article is to give a review of four articles about

Web services and Web Service Composition. Various approaches to Web

Service Composition have been proposed and also, several protocols and

languages are being used to combine Web services, but currently there

is none that completely solves the underlying issues of automatic Web

Service Composition.

1 Introduction

Internet is widely considered as a large database with several interfaces, however

with the recently developed state-of-the-art Web interface methods and technolo-

gies, the Web has the potential to be transformed into a complex distributed

network of Web based services. Web services are autonomous network accessible

software that can enable the provision of useful services to easily achieve a sim-

ple task. This is however much more convenient if individual services (however

simple they may be) are combined to handle more complex tasks and it would

even be a more interesting aspect to have in place automatic service composition

based on users’ needs.

The development and execution of business processes distributed over net-

works and accessed using standard interfaces and communication protocols are

based on Web services model. Web services application is an emerging area of in-

terest, not only in Service-Oriented Computing, but also in Service-Oriented Ar-

chitectures. Web Services Co-ordination and Transaction support require frame-

works and standardized protocols. Transactions in Service-Oriented Computing

are more complex and involve many roles. Web Services Transactions require co-

ordination behavior to control the operations and results of applications. They

44

also need the capability and flexibility to handle the coordination of processing

outcomes from various services.

Web services are self-contained and self describing module based applications

composed of several components that allow distribured commuincation using

Simple Object Access Protocol (SOAP). This means that the componentised

view of the Web applications is becoming an emerging platform for distributed

computing and the individual components interact over XML messaging proto-

cols and interoperate with each other using SOAP.

It is widely believed that the next generation of mainstream applications will

be based on autonomous Web services and the implications of this autonomy are

central to the architecture. If individual Web services were combined to handle

complex tasks, it would be more convenient and above all, it would be also

crucial and would need automatic composition of Web services based on user

requirements.

The success of the internet has made it possible for many companies to

conduct part of (or all) their businesses on the Internet. However, as providing

such services is getting more complex, so is the customers need for different and

more extensive services.

This paper is organised as follows: in Section 2, we give a brief description

of the reviewed articles, Section 3 provides a description of the basic concepts

behind Web services and Web Services Composition including the analysis of

some of the technolgies (protocols and languages) used. In Section 4, we discuss

the different approaches used in all the reviewed artcles and finally give our con-

clusions in Section 5 and a summary of the envisaged possible future directions

of this particular field of study.

2 Reviewed Articles

Web Service Composition is an area of ongoing research and is now being studied

extensively. The aim of this article is to review four papers about Web Services

Composition by Fensel and Bussler [1]; Dustdar [2]; Pistore ,Traverso, Bertoli

and Marconi [3] and Srivastava and Koehler [4].

There is an increasing need for dynamic Business-To-Business interactions on

the Web which calls for the implementation and application of certain Internet

interface standards and/or communication protocols all over the globe. Different

SC@RUG 2007 proceedings

45

Web development languages and standards are being used and others are being

proposed to develop Composite Web Sservices. Business Processing Extraction

Language for Web Services (BPEL4WS) is one of these standards; it describes

the behavior of services and how components are represented as stateful processes

that publish interaction protocols with external Web services [3].

Article [3] gives an overview of automatic Web Service Composition, how

to find the cheapest and most fitting Web service to execute a required task.

The paper also states that current technologies provide only limited support in

automatic service recognition, configuration and combination. The authors of

the paper consider semantic Web technologies to be one of the solutions for this

problem. They introduce a framework titled Web Service Modeling Framework

(WSMF), that is centered around two principles “Strong de-coupling of the vari-

ous components that realize an e-commerce application” and “Strong mediation

service that enables anybody to speak with everybody in a scalable manner”.

Article [2] considers Web services and their composition as newly emerging

areas of interest; it discusses the automatic composition of Web services and

proposes the need for Web services frameworks and protocols. The author states

that the existing protocols do not cater for quality-awareness and long-running

transactions, but in general the transaction model with Web services should be

more relaxed

Article [3] describes how to generate automatic executable abstract BPEL4WS.

The authors go on to state that automatically created BPEL4WS descriptions

are essentially as good as hand-written programs, although slightly longer. There

is a unique feature in this article, which concerns using the EAGLE - language

for expressing the composition requirements.

3 Web Services

The Web has registered a phenomenal and enormous success as far as human-

computer interaction over the Internet is concerned. The use of protocols like

HyperText Transfer Protocol (HTTP) and languages like HyperText Markup

Language (HTML) on Web browsers nowadays has turned out to be cost-effective

in projecting user interfaces over a wide range of devices.

Web services communicate using a set of standards, that share a common

architecture like the World Wide Web does. Web services (like the Web), require

Web Service Composition Review – Ilkka Harmanen, Moses Matovu

46

an infrastructure that provides a mechanism for clients to find the Web services

(UDDI), also to define collections of network endpoints or ports (WSDL) that

provide a standardized way of describing the Web services strucrure. In this

structure, SOAP provides support for information binding. In a typical Web

services scenario, a business application uses the SOAP protocol over HTTP to

send a request for a service at a Unified Resource Locator (URL). The service

provider receives the request, processes it, and returns a response. Web services

architecture is designed for highly dynamic program to program interactions

and can support the implementation of several types of distributed systems

including asynchronous and synchronous messaging systems, distributed com-

putational clusters, mobile- networked systems, grid systems and peer-to-peer

environments.

The World Wide Web Consortium (W3C) Web services architecture gives

two aspects of a full description of a Web service and the first is the syntactic

functional description as represented by WSDL whereas the second is described

as the semantics of the service and is not covered by any specification.

Web services and their consumers are typically business oriented, making

Web services predominantly business-to-business (B2B) transactions. An enter-

prise can be a Web service provider and at the same time, a consumer of other

Web services. This explains why Web services are used to implement business

solutions.

Web Services Composition supports the reuse of published services to reduce

the development time and the efforts involved in developing a new application(s).

Composite Web services operate by providing interaction between components

of the Web services. The life cycle of Web services involves development, deploy-

ment and usage phases; and in particular, it may involve models, languages and

interfaces for description, implementation, publishing, discovery and binding,

invocation and execution. Web services end-points are described using WSDL.

Web services implementations need to be published in a registry in order

for users to be able to search and find them, and thereafter be able to access

and utilize them. Registries are normally hosted by private companies or third

parties.

SC@RUG 2007 proceedings

47

3.1 Web Services Composition

Article [1] describes several ways how Web services can be composed; one of

the methods is called combined logic, which is when a Service requester calls

several services from single provider; another method is called complex Web

service, which is when a Service provider combines several of its services, but has

problems if the Service requester needs to know the status of sub-services during

execution. Also, all the input data must be available at the time upon starting

the service; a Service requester can also call a complex service which in turn

calls several services from other Service providers and provide this as a service.

The last possibility the authors of [1] describe is defining the constraints and

invocation sequences for several services, which could be seen by the requester

as another Web service.

BPEL4WS is a business protocol specification language that operationally

describes the stateful behavior of Web services on top of the service interfaces

provided by the specifications in WSDL. An abstract BPEL4WS description

identifies those parts of a Web service, its internal variables and operations [3]

that can be accessed when a service in needed. BPEL4WS processes are encoded

as state transition systems that describe dynamic systems.

Over the web, communication protocols and message formats are standard-

ized and this is important in describing communications in a structured and

standard way. WSDL addresses this need by defining an XML syntax for de-

scribing network services as collections of communication endpoints capable of

exchanging messages.

WSDL is an XML format for describing network services as a set of end-

points operating on messages containing either document-oriented or procedure-

oriented information. WSDL as an XML messaging protocol has collections of

message-enabled endpoints or ports. The association of protocols and data for-

mat specifications is used to implement the Web services on the web. The op-

erations and messages are described abstractly, and then bound to a concrete

network protocol and message format to define an endpoint. Related concrete

endpoints are combined into abstract endpoints (services). WSDL is extensible

in that it allows the description of endpoints and their messages regardless of

what message formats or network protocols are used to communicate.

Article [1] describes UDDI (Universal Description, Discovery and Integration

of business for the Web), a standard that provides mechanism for clients to find

Web Service Composition Review – Ilkka Harmanen, Moses Matovu

48

Web services. Fensel and Bussler [1] describe UDDI-registry as a phonebook con-

taining white pages (general information about the company such as address,

short description, contact information, etc), yellow pages (service descriptions

and list of categories that describe the service more accurately, such as purchas-

ing, shipping, etc). Finally, within the business service, there are the so-called

green pages that provide technical information about the service.

3.2 Semantic Web Solutions

The semantic Web can be used as method to tackle the Web service composi-

tion problems. In practice semantic Web technologies enable adding machine-

processable meta-information on data. With this kind of information, it is possi-

ble for computers to actually understand the context of the document and thus

make semantic connections around the internet; enabling new way of linking

services and webpages. As of now, even though the required technologies are

becoming more common, there is still not enough meta-information online for

forming decent semantic-network [1].

Semantic Web enabled Web services have a huge potential in public pro-

cess description and advertisement, discovery of services, selection of services,

composition of services, delivery, and lastly monitoring and contract negotiation

[1].

4 Comparisons

A direct comparison between these papers is not possible since each focuses

mostly on different parts of Web services life-cycle. There is no standard trans-

port mechanism that is used by Web service requestors and providers. Both

have to agree on a mechanism to be used when service requests are executed.

For each available mecahnism, a layout of the message has to be agreed upon

and how the document shall be presented in the message. As for exchange se-

quence definition, communication over networks is unreliable. Service requesters

and providers should use protocols to ensure that messages are transmitted ex-

actly once. UDDI, WDL and SOAP are important steps in the Web services

composition, however, they only address part of the overall requirements needed

to have expressive Web services.

SC@RUG 2007 proceedings

49

Web Service Modelling Framework (WSMF) [1] was developed to provide

a rich conceptual model for the development and description of Web services

to bring the technology to its full potential. This describes Web services as

interfaces accessible via a network - the external aspects of a Web service -

unlike WSDL and other Web description approaches discussed in other papers

that do not make an explicit distinction between the internal description of a Web

service and its external visible description. In articles [2] and [3], WSDLs define

elementary Web services as simple input and/or output boxes whereas complex

Web services as those that breakdown the entire process into sub-tasks that

may call other Web services. This distincton may lead to misconceptualisation

because it is not the complexity of a Web service and/or its simplicity that makes

a crucial difference but rather the complexity of its interface. This is to say that,

complex exernal visible description makes the relevant difference as it is the case

in WSMF. WSMF language does not define concrete syntax or semantics for

WSMF but it is an extension of WSDL.

Srivastava and Koehler [4] investigated how Web services in WSDL and Web

services in the semantic Web differ with respect to modelling, verification and

deployment of services and their respective inference methods and runtime sup-

port that they assume. The authors state that Web services description can be

solved in various ways; and they give a typical problem and provide its indus-

trial solution using WSDL and BPEL4WS, and at the same time give a seman-

tic Web solution using RDF/DAML-S and Goleg/Planning. The specification

of composite services whether given in BPEL4WS or DAML-S, encodes process

information that can be bound to different protocols. BPEL4WS puts much em-

phasis on error handling and message collection however both BPEL4WS and

DAML-S allow customer satisfaction of plan execution at runtime.

5 Conclusions

The purpose of this paper wass to reviewing the Web Services Composition ap-

proaches contained in four different research papers mentioned in section 2. Web

services description, composition and standards have been discussed in particu-

lar among many other asects discussed and the findings are briefly summarised

below.

Web Service Composition Review – Ilkka Harmanen, Moses Matovu

50

The use of prospective coordination middleware efficiently manages and mon-

itors large-scale Web services workflows and also deals with short-lived and long-

lived types of transaction.

Executable BPEL4WS processes compose Web services which can be gen-

erated automatically from composite requirements and abstract BPEL4WS de-

scriptions of components. Automated synthesis is feasible within reasonable time

and much faster than the manual development of BPEL4WS composite process

however, the quality of both automatic and manual BPEL4WS processes is not

clearly discussed and elaborated. The Semantic Web community tries to solve

the problems related to automated synthesis by use of Semantic Web to describe

services such as Ontology Web Language service (OWL-S) descriptions of the

input and/or output’s pre-/post-conditions.

Furthermore, several approaches are proposed and many are used to sup-

port various forms of Web services compositions, but none addresses fully the

issue of automatic Web services composition. Automatic synthesis of compos-

ite BPEL4WS only considers a small part of the entire problem at hand since

it only focuses on generating a new composite Web service that interacts with

the existing Web services rather than the issue of Web Services Composition in

general.

As for the foundations for BPEL4WS coordination middleware and related

coordination and transaction frameworks, Web service workflows must cope with

not only short- but also long-living transactions, which is currently beyond the

state-of-the-art solutions. Some of the current services assume tight coupling

between the services, however the very idea behind Web services is based on the

possibility of loose-coupling.

WSMF, is a modelling framework whose main elements are ontologies, goal

descriptions, elementary and complex Web services and mediators. Its goal is to

enable fully flexible and scalable e-commerence based on Web services. Presently,

most work on Web services is focused on Web services description, flow and

execution.

In typical Web Service Composition scenarios like plane ticket, hotel room

and/or car rental bookings; it works fairly well. However, since Web Service

composition has the possibility to automate the entire B2B processes, this could

mean that every single order could be automatically and transparently com-

SC@RUG 2007 proceedings

51

pleted. However, it is not only price, but also quality that need to be included

in the descriptions.

6 Future Research Interests

The future interests of the research should address the problem of associating

finite ranges to various data types in the generation of the state transition sys-

tems from the BPEL4WS Web Services focussing in particular the techniques

to discover the right ranges.

Also future work should focus on Service oriented transactions to cater for

multiple views on services, their conversation, aggregation, integration, coordi-

nation, enactment, and transactional properties.

Finally, one of the other most interesting aspects of Web services is Enterprise

Application Integration (EAI). As a future area of interest, adapters should be

put in place for older web-based applications, to make them (older web-based

applications) work as loosely-coupled software so as to to make the cost and

difficulties of integrating older systems cheaper.

References

1. D. Fensel and C. Bussler: The Web Service Modeling Framework WSMF, 2002,

Electronic Commerce: Research and Applications, 1(2): 113-137, 2002

2. Sachahram Dustdar: Web Services Workflows - Composition, Co-ordination and

Transactions in service-oriented computing, 2004, Concurrent Engineering, Sep

2004; 12: 237 - 245

3. M. Pistore & P. Traverso, P. Bertoli, A. Marconi: Automated Synthesis of Composite

BPEL4WB Web Services, 2005, 3rd IEEE International Conference on Web Services

2005

4. Biplav Srivastava & Jana Koehler: Web Service Composition - Current solutions

and open problems, 2003, ICAPS 2003

Web Service Composition Review – Ilkka Harmanen, Moses Matovu

52

Linking the customer to the software development
process

The Looping Framework

R. Krooman (1650114), M. de Jong (1650181)

rkrooman@xs4all.nl, michel@hostname.nl
Department of Computer Science, University of Groningen

Published: 21 January 2007

Abstract. This article introduces a software architectural framework (called
The Looping Framework) that primarily focuses on successfully incorporating
the customer into the software developing process. The entire framework is
based on a series of states which allows separate addressing of concerns of the
involved stakeholders. Achieving maximal involvement of the customer
through constant repetition over the states during the development process.
Keywords: software architecture, framework, software development, design,
customer.

1 Introduction

The development of software remains a difficult task and can be considered an
architectural art. The word ‘software’ should be read as ‘good software’, meaning that
it was completed to the satisfaction of the customer. Numerous completely different
factors play a role in successfully constructing a software program.
One has to consider the costs, time, and availability of employees and so on. Yet,
without probably realizing it, one of the largest considerations is the customer. Their
ideas play the most prominent role in building the software that complies with the
customer’s wishes. Therefore we can certainly state that one of the biggest concerns
in software development is correctly understanding the customer. In order to properly
translate these wishes into code we turn to software architectures.
Software architectures describe how a system is decomposed into components, how
these are interconnected, and how they communicate and interact with each other.
When poorly understood, these aspects of design are major sources of errors [4].

53

2 Earlier scientific research

The research area of software architecture is an emerging one, with little agreement
over the definition of architecture. The only consensus seems to be that architecture is
related to the structure of a system and the interactions among its components [2, 3].
In general, the literature describing a certain software architecture mostly relies on
informal examples and anecdotes, and most of the work has not been proven to be
successful on large projects. Scientific research addresses these problems in profound
detail, focusing on distinguishing different types of architectures that support different
types of projects [4]. Also great effort has been made to construct a way to quantify
quality attribute requirements 1[5].
Another paper provides a view model to capture the gist of an architecture through the
usage of five views [6]. In all of the these scientific papers involvement of the
customer is implicitly addressed. We propose to explicitly study the participation of
the customer in the developing process. An author of a software book once said:
,,Software architecture is the set of design decisions which, if made incorrectly, may
cause your project to be canceled."[1]. Considering this paradigm and with referral to
the study of the essential role of a customer in the developing process, the focus of
this paper lies on successfully involving the customer with the development process.
This leads to the following research question:

“How can the customer be actively linked into the developing process, and keep this
involvement as undemanding as possible?”

1 Software quality attributes are the benchmarks that describe system’s intended behavior
within the environment for which it was built. The quality attributes provide the means for
measuring the fitness and suitability of a product.

Linking the customer to the software development process – R. Krooman, M. de Jong

54

3 Roadblocks and bulldozers

In order to connect the customer to the entire developing process we should first look
at the different roadblocks that cause a project to become unsatisfactory. The biggest
obstacle is where to involve the customer in the development process. Smaller
blockades are: who will communicate with the customer, engineers, software
management, et cetera…?
To pave the road to a successful project we have developed a framework. In this
framework every aspect of the development of a software program is taken into
account. This is accomplished by taking a different point of view for every aspect.
When translated into a framework, this reflects as four different states. Each of the
states has its own specific responsibility.

- Customer state
This state describes and specifies a design in an informal way. The customer
brainstorms about an idea and informs software management about this idea.

- Functional state
In this state the design is translated into a software diagram which divides the design
into several smaller designs.

- Technical state
In the third state the translation to a more technical diagram is made. Also early
problems from either the functional or technical design will be noted here.

- Evaluation state
The last state in the looping process is communicating with the customer about the
possible problems and questions. This will involve answering and solving the
questions and problems. Finally leading to a revision of the original design. The
revised design is called a system. In case of approval of the system The Looping
Framework delves into a subsystem.

SC@RUG 2007 proceedings

55

4 The Looping Framework

Why use a framework that continues to loop over a series of different states? To
answer this question we should first take a look at the problem that arises when using
a single run framework or design method. Suppose using a framework or design
method that passes every state once. When facing problems in one of these states it is
often hard to solve the problem without backtracking to the former state. When
backtracking to an earlier state the customer is often left out. Not to mention the
impact it will have on the entire design: time, costs and scheduling of the project.

The Looping Framework deals with very high levels of abstraction. It does not try to
separate design concerns or be applicable to a certain software architecture [4].
Nor does it try to solve the lack of specificity of quality attributes when developing
software[6]. Its main point is creating a high level of organizational abstraction in the
development of software. By doing so, it separates itself from the earlier scientific
research made with regard to software architectures.
It does however use ideas from the ‘4+1’ view model [5] approach. The concept of
decomposition of the system into several subsystems makes for a solid base. When
using several views (or states), addressing the concerns of a software system with
various stakeholders becomes a much less complicated and problematic task.

4.1 How does it work

In The Looping Framework this problem is solved through continuously looping over
the system and its subsystems by traversing four states. In every state the subsystem is
scrutinized from a different point of view. By viewing the subsystem from different
angles, problems will easily be recognized. These problems shall be summarized in a
problem log1.
In the last state (evaluation state) this problem log is transformed into an easy
readable report which will be passed on to the customer. The customer is given the
chance to give feedback, and after this the changes will be incorporated into the
design. This chain of events will continue during the entire project. This way the
customer is completely aware of any faults or problems taking place during the course
of to the project.
Next to problem solving, the customer is given the chance to brainstorm about
specific implementation related issues. Besides setting and developing the global
outlines of a project, most customers desire to be part of developing subsystems or
even smaller parts of the system. The Looping Framework allows customers to take
hold of that prominent role they ought to have within a project. In figure-1 the design
of The Looping Framework design can be found.

1 A problem log is a manually created collection of problem

Linking the customer to the software development process – R. Krooman, M. de Jong

56

 Fig. 1 The Looping Framework

5 Customer state

A customer comes up with a great idea or needs to automate something. What they
want, needs to be translated into a program that complies with their initial idea.
Unfortunately what the customer actually wants, tends to be a little vague. So the
information really needs to be extracted from the customer. The responsibility for
getting this information lies with the developer, not the customer.

Because the customer is not aware of all the implications of the required functions -let
alone know every required function- this information can not be retrieved in a single
talk or meeting.
When retrieving the required information for designing the software, the customer
could also decide to change certain aspects of the project during its course. Also the
customer may disagree on certain solutions for a problem or find that their idea was
not correctly interpreted by the developers.

This state provides the customer and software management with all the required
details to make a solid (informal) design. In the first run the focus lies on extracting
all possible functions required by the program. The following runs provide the
customer with possible problems and questions that rose while constructing a solid
design. In every run the customer should respond to these questions in order to help
solving these problems. This continuous looping over the customer state enables the
construction of a clear and correct design. In turn of the engineers this will provide an
understandable interface to build the software.

Customer Functional

Evaluation Technical

Software management
customer

Customer
Software management
Engineers

Engineers
Software management

Engineers
Software managment

Development/Brainstorming

Revision

Present
problems to
customer

Conversion to
technical
diagram

Testing

SC@RUG 2007 proceedings

57

6 Functional state

In cooperation with software management, the customer created an informal blueprint
of what they want. For the engineers to make a good technical representation of this
blueprint, it is imperative to have a well-structured functional design.
A functional design is a level of the design process in which subtasks are specified
and the relationships among them are defined, so that the total collection of
subsystems performs the entire task of the system.
Software management and the engineers will use the informal blueprint to create a
functional design using Unified Modelling Language (UML).

UML shows the dependencies between subsystems and how they relate to each other.
This is a very important issue, because if there is an error anywhere in the
relationship, it is mostly very inefficient to repair this in a later stage of the project.
Often these errors lead to different problems for the actual writing of the software and
will inevitably lead to the wrong solution.
UML is the standard of gradually creating software in a way of dividing a software
program into multiple subsystems. These subsystems can be libraries, packages, other
(sub)programs or chunks of program code (often divided into classes). What defines a
subsystem depends on aspects such as the reuse, portability and security. The system
also becomes easier to modify as more subsystems are created. The (final) UML
results in the (final) product and is considered to be the most important aspect of
designing a new system.

7 Technical state

In this state the product of the functional diagram is used to create a technical design.
In the technical design concurrency plays a part as well as class dependency, which
are both less important in the functional design. Usually a lot of questions arise when
an architect develops a technical UML-analysis. This state becomes more and more
important as the project progresses.
In the early stages of a project making a correctly detailed technical UML-analysis is
often impossible. However, concurrency possibilities can be easily spotted.

7.1 Concurrency

Concurrency is the possibility of running multiple tasks at the same time. In a lot of
problems adding concurrency leads to problems. The trick of fast programs
(especially internet applications) is to gain the most concurrency. In general the
concurrency will not lead to any problems. Often asking the customer about their
experiences or predictions about the problems, can solve concurrency issues, which
will result in faster development.

Linking the customer to the software development process – R. Krooman, M. de Jong

58

In some cases concurrency plays a more essential part. In banking, concurrency is of
the highest priority, while in other programs it may give a boost in performance, but it
is no necessity.

7.2 Process

In the first couple of loops the main focus will be on concurrency and which problems
can arise. In later loops the UML grows as the functions are described more
accurately. The better the functions are described, the more detail is possible. This
results in questions about the relationship between subsystems. The customer should
define how these relationships need to be implemented. This leads to better
understanding of the customer’s wishes.
In one of the last loops the actual code will be written. There will be a few more loops
to improve on performance (if needed). As soon as the actual writing of the code
starts, questions towards the customer should no longer be asked.

SC@RUG 2007 proceedings

59

8 Evaluation state

The evaluation state changes as the project progresses and exists of two different
elements. The first is to summarize problems that occur during previous states. The
second is testing of the design and implementation; this is done by looking at the
specifications given by the customer. Eventually, the testing stage will be running
given pre sets of input and evaluating the output of the program with the output the
customer wants.

8.1 Summarize problems

In each loop the questions of the previous states (of the same loop) will be
reformulated in a way that is understandable for the customer. This step is often not
done until the software architect is face to face with the customer. The reason for
putting this step into our framework is because this is a source of miscommunication.
Often words used by the software architect have no meaning, or a different meaning
to the customer than for the architect.

8.2 Testing

Tests are done in order to evaluate the program as far as possible. Testing can be done
in different ways. In the first loops the testing is done by comparing which functions
are distributed in which way in the UML (comparing the technical state with the
functional state). At this point, modifiability becomes important. If a function
changes, the UML must also reflect this. If it is unclear whether there’s a need for
modifiability, this will lead to new questions.
In later loops the testing will be done by writing input files (with an output created by
the customer) for the developed program. If the program and the customer come to the
same conclusion, the program is correct to that point. If there is any difference in the
output, the programmer of the functions will be requested to reprogram the functions.
Again this will also lead to a question for the customer about their ideas of the
correctness of the implementation.
Results that can be shown, should also be put into a presentation. The results shall be
discussed with the customer. Results contain:

Response measurements: Time needed in order to complete a given input.
Evaluation of test sets: Where do the program and the customer agree and more

importantly on which
points to they disagree.

Possible questions: This depends on the project.
Contradictions: Two problems both have a same path but one fails in the

evaluation test set and one is correct, this always indicates
missing constraint.

Linking the customer to the software development process – R. Krooman, M. de Jong

60

9 Discussion

This paper poses a structurally different aspect than the researched theses. The level
of abstraction of The Looping Framework is extremely high, whereas the other papers
discuss more specific design structures.
On the other the hand, when looking at paper [5] The Looping Framework shows
significant similarities. Paper [5] served as a inspiration for constructing a customer
oriented framework.
Besides this, the quality attributes requirements discussed in [6] can easily be
embedded in the design of The Looping Framework. For instance Business Qualities
[7] like ‘Cost and Schedule’1 can easily be adapted to guard the financial aspects of a
software project. Finally the different architectures of [4] can all be applied to The
Looping Framework. Trivially said The Framework defines the outlining and high
level responsibilities of a project. Therefore software architectures and quality
attributes can be easily used in coherence with The Looping Framework.

10 Future work and conclusions

The Looping Framework is still in the stage of development. In spite of this similar
frameworks have been successfully applied to several large projects. Maximizing
involvement of the customer has proven to be of great advantage during these
projects.

Keeping in close contact with the customer during these projects was as beneficial for
the customer as for the developers. The customer got exactly what they wanted.
Developers had more time to increase modifiability of the software, maintaining a low
threshold when working on the project.

During the next couple of months The Looping Framework will be tested more
intensively. It will be applied to several fundamentally different projects. The
diversity of these projects lies in the way of how actively the customer takes part of
the developing process.

1 The cost of the system with respect to time to market, expected project lifetime, and

utilization of legacy systems.

SC@RUG 2007 proceedings

61

References

1. Rozanski, N., E. Woods, ‘Software Systems: Working with Stakeholders Using
 Viewpoints and Perspectives’, Addison Wesley Professional (2005)
2. Garlan, D., and M. Shaw. An introduction to software architecture, in Advances
 in Software Engineering and Knowledge Engineering. V. Amriola and G.
 Tortora (Editors), Volume 1, World Scientific Publishing Company, New
 Jersey, 1993.
3. Harel, D,. Statecharts: A visual formalism for complex systems, Science of
 computer programming, Volume 8 pages 231 – 274, 1987.
4. Soni, D., R. Nord and C. Hofmeister. Software Architectures in Industrial
 Applications. Siemens Corporate Research inc.
5. Kruchten, P. Architectural Blueprints The ‘4+1’ View Model of Software
 Architecture. Rational Software Corp.
6. Bachmann, F., L. Bass, M. Klein and C. Shelton. Designing software
 architectures to achieve quality attribute requirements.
7. International Standard ISO 9126-1: ‘Information technology: software product
 evaluation – quality characteristics and guidelines for their use’. International
 Organization for Standardization, Geneva, 2000.

Linking the customer to the software development process – R. Krooman, M. de Jong

62

Approaches for Integrating Architecture
Knowledge in Architectures

Wouter-Tim Burgler1 and Marnix Kok2

1 w.t.burgler@gmail.com, s1526669
2 marnix@linux-box.nl, s1526677

University of Groningen, The Netherlands

Abstract. To keep development costs for software systems low, soft-
ware architectures (SAs) are used as input for many business processes.
SAs are sets of documented design decisions that together make up the
design of a system. However, documenting decisions without architec-
tural knowledge (AK), e.g. rationale and alternative solutions, decreases
the added value of using SAs [1]. Therefore, we present three [2–4] ap-
proaches for integrating AK in SAs and compare them on the complexity
of documenting and retrieving this AK. The Archium approach [4] in-
tegrates SA and its AK in the system its source code. This coupling
between AK and source code increases the maintainability of the system
best, thus we propose it is the best approach for integrating AK in SAs.

1 Introduction

Throughout the years, complexity of software systems has increased. In a mar-
ketplace where being the first to ship a product usually, means a bigger profit-
margin, time to market plays an important role as well. These factors put addi-
tional pressure on a development team to create products quickly and correctly
- software architectures help achieve this goal.

A software architecture (SA) is the result of a series of decisions that are taken
during the design process. By documenting these decisions, different parties can
develop important insights in the structure and behaviour of the software system.

Unfortunately, it is common practice to only document the decision and not
the process that preceded it. The missing information is called architectural
knowledge (AK) - Babar [2] describes it as information that explains the con-
text, reasoning about why this solution is better, tradeoffs, criteria and how the
decision to use the current solution was reached.

Failing to explicitly document AK leads to evolution problems and increased
design complexity. Because the AK only exists in the minds of the developers,
this tacit knowledge dissipates in time as employees leave the company or simply
forget important details. When alternative solutions and the reasons for their
rejection are not documented, they may be chosen later, when the objections are
forgotten. Also, useless legacy code may remain in systems because its purpose is
unknown. Therefore, it is essential to the successful development of the software
system to make this knowledge explicit.

63

Documenting AK has the advantage that project maintainability increases.
During the evolution phase of the software system developers will have a com-
plete overview of the decisions made. Each decision also has an abundance of
associated information which can be used to make an informed decision on the
path to take. Besides that, a good architecture contributes to the flexibility, in-
tegrity and comprehensibility of the software system. These notions emphasise
the importance of a properly documented SA and its AK.

Because of the advantages of documenting AK and the disadvantages of not
doing so, we propose that AK should be integrated in SAs.

Our contribution to the research of software architectures is the presenta-
tion (section 2) and comparison of three approaches to intergrating architectural
knowledge in software architectures. The comparison (section 3) specifically looks
at the complexity of documenting and retrieving AK in the approaches. It leads
to selecting the approach that handles the integration of AK in the most conve-
nient way (section 4).

2 Approaches

This section discusses the approaches to solving the integration problems pro-
posed by the reviewed research.

2.1 Ontology

Kruchten et al. [3] propose an ontology of architectural design decisions and
their relationships. An ontology is a hierarchial structuring of knowledge about
things, by subcategorising them according to the qualities, that define them.
This architectural ontology can be used to retrieve the architectural knowledge
needed to perform some task, such as: reviewing changes made since a specific
date or evaluating the impact of a design decision.

The proposed ontology allows four kinds of design decisions being: existence,
non-existence, property, and executive. Existence decisions state that some ele-
ment/artifact will exist in the system’s design or implementation, non-existence
decisions are the opposites of these. Enduring traits or qualities of a system are
stated in property decisions. Executive decisions do not relate directly to de-
sign elements or their qualities, but are driven by political, personal, cultural,
financial, and technical constraints. Six attributes are deemed essential for de-
scribing any design decision. Obviously, the first one is a short textual statement
of the decision itself. Second is the intrinsic rationale stating why a decision was
made. The third attribute is scope, which can be universal, system, time, or
organization. The fourth attribute contains history information, i.e. who made
the decision and when, changes to the decision are also recorded here. The state
attribute contains the state of the decision, possible values are: idea, obsolete,
rejected, tentative, challenged, decided, and approved. Finally, a design decision
may belong to one or more categories which allow them to be easily grouped.

Approaches for Integrating Architecture Knowledge in Architectures – Wouter-Tim Burgler, Marnix Kok

64

Eleven types of relations between design decisions are supported by the on-
tology. Relations may express conflicts, overrides, alternatives, and constraints
between decisions. The extrinsic part of rationale, e.g. why a decision was made
with respect to other decision, is also contained in these relations. Relations be-
tween decisions and other artifacts like a requirements document or the source
code are also possible.

The ontology can be created and edited using any ontology tool, it can be
visualized using the Aduna Cluster Map Viewer which shows the ontology as a
cluster map where edges represent decisions and vertices the relations between
them. It allows the various stakeholders to query for information, making this
tool very useful for tasks like reviewing for specific concerns and finding critical
decisions. However, it is not very suitable for tasks where grouping in categories
of entities is insufficient because their relation in hierarchy or time is needed.

This approach integrates AK as textual statements in an ontology that de-
scribes the architecture. Both intrinsic and extrinsic rationale are documented
explicitly and can be queried by all stakeholders at any time.

2.2 Framework

M.A. Babar et al. [2] have specified a framework which can contain a software
architecture description. Within this framework the definition of software ar-
chitecture differs from that used in the other papers [2, 4]. Babar has chosen
architectural patterns as the base element for software architectures.

Architectural patterns are similar to design patterns as used in software de-
velopment. They offer a standard solution to problems, at different levels of
abstraction, that often occur when creating a software architecture. Implement-
ing such a pattern in the software architecture has consequences for the quality
attributes of the system. Each pattern influences different types of quality at-
tributes, for example implementing pattern A may make the system slower. This
means the responsiveness quality attribute changes.

The software architecture description not only contains pattern descriptions,
scenarios also are part of the description. A scenario is a description of a situation
the software system is used in. Not only does it describe how the system should
handle input and output, it also contains a list of quality attributes that are
of importance to that particular scenario. Combining the quality attributes of
the patterns and those of the scenarios, one is able to assess how much the
architecture is in alignment with the requirements.

The framework that implements the architectural entities mentioned above,
consists of three major components. They complement each other in capturing,
structuring and maintaining architectural knowledge. The three components pro-
vide means, procedures and a model. Means to capture architecture knowledge
from a myriad of sources, both human and electronic. Procedures for capturing
architecture knowledge. This knowledge is then associated with patterns, sce-
narios and quality attributes. A model that allows the architect to create an
overview of the main architectural constructs and their relationships with other
entities.

SC@RUG 2007 proceedings

65

There are several ways to capture architecture knowledge. In some cases
designers themselves are obligated to document the rationale of decisions they
take. Often, the rationale quality depends on the sense of benefit the designer gets
out of it. It is therefore vital that the importance is stressed, and demonstrated
at a later date.

It is also common practice that a person is appointed the task of extracting
design knowledge from meetings, emails, memos and other type of useful docu-
mentation. It has been shown that this approach is very rewarding and has been
proposed to become part of any software development process.

It is important that these patterns are extracted from the available archi-
tectural resources, human or electronic. Unfortunately, since pattern mining is
a manual process it is highly dependent on the experience of the miner. There-
fore procedures containing a process model, guidelines and templates to identify,
capture and document have been created.

2.3 Archium

Van der Ven et al. [4] propose to model software architectures as sets of de-
sign decisions. These decisions explicitly contain rationale and the considered
alternative solutions.

Design decisions are expressed in Archium its design decision model. Archium
is an extension of Java, consisting of a compiler and run-time platform. Its model
uses an issue-based approach, the issues are problems that are (partially) solved
by the solutions of architectural design decisions.

Rationale, motivation, cause, and choice are all elements of a design decision
in Archium. Rationale is described in natural text within the scope of a design
decisions. In the rationale text, explicit references to design elements can be made
to create a close relationship between rationale and the elements it describes.

All the elements of design decisions are modelled in Archium by expressing
them in source code; the AK elements are described in natural text. Modifica-
tions to the architecture, which are the result of a chosen solution, are modelled
in Archium or Java code that alters the existing design implementation. Because
this code is written per design decision, changes to the design (and thereby its
history) are recorded.

By combining SA and source code, Archium solves the major problem of
having inconsistencies between these two. These inconsistencies can arise when
artifacts are updated independently, i.e. the source code is changed but the SA
is not altered accordingly or vice versa. They practically make the SA useless
as it makes no sense to reason about the system when it no longer accurately
describes the system.

3 Comparison

This section compares the approaches that are reviewed in section 2. The com-
parison is made with regard to the complexity of documenting and of retrieving

Approaches for Integrating Architecture Knowledge in Architectures – Wouter-Tim Burgler, Marnix Kok

66

AK in the architecture. Of course, both documenting and retrieving AK should
be very easy to use, in order to make these processes accessible for all stakehold-
ers.

3.1 Ontology

Compared to the other approaches, this approach contains a large categorisation
of design decisions and their relations. An abundance of information associated
with design decisions is not a bad thing. However, it is easy to get lost in the
vast amounts of information if no proper tooling is available.

Because of the differences and subtleties of this categorisation, extensive
training is necessary to effectively use the ontology. Tooling support is avail-
able but is fairly complex for both documenting and retrieving AK, and does
not allow all tasks to be performed.

3.2 Framework

Unlike the Ontology and Archium approaches, this approach chooses a different
set of definitions by which to categorize the contents of an architecture (sec-
tion 2.2). This difference is not necessarily a bad thing as it creates a perspective
on the architecture that includes quality attributes.

However, the methods suggested to keep the framework up-to-date are quite
time-consuming, paper [2] even suggests hiring new personnel to keep the SA
documents up-to-date because of this. This has a negative influence on the archi-
tecture integrity because developers have to communicate their findings, possibly
forgetting to share all the details.

3.3 Archium

The last of the approaches is perhaps the most interesting as Archium takes a
rigorous approach to integrate the AK and software architecture.

Archium models the architectural entities such as design decisions in a super-
set of the Java programming language, thereby integrating the source code and
architectural documents into one. This increases component reusability, main-
tainability and removes the need for developers to constantly update documents
to reflect the current state of the software system.

Because Archium is able to integrate the architecture and source code, not
just the relation between the decision and its AK is documented but also the
relation with the source code. We regard this as a major advantage as it allows
to find the code that goes with some decision but, maybe even more interesting,
it allows the decision that goes with some code to be retrieved. Because of this,
useless legacy code can be easily removed when the decision that it belongs to
is withdrawn and useful code can be reused when a decision is made again in
another system.

There are some problems however in the use of Archium. Firstly, the integra-
tion of architectural entities with Java causes a paradigm shift. The development

SC@RUG 2007 proceedings

67

team needs to be trained and has to build experience in utilizing Archium ef-
ficiently. Also, because AK is integrated in the source code it will mostly be
documented by software engineers which is not always the best solution. Finally,
the use of Archium is the first design decision for the SA of a system which
currently implies that Java will be used as the programming language of choice.

However, when Archium will support other programming language its most
important restriction will disappear. Also, with proper tooling and visualization
AK may be documented and retrieved by any stakeholder. Finally, because of the
advantages of Archium we think that the investment in training the development
team is worth it.

4 Conclusion

We compared three different state-of-the-art approaches for integrating AK in
SAs on their complexity of documenting and retrieving this AK. The Archium
approach was chosen as the approach that integrates AK in a way that it can be
easily documented and retrieved. Although the use of Archium requires a shift
of paradigm, we propose it is the most appropriate approach for integrating
AK in SAs because (a) it allows documenting AK such that tacit knowledge is
preserved and (b) it integrates the SA and its AK in the source code, making
inconsistencies between SA and source code impossible.

Using Archium, the maintainability of a software system is increased because
AK is never lost thus it can always be used to make informed decisions. Also,
SAs documented in Archium allow stakeholders to reason about the design of a
system easily which will increase its quality. Finally, Archium supports reusabil-
ity of architectural knowledge because implementations of design decisions may
be used again in other systems.

Conclusively, Archium provides all of SA and AK its advantages and even
adds some because of the integration in source code. This allows high quality
software systems to be created relatively quick while being highly maintainable,
giving companies using the Archium approach an advantage over others.

References

1. Tyree, J., Akerman, A.: Architecture decisions: Demystifying architecture. IEEE
Software 22(2) (2005) 19–27

2. Ali Babar, M., G.I.B.K.: A framework for supporting architecture knowledge and
rationale management. Rationale Management in Software Engineering (2006)

3. P. Kruchten, P.L., v. Vliet, H.: Building up and reasoning about architectural knowl-
edge. The Second International Conference on the Quality of Software Architectures
(QoSA) (2006)

4. van der Ven, J.S., Jansen, A.G.J., Nijhuis, J.A.G., Bosch, J.: Design decisions: The
bridge between rationale and architecture. In Dutoit, A.H., McCall, R., Mistrik, I.,
Paech, B., eds.: Rationale Management in Software Engineering. Springer-Verlag
(2006) 329–348

Approaches for Integrating Architecture Knowledge in Architectures – Wouter-Tim Burgler, Marnix Kok

68

Solutions and motivations for preserving architectural

knowledge

Adam Loorbach, Erik Staal

A.Loorbach@student.rug.nl, H.B.Staal@student.rug.nl

Abstract. A lot of existing software architectures suffer from architectural

erosion, as a result of lost architectural knowledge. This paper will start with a

quick overview of the problems with documenting design decisions in the most

commonly used approaches to software architecture. To solve these problems,

the solutions of various authors have been reviewed. These proposed solutions

will be compared to determine the major similarities and differences between

them in terms of impact and implementation.

1. Introduction

The design of software architectures should focus on two questions: ‘How?’ and

‘Why?’ The ‘How’ part states how the architecture should be implemented and is

usually straight forward, it is primarily used during the implementation phase. Less

straight forward is the ‘Why’ part; this involves the design decisions and is primarily

used before and after the implementation phase. It contains the reasons why a specific

approach was chosen in favor of the alternatives. In the design phase the design

decisions and their rationales are mainly used to convince stakeholders that the right

decision has been made, by informing them of the alternatives and their

consequences.

After the implementation phase, the design decisions are used to deal with changes

in the environment, which require the system to be adjusted to regain environmental

‘fit’. When a system is changed without the engineer knowing the reasons behind the

design decisions, the changes may inadvertently cause undesired side effects. These

side effects on their turn require new changes to be made to the system; this is known

as architectural erosion. However, when the reason for a decision is exactly known,

the decision can be re-evaluated. This way you can evaluate all the consequences and

guarantee a sound architecture.

An architecture reflects many major and minor decisions, either to guide or

constrain the technical implementation. According to Tyree[3], design decisions are

based on the stakeholders’ concerns and are architecturally significant if they affect

one or more system qualities like performance or security.

69

Our research will show that currently used methods to describe software

architectures have significant shortcomings with respect to documenting design

decisions. Architectural knowledge is lost over time, which leads to erosion of the

architecture. Solutions found in the literature range from additional documentation to

whole new approaches to software architecture. However, every solution has a cost

associated with it. We will show how the solutions differ from each other in terms of

implementation, cost, possible benefits and ease of introduction.

2. Problems tracking decisions in traditional approaches

The overall problem with the traditional approaches is caused by the lack of a clear

view on why the architecture looks the way it does. Design decisions are embedded in

the architecture and not explicitly documented. Knowledge about these decisions is

lost over time and this leads to a number of problems, as identified by Jansen and

Bosch[4]:

• Design decisions are cross cutting and intertwined

Decisions that affect multiple parts of the design simultaneously, lead to design

decision information being fragmented across various parts of the design, making it

difficult to find and change decisions.

• Design rules and constraints are violated

During system evolution, previously taken decisions may be violated, which will lead

to architectural drift.

• Obsolete design decisions are not removed

The system has a tendency to erode more rapidly when obsolete design decisions are

not removed, yet removing decisions takes a lot of effort with no immediate benefits.

It may also result in unexpected effects on the system.

These problems result in systems which are expensive to change and individual

artifacts that are difficult to reuse, because the design knowledge has vaporized.

3. Proposed solutions in literature

This section will review four papers from the literature. Not all of the papers provide

a complete solution for the problem, but rather discuss different aspects of the

problem. Kruchten[1] focuses primarily on defining design decisions, an overview of

research is provided. Babar[2] has done research on how architectural information can

be captured and Tyree[3] focuses strongly on how to document all the design

decisions. Bosch[4] finally proposes a new approach towards software architecture.

All these papers are discussed in more detail below.

Solutions and motivations for preserving architectural knowledge – Adam Loorbach, Erik Staal

70

Solution 1: Kruchten

Kruchten defines 4 types of design decisions:

• Existence decisions (“ontocrises”), these decisions state that some

element/artefact will show up, i.e. will exist in the system’s design or

implementation.

• Bans or non-existence decisions (“anticrises”), this is the opposite of an

existence decision, and it states that some element or artifact will not appear

in the design and implementation.

• Property decisions (“diacrises”). A property decision states an enduring,

overarching trait or quality of the system.

• Executive decisions (“pericrises”), these are the decisions that do not relate

to the design or quality but are more driven by for example the business

environment.

For a decision Kruchten lists the essential attributes:

• Epitome, a short textual statement of the decision.

• Rationale, a textual justification of the decision.

• Scope, for example time scope, when is the first customer release?

• Author, Time-stamp, History.

• State, decisions evolve in a a manner that may be described by a state

machine or statechart.

And the relations between the decisions:

• Constrains

• Forbids (Excludes)

• Enables

• Subsumes

• Conflicts with

• Overrides

• Comprises

• Is an Alternative to

• Is bound to (strong)

• Is related to (weak)

• Dependencies

The paper does not give a clear solution how the design decisions should be captured.

There is an overview of actors who may use the architectural knowledge from the

repository, but not how the repository is build. Visualizing the decisions and their

interconnections is marked to be very important. A tool called Aduna is able to

visualize ontologies that describe a domain through a set of classes and their

hierarchical relationships.

Solution 2: Babar

This approach uses a three component framework for managing architectural design

knowledge. The components are created with information from different sources, like

architects, artifacts and patterns. The three components are derived the following way:

SC@RUG 2007 proceedings

71

• Capturing knowledge underlying decisions from architects

A manager can be appointed to the task of capturing design knowledge, it’s also a

possibility to let the architects do this themselves, but their knowledge can become a

bottleneck.

• Capturing architecture knowledge and associated rationale from patterns

Using a template to document architectural design knowledge extracted from patterns.

Because design patterns are reused in different projects, the design knowledge can be

reused.

• Characterizing the main architectural constructs and their relationships

The “DAta Model for Software Architecture Knowledge” (DAMSAK) is a

customizable model to characterize the data required to capture architecture

knowledge and rationale. The model constructs a repository of reusable architectural

design knowledge.

Solution 3: Tyree

This solution uses a decision hierarchy for connections between design decisions. It

first states that architects should make as few decisions as possible and leave the rest

till later in the lifecycle. The only decisions the architect really needs to make are

those that identify the system’s key structural elements, their relationships and their

externally visible properties. Once an important design decision is found, a set of

alternatives is developed. A simple comparison of pros and cons is used to assign

viability to the alternatives. For listing the essential information provided for the best

alternative Tyree uses a table derived from the REMAP and DRL meta-models with

two additional fields, Related Principles and Notes.

As the result of a design decision a number of implications can arise, these

implications can lead to new design decisions. Repeating this recursively this can

deliver a complete decision hierarchy. The decision hierarchy depends highly on the

main decision and changes in the main decision will have a ripple effect across the

whole hierarchy. That is why an “Architecture Decisions Model” is made to represent

the hierarchy. All decisions and their tables and models will be described in a simple

separate deliverable.

Solution 4: Bosch

The proposed solution is a whole new approach to software architecture. It aims to

define software architectures as a set of architectural design decisions. Aside from

solving the problems determined in the previous chapter, it will also help the architect

with:

• Guarding the conceptual integrity

• Explicit design space exploration

• Analysis of the architecture

• Improved traceability

Solutions and motivations for preserving architectural knowledge – Adam Loorbach, Erik Staal

72

The Archium approach
The Archium approach tries to define the relationship between general design

decision models and software architectures. Archium is fundamentally different from

most other design methods, as it does not promote design for or with change, but

rather designing using change.

The Archium meta-model consists of three sub-models:

• Architectural model

Defines software architecture using ADL concepts

• Design decision model

Model design decisions with their rationale

• Composition

Model elements to unite previous sub-models

These models together make Archium capable of describing a software architecture as

a set of design decisions.

4. Similarities and differences between proposed solutions

The authors of the above mentioned solutions all agree that preserving architectural

knowledge is of high importance. They differ in the way in which they propose to

actually capture the knowledge. Tyree[2] proposes to add an additional document to

the architecture that explicitly documents the decisions and the reasons behind them.

It does not propose any other alterations to the architecture design process. In terms of

implementation this solution is relatively cheap: the method is easy to learn and

understand and although it requires some effort to document the decisions, it will not

cause any serious delays in the architecture design process.

Kruchten[1] does not propose a complete solution, but rather raises questions as to

what information should be contained within an architectural knowledge repository,

and how this information should be used. The paper does not reach decisive

recommendations, but it is made clear that the ultimate implementation will entail a

lot more than a simple documentation of each individual design decision. A lot of

effort is invested in visualizing the decisions and their interconnections. It is therefore

logical to assume that this will require some fundamental changes to the way software

architects work. For that reason it will be more costly to implement than the proposal

of Tyree.

Babar[2] focuses on obtaining the actual architectural knowledge whereas the other

authors suggest this knowledge is readily available during the design phase. Babar

raises questions as to who is responsible for capturing the knowledge and what the

used framework should look like. Similar to Kruchten, a complete solution is not

proposed, but the main idea is a knowledge repository, not a new approach towards

software architecture.

SC@RUG 2007 proceedings

73

Bosch[4] proposes the most radical change in architectural design. The current

ways of software architecture are abandoned and replaced with a method that is

centered around architectural decisions themselves. As this requires a radical shift in

practices, it is very costly to implement.

5. Conclusion

The authors of the reviewed papers all agree that preserving architectural knowledge

is of key importance to prevent architectural erosion. They also agree that this concept

is new and emerging practices are still in their infancy. The complete new approach

Bosch[4] proposes has to deal with the major disadvantages for a new approach:

• Conservative designers are most likely unwilling to change their approach

• Retraining architects is expensive

• Software engineers need to be schooled to understand the architecture

This means the method should be really convincing. The other methods can be

introduced in an easier way because the process itself does not have to change in a

fundamental way; it just produces more or larger deliverables. The authors also

conclude that not only the main attributes of a design decision have to be documented

but also the relations between the individual decisions and the impact a certain change

will have on other decisions. Capturing the underlying knowledge of decisions made

by architects may also be a good idea; experienced designers can see certain anti-

patterns or mistakes in the reasoning of new designers. Using design decision

patterns is, like using patterns in general, a good idea but the traps should be avoided.

With architectures in general becoming more and more complex, combined with

increasing demands for software reuse, preserving architectural knowledge becomes

increasingly important. This development will increasingly improve the trade-off in

favor of the approaches that best serve these new demands, even if they are more

costly to implement.

References

[1] “Building up and Reasoning about Architectural Knowledge”

- Philippe Kruchten, Patricia Lago, Hans van Vliet

[2] “A Framework for Supporting Architecture Knowledge and Rationale Management”

- M.A. Babar, I. Gorton, B. Kitchenham

[3] “Architecture Decisions: Demystifying Architecture”

- Jeff Tyree and Art Akerman

[4] “Design Decisions: The Bridge between Rationale and Architecture”

Jan S. van der Ven, Anton G. J. Jansen, Jos A. G. Nijhuis, Jan Bosch

Solutions and motivations for preserving architectural knowledge – Adam Loorbach, Erik Staal

74

A different approach on comparing ADLs
Draft submitted for the SC@RUG 2007 conference

M.R. Fremouw (1526642) and H. Lenting (1526685)

University of Groningen, The Netherlands.

Abstract. Software Architectures are used to organize complex soft-
ware. There are different methods to describe a software architecture.
Such languages are called Architectural Description Languages (ADLs).
An ADL is used to describe an architecture in a formal way. There
are several ADLs available today, for example: C2, Wright, ACME and
Rapide. All these ADLs have their own approach on how to describe a
software architecture in a standardized way. This paper gives an answer
on two research questions. The first one is how useful are ADLs exactly
and the second one is how to select an ADL. . . .

1 Introduction

An architecture represents a critical link between the design of a system and the
requirements engineering processes. The goal of the architectural design pro-
cesses is to setup a basic structural framework. A basic structural framework
contains all major components of a system and identifies the communication
between these components. An architecture that is explicitly designed and doc-
umented has several advantages:

1. Improve communication. Because the architecture is an abstract view of
the system it can improve the communication with the stakeholders. Mostly
because it is a high-level view and all the small disturbing details are not
visible.

2. Analysis in an early stage. When the architects build the architecture, they
are forced to analyze the system in an early stage. In an early stage it is clear
if the system can meet the requirements such as performance, reliability and
maintainability.

3. Improve reuse. A system architecture describes a system in components and
their communications. This system architecture is often the same for other
systems with the same or almost the same requirements. So it is possible to
interchange components between (sub)systems. This can result in large-scale
software reuse.

75

Software architecture researchers make clear that software quality can im-
prove by modeling important architectural aspects. Especially early in the de-
velopment life cycle. Also many researchers believe that a software architecture
must provide with its own body of specifications languages and analysis tech-
niques. These languages provide abstraction that are needed to build complex
and large systems, but also give some room to insert special, low detail, proper-
ties. In the past ten years many ADLs have been proposed. Looking at different
ADLs it is hard to find the characteristics of an ADL. The idea is clear; structure
the software architecture through a language but how this should be done is not
always obvious.

The two main research questions for this paper are 1) “How useful are ADLs”
and 2) “If you want to use one, how to choose between them?”. The first question
about how useful ADLs are is relative easy to answer however the second question
about how to choose is relatively complex to answer. The reason for this is
that comparing the available ADLs is hard because there is no uniform way to
compare them. In this paper an applicability framework is introduced to compare
the different ADLs. With the help of this framework the reader can improve his
knowledge on different ADLs and make a better decision which ADL to use for
a particular situation.

2 About ADL

While architectural designs are very important for software processes, the archi-
tectural designs are not always fully understood by other architects and stake-
holders. At least not the way an architecture designer had in mind. Most archi-
tecture designs are specified in a non standard way, because of a lack of good
design rules and tools.

The choice of an architecture can determine if a system satisfies all require-
ments or not. Several academia and also the industry proposed an “Architectural
Description Language” as a formal way of specifying architectural designs. ADLs
commonly provide a conceptual framework and concrete well-defined semantics.
Some languages are not primary designed to be an ADL, especially UML. But
they turn out to be suitable for describing and also analyzing an architectural
design in a formal manner.

3 How useful ADLs are

How useful are ADLs actually? What is the drive for a company to invest in
using an ADL? In the past architectures where mostly visualized by box-and-
line drawings. While this is quite easily for an architect to accomplish, for third
parties like stakeholders it was not as easy to understand the thoughts of the
architect. With the help of an ADL the following points are dealt with:

A different approach on comparing ADLs – M.R. Fremouw, H. Lenting

76

Mutual communication – By using an ADL it is easier for third par-
ties to understand how the architecture created by the architect is defined.
This gives the possibility to have more communication between stakeholder
and architect. Eventually this leads to a system which fits the needs of the
stakeholders in a better way.
Embodiment of early design decisions – With an ADL it is possible to
give body to design decisions in a very early stage. This gives the architect
also the possibility to early detect possible problems in the architecture,
which at that point can more easily be discussed with the stakeholders.
Transferable abstraction of a system – In a large company with several
projects, some of these projects will have some similarities. With the help of
an ADL it would be possible to share a specific part with another project.

There are different reasons why you should use an ADL. A few of them are
mentioned below.

– To obtain the benefits of an explicit architectural focus, an ADL can help
with introducing its own specification languages and all kind of different
analyze techniques.

– ADLs are useful for defining and analyzing properties of a system early in
the development cycle.

– An ADL provides abstraction that is needed for designing a (large) system.
– With the help of an ADL, architects use a more standardized way for com-

munication, for example with stakeholders.

Using an ADL also has some disadvantages. The disadvantages are now summed
up.

– Because an ADL is (in most cases) very strict the danger is that the focus
lies to much on the rules for designing an architecture. Which results that
the architectures attention is drawn away from the requirements.

– Most ADLs are not developed with commercial goals in mind. This results
that not all ADLs are suited to be used in a commercial environment.

– The ADLs discussed in this paper all have their own specific optimization
towards a particular goal.

– Not all available ADLs are supported by commonly used commercial tools.

The authors believe that an ADL is very useful for visualizing, specifying, con-
structing and documenting a system. Mostly because box-and-line drawings are
not the best way to describe an architecture.

SC@RUG 2007 proceedings

77

4 Applicability framework

The authors defined a few comparison criteria for the framework to be able to
compare each ADL. Below are the chosen framework criteria explained in more
detail.

4.1 Semantics

Every ADL has its own way to specify semantics. Two types of semantics are
defined, component and connector semantics. Component semantics resemble
the definition of modeling components behavior. While connector semantics say
something about the interaction between components.

4.2 Scope

The ADLs selected for comparison have different scopes. The scope shows a clear
view of what type of architectures an architect can create. For example some
ADLs are more suitable for architecting architectures for embedded systems
while other ADLs do a better job on creating an architecture for a distributed
system.

4.3 Features

The authors have defined a selection of mandatory features. The authors think
these features are absolutely necessary to be able to use an ADL in practice.
Although the last point does not really look like a feature, it is defined as one.
The authors see it as a special addition, which an ADL has or has not.

- An environment to work in.
- Analysis to early detect errors and possible problems.
- Some kind of community to discuss problems.

A different approach on comparing ADLs – M.R. Fremouw, H. Lenting

78

4.4 Tool support

To be able to really use an ADL for defining an architecture a set of decent tools
is needed. This is one of the criteria the authors use for the comparison between
ADLs. Obviously not every ADL has the same amount of tools available. The
criteria for toolsupport are:

Active specification – A few of the compared ADLs have support for
specification of an architecture. There are two types, proactive or reactive.
Proactive tools limit the design possibilities on the current design. Reactive
tools detect errors and then inform the architect.
View – Does it support a graphical or textual view of an architecture or
maybe even both.
Analysis – What type of analysis tools are available, this can be a parser,
compiler or a type checker.
Code generation – Some ADLs have tools for generating code from an
architecture. Does the ADL have this, and if so which languages are sup-
ported.

5 Comparing ADLs

The second main research question is how to choose an ADL. In this paper
not all different ADLs are discussed because there are too many. The authors
selected a few based on a variety of reasons. The most important reason is to
get a good mixture of all kind of ADLs based on the their scope. In this section
we compare the chosen ADLs and we will also give a short description of each
ADL.

5.1 Comparison

With help of the earlier defined criteria for the applicability framework, it is
possible to create a real comparison between the selected ADLs. The results of
this comparison are put in table ??. The idea behind this table is to give the
reader an indication on what ADLs are best for a specific project. The table
uses the same points for every ADL, this makes the comparison more easy to
understand. The points mentioned give a clear view on what is possible with the
specific ADL. With the desired architecture in mind it is also more easily to see
which ADL has the most similarities.

SC@RUG 2007 proceedings

79

ADL Semantics Scope Features Tool support

C2 Support for mod-
eling components,
invariants and
operation pre- and
postconditions. For
modeling connec-
tors, has partial
by using message
filters.

Architecting of
distributed, evolve-
able and dynamic
systems.

A lot of tools avail-
able. But it is out-
dated and there al-
ready is an succes-
sor, xADL.

Has graphical
and textual view,
both proactive
and reactive. Code
generation for
C/C++, Ada and
JAVA. Has parser
and type checker
for analysis.

Darwin π-calculus for mod-
eling components,
none for modeling
connectors.

Architectures of
distributed sys-
tems.

Has several tools
available, but it
lacks a commu-
nity. There is not
much information
available.

Has graphical,
textual and even a
hierarchical view.
Generation of C++
code. Has parser
and compiler.

UML None. UML does
not distinguish
components and
connectors.

Architectures of a
variety of systems.

There are a lot
of (open source)
tools available. It
is not very con-
strained. But there
is a lot of in-
formation available
about UML and us-
ing UML as ADL.

Graphical view. No
support for code
generation, or anal-
ysis.

Rapide Partially ordered
event sets for
both modeling
components and
connectors.

Creating dynamic
architectures.

Has several tools
and there is a lot of
information avail-
able on the inter-
net.

Textual and graph-
ical views. Has its
own sub language
for executable sim-
ulation. Has parser
and compiler.

Wright Only through CSP
because this is not
the focus of Wright.

Architectures of
concurrent sys-
tems.

There is a tutorial
available but the
tools are not yet
finished.

In this paper the
authors tried to
give an answer to
the two questions:
“How useful are
ADLs” and if there
is need for an ADL
“Which ADL fits
best”.

ACME Only through other
ADLs.

Interchange be-
tween architecture.

ACME’s main
focus is architec-
tural interchange,
features of other
ADLs can be used.

Supports only a
textual view.

Table 1. Comparison between ADLs using the applicability framework.

A different approach on comparing ADLs – M.R. Fremouw, H. Lenting

80

5.2 Short description each ADL

With the help of the applicability framework it is easy to find the global char-
acteristics of an ADL. This way you can choose every suitable ADL. After this
step it is also necessary to know some more background information and that
is the reason for a short description for each ADL. These descriptions can be
found below.

C2 C2 is based on a component and message-based architectural style. An archi-
tectural design contains a set of components and connectors. Each component
is connected to one top connector above and one bottom connector below it.
This way components can only communicate through connectors. This model is
strictly layered, because of this components can only communicate (with the use
of a connector) with the layers immediately above or below it.

The strength of the C2 style is a strictly layered approach. Because of this
C2 can support substrate independence and component substitutability. For ex-
ample, applications with a layered nature can be build with an architectural
style like C2. C2 is focused on highly distributed systems. C2 is one of the few
ADLs which has support for almost every kind of tools needed by system devel-
opment. A code generator is available, which is able to generate C/C++, Ada
and Java code with help of DRADEL. It has a graphical- and text-based view
of the development processes. There is also a tool for creating to-do lists and
storing design critics. For the analysis part there is a parser, type checker and
style rule checker available. One of the advantages of C2 is that there are a lot of
tools available. Another advantage is that there is code generation support for
multiple languages. The C2 style does not allow communication through shared
memory, which might be required by particular high demanding systems.

Darwin Darwin can be characterized through his simple and elegant grammar,
a good concept of components and the introduction of controlled dynamism in
the specification of software architectures. The creators of Darwin summarized
it: “The overall objective is to provide a soundly based notation for specifying
and construct distributed software architectures.”.

The Darwin style works with components and ports. Ports are used for com-
munication between the different components. They behave like services, it en-
ables other components to interact with the component but also setup commu-
nication to other components by itself. A port is associated with a type: the
interface of the service it provides or requires. The focus of Darwin is, just like
C2, architectures of highly-distributed systems. But Darwin is har more focus
on dynamism. Darwin has just like C2 also support for almost all tools needed
in the design process of a system. Like many other ADLs Darwin has a parser
and compiler for analyzing. Darwin differs from other ADLs with support for
“what if” scenarios, the other ADLs discussed in this article do not support this

SC@RUG 2007 proceedings

81

feature. With Darwin it is only possible to generate C++ code. Another nice
feature of Darwin is that it has support for constrained dynamic change of the
architecture at run time and compilation. One of the main features which Darwin
distinguishes itself from the other ADLs is that it is able to create distributed
dynamic systems. Another feature is the operation model, which is described in
π-calculus. Darwin is only suitable for highly-distributed architectures. A disad-
vantage is the current development status. There is not much activity anymore
around the development of Darwin, it uses outdated software and it is still in an
early development stage.

UML The industry mostly uses UML instead of ADLs. Today many companies
are using UML for architectural descriptions. The section “About ADL” give
the reader some information about the fact that most ADLs are not primary
designed to be a real ADL. UML is a good example of this. Because companies
used UML like an ADL, UML evolve towards a real ADL. This resulted that
UML has become suitable for describing and analyzing an architecture.

There are architects that say that UML is an ADL but there are also archi-
tecture that say that UML is a modeling language and not a process or method.
The authors believe that UML is a sort of ADL but UML is less expressive than
other ADLs. For instance, UML does not distinguish components and connec-
tors. Beside this UML had no built-in notation and does not have a built-in
notion of architecture style constraints. Because of this it is better to combine
UML with an other ADL to get more strictness in the way an architecture de-
scribe a architecture. When we look to UML alone it is clear that UML can be
used for a large range of software systems. Besides this UML is also supported
by many tools.

Rapide The Rapide architecture works with modules and connections. Connec-
tions are used to give information about the flow of events between the different
modules (or components). The Rapide architecture style can be described as
an event-based architecture description language. Each module has an interface
and the definition of these module interfaces is part the of Rapide language. The
architectural definition language is used to build such modules. The behavioral
specification of interfaces is handled by the constraints language.

The focus of Rapide is modeling and simulation of the dynamic behavior
described by an architecture. Rapide contains a few build-in tools. There is a
tool available that can give background information of execution behavior by
animating simulations. This information is published in a graphical- and textual
view available. Of course there is a parser and compiler available, it is also possi-
ble to compile sub languages. Dynamic changes in the architecture, just as with
Darwin, at run time and compilation level is possible. Rapide has several distin-
guishing features like event-based architectures specified using partially-ordered
sets of events. It also has all kinds of simulation tools to check interactions of

A different approach on comparing ADLs – M.R. Fremouw, H. Lenting

82

event-based components. There is no support for active specification in Rapide.
Active specification can limit design decisions (proactive) or detect errors (reac-
tive).

Wright With the Wright language it is possible to organize the structural and
behavior aspects of software systems. Because of the precise semantics for its
notation this solution offers analysis and verification techniques of the proper-
ties. Wright works with basic abstractions of components, ports and connectors.
The notation of Wright has many similarities with communicating sequential
processing (CSP).

Wright is mostly focused on modeling and analysis of the dynamic behavior of
concurrent systems. Analysis has its primary focus on deadlock analysis. Unlike
all other discussed ADLs Wright does not have support for a graphical view of
the system, only a textual view is available. It does have a parser, model checker
for conformance of ports and roles and analysis of connectors for deadlocks. The
most important feature of Wright is that connectors are explicit with checkable
formal semantics. For Wright not a lot of tools are available, while other ADLs
have tools for almost all design cases, Wright has no active specification, code
generation or dynamism support.

ACME ACME is a type of ADL but ACME has more goals then developers
can expect from a more conventional ADL. ACME is developed as a compromise
by the software architecture research community. The idea behind this ADL is
to give a more common representation for a wide variety of architectural tools.
The people behind ACME believe that here is sufficient commonality in the ca-
pabilities of ADLs to share ADL independent information.

ACME has its focus on architectural interchange, especially at the structural
level. ACME does currently not have as many tools available as other ADLs,
but there are still new tools created for ACME. Currently it features an Eclipse
plug-in to create the system. Besides the plug-in there is also a parser and some
performance analysis tool available. The main feature of ACME is the ability to
share architectural descriptions. It does this with help of a structural framework
for characterizing architectures. One of the disadvantages of ACME is the lack
of supporting tools. All other ADLs have some kind of support for dynamic
configuration changes, ACME does not support this.

SC@RUG 2007 proceedings

83

6 Conclusion

In this paper the authors tried to give an answer to the two questions: “How
useful are ADLs” and if there is need for an ADL “Which ADL fits best”.

This paper should make clear to all readers that an ADL is very useful. As
stated earlier ADLs make architectures, especially for third parties, more read-
able and gives the possibility for reusing earlier designs. There is no reason for
an architect to still use the old box-and-line-drawing style.

It is hard to give a clear answer to the question: “Which ADL fits best”,
because it is not easy to get an overview of the possibilities and domain of every
ADL. However with help of the comparison table it has become a lot easier to
make the choice for which ADL is best to use. The table gives a clear answer to
what ADL is best for what specific domain and what tools are available. After
making a rough selection with help of the table, a more precise selection can be
made by reading the detailed sections of the selected ADLs.

ADLs have been around for a while now and are becoming more and more
popular by architects. It is safe to say that ADLs are becoming a mandatory
tool for every architect.

A different approach on comparing ADLs – M.R. Fremouw, H. Lenting

84

Software Architecture Description Options: UML or

ADLs
Ahmad Waqas Kamal, Callo Trosky

 Department of Mathematics and Computer Science

University of Groningen, Postbox 69042, The Netherlands
a.w.kamal@rug.nl, trosky.callo@esi.nl

Abstract. Research and development in software engineering involves model-

ing, analysis and description of software architectures. In contrast to modeling

and analysis, there is not a defined consensus about how and what is done in

software architecture description. Two main approaches are ongoing options for

architectural description. One is the set of architectural description languages

(ADLs), where each of them is mainly designed for specific architectural do-

main and specialization. The second stream is the Unified Modeling Language

(UML), with a standard set of predefined constructs for multiple modeling pur-

poses including some for software domain. In this paper we review the new

relevant features for software architectural description in UML 2.0, and update

a previous approach to describe software architecture with UML 1.5. Finally,

we compare UML against main features of ADLs in order to measure the cur-

rent maturity of UML for architectural description.

1 Introduction

A sound architecture design is crucial to the success of a software system. Current

research trends are focused towards a coherent approach for architecture based devel-

opment understandable by different stakeholders [4]. However, the practice of soft-

ware architecture design is still ad hoc, informal, isolated and poorly understood by

stakeholders. It has become a challenging task to analyze software architecture for

consistency, completeness, evolution and extensibility [3]. Architecture description

languages are used as a solution to such problems. Numerous architectural description

languages like Aesop, Artek, C2, Darwin, Lileana, Metah, Rapide, SADL, Unicon,

Weaves and Wright provide architecture solutions for designing, describing and im-

plementing software projects [4]. These architecture description languages mostly

work in isolation and fulfill domain specific needs.

UML and ACME are distinctive for their presentation as general standardized lan-

guages. However, UML bears the responsibility to cover a wider domain of industries

which makes it a weak option for software architecture community. UML gets the

advantage of being a famous notational language understood by wider community, but

it is a semiformal language that does not cope with detailed granularity and variability

85

of software architecture design. Medvidovic et. al. has studied number of existing

architecture description languages and uses this knowledge to test the power of UML

on modeling software architecture [1]. His work is focused on UML 1.5, though UML

2.0 has introduced new features, still his work carries a significant contribution as

evaluated in [1][2]. UML has the advantage of close association with development

languages but it provides poor support for detail analysis at architecture level. Other

description languages provide reasonably good support for variability but they differ

extensively in their semantic and design notations. ACME is used as a language to

provide a common platform but in itself it does not provide full feature support to

architecture description languages. Thus industry still lacks the presence of a widely

accepted architecture description language understandable by a wider community of

software architects.

Typically each architecture language takes in to consideration components, connectors

and their configurations. With specific ADLs, these components and connectors de-

mand use of certain rules, selected style specification and topological constraints that

when designed needs to be taken care of. Similarly ADLs itself inhibit modeling nota-

tions or facilitate incorporation of new notations for components and connectors to

design software architectures. However, few of these architecture description lan-

guages inherently support style based architecture design.

In this paper both UML and ACME are not differentiated from other architecture

description languages. By considering them as architecture description languages we

compare their features with other architecture description languages. Further, the cur-

rent specialization of UML 2.0 to be used as an ADL is focused. Variability support

provided by description languages, modeling issues and tool support of different

ADLs is also discussed and limited scope, restrictions and implementation issues of

these languages are highlighted. Another motivation of this work is to highlight fea-

tures offered by UML 2.0 in context with existing description languages.

2 Architecture Description Languages

Architecture description languages are used to model, configure and provide tool

support for architecture based development [4]. ADLs have become an intense area of

research in software engineering community. Numerous description languages have

been proposed or are under improvement to coup with demanding needs of software

development. Many of these description languages are specific to their domain but

some are designed for general purpose use as well. However, there is no strictly de-

fined consensus in research community about what exactly an ADL is, what aspects

should necessarily be modeled in ADL and what should be interchanged in inter-

change language [4]. These description languages contain appealing features on indi-

vidual level such that if they were combined much better results could be produced.

For example, transfer from one view in a description language to another one in a

Software Architecture Description Options: UML or ADLs – Ahmad Waqas Kamal, Callo Trosky

86

different description language might be more beneficial. But in the absence of a com-

mon, formalized notation this goal is far from success.

Components and connectors are used as architecture building blocks. Components

encompass functionality while connectors work as glue between components and work

to transfer data and control. When used within the boundaries of ADLs they need to

be designed and formulated to fulfill the specific needs of selected ADL. Most of the

ADLs provide built-in features that can be used for effective architecture design.

These components and connectors need to be modeled explicitly to the selected archi-

tecture description language to build and maintain their topology. An example is, a

component can be a client, server, or filter and a connector can be a pipe or data pas-

sage source.

Currently in industry, adopting a specific ADL tool require a lot of investment in

training, installation and understanding the semantics of the tool [3], which makes it

harder for the engineers and researchers to share knowledge among different tools.

One way to solve this problem is to use architecture interchange language like ACME

or a generalized language such as UML that can be understandable by a wider com-

munity. But these description languages themselves have certain barriers such as lack

of common vocabulary, lack of support for capturing and exploiting architectural

concerns and modeling issues [1] [3] [4].

3 UML 2.0 as an ADL

Practitioners and researchers have been exploring the power of UML for architectural

description since early versions of UML. This initiative has been mainly supported by

the fact that UML has been largely accepted within the software industry, especially

for large and complex applications. The needs for improvement in design time, im-

plementation, componentization and source code reutilization are aspect within the

software development lifecycle that have been covered by UML, and supported by the

set of method and tools implemented around it [9], [10], [13]. This large acceptance of

UML and the availability of tools and methods make UML appear to be as an option

for architectural description of software systems.

Several approaches have formally presented and described how UML can be used for

describing and documenting software architectures [1], [6], [11]. Although, these are

different approach with different perspectives, they commonly showed that the stan-

dard set of constructs and semiformal defined notations of early UML specifications

could not explicitly capture architectural concepts like components and connectors as

specialized ADLs. Although the set of notations in UML 1.x includes constructs for

modeling software components (their interface and deployment) these are considered

as executable entities. Executable entities are not able to decompose systems as con-

ceptual artifacts decompose the system states and behavior. Specifically, UML com-

SC@RUG 2007 proceedings

87

ponents structure is not able to satisfy rules or constraints for architectural styles,

neither provides specific or primitive artifacts to model architectural connectors.

We are interested in observe UML features that can improve the direct usage of pure

UML for modeling software architecture, and let UML be able to explicitly model

architectural elements with the less effort possible as specialized ADLs do. Previous

approaches [1] and [11] describe software architecture with early specifications of

UML. Rather than the approach in [11] that is specialized for Real-Time systems, the

first strategy from the approach by Medvidovic in [1] is more generic and suitable to

be reviewed and observe the current capability of UML as an ADL. This strategy, Use

UML “as is” is an immediate step to take UML for architecture description. Although

this strategy was not conceived for UML 2.0, its pure UML usage to represent archi-

tectural components and connectors still represents a valid approach for UML 2.0.

The study case presented for this strategy is a system with a C2 architectural style.

Although the strategy uses pure UML classes, it is necessary two different set of

classes to model interfaces and connectors, plus another set of classes for components.

This situation reflects the limitations of UML 1.x to represent components and con-

nectors, and its weak semantic for interfaces, or the aspect that UML classes were not

able to represent or content interfaces and connectors.

The effort in the UML 2.0 specification also reflects the continuously growing and

adoption of UML for software systems design. New aspects and improvements within

UML 2.0 come too from the need to use UML for architecting systems and capture

architectural concepts like components and connectors. Interfaces and Ports are new

improvements in UML 2.0 for the benefit of architectural description. An approach

reported in [6] shows how to represent architectural components using classes too, but

with UML 2.0. The main difference with the first strategy in [1] is interfaces represen-

tation. The approach in [6] exploits new concepts of UML 2.0. Two main aspects are

relevant as main featured in pro of UML for architectural description. The first are

interfaces, these can be associated to class elements using ports. Two kinds of inter-

faces are available in UML 2.0. Provided interfaces represent the services that a class

implements. And required interfaces are the services that other classes must provide

for the class to properly operate in a specific environment. The second are ports, Inter-

faces and classes are associated by means of ports. A port provide a particular interac-

tion point for the container class and its environment, by means of classifying the kind

of signals that can be send or receive through its interfaces. These interface classifica-

tion and port implementation provide more expression power or clear semantic to

UML class artifact for component and connectors representation.

With the new features of UML 2.0 for ports and interfaces, we revise the first strategy

in [1], and try to observe how UML 2.0 has improved for components and connectors

representation for this strategy. As a reference, Figure 1, shows the original set of

class diagrams that describe the C2 architecture for the Meeting Scheduler Applica-

tion in [1]. Three set of class diagrams describe components, interfaces, and connec-

tors. Our first assessment with these diagrams is that they show inheritance, relation-

Software Architecture Description Options: UML or ADLs – Ahmad Waqas Kamal, Callo Trosky

88

ships, and associations between class elements, but besides the stereotype for inter-

faces, there is not explicit distinction of architectural elements and interaction.

a) Components b) Interfaces c) Connectors

Fig. 1. UML 1.5 class diagrams for the meeting scheduler application (take from [1])

Interfaces in UML 2.0 are already primitive artifacts, and it is not necessary stereo-

typed classes for its representation. The port at which an interface is attached deter-

mines the interfaces implementation or behavior. Thus, rather than only stereotyping

classes as interfaces to represent component interfaces, we model new component

representation in Figure 2b and 2c, using UML 2.0 interfaces and ports according to

the original C2 ADL textual specification in Figure 2a from [1].

a) MeetingInitiator component in C2 Tex-

tual ADL representation (take from [1])

b) MeetingInitia-

tor component in

UML 2.0

c) AttConn compo-

nent in UML 2.0

MeetingInitiator

pC

Important

MtgAttend

Important

MtgInit

Fig. 2. From textual ADL representation to UML 2.0 representation

Figure 2b shows the MeetingInitiator component with the attached interfaces. These

interfaces represent those in Figure 1b, with the same methods and attributes. Figure

2b shows that the ImportantMtgAttend interface is a provided interface, and its meth-

ods are provided by the MeetingInitiator component. The gain value with this repre-

sentation is that the provided interface methods list matches exactly to the methods

under the “In” clause of the textual ADL representation. Similar situation results for

SC@RUG 2007 proceedings

89

the required interface ImportantMtgInit, where all its methods belong to the “Out”

clause.

A more complex representation is in Figure 2c, shows how UML ports define interac-

tion points and behavior. The AttConn component shows two different ports with

similar interfaces, but with opposite functionality. At port pA, MtgInit is a provided

interface; in contrast at pC MtgInit is a required interface. This is due to pA is in-

tended to be connected to an Attendee component, and pC to the MainConn compo-

nent, both with complementary functionalities. This initial approach shows that UML

2.0 has not only increased the capabilities of UML to represent architectural compo-

nents and connectors, but also can capture some ADL semantics, in this case C2.

4 ADLs Feature Comparison

In current paradigm both UML and ADLs work in isolation. ACME [3] is an effort to

bring different architecture description languages closer to each other. However this

effort still lacks a standardized tool like UML that can be understandable by main

community of software architects. To make a brief analysis of architecture description

languages we provide a widely accepted definition for architecture description lan-

guages. “ADLs provide features for modeling software system’s conceptual architec-

ture, distinguished from system’s implementation. ADLs provide both a concrete

syntax, and a conceptual framework for characterizing architectures” [3]. Many

architecture description languages support component and connector specific rules

that make such description languages a specialized domain specific tool. We define

high level behavior of these components and connectors as semantics of the associated

description language. Issues faced in modeling these components and connectors in

different description languages are also addressed.

4.1 Semantics

It is important that architecture description language support variability in a way that it

is able to handle large scale software development [4]. All architecture description

languages support specification of component semantics to a varying degree like com-

ponent property lists (UniCon), models of dynamic component behavior(Rapide and

Wright), invariants and operation pre and post conditions (C2) and models of interac-

tion and composition properties (Darwin) [4]. Connectors specified in UML have

fixed interfaces for components which do not fully facilitate generic connections. C2

supports generic connectors that can accommodate any type of C2 components [1]. To

fulfill this gap UML uses extension mechanism to solve the problem. This representa-

tion of semantics is exhibited in different ways in different languages. Languages that

implement connectors as first class objects like Rapide model connectors as semantics

while languages that model connectors explicitly like ACME do not always provide

means for defining semantics [4]. One greater advantage of UML 2.0 is to integrate

activities with their actions which allow executable models and expressing actions

Software Architecture Description Options: UML or ADLs – Ahmad Waqas Kamal, Callo Trosky

90

with procedural semantics [6]. As UML specifies no notation for its actions, so tool

vendors specify their own syntax which in itself is considered as a barrier to generalize

the language. Thus it provides a flexible description of semantics that can be tightened

in one area or specified in some other [6].

Further the behavior of components and connectors is largely dependent on the use of

associated styles like blackboard, layered, client-server etc. and properties associated

with components and connectors is defined by selected ADL. Like properties of roles,

ports, binding issues etc. Such behaviors include adding or removing ports, associat-

ing roles to ports and adding new components and connectors.

4.2 Modeling Issues

Languages that are flexible to model components and connectors face less modeling

issues while languages that are less flexible provide more resistance to generalized

architecture design. Basic ideology of ADLs and UML is to support model based

views of the system that can facilitate stakeholders to assess requirements of the sys-

tem. Current trend in modern programming languages is to have interfaces as a means

to describe services available of specific elements [6]. We can also list the order in

which services offered by these components are invoked by using different views [6].

However, languages like UML in itself can not be used as a replica of programming

languages. Further improvement in UML 2.0 is its use as an executable model which

provides benefit that the model becomes independent of the platform and target lan-

guage [6]. Still UML faces challenge to express designs at the level of granularity that

can compete with isolated ADLs. In particular UML lacks in through support for

modeling and exploiting architectural styles, explicit software connectors and local

and global architectural constraints [1]. Nenand [1] and Garlan [3] propose that bene-

fits of standardization should work in a way that it does not lose the power afforded by

specialized notations. Wright provides a strong support to model flexible connectors.

In fact the concept of provided and required interfaces introduced in UML 2.0 and

ACME is used in Wright with the names of ‘providing’ and ‘using’ services. How-

ever, Wright specification provides much rich facilities to define behavior of these

services as it includes a description of sequencing and choice [12]. Despite the strong

representation of components and connectors; Wright is still a weak paradigm for the

use of styles. It doesn’t provide guidance rules to use styles effectively as does Aesop.

On one side UML bears the responsibility to address needs of a large user base but on

the other side each ADL work in isolation. Although the work of ACME [3] is a sig-

nificant contribution towards generalization of architecture design still every concept

of every ADL can not be combined at one place. Languages like C2 and Wright pro-

vide more flexible ways to design components and connectors and provide associated

toolset support but their function is still considered as domain specific in comparison

to ACME and UML.

SC@RUG 2007 proceedings

91

4.3 Tool Support

The variety of ADLs has carried too the variety in toolset for architectural design.

Each ADL provides concrete syntax for characterizing software architecture, thus

every ADL include particular graphical tools for visualizing and manipulating archi-

tectural structures. Although there is a great benefit for architecture design field from

ADL’s effort in exploring and developing toolset, it doesn’t contribute to their inter-

operability, share architectural descriptions, and it is recognized by the community

that there is a redundancy and waste of resources in developing toolsets for ADLs [3].

An extensive description and comparison of available toolset for ADLs is presented in

[4] point out that currently toolset are mainly advocate to facilitate manipulation and

visualization of architecture design, ant the relation ADL and Toolset is almost one to

one.

A small subset of tools is oriented to consistency and analysis. Some like Darwin,

Rapide and UniCon provide powerful architecture modeling environments. Only C2

and Darwin provide tools for all manipulation, visualization, analysis and design.

Recently development of the AcmeStudio[5] tool features has not been included in

[4]. The AcmeStudio tool is an architectural design environment that supports the

ACME ADL. In contrast to other revised tools, AcmeStudio allow us to draw architec-

tures in different styles, as well as manipulate and analyze those designs. Although the

set of ADLs and the architectural styles supported by ACME is wider than the rest of

toolsets, the modeling views and traceability in the development cycle are limited to

the specific domain.

 In contrast to specialized ADLs, the available toolset for UML is way wider, for in-

stance UML toolsets range from high expensive development suits, to mature open

source options [10, 13]. And choosing the right UML modeling tool is not an immedi-

ate decision, it has been also matter of discussion according to the needs particular

features of the organization [9]. With the current extension of UML 2.0, most of these

tools have also improve their features for architecture modeling, and spam it along

their previous traceability in the supported development cycle.

5 Related Work

Modeling Software Architectures in the Unified Modeling Language [1] presents two

strategies for supporting architectural concerns within UML. We have looked at the

first strategy with current UML 2.0 as is described in section UML as an ADL. The

second strategy incorporates useful features of existing ADL as UML extensions.

They conclude by the time of their work, that UML lacks support for capturing and

exploiting certain architectural concerns, in particular support for modeling and ex-

ploiting architectural styles and software connectors. A more recent publication in

using UML 2.0 for architecting systems is [6]. They present how UML improvements

can significantly increase development’s efficiency. UML 2.0 improvements high-

Software Architecture Description Options: UML or ADLs – Ahmad Waqas Kamal, Callo Trosky

92

lighted by [6] are those for modeling structure, system decomposition, and system

behavior modeling.

The diversity and little consensus about ADLs are extensively covered in [4]. Their

contribution is a framework to classify and compare existing ADLs. Relevant aspects

for assessment include what aspects of architecture should be modeled in an ADL,

which ADLs are best suited for particular domain problem, etc. The framework im-

proves the process to identify key properties of ADLs. The comparison highlights

areas where existing ADLs provide extensive support and those in which they are

deficient, suggesting a research agenda for the future.

This paper review is mainly based on related papers that cover ADLs [4] [3] and

UML [6] [1] for architecture modeling description. In the work by Nenand [1] authors

explore strategies to model software architecture with UML. This strategy is oriented

in constrain the UML Meta model using UML’s built-in mechanisms, such as stereo-

typing and Object Constraint Language OCL [7]. But overall our work is more close

to Nenand [4] who uses a framework to compare different architecture description

languages. However, his work does not address the features of UML. We have worked

to put an edge to his work by discussing latest features offered by UML 2.0 in com-

parison to other description languages.

6 Conclusion

Although the current UML 2.0 doesn’t provide first-class artifacts for architectural

components and connectors, there is a good improvement to exploit and model archi-

tectural styles. The new specification about required and provided interfaces for

classes can capture and exploit significantly to describe services. On the other side

ACME provides a common platform for isolated architecture description languages to

share architectural descriptions. A comparison of these description languages and

UML can lead to a consensus towards a common standardized language to design

software architecture.

We conclude that specialization is a common aspect among software architecture

design with ADLs and UML. At the first place, ADLs still keep the domain specific

orientation. Although, the effort with ACME aims to improve the interoperability of

specialized ADLs, this does not cover generalization of ADLs. ADLs may continue

keeping and improving the domain specific, but ACME may help to increase the num-

ber of common practitioners among specific domains. On the second place, it is the

UML specialization represented by the set of improvements in UML 2.0 for software

architecture and design. This UML specialization is not domain oriented as in ADLs,

but the specialized subset of UML constructs and artifacts for software architecture

and design, already contribute to the UML specialization.

SC@RUG 2007 proceedings

93

7 References

[1] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles and Jason E. Robins, ‘Model-

ing Software Architectures in the Unified Modeling Language’, ACM Transactions on

Software Engineering, Volume 11, January 2002

[2] Jacobson I, Booch, G., and Rumbaugh, J. 1999. The Unified Software Development Proc-

ess, Addison-Wesley,Reading,MA.

[3] David Garlan, Robet Mornroe and David Wile, ‘ACME: An Architecture Description Inter-

change Language’, Computer Science Department, Carnegie Mellon

[4] Nenand Medvidovic and Richard N. Taylor, ‘A Classification and Comparison Framework

for Software Architecture Description Languages’, IEEE Transactions on Software Engi-

neering, Volume 26, January 2000

[5] Acme Lab: Getting to know AcmeStudio,

http://www.cs.cmu.edu/~acme/AcmeStudio/index.html

[6] Morgan Bjorkander and Cris Kobryn, ‘Architecting Systems with UML 2.0’, IEEE com-

puter society, Copyright 2003

[7] The Object Management Group, http://www.omg.org/

[8] Unified Modeling Language: Superstructure version 2.0, http://www.omg.org/docs/ad/03-

04-01.pdf

[9] Choosing a UML Modeling Tool,

http://www.objectsbydesign.com/tools/modeling_tools.html

[10] Architecture and Design: Unified Modeling Language (UML), http://www.cetus-

links.org/oo_uml.html

[11] Selic, B. & Rumbaugh, J. “Using UML for Modeling Complex Real-Time Systems,”

http://www-

106.ibm.com/developerworks/rational/library/content/03July/1000/1155/1155_umlmodeling

.pdf (March 1988)

[12] Robert Allen and David Garlan, ‘A Formal Basis for Architectural Connection’, ACM

Transactions on Software Engineering and Methodology, Vol. 6, No. 3, July 1997

[13] Unified Modeling Language (UML) Tools, http://www.jeckle.de/umltools.htm

Software Architecture Description Options: UML or ADLs – Ahmad Waqas Kamal, Callo Trosky

94

Multi-dimensional Transfer Function Design

Automation for Volume Rendering
Cherian Mathew, João Mimoso

Abstract Transfer function design plays a crucial role in direct volume rendering . It is an integral part of
the classification step, wherein it provides a mapping between the voxel value and the color/opacity, which
is eventually used to render the volume data. This survey paper attempts to compare existing methods of
designing transfer functions. The focus of the paper is on studying multidimensional adaptive methods,
which provide for more effective and intuitive transfer functions. Two techniques are chosen for
comparison, the first of which generates multidimensional transfer functions by adding spatial
information to the histogram of a volume. This information can then be used to classify the histogram and
derive a transfer function by assigning unique colors to each class of the histogram. The second technique
is an iterative adaptive process, which couples machine learning and a painting metaphor to allow more
sophisticated classification in an intuitive manner. The aim of the paper is to provide a comparative
evaluation of the techniques mentioned, while mentioning the conditions which allow a certain technique to
be superior to the rest. A new design method as a combination of the two is also proposed.

 1 Introduction
Direct volume rendering techniques are a powerful and flexible method of visualization. These
techniques are widely used for displaying medical volume data generated by computed tomography
or magnetic resonance imaging.

One visualization method is the maximum intensity projection which consists of projecting in the
visualization plane the voxels with maximum intensity that fall in the way of parallel rays traced
from the viewpoint to the plane of projection. This implies that two MIP renderings from opposite
viewpoints are symmetrical images. Recent visualization methods use opacity and color to render
volume. Color mappings are used to map data values to meaningful colors. The opacity mapping is
used to expose the part of the volume most interesting to the user and to make transparent the
uninteresting parts.

Visualization of volume data derives from two key steps: classification and rendering. Classification
is achieved by defining a mapping between data values and their corresponding colors and
opacities. This mapping is impemented using transfer functions. If we think of a CT scan, a simple
transfer function to map density values would assign one color to the bones and another to the skin,
normally trying to make the colors look like reality, for a more intuitive visualization. Then the
bones would have high values of opacity, leaving the skin more transparent.

The need of a suitable transfer function to efficiently explore the capabilities of these techniques has
driven many investigators to propose new and automated methods for its design. Although the 2D
slicebyslice traditional viewing is still the standard visualization method in clinical practice, as the
size of the datasets increase, the 3D visualization methods become a needed resource. Since the
correct visualization of the objects is the most important thing, the acceptance of this technique is
connected to its ability of representing and isolating specific features from the dataset. One
common problem with direct volume rendering is that some of those features may occlude each

95

other. To overcome that problem, a suitable transfer function must be designed. Manually designing
the transfer function is a hard long and discouraging process. There has been several approaches to
overcame that problem, one is the use of several preset transfer functions in witch the user picks the
best one within the set of available functions. The downside of this method is that if there is no
suitable preset, the transfer function as to be tuned manually. Different methods make use of the
opacity function to automatically make uninteresting regions more transparent than the ones with
high information content.

The main problem is conceiving a good automated transfer function design to facilitate data
exploration and make 3D visualization more appealing.

 2 Traditional Transfer Function Design Drawbacks
Traditional techniques of transfer function design have been found to have limited effectiveness in
performing the actual classification of data. The main case against these techniques is the
requirement for the user to work in the derived transfer space, which, in most cases, can be
unintuitive.

 2.1 Onedimensional Transfer Functions
A fundamental drawback of the traditional 1D function based methods is the fact that the mapping
from the domain of the volume to the domain of the transfer function is injective. Therefore the
separation of features with the same statistical properties is impossible. For example, tissue can be
separated from bone in CT scans, but a single bone cannot be separated from other bones.

 2.2 Twodimensional Transfer Functions
An improvement on the 1D form has been the 2D transfer functions which depend on the scalar
value and the gradient magnitude. Due to the inclusion of the gradient magnitude, material
boundaries can be visualized with 2D opacity maps. The material boundaries correspond to arcs in
the two dimensional histogram or scatter plot. In practice, however, these arcs could be more or less
pronounced and not well defined. Such ambiguous arcs are particularly seen in the case of CT scans
with reconstruction artifacts and density distribution of the scanned object. In the case of MRI
scans, as the scanner cannot distinguish between air and bone, the resulting histogram usually
shows only one large unpronounced arc between the footprints of water and nonwater bearing
material. This implies that the possiblity to distinguish a feature in the volume domain depends on
how separable its statistical footprint is in transfer function space. It may be possible to overcome
this problem by applying segmentation algorithms in the volume domain, but this solution has been
found to have slow processing times for the purpose of user interaction.

 3 MultiDimensional Transfer Functions
The flexibility of transfer functions has been improved by the introduction of multidimensional
transfer functions. Higherdimensional classification can lead to better results since it uses more
properties for each voxel, such as gradient information, its location, and local texture. Here we
describe two design methods to generate such kind of transfer functions . The methods are intuitive
, adaptive and allow for user interaction to dynamically improve the performance of the method.
The first method uses spatial information of the input data along with the scatter plot to separate as
many features as possible. The second method employs a machine learning process by accepting
userpainted volume regions as training data to “learn” a transfer function.

Multi-dimensional Transfer Function Design Automation for Volume Rendering – Cherian Mathew, João Mimoso

96

 3.1 Spatialized Transfer Functions
Roettger et al[1], have considered spatial information to be important, because a feature by
definition is a spatially connected region in the volume domain with a unique position and certain
statistical properties. This could be done simply by including the volume coordinates with the scalar
value and gradient magnitude to generate a 5D transfer function, but such a system would be
difficult to set up. Instead, a derived form of the standard 2D transfer function is generated, where
the volume coordinates correspond to the RGB color channels of the function. As shown in Figure
1, this method uses spatial information to derive the color, while the statistical information from the
histogram is used to derive the opacity. The following section describes the process in detail.

Description
The first computation is that of opacity. Consider the global opacity as c where c0 . The
opacity of the entry F s , t of the transfer function with s [0, 1] being the normalized scalar∈
value and t [0, 1] being the normalized gradient magnitude is ∈ Fs ,t =tc . This technique of
gradient weighted rendering , returns high opacity values for material boundary points. The next
phase of the process attempts to find a mapping which transforms unique features in space to unique
colors in the transfer function. This mapping assumes that the same color be assigned to data points
which map to almost the same position in the volume domain, which holds true in most cases. The
prerequisite information includes :

– pi s , t , i=1...n representing the normalized positions of the n contributing voxels of the
entry H s ,t =n of the histogram,

– b s , t = 1
n
 i=1

n pi the barycenter of
the voxels,

– v s , t = 1
n
 i=1

n
∣∣pi s , t −bis ,t ∣∣

the spatial variance of the voxels and

– r the maximum radius of the
features to be detected.

The barycenters and the variance are
computed once for each volume in a
preprocessing step.

Assuming that the variance v T , where the tuple T=s , t , is sufficiently small, then for a
given reference tuple T 0 and radius r , all tuples for which ∣∣b T −bT 0∣∣r belong to the
same feature. As the variance increases (especially when v T ≥r) , the separation of features
becomes more difficult. To overcome this problem it is required to choose a reliable measure of
spatial correspondence i.e. whether or not a tuple T belongs to the same feature as

the reference tuple T 0 . The distance norm given by,

N T , T 0=∣∣bT −b T 0∣∣∣vT −vT 0∣

is selected as the measure. Consequently, each group entry T is given the emmision,

F=CRGB c for all T : N T ,T 0r

where c is a constant which defines the global emission and CRGB is a RGB color triple
with random hue value. The initial reference tuple T 0 is the tuple which has the highest histogram
count. The process is then iterated for all unassigned tuples until every tuple is assigned to a

 Figure 1: 2D Histograms based on scalar values on the x
axis. The yaxis represents the gradient for the left histogram
and the spatialized transfer function (r = 0.1) for the right
histogram.

SC@RUG 2007 proceedings

97

specific feature group. The only parameter to be choosen manually is the maximum feature radius
r (and once for each dataset the global opacity c and the global emission c). For this

method a radius between 0.05 and 0.25 seems to provide good results.

Once the automatic setup is complete , the user can click on the histogram (Figure 2) to select a
specific class and the corresponding feature is displayed by simply setting the emmission of the
remaining classes to zero.

The separation of features can be furthur enhanced by applying techniques like pseudoshading and
reduction of noise.

The primary advantage of this transfer function design method is that it is intuitive, natural and
provides a flexible interface which allows for userdefined separation of features. This makes it
ideal for applications in volume domain segmentation, aneurysm visualization, improved MRI
representation and many others.

 3.2 Intelligent System Transfer Functions
Another approach to the problem, presented by Tzeng et al [2], is the development of an intelligent
system to generate transfer functions by relying on user interaction to separate regions of interest
from the rest . The separation is performed by an interface which allows the user to classify features
by applying one color of paint to parts of the volume they are interested in and another color to
regions they want to exclude. During this interaction the system uses machine learning to build
transfer functions based on the painted regions. The implementation of this approach can be done
using a number of classificationbased training models like neural networks, support vector
machines, Bayesian networks or hidden Markov models.

Description
Figure 3 below describes the visualization
process. The painting interface provides direct
access to the volume data, allowing the user to
indicate regions that are part of the material
class. These regions constitute sample points,
which act as training data for the machine
learning process.

Figure 2 :Visualization of a tooth using the Spatialized Transfer Function Approach

Figure 3 :Intelligent System Process

Multi-dimensional Transfer Function Design Automation for Volume Rendering – Cherian Mathew, João Mimoso

98

When using a machine learning classifier there are two steps invloved. First, the classifier is trained
with input data which include the scalar value (or for color data, the R,G,B value) of the voxel,
gradient magnitude, position of the voxel, neighbouring voxel values and an output value which
indicates membership into a material class.

Training is an iterative process wherein the intelligent system provides realtime visual feedback
which can be used to furthur revise the classification.

After training, a classifier is generated, to provide an output value between zero and one, which
indicates the likelihood that the voxel belongs to a particular material class. This data is then used to
classify the selected regions and perform volume rendering to display intermediate results.

The paintingbased intelligent user
interface (seen in Figure 4) is a set of
familiar painting tools along with x,y
and zaligned slicers of the volume for
the user to view and paint on the
volume. At each iterative step, the user
isolates specific features by applying
one color for the interested region and
another for the regions that are not part
of the material class. The number of
painted slices required for a desirable
result depends on the data set and the
type of information used by the training
model.

The progression of a session of a user employing
this technique is shown in Figure 5. The left row
shows a slice painted with pink representing the
area the user wants to see and blue representing
the area the user does not want to see. The middle
row shows the result of the colorcoded
classification by a machine learning model. As
indicated by the color bar, if a pixel’s color is
closer to pink, the pixel is more likely to be part of
the material of interest. The right row is the
volume rendering of the intermediate
classification. If the user is not staisfied with the
classification, the results can be reverted or furthur
painting can be applied to achieve detailed results.
As already mentioned, a number of machine
learning classifiers can be used in this process, all
of which have the same goal – to minimize errors
in classification of separate data into different
classes.

Most machine learning methods (such as neural networks) reduce the probability of
misclassification within the training data, while others (like support vector machines) reduce the
probability of misclassifying unseen data. As the intelligent system approach performs volume
display repeatedly, the classifiers that can be easily implemented on graphics hardware are preferred
, providing acceleration for volume rendering. Thus, the various machine learning algorithms that
can be used for classification have different tradeoffs in accuracy, complexity and performance.

Figure 4: Painting based interface

Figure 5:Intermediate results obtained using
the Intelligent System Approach

SC@RUG 2007 proceedings

99

The main advantage of this kind of transfer function design is that the user is not required to work in
the transfer function domain and has direct control over the classification process, due to the ability
to view results in realtime.

 4 Results
This section provides a comparison of the spatialized design technique and the intelligent system
approach . A new design method based on the combination of the two methods is also proposed.

 4.1 Performance
With respect to performance the spatialized transfer function is a better choice as the segmentation
of features is done in the transfer domain itself , instead of the volume domain. The intelligent
system approach involves volume rendering and display at each iteration implying more processing
time and effort.

 4.2 User Interface
Although the user interface provided by the spatialized method is intuitive, the user has to still work
in the derived transfer function domain, which can be restrictive. This aspect is improved on by the
intelligent system where the classified volume is rendered in realtime, which simplifies the task of
the user.

 4.3 Multiple Features
The intelligent system technique is essentially a single feature classifier .Classification of multiple
features in the intelligent system is possible but implies the creation of a new classifier for each
feature to be rendered, which would degrade performance. As spatialized transfer functions are
based on separation of multiple features this factor is inherently implemented.

 4.4 Information Reuse
Information reuse refers to the ability of a transfer function technique to be reused for other data
sets. Almost all existing methods require that acquired data sets (e.g. MRI / CT scans), have a
certain number of common characteristics. As the spatialized transfer function depends entirely on
the position of the sample points, it is essential that all successive data sets on which the generated
transfer function is applied contain points with similar spatial characteristics which can be difficult
to attain. The intelligent system does not depend greatly on the positions of the sample points, so a
classifier generated using this method is found to be more reusable. For example, the classifier can
be reused to monitor a patient's condition over a period of time.

 4.5 Proposed transfer function design
After having discussed the pros and cons of the spatialized and intelligent system transfer
approaches, we propose a new transfer function design which combines the two. This combination
can be obtained by integrating the two interfaces to allow the intelligent system rendering in the
volume domain as well as specification of spatialized transfer function parameters r , c , c . The
process begins with the use of the intelligent system to isolate a specific region in the data set – for
example , the brain region in a MRI scan. Once this is done the spatial information can be used to
separate the features in the selected region, using the spatialized transfer function method.

Multi-dimensional Transfer Function Design Automation for Volume Rendering – Cherian Mathew, João Mimoso

100

The performance of this combined system will be lower than each of the described methods, but the
trade off with respect to accuracy makes it acceptable. The intelligent system is used only to isolate
a global region, which avoids a large number of iterations and the spatialzed technique then
separates the features in a single pass.

The combined user interface is based on the intelligent system interface and hence retains all of its
user friendly attributes. The spatial element of the interface can be made more user friendly by
using a color chart instead of a 2D color histogram, to view the different features.

The multiple feature aspect in the combined design is provided by the spatialized transfer function
and the intelligent system classifier can be utilized for information reuse.

 5 Conclusion
Transfer function design remains one of the most difficult aspects of the volume rendering process.
Since the types of structures of interest vary widely depending on the user of a system, transfer
function design techniques must be powerful enough to provide highquality classification, yet
intuitive enough to be accessible to a wide range of people. This combination of performance and
userfriendliness of the two techniques described in this survey paper make them excellent
candidates for various types of volume rendering applications. The positive aspects of the two
methods when combined, could provide even better results. This hybrid approach blends together
the benefits of performance and multiple feature extraction of the spatialized approach and the user
friendliness and information reuse capability of the intelligent system method.

References
[1] S. Roettger, M. Bauer and M. Stamminger, “Spatialized Transfer Function”, IEEE VGTC
Symposium on Visualization, 2005

[2] F. Tzeng, E. B. Lum and K. Ma, “An Intelligent System Approach to HigherDimensional
Classification of Volume Data”, IEEE Transactions on Visualization and Computer Graphics, VOL.
11, NO. 3, May/June 2005, pp. 273284.

SC@RUG 2007 proceedings

101

Three
Methods for
Classifying
Volume Data

Tiemen Rozeboom, Jordy Oldenkamp

1. Abstract
In this paper we compare three different techniques

proposed for volume data classification. Volume
classifiers are widely used in the medical field (for
instance in classifying parts of the brain in MRI or CT-
scans). Incidentally the persons using these classifiers are
not generally skilled in the, often quite complex, field of
volume data classification. As a result there has been a
search for user-friendly yet effective ways to classify
volume data. In this paper we will make a comparison of
several semi-automated methods, while keeping in mind
the human aspect as well as the classifier’s performance
and flexibility.

2. Introduction
As a contribution to the field of visualization

this paper compares different ways to classify
volume data. We will try to find an answer to the
following question: What are the different methods
available for volume data classification and how is
their performance outlined to their usability and
flexibility? There exists many different methods,
but the three methods we consider are based on the
articles [1], [2] and [3]. These three have some very
different characteristics, and in this paper we will
compare some of the advantages and disadvantages
of each of these classifiers. We will start by giving
an introduction in the field of volume data
classification.

Volume data consists of voxels; these are similar
to pixels in the 2D plain only in this case the voxels
contain certain scalar values (for instance density)
and are in 3D.

Because the volume-data is generally rendered
in three dimensions so-called transfer functions
(TF) are needed to assign specific colours and
opacities to the values so that when rendering the
data, the user is presented with a clear view of the
areas of interest. In particular, material boundaries
(which have high gradient values) get high
opacities in order to emphasize these and blend out
the uninteresting (low-gradient) regions.

Because of this, TFs are often in the space of
scalar value and gradient magnitude, in this 2D
space boundaries show up as arcs. As an example
consider the left and middle pictures in Figure 1,
where a part of the brain has been emphasized by
mapping the colour and opacity of the rendering
using a 1D and 2D transfer functions (the transfer
function is shown in the bottom). In these images
the user selects a part of the brain by pointing and
clicking a class in the TF. This part is then
emphasized by setting the emission of all the other
classes to zero.

One problem with using 2D TFs is that material
boundaries often overlap in this space. Therefore in
order to obtain better results with regard to the
classification higher dimensional TFs can be used.
Using more dimensions mean using more
properties per voxel allowing for an easier
separation of boundaries. An example of using a
10-dimensional transfer function is also shown in
Figure 1 from [1].

Figure 1: rendering with 1D, 2D and 10D transfer
function

Several ways have been proposed to
automatically set-up such transfer functions
without having to manually tune it (as this can be
quite complex). A semi-automatic setup can for
instance be realized by generating several preset
TFs with corresponding volume rendering,
allowing the user to select the one which result is
closest to the user’s expectation. However, this
approach is not very flexible as, when there is no
suitable TF available, it still has to be manually set.

The methods we will discuss in this paper all
have different approaches to this problem and we
will try to give a comparison of these.

In the next section we will give an overview of
the three techniques; we will start with the
Hierarchical Clustering method in 3.1 and then
proceed with Spatialized Transfer Functions in 3.2
and the Intelligent Systems approach in 3.3. We
will then proceed to section 4 where we compare
the techniques and finally give a conclusion in
section 5.

102

3. Techniques

3.1 Automating Transfer Function Using
Hierarchical Clustering

In order to counter the inflexibility without
compromising user friendliness Šereda, et al. [3]
propose an automated hierarchical clustering
solution.

Part of the solution involves using the so-called
LH-space, opposed to the normal scalar value /
gradient magnitude space. The LH-space takes the
origin and destination of an arc (in the
scalar/gradient space) and uses these two values as
coordinates. As a result, in LH space, boundaries
appear as blobs instead of arches, reducing
boundary overlap and making it easier to separate
them.

As tuning of a clustering technique is usually
difficult; Šereda, et al. propose a hierarchical
clustering method using a framework where the
user interacts with this hierarchy of clusters.

3.1.1 Hierarchical clustering
We will now give a short overview of how this

hierarchical clustering is achieved. Having a set of
n elements, the hierarchical clustering describes the
order in which the elements join into clusters. To
start, the initialization step assigns each element to
a cluster; therefore the hierarchy has as many levels
as there are elements. At the first level there are n
clusters, after which the two most similar clusters
join at each step. The difficulty is to find the initial
set of elements and to define a function to find the
two most similar clusters.

3.1.2 Similarity and initial set
Šereda, et al. proposes two different similarity

measures. Namely a solution that groups similar
boundaries in LH space and one that looks at the
spatial connectivity of clusters.

To group similar elements in LH space one
looks at the positions, sizes and shapes of the initial
elements in LH space. Šereda, et al. group these
elements based on the following criteria:

• Distance (close elements have similar L and H
values)

• Separation (a deep valley between two peaks)
• Direction of elongation (join elements in the

direction they elongate)

These criteria can be combined by using
Bayesian decision theory as proposed by Šereda, et
al. [3].

The second method groups boundaries based on
spatial connectivity of clusters. Spatial similarity is
evaluated by means of the number of direct
neighbours between the clusters. For each voxel in
an element, the method looks at its 26 neighbours
and counts how many of these belong to another
element and counts these, forming the direct

neighbours. To group clusters that belong to the
same boundary a weighting method is used [3]. The
actual clustering is done similar to method one, it
groups the two most similar clusters.

Šereda, et al. state that for both similarity
measures, the time-complexity of joining two

clusters is , where K is the number of
clusters remaining in the hierarchy [3].

Initial clustering is done based on the blob like
characteristics of clusters in the LH space. Every
local maximum in the 2D LH histogram is labelled
and all bins that belong to this peak are grouped in
the same element. To get rid of the small clusters,
because too many clusters lowers performance, a
2D Gaussian kernel of a small standard deviation
equal to the bin size is used to blur the histogram
[3]. After that, clusters that have a voxel count
below a certain threshold are joined with their
direct neighbours.

3.1.3 The framework and results
Based on the methods described above Šereda,

et al. created a framework which enables real-time
interaction with the clustering process. This is done
because selecting thresholds and restarting the
clustering algorithm is a tedious process. Another
problem to which the framework offers a solution
is deciding when two clusters are similar. This
framework offers different similarity measures, so
different parts of the hierarchy can be generated by
a different similarity measure, making it more
flexible. An illustration, provided by Šereda, et al.
[3], of this (where s is the similarity measure used
to cluster the elements) is shown in Figure 2.

Figure 2: hierarchical clustering at level k using
similarity measure s

It is also possible to fix clusters; these clusters
will be taken out of the hierarchy. Likewise,
clusters can also be selected to be explicitly joined
together.

3.2 Spatialized Transfer Functions
The next technique is proposed by Roettger, et

al. [2]. This method is presented as a way to
automatically setup multi-dimensional TFs. Instead
of trying to identify a single feature, it tries to
separate as many features as possible using what
Roettger et al. call spatialized transfer functions
(STF). Then, after separating different features, a
specific part of the volume can be selected by
removing irrelevant features.

SC@RUG 2007 proceedings

103

3.2.1 The Basic Principle
The paper suggests separating the features by

using scalar/gradient values to determine the
opacity and using spatial information to derive
separate colours.

As explained in the introduction, using
multidimensional TFs improves performance as
there are more features per voxel, allowing for a
better separation of different features, i.e. creating
less overlap. Problem is these multidimensional
TFs are even harder to setup. The paper claims that
different features can be separated by using the
gradient values (as these represent borders) as well
as their position in space. However, there is no
need for a 5D TF but only 2D or 1D TFs with the
spatial information captured in the colours.

3.2.2 Automatic Transfer Function Setup
Roettger, et al. [2] continue to describe an

automatic setup for the transfer function.
The first step in the setup is using the gradient

values to blend out uninteresting parts and
emphasize the interesting parts (i.e. borders).
Although a simple method is proposed to achieve
this, other, more advanced gradient weighed
rendering methods can also be used.

The next step consists of colouring features with
similar scalar characteristics that are in close
vicinity of each other. Basically when voxels have
the same scalar and gradient values, they should be
painted in the same colour as long as the voxels are
within a certain maximum radius of the features
that are to be detected. To give an idea of a STF as,
an example of a STF as a result of a (smoothed) 2D
histogram (with scalar values on x-axis and
gradient values on the y-axis) is provided from [2]
and shown in Figure 3.

Figure 3: 2D scalar (x) vs. gradient (y) histogram
with corresponding STF after smoothing

Furthermore the writers suggest starting off with
a large radius and decreasing it until the desired
features are properly separated.

3.2.3 Exploring the Volume
After the generation of the STF the user can

further explore the data by selecting an area
(cluster) from the histogram. The corresponding
feature is then emphasized by making the other
features transparent. Now, because the STF
performs segmentation in the transfer function
domain, the feature radius can be changed
interactively without having to reprocess all voxels

and only a reclassification in the transfer function
domain is needed. This leads to quick redrawing.

3.2.4 Shading
Another enhancement proposed is the use of

pseudo-shading to further distinguish separate
features. This is achieved by decreasing the
emission where the scalar values of an object are
low, this results in a dark rendering of the objects
borders.

3.3 Intelligent System Approach
A different approach is proposed by Tzeng, et al.

[1]. Instead of trying to devise a transfer function to
improve classification, they offer a user interface in
which the user paints directly in the volume data.
These painted voxels are then used for training in
an iterative process.

Tzeng, et al. offers an intelligent system, using a
painter interface, where the user paints the regions
of interest in the volume data. Then a machine
learner is applied using the painted data as training
data. A graphical representation of this is shown in
Figure 4 (picture taken from [1]).

Figure 4: the proposed classification framework

When looking at practical use, like MRI scans,
the solution provided can be helpful, since users
can focus on their expert knowledge instead of the
details of creating a transfer function.

In their research, Tzeng, et al. found that their
painting-based interface indeed provides a simple
and intuitive means of specifying regions of
interest. As in traditional TF design combined with
new datasets, a lot of time goes into experimenting
with TFs. The interface by Tzeng, et al. frees the
user from this experimenting.

3.3.1 The painting interface
The goal of the painting interface is to partition

the data set into different classes of material. These
partitions will then be passed on to the classifier to
train. To achieve this the user paints on slicing
planes, using two different colours, one to indicate
the material belonging to a certain class, the other
to paint the materials that do not belong to the
class. These slices presented to the user are slices
of the x, y and z plane. Another feature of the
interface is real-time visual feedback from the
classifier such that the user can identify errors

Three Methods for Classifying Volume Data – Tiemen Rozeboom, Jordy Oldenkamp

104

made by the classifier. An example of the interface
is shown in Figure 5 (taken from [1]).

Figure 5: the painting user interface

3.3.2 Classification
The second part of the solution is the classifier,

which is hidden from the end user. Tzeng et al.
state that any method of supervised machine
learning can work with their interface as long as it
is able to classify the data from the samples
provided by the user. Although any classifier would
work, only results for Neural Networks (NN) and
Support Vector Machines (SVM) are provided.
Tzeng et al. researched the difference between
these NNs and SVMs on their interface. The main
difference between NN and SVM is the training.
Where NN’s train repeatedly, SVM’s train only
once with the entire training set and then provide
the optimal solution when the training is done. NNs
train repeatedly; therefore they can get stuck at
local minima, where SVM’s are guaranteed to
reach a global minimal solution. Tzeng, et al.
experimented with both classifiers and came up
with the results shown in Table 1 and Table 2.

Table 1: using the Training Set Obtained Based on
an NN

Classifier

Table 2: using the Training Set Obtained Based on
an SVMs Classifier

The main difference in the results of these
experiments is that the NN classification needs
more training data and takes longer time for
training, but outperforms the SVM when the actual
classification is done.

4. Comparison
For comparing the three methods of

classification we constructed Table 3, comments on
this table are given in this chapter.

Table 3: table comparing the three methods.

 Hierarchical
clustering

Spatial
clustering

Intelligent
systems
approach

Flexibility High Low Very high
Ease of use High Normal Very high
Performance Depending

on similarity
measure

High Depending
on learner

• Flexibility for hierarchical clustering is high

due to its possibility to insert virtually any
comparison function and change them on
separate levels in the hierarchy (although this
reduces usability). The spatial clustering
framework is limited to the TF domain,
therefore it scores low on flexibility. For the
intelligent system approach a very high score
is given for its ability to easily use
multidimensional transfer functions. These are
then simply taken as the input for a machine
learner. Also, the possibility to use virtually
any machine learner allows for great
flexibility.

• As far as ease of use is concerned, hierarchical
clustering gets a high score as the hierarchical
interface somewhat shields the user from
manually setting parameters. The spatial
clustering method gets a normal assessment
because the radius still has to be manually set.
In the intelligent system approach the user is
completely shielded from any transfer
functions and can simply draw on the different
data slices themselves, allowing expert

SC@RUG 2007 proceedings

105

knowledge of the volume domain itself to be
put to good use.

• The performance is hard to judge, except for
the spatial clustering, because the other
methods depend on similarity measures and
machine learners used. On the other hand, the
spatial clustering method seems a very optimal
way to classify, using only spatial similarity
and scalar/gradient data. Although a thorough
comparison between qualities is not really
possible, since the software solutions cannot be
tested.

Another advantage of the intelligent system
approach is its ability to ‘spot features’, for
instance a neural network can be trained and (re-
)used to spot tumors or similar tasks, this preserves
the expertise used to train the neural network.
Although on the other hand we imagine settings for
any other method can also be stored and reused for
different tasks.

5. Conclusion
When looking at the comparison chart we can

see that the hierarchical and intelligent systems
methods have great flexibility. However, the
downside of this is that when using a different
similarity measure or machine learner, these have
to be set up. Setting this up seems a fairly complex
procedure; especially in the intelligent system
method this might require quite some expert
knowledge.

While the spatial clustering method is an
optimized way for classification using only spatial
data, this might not outweigh the flexibility of the
other methods. Also the hierarchical clustering
method provides a method using spatial data,
overlapping the spatialized clustering method.
Where the spatialized clustering method is already
maximally optimized, the intelligent systems
approach can benefit from future optimizations in
the machine learning field. Therefore we think the
intelligent systems approach, based on its intuitive
interface and flexibility will be the way to go in the
future.

References
[1]. Tzeng, F., Lum, E. B. and Ma, K. An
intelligent System Approach to Higher-
Dimensional Classification of Volume Data. IEEE

Transactions on Visualization and Computer

Graphics. 2005, pp. 273-284.

[2]. Roettger, S., Bauer, M. and Stamminger, M.
Spatialized Transfer Functions.
IEEE/EuroGraphics Symposium on Visualization.

2005, pp. 271-278.

[3]. Šereda, P., Vilanova, A. and Gerritsen, F. A.
Automating Transfer Function Design for Volume
Rendering Using Hierarchical Clustering of
Material Boundaries. EuroVis -

Eurographics/IEEE-VGTC Symposium on

Visualization. 2006, pp. 187-194.

Three Methods for Classifying Volume Data – Tiemen Rozeboom, Jordy Oldenkamp

106

Modelling the search for salient locations in images

Jan-Jaap Bakker, Hessel Hoogendorp

Rijksuniversiteit Groningen

Abstract - By modelling the early Human Visual System it is possible to create a fast

system for determining salient locations in still images. An established, context

independent model for this purpose is described. In addition, an established model for

predicting the efficiency of search for motion pop-out phenomena is discussed and an

attempt is made to apply it to the former model to predict the efficiency of search for a

salient location in a series of greyscale still images.

Keywords - Pop-out phenomena; HVS; saliency; visual attention; feature extraction;

target detection; visual search

1 Introduction

Humans effortlessly notice salient objects.

We automatically pay attention to objects

that require it. While driving, we pay

attention to traffic signs, other vehicles

(especially vehicles that move differently

from the rest) and Gatso cameras. It is

assumed that within the human brain, the

Human Visual System (HVS) consists of

two parts [1]. One is a top down,

knowledge driven system, for example

searching for your own car in a parking lot.

The other, which is the focus of this paper,

is a bottom up, saliency based system.

Together they form the ability to see and

classify our surroundings. For instance, if,

while reading this paper, a spider crawls

down the top left corner of the readers

view, it is the bottom-up system that tells

the top-down system to pay attention to

that region of your view. How much

attention is spent on the spider, depends on

how much of an arachnophobe the reader

is. The bottom up system is a necessity

since the top down system alone would not

be able to handle all the stimuli coming

from our retinas [2]. In this paper it is

shown how the bottom up part of the HVS

can be modelled for still images [3]. The

top-down part is not handled, so the model

merely returns the most salient locations of

the input images. The authors also show

how an established model [4], for

predicting how easy humans can identify

moving objects in various conditions, can

be used for still images.

2 Modelling the Human Visual
System

The early human visual system consists of

many layers of neurons. In the first layers

some basic, but effective, processing is

done. Some neurons are organised to

capture and enhance differences in

orientation, while others do this for

intensity, colour, etc. Lateral inhibition is

one example of the strategies used (it is

used in all of our senses, and explains

many optical illusions). It are these basic

processes, that are going to be modelled. In

the model, maps for colour, intensity and

orientation are created. These are treated

separately and transformed into

conspicuity maps, which only contain

information about the saliency of each

location in the image, independent of

visual features like colour, orientation and

intensity. In the absence of top-down

supervision, the maps are normalized (this

107

process is explained later) and combined

into a single saliency map. Then a winner-

takes-all principle is used to find the most

salient location. This simply means that the

most salient location in the image is

declared the winner, without caring about

the runners-up. To find the next most

salient location, the previous one is simply

inhibited in the saliency map.

3 A model of saliency-based
visual attention for rapid scene
analysis

Figure 1: Overview of the model (Figure taken

from [3])

In [3], Itti et al. propose a model of

saliency-based visual attention. This basic

model for saliency based visual attention is

depicted in Figure 1. The steps that are

taken in this model are, firstly, the

extraction of three early visual features

from the input image, into maps. These

early visual features are contrast intensity,

colour and orientation. Secondly, from

these early visual feature maps, nine

spatial scales are created using dyadic

Gaussian pyramids
1
[5]. By now, each

visual feature is represented by a number

of feature maps. As a third step, these

feature maps will be used to create three

conspicuity maps. Lastly, a final saliency

map is created from the conspicuity maps.

It is this final saliency map that is then

used to determine the most salient location

in the image using a winner-takes-all

strategy. In the next sections, these steps

are described in more detail.

3.1 Extraction of early visual features
into feature maps

3.1.1 Colour

The input image consists of three colour

channels, r, g and b. For each of these

colours, its value relative to the average

value of the other two colours is

calculated, as follows:

R = r – (g + b) / 2

G = g – (r + b) / 2

B = b – (r + g) / 2

Also, a colour value for yellow is

calculated from the original colour values:

Y = (r + g) / 2 - |r – g| / 2 – b

Next, four Gaussian pyramids R(σ), G(σ),

B(σ) and Y(σ), with scale σ ∈ [0…8], are

created from these relative colour values.

As a last step, centre-surround difference is

used to model lateral inhibition. The

centre-surround difference between two

maps, denoted by ‘ Θ ’, is obtained by

interpolation of the coarser scale to the

finer scale, followed by point-by-point

subtraction. Several scales are used both

1
 Gaussian pyramids involve scaling down images

using Gaussian blur. Then, when applied multiple

times, the smaller images stack on top of the larger,

creating a pyramid. The blur is needed to prevent

the typical ‘pixel’ edges that occur when resizing

an image.

Modelling the search for salient locations in images – Jan-Jaap Bakker, Hessel Hoogendorp

108

for the centre and the surround, yielding

true multi-scale feature extraction.

In the centre of their receptive field,

neurons are excited by one colour and

inhibited by another, while the converse is

true in their surrounding [6]. Accordingly,

two sets of six colour feature maps are

computed as follows:

RG(c, s) =

 |(R(c) – G(c)) Θ (G(s) – R(s))|,

BY(c, s) =

 |(B(c) – Y(c)) Θ (Y(s) – B(s))|

Here c ∈ {2, 3, 4} and s = c + δ, δ

∈ {3, 4}.

3.1.2 Intensity

As said before, the input image consists of

the r, g and b colour channels. From these

colour channels an intensity image I is

computed:

I = (r + g + b) / 3

Similar to the case of colour, a Gaussian

pyramid I (σ), with σ ∈ [0…8], is

created from the computed intensity image.

To separate hue from intensity, the r, g and

b colour channels are normalized by I.

Also, locations in the image which have an

intensity value less than one tenth of the

global maximum intensity are set to zero.

This is done because variations in hue are

not perceivable by humans at such low

intensities. To obtain the six final intensity

feature maps the centre-surround

differences are computed for c ∈ {2, 3,

4} and s = c + δ, δ ∈ {3, 4}:

I(c, s) = |I(c) Θ I(s)|

3.1.3 Orientation

The previously calculated I are used to

create a set O(σ, θ) of oriented Gabor
2

pyramids (Figure 2 shows an example of

the output of a Gabor filter). Here, σ ∈

[0…8] is the scale, and θ ∈ {0°, 45°,

90°, 135°} is the orientation. Using the

centre-surround differences like before, 24

(six for each angle) orientation feature

maps are obtained:

O(c, s, θ) = |O(c, θ) Θ O(s, θ)|

Figure 2: Combined result of applying four

Gabor filters (one for each orientation) on an

example image.

3.2 Construction of the conspicuity maps
and the saliency map

Now that all feature maps have been

calculated, the three corresponding

conspicuity maps need to be computed,

from which the final saliency map can be

constructed. Before the feature maps can

be combined into a single saliency map,

the feature maps need to be normalized

such that their values fall within the same

range. Furthermore, maps containing a

small number of feature peaks tend to be

masked out by maps containing large

numbers of feature peaks. To compensate

for this, the former maps are globally

promoted, while the latter maps are

globally demoted.

To realize this, the map normalization

operator N(.) is introduced. Firstly, this

2
 A Gabor filter is a linear filter whose impulse

response is defined by a harmonic filter multiplied

by a Gaussian filter.

SC@RUG 2007 proceedings

109

operator normalizes the values of the map

to a particular range and, secondly,

globally promotes maps with a small

number of feature peaks and globally

demotes maps with a large number of

feature peaks. This last property is

implemented by multiplying the map by (M

– m)2, where M is the map’s global

maximum and m is the average of the

map’s all other local maxima. This squared

difference effectively measures how

different the maximum feature peak is

from all other feature peaks. If this

difference is large, the map is globally

promoted. Similarly, if this difference is

small, it is globally demoted. An example

is illustrated in Figure 3.

Figure 3: Effect of the normalization operator

(Figure taken from [3])

The conspicuity maps for each of the three

features are obtained by point-by-point

addition (⊕) of the values from all the

feature maps of that feature. For colour and

intensity this yields, respectively:

s))] N(BY(c, s) (RG(c, [N= C
4

3

4

2
+

+

+=
⊕

=
⊕

c

csc
,

s)) N(I(c,I
4

3

4

2

+

+=
⊕

=
⊕=

c

csc

For orientation this trick needs to be

repeated, and their results added, for every

orientation, yielding:

θ))s,(c,N(N(O
4

3

4

2
θ

O
c

csc

+

+=
⊕

=
⊕∑=

where θ ∈ {0°, 45°, 90°, 135°}

The saliency map is now constructed by

the simple addition of the normalized

conspicuity maps:

))ON()IN()C(N(
3

1
S ++=

Notice that the normalization takes place

on both the feature map and the

conspicuity map level.

4 Quantifying efficiency of search
for motion pop-out phenomena

In [4], Rosenholtz suggests a model for the

quantification of the efficiency of search

for motion pop-out phenomena. Efficiency

of search is defined as the reaction time per

number of display elements. One of the

elements is the target, the rest are

distracters.

The first step of this model is to consider

the velocity of each display element as a

point (vx,vy) in velocity space and to

calculate the mean µ and covariance Σ of

the distracters. It is suggested in [4] that

the inclusion or exclusion of the target

element’s velocity in this calculation has a

negligible effect on the resulting µ and Σ

for sufficiently large data sets.

Next, target saliency is defined as the

Mahalanobis distance ∆ between the target

velocity v and the mean distracter velocity:

∆
2
 = (v – µ)

T
 Σ

-1
 (v – µ)

In other words, target saliency is defined as

the number of standard deviations between

the target velocity and the mean distracter

velocity. Rosenholtz states that the larger

the target saliency, the more efficient the

search for that target can be performed.

Modelling the search for salient locations in images – Jan-Jaap Bakker, Hessel Hoogendorp

110

Figure 4: Graphical depiction of the saliency

model. Ellipses represent points of equal

saliency. Outer ellipses correspond to greater

saliency and thus easier search (Figure taken

from [7]).

5 Investigating efficiency of
search for greyscale still images

Rosenholtz [4] suggests that, although

experiments have not yet been performed,

the model can also be applied to the

luminance domain. To investigate this, the

authors created a simple test.

The authors used a computer to generate

images consisting of a hundred, somewhat

noisy, circles. These circles all have the

same diameter and are uniformly

distributed over the plain. Their luminance

is Normal distributed (µ, σ).

After the placement and colouring of these

circles, another circle is added, also at a

random location. However, its luminance

is chosen in the range [0, µ - 3σ], making

the last circle the most salient object. The

model predicts that the larger the deviation

from µ, the easier it is to select it as the

most salient object (exactly how much

easier, e.g. linear or quadratic, the model

does not state).

It is intuitively clear that for humans this

prediction will hold true. The authors are

interested in whether it holds for an

implementation of a bottom up visual

attention model. In other words, a test is

performed with a model as the (non

learning) test subject. The used general

purpose model contains no specific

knowledge about the test to be performed.

Figure 5 shows which location the model

selected as being the most salient.

Figure 5: An example test image. The last circle

is marked with a yellow line.

For a number of intensities selected from

the range stated above, the average

simulated time it took the model to find the

most salient location, is measured. The

results are depicted in Figure 6. As can be

seen, the model indeed produces results

faster when the deviation of the luminance

of the target from the average luminance of

the circles increases.

Figure 6: The deviation from µ against the

reaction time.

SC@RUG 2007 proceedings

111

6 Discussion

The model by Itti et al. was extensively

tested on both artificial and natural images.

Its results show great resemblance to those

of human test subjects. It outperforms

spatial frequency map models, especially

in the presence of noise.

Due to the splitting up and separate

treating of the feature maps, the model is

suited for parallelization, enabling real

time execution. For some purposes the

salient locations can be used directly, for

instance for automatic thumb-nailing. But

in most cases the resulting saliency map

will be passed on to other processes. This

way, it is possible to execute more

complex and time consuming algorithms

only on the salient/interesting parts of the

image.

The experiment performed is not meant as

proof of the usability of Rosenholtz model

for still images. It is, however, an

illustration of what such a test could look

like. To fully test the model, one should

use multi-dimensional features, with

different distributions and, of course,

human test subjects.

7 References

[1] J.K. Tsotos, S.M. Culhane, W.Y.K. Wai, Y.H.

Lai, N. Davis, F. Nuflo, “Modeling visual

attention via selective tuning,” Artificial

Intelligence, vol. 78, no 1-2, pp. 507-545, Oct.

1995

[2] E. Niebur and C. Koch, “Computational

architectures for attention”, R. Parasuraman,

(Ed.), The attentive Brain, Cambridge,

MA:MIT Press, pp. 163-186, 1998.

[3] Laurent Itti, Christof Koch, Ernst Niebur, “A

Model of Saliency-based Visual Attention for

Rapid Scene Analysis”, Transactions on

Pattern Analysis and Machine Intelligence,

vol. 20, issue, 11, pp. 1254-1259, Nov. 1998

[4] Ruth Rosenholtz, “A simple saliency model

predicts a number of motion popout

phenomena”, Vision Research, vol. 39, pp.

3157-3163, Sep. 1999.

[5] H. Greenspan, S. Belongie, R. Goodman, P.

Perona, S. Rakshit, C.H. Anderson,

“Overcomplete steerable pyramid filters and

rotation invariance,” Proc. IEEE Computer

Vision and Pattern Recognition (CVPR), Seatle

Washington, pp. 222-228, Jun 1994

[6] S. Engel, X. Zhang and B. Wandell. “Colour

tuning in human visual cortex measured with

functional magnetic resonance imaging,”

Nature, vol. 388, no. 6637, pp. 68-71, Jul.

1997.

[7] R. Rosenholtz, Yuanzhen Li, Jonathan

Mansfield and Zhenlan Jin. “Feature

Congestion: A Measure of Display Clutter” ,

April 2005

Modelling the search for salient locations in images – Jan-Jaap Bakker, Hessel Hoogendorp

112

Visual Salience: A Method for Rapid Scene Analysis

Gerard van der Lei

Abstract:

In this paper several models for determining the visual saliency of a scene will be discussed. First
two models that work with static colour images. The first model will be discussed in some detail. The second
is there to provide some perspective on the subject and won't be as detailed as the first.

Motion is an important feature for determining the saliency of a scene. Therefor a third model will be
presented. This model has a focus on motion, but can also be applied to the saliency based on colour. How
this model can be applied to saliency based on motion will only be discussed. This model also gives an
estimation of the difficulty of determining visual saliency and why this is relevant.

In the end an example of the results of the first model will be shown, to illustrate the end result of
an model that predicts visual saliency.

Introduction:

The human visual system (HVS) is believed to be divided in two types of processing, attentive
processing and preattentive processing. Attentive processing is a top-down process, where a scene is
analysed based on an objective. Preattentive processing is the processing of a complex scene in a bottom-up
manner. This is an involuntary process which bring attention to feature in a scene that contain a higher
saliency.

This preattentive processing assists humans in processing the huge amount of information which is
presented at every waking moment. Instead of having to process every part of a scene in detail, this
preattentive processing turns our attention to parts of the scenes which are called focus of attention (FOA).
Each of these areas can then be processed in detail, for example by an attentive process, when the goal
would be to find a certain object in a scene.

There are certain number of elementary features in a scene which humans seem particular good at
distinguishing, features like hue, saturation, orientation and motion. Especially when there are large
differences in these features our attention is drawn to them, although this is not always true for motion,
where attention is more drawn towards fast moving object among slow moving then vice versa, but
differences do draw our attention.

In this paper several methods for determining the visual salience of a scene will be discussed. All
these techniques work on the same basic method of determining a contrast in one or more features. They
try to determine where there is a sudden change in brightness, or colour, or find areas were the directions of
edges or motion is different than in the surrounding parts.

First model:

Laurent Itti, Christof Koch and Ernst Niebur have written a paper[1] in which they describe a method
of determining visual saliency inspired by the behaviour and the neuronal architecture of the early primate
visual system. In this model they combine multiscale image features into a single topographical saliency
map. A dynamical neural network then selects attended location in order of decreasing saliency.

Input is provided in the form of a static image, therefor it cannot determine saliency based on

motion. However the three remaining features are taken into consideration when determining saliency.
Important for this technique is the fact that it works with multiscale images. Therefor the input image will
first be downscaled to nine spatial scales using Gaussian pyramids, which progressively lowpass filter and
subsample the input image, resulting in horizontal and vertical image reduction factor ranging from 1:1 to
1:256.

The scene is broken up in the different components. The first component of interest is the saturation
or intensity. This is calculated by adding up the R, G and B components of the image and then normalising
the answer. If this is below a certain threshold the value is set to zero. This is done because hue variations
are not perceivable at very low saturation levels and are therefor not salient.

Then the colour information is transformed into four colour channels. R=r-(g+b)/2 for red,
G=g-(r+b)/2 for green, B=b-(r+g)/2 for blue and Y=(r+g)/2-|r-g|/2-b for yellow (negative values are set to

113

zero). These four colour channels are needed because the HVS works with the opponency of the red and
green colours and blue and yellow colours. Based on these four channels, two new channels are calculated;
RG which is the contrast between the R and G channel and BY which is the contrast between the B and Y
channels.

The last of the feature that applies to still images is the orientation. The image is run through several
filters which determine the stimuli at each area for different orientations. The orientations that are being
calculated are at 0, 45, 90 and 135 degrees. The result of this is, that for each pixel, for each tested
orientation a stimuli is calculated. This orientation can be calculated purely based on intensity channel using
gabor pyramids.

All these feature are extracted in the nine spatial scales. This means that at this point there are nine
different intensity maps, 18 different colour maps (nine scales for both colour channels, RG and BY) and a
total of 36 orientation maps(nine scales for all four different orientation).

Based on these maps the contrast maps can be computed based on a set of “center-surround”
operations. Each pixel in each channel is compared with its surrounding. This can be done at a number of
different levels, increasing the size of the surrounding at each level. This is where the different scales are
used. The downsampled images are interpolated to higher scales, then point-by-point subtraction is applied.
The result of this, is that for each pixel at the higher scale, the difference with its surrounding is calculated.

Before we can add
these different channels
together, resulting in our
final saliency map, we have
to correct for the fact that
at certain areas in one
channel a feature can be
very salient, but when
adding the maps together it
will be suppressed by noise
that is present in other
channels. Therefor we
normalise channels in such
a way that values that lie
close to the mean will be
suppressed and values far
from the mean of a channel
will be amplified.

After the
normalisation all the
different channels can be
added together resulting in
the final saliency map.

To find the maximum of the
saliency map, it would be
possible to just find the Figure 1: General Architecture

maximums in the map and return those, but because in this implementation the aim was to find a biological
plausible mechanism, the saliency map is modelled as a 2D layer of leaky integrate-and-fire neurons. These
model neurons consist of a single capacitance which integrates the charge delivered by synaptic input of a
leakage conductance and of a voltage threshold. This feeds into a biologically-plausible 2D winner-takes-all
(WTA) neural network.

Each saliency map neuron gets its input from S, which causes the neurons at more salient location to
increase faster. These saliency map neuron excites its corresponding WTA neuron, which evolve
independently of each other until one reaches the threshold.

The Focus of Attention (FOA) is shifted to this location, all WTA neurons are reset to zero and the
saliency map neurons in the FOA area are reset. This resetting of the saliency map neurons is done so that
the next most salient location will be the next winner. To create a slight bias to location close to the current
FOA the saliency map neurons close the the FOA are slightly excited.

Visual Salience: A Method for Rapid Scene Analysis – Gerard van der Lei

114

Because there is no top-down model modelled we do not know how large and of which shape the
FOA is, for this reason the FOA is a simply disc with one sixth the size of the smaller of the input image
width or height.

Alternative model

 Itti et al's approach is by no means the only approach to finding the most salient area. O. Le Meur,
P. Le Callet, D. Barba, D. Thoreau and E. Franois have written a paper [2] which takes even more inspiration
from the human visual system to model their approach to finding areas of high saliency. This is a
complicated model, whose details are beyond the scope of this paper. However, a general impression can be
given to set Itti et al's model in perspective.

Figure 2: General synoptic of Le Meur et al's model

This model also takes an RGB image as input. It decomposes this image into the Krauskopf's
opponent-colours space composed by the cardinal directions A, Cr1 and Cr2. It is believed that the brain
uses three different pathways to encode the information, the luminance signal (A), the red and green
opponent component (CR1) and the blue and yellow opponent component (Cr2).

To these three components a perceptual subband decomposition is applied. This decomposition is
based on different psychophysics experiments. The result of this decomposition is the carving up of the 2D
spatial frequency domain both in spatial radial frequency and orientation. Resulting in several subbands with
different angular selectivity.

Biological evidence suggest that visual cells respond to stimuli above a certain contrast, this contrast
value is called the visibility threshold. A contrast sensitivity function expresses the sensitivity of the human
eyes which is the inverse of the contrast threshold. To each of the subbands this contrast sensitivity
functions is applied, these are multivariate functions mainly depending on the spatial frequency and the
orientation.

After the CSF is applied, masking is incorporated as a weighting of the outputs of the CSF functions.
Masking describes interactions between stimuli, mainly between stimuli located in the same perceptual
channel or in the same subband.

This concludes the visibility part of the model. The perception part consists out of the reinforcement
of the achromatic subbands(A) based on the colour subbands(Cr1, Cr2) and modelling the center-surround
suppressive interactions by a two-dimensional Difference-of-Gaussians.

The last stage is the perceptual grouping part. In this part center-surround facilitative interactions

SC@RUG 2007 proceedings

115

are modelled, this facilitative interaction is usually termed contour enhancement or contour integration and
improves the saliency of isolated straight lines. The last part of the perceptual grouping part is adding up the
different subbands, resulting in the saliency map.

Incorporating motion

The models described above do not take into consideration the effect of motion. Even though in the
human visual system the visual saliency based on motion is very important. Consider for instance a object,
like a ball, moving fast towards your head. Even if you did not give this object any prior attention, it would
be in your best interest to move your head out of the path of this object.

Ruth Rosenholtz wrote an paper[3], which gives an approach for determining the saliency of moving
object. This paper further concentrates on prediction the difficulty of determining the visual saliency of an
object.

In this paper it is hypothesised that the more an object draws our attention, the more efficient the
search for that object would be, opposed to an object that does not draw our attention. This gives way to a
naïve hypothesis that search efficiency could possibly be determined by the distance in feature space
between the feature value for the target and for the most similar distractors.

For motion search this means that one might expect the search efficiency to be determined by the
difference between the target velocity and the velocity of the distractors that moved most like the target.
However, for motion search a number of search asymmetries show that the reality is not as simple as this.

Research[4, 5, 6] shows that search for a moving target among stationary distractors is easier than
the search for a stationary target among moving distractors. The search for a fast target moving among slow
distractors is more efficient than search for a slow target among fast distractors [7] and adding variability in
speed when searching for a unique motion direction has little effect, while adding variability in direction
when searching for a unique speed makes the search task more difficult [8].

The paper[3] of Rosenholtz presents a model for the bottom-up mechanism behind the motion
popout that explains all of these motion search results. In this model the motion of all display elements are

represented as a point in velocity space (vx, v y) From the distribution of the motions present in the

display the mean and covariance of the distractor motions, µ and Σ , are calculated. In practise,

instead of only calculating the mean and covariance of the distractor motions, the motion of the target is
also incorporated.

The saliency of a display element is then defined as the Mahalanobis distance, ∆ , between the

target velocity and the mean of the distractor distribution, where

∆2=(v�µ)T Σ�1(v�µ)

To verify the results they are plotted. A 1σ covariance ellipse is plotted centered at the mean

distractor velocity. The target is also plotted. If the target falls inside this ellipse, it is considered to be hard
to search for and therefor has a low saliency. If instead it lies outside this ellipse, the search for the target is
considered to be easy and therefor the target has a high saliency.

Figure 3A: The search for a moving target Figure 3B: The search for a slow moving target
among stationary distractors among fast moving distractors

Visual Salience: A Method for Rapid Scene Analysis – Gerard van der Lei

116

Figure 3A show the results for the search for a moving target among stationary distractors. It can be
seen that the target is easily outside the ellipse, which is very small, because all the distractors have the
same speed and direction. Because the target is far outside the ellipse this model predicts it will be easy to
search for and has a high saliency.

Figure 3B shows the search for a slow moving target among fast moving distractors. These
distractors all move symmetrically. The target lies in the middle of the ellipse, which means that the search
for this target is predicted to be very difficult and thus has a low saliency.

Symmetrically moving distractors are used, because if the motion would be randomly distributed, the

mean motion would have large chance of being close (0,0) , which is equal to the motion of a stationary

target. If instead of this, symmetrically moving distractors are used, the mean won't be close to (0,0) ,

but the search is still predicted to be difficult. This suggest that the search efficiency is not determined by
the distance in feature space between the feature value for the target and for the most similar distractors,
like naïvely hypothesised earlier.

Figure 4A: The search for a slow Figure 4B: The search for a fast
target among fast distractors target among slow distractors

Figure 4 show that this model also correctly predicts the search difficulty of a slow moving target among fast
distractors versus the search for a fast moving target among slow distractors. The slow moving target lies
inside the ellipse and is predicted to be hard to search for, in contrary the fast moving target lies outside the
ellipse and therefor is predicted to be easy to search for. Which corresponds with a high saliency.

Results:

All these models give different results, but
to give an impression a result of the Itti et al's
model is shown in figure 5. It is an example of
determining the saliency of a natural image. At the
top the input image is shown, below that are the
three intermediate saliency maps. The first for the
colour, in the middle is saliency of the intensity and
the right picture is for the orientation.

When they are combined you get the final
saliency map, from which the first four FOA areas
are extracted. Which can be seen in figure 6. It can
be seen that in the saliency map the location FOA
is nullified (made black). After each FOA is found
the surrounding area is made a little bit brighter.

 (Above)Figure 5: Example of saliency map

(Left)Figure 6: The first 4 FOA

SC@RUG 2007 proceedings

117

Conclusion

In this article we have seen three techniques for determining visual saliency of a scene, two
techniques used static images and a third that worked mainly on motion. One technique for static images(Itti
et al's model) has been discussed in some detail, including showing a little of the results of this model. The
second model(Le Meur et al's model), although not discussed in detail, does give an impression of the depth
of this field of research.

In the model for determining the saliency of model some attention has been given to determining
the difficulty of determining the saliency of an object. This technique has been discussed here only applied to
motion, but in the original article[3] it is also extended to working with colour.

After the visual saliency of a scene has been analysed and the most salient areas are determined a
next stage of processing should be done on these areas. First to determine the size of the actual object
which has drawn attention. After the size of the object has been determined, an top-down process could
start processing the image and determine if it is actually worth the attention. For instance when looking for a
certain object it could determine if this is that object or not.

In many ways determining the visual saliency is only the fist step in processing visual information.
Most computer visual system get their input within strict prior known limitations, but when computer vision
systems will get more and more freedom of movement in the world determining the saliency of the input will
become very important.

Bibliography

[1] L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," IEEE
Trans Patt Anal Mach Intell) 20(11), pp. 1254--9, 1998

[2] O. Le Meur, P. Le Callet, D. Barba, D. Thoreau and E. Franois, "From low level perception to high level
perception, a coherent approach for visual attention modelling", in proc. SPIE Human Vision and Electronic
Imaging, San Jose, CA, 2004

[3] R. Rosenholtz, “A simple saliency model predicts a number of motion popout phenomena”, in Vision
research (Vis. res.) ISSN 0042-6989 1999, vol. 39, no19, pp. 3157-3163

[4] M. Dick, P. McLeod, Z.Dienes, “Parallel and Serial Processes in Motion Detection” in Science vol. 237, 400,
1987

[5] M. Dick. Thesis, Weizmann Institute (1989)

[6] N.L. Klempen, E. Shulman, C. Royden, J.M. Wolfe, “Visual search asymmetries in. motion and
orientation” in Investigative Ophthalmology and Visual Science (Supplement) vol 39, 165, 1998

[7] R. Ivry, A. Cohen, “Asymmetry in visual search for target defined by differences in movement speed” in
Journal of Experimental Psychology: Human Preception and Performance vol. 18, pp. 1045, 1992

[8] J. Driver, P. McLeod, Z. Dienes “Are speed and direction coded independently by the visual system?” in
Spatial Vision vol 6 pp 133, 1992

Visual Salience: A Method for Rapid Scene Analysis – Gerard van der Lei

118

Visualization: at a crossroad

Menno Nijboer and Ceesjan Luiten
E-Mail: colloq@qtea.nl

Major Computer Science Students at the State university of Groningen (RuG)

May 23, 2007

Abstract

The information visualization world is at a critical point right now. Leading scientists are saying
that customer interest is dropping, and so far the field has not been very successful in establishing
a scientific formalization of the knowledge and evaluation models. In our paper we will discuss
the opinions and remarks of three of those scientists.

1 Introduction

Around 1987 the visualization field saw its first
light. The first steps were done by — to name a
few — Harvy Klein, Bill Lorensen and Pixar1.
Since then, the field has grown substantially.
Nowadays, many different specializations exist
within the field. For example, one of these is
the visualization of 3D models, which we are all
quite familiar with. Another is the one that will
be discussed in this paper: the visualization of
complex datasets. This field has mostly revolved
around incremental improvement regarding iso-
surfaces and volume rendering. Lately, however,
there has been a stagnation in interesting topics
and papers. We will discuss three views of lead-
ing researchers about the current state of the
field and their ideas of what needs to change.

2 Gap

We start with discussing the view of Bill
Lorensen [1]. According to him, there is a vis-
ible gap between the field of visualization and
its customers. Most people from the field have
no idea how customers from the real world use
visualization in their work nor what they think
of certain visualization methods. On the IEEE
Visualization Conference all customers have dis-
appeared. The organizations that are still visit-
ing the Conference are sending their computer
scientists, not the scientists that just use visu-
alization.

The field is clearly disconnected from the
rest of the world, which can be easily observed
when looking at the commercial market. The
company Vital Images [6] is selling a product

1A visual entertainment company, leading the animated movie industry.

119

called Vitrea. Part of this program is a Vol-
ume Rendering application, capable of visualiz-
ing extensive data sets. The foundation of this
program lies within the visualization field and
yet not that many people from visualization are
familiar with this program. Because this kind
of method is already available on the customers
market, the area of Volume Rendering should
try to shift their goals and steer themselves in a
different direction.

A remedy for the gap is also given by
Lorensen [1]: The field must more actively
approach customers and get their perspective,
their opinions, their visions on visualization.
Basically, there needs to be more interaction.
Another path2 that can and should be taken is
to solicit more application papers which are co-
authored by domain specialists.

We think the perceived gap is not a real
problem of the field. It is a scientific world, and
in science the goal is not to produce working
products for the market but to research new ar-
eas and gain knowledge.

3 New challenges

The field is also suffering from a lack of grand
challenges. Like the search for the unified the-
ory is a driving force within the physics field,
the visualization field need great goals to strive
for. Lorensen [1] suggested two things: The first
being the production of patient-specific illustra-
tions of anatomy that can rival with those of
expert medical illustrators. The second sugges-
tion done by Lorensen is a complete simulation
of the human body including multi-scale infor-
mation and simulations from the organ, the cell,
and all the way up to the gene.

We feel that looking for grand challenges is a

good way to motivate people, but it might also
lead to tunnel vision, neglecting other areas of
the field.

4 Judging added value

In an unrelated but equally important paper by
Van Wijk [2], a method is proposed for deter-
mining the gain of knowledge of a visualization
system. His way of giving the field a new jolt of
energy is by making the field more economically
aware.

The field can benefit from a general model to
assess the usefulness of visualization models in
order to give the field more structure, to better
judge whether a model can be successful. Such
a method is currently lacking.

Van Wijk explains a simple, coarse system to
give a model a certain qualification. It exists out
of weighing attributes like the costs, a certain
measurement for the gained amount of knowl-
edge and the size of the user base. The costs
are a summation of initial development costs,
initial cost per user, initial costs per session and
the investment it takes to modify parameters at
runtime. His model shows that a great visual-
ization method should be used by many people,
who use it routinely to obtain highly valuable
knowledge, without having to spend time and
money on hardware, software and effort.

Measuring this gained knowledge is not a
simple task. In the ideal case it should not mat-
ter who judges a model, and the analysis should
be consistent over all observers. Unfortunately,
this is not possible with examining the visual-
ization methods: the knowledge gain depends
heavily on the a priori knowledge and the per-
ceptual skills of the observer and other factors
like the type of hardware that is used. Therefore

2One that should be taken in parallel

Visualization: at a crossroad – Menno Nijboer, Ceesjan Luiten

120

the model as proposed by Van Wijk is far from
complete, and the field should try to expand on
it.

A major factor in the model is this gained
insight in the data. As Van Wijk [2] states, the
goal of visualization is to inspect complex data
where there are no alternative methods to in-
spect this data. But it should be noted that
visualization does not always provide a gain in
knowledge. It is possible for a visualization to
be misleading, giving rise to incorrect hypothe-
ses and conclusions. This will be expressed as a
negative term. Papers about the pittfalls of vi-
sualization are scarce and the field would benefit
from discussing failures.

To us, Van Wijk’s model seems too simple
to be practical. The variables are too abstract
be to determined consistently and it requires
knowledge beyond what is normally available,
but it is a start. The field should do more re-
search in this area, where contact with other
fields like psychology is needed to bring about
better versions of the model.

4.1 An example

Let us try to use Van Wijk’s model to evaluate
a real-life visualization. Wills [3] has created
a visualization for very big graphs. That is,
graphs with so many nodes that they cannot be
viewed all at once on a reasonable, modern day
computer. A particular version of this visual-
ization is used to visualize websites. Websites
and the relations they have with other sites on
a network can grow incredibly large. The pro-
gram puts all the “nodes” in a circle, with the
node they are linked to in the middle. These
nodes exist out of links, images, pages, et cetera.
Nodes can be connected through lines. Users
can highlight certain node types and iteratively
go deeper into this structure by selecting cer-

tain parts of the graph which can be zoomed in
on. Looking at the website graph, we will have
certainly gained some knowledge. But how do
we express how much knowledge we’ve gained?
Furthermore, not all the knowledge we gain
is useful. Do we differentiate between useful
and useless knowledge? Of course, and this is
something Van Wijk himself says, this value is
subjective and will differ from person to person.
The webmaster of the site will certainly learn
more by looking at the graph than a random
person would. Even if we found some sort of
measure, it would be hard to account for the
knowledge we’ve gained subconsciously.

Fig. 1: A graph produced by Wills

Part of his economic formula suffers far less
from the quantification issue, and that is the
cost formula. The costs in our example could be
expressed in time for example which could then
be converted into a measure of money. The ini-
tial cost per user for our example would be the
time spent reading the manual and experiment-
ing with the program until the user understands

SC@RUG 2007 proceedings

121

all its features expressed in seconds or minutes.
The profit function uses the acquired knowledge
as a variable, thus suffering from quantification
issues.

5 Communication

We now come to our third author, and with
that our third subject. When two people talk
about something, it is essential that they give
the same meaning to words. This, of course,
sounds obvious as a discussion is not possible
without this basic assumption. In normal, ev-
eryday conversations this assumption does not
pose any problems, as most of the words we use
have a common agreed upon meaning that has
been instilled since childhood.

This changes however, when considering
the language used between people regarding a
highly specialized subject. Many of the words
used in such environments have been created
specifically for that subject. Consider research
groups working within the same field. If they
wish to exchange data, the assumption of a com-
mon meaning is paramount for the correct inter-
pretation of this data. In many fields this agreed
meaning is firmly present in a formal way. Duke
et al. [4] believe visualization might benefit from
a more rigorous approach towards this in order
to help progression in the field.

5.1 Communication levels

In increasing formality, the agreed meaning is
usually organized in the following three groups
or levels: terminology, taxonomy and ontology.
Terminology can be seen as jargon. It is an
informal way to describe and express concepts.
The meaning of such things is properly defined

within the work that uses or introduces it, but
not beyond that.

In taxonomy concepts are grouped or orga-
nized in some way. The concepts themselves
are still defined in the informal way of the ter-
minology level. This means that while there
is a consensus within a certain taxonomy, it
might still prove difficult to compare different
taxonomies. The basis, or terminology, which
these taxonomies are formed upon might not
have the agreed meaning needed for compari-
son.

Finally there is ontology. Ontology3 is a data
model that represents a domain, in this case vi-
sualization. It is used to reason about objects
within that domain and the relations between
them. Thus it is a formal description with pre-
agreed meanings. Duke et al. reason that the
visualization field is currently mostly defined on
the terminology level, with some work having
been done on the taxonomy level.

5.2 Why ontology?

Duke et al. [4] also bring forth several arguments
why the creation of an ontology is important for
the visualization field. One of these is collabora-
tion: communication between researchers would
be made more efficient when a greater level of
formalization is in place. Also, interaction be-
tween separate visualization systems would need
such formalization. Sharable data sets is an ex-
ample of such a need. Secondly, education is
required in order to keep the field alive and at-
tract new people. The books currently available
on the subject are aimed at a very specific audi-
ence and are not suited for beginners. Also, be-
cause of a lack of agreed meaning, understand-
ing a new resource requires studying its termi-

3A concept that has its origin in philosophy

Visualization: at a crossroad – Menno Nijboer, Ceesjan Luiten

122

nology because it might be different from your
own interpretation.

There is also the matter of preservation. Ob-
tained results should be repeatable by others.
This can be made much easier through a more
formal description of the process that led to the
result.

These arguments seem rather logical. What
Duke et al. are saying all boils down to the same
thing: we need a method to unambiguously doc-
ument methods and results.

5.3 Efforts made

A way to create a more formal way of talking
about concepts is to restrict the language used
to define them. For example, one attempt to-
wards this is the E- and O-notations developed
by Brodlie [5] which can be used to model struc-
tures of data fields and data representations. We
will not discuss this method in depth as this is
beyond the scope of this paper. In short, E-
notations define the relationship between the
data and the underlying field and O-notations
formalizes the relationship between representa-
tion and data. Unfortunately, defining formal-
ization requires informal text to establish its
meaning. Also, while such a notation could for-
malize a small set of concepts, it would be dif-
ficult to link all these notations together into a
cohesive whole.

Another thing that is aiding the establish-
ment of a more formal approach are the tools
created in the field. As certain tools become
more popular within the community, the for-
mal models which they use become more pop-
ular and widespread as well. They can even
lead to standards. The World Wide Web
Consortium [7] might also provide a possible so-
lution in the form of their Resource Description
Framework and Web Ontology Language. These

are models and languages which provide con-
cepts and relationship “tools” to describe the
meaning of entities within a domain. These
tools are slowly gaining popularity. Something
similar could be beneficial to the field.

5.4 Ontology acceptance

Duke et al. [4] believe that now is the right time
to start work on an visualization ontology. They
think that with the maturity and developments
within the field an ontology would help with the
creation and documentation of future projects.
Their arguments seem sound and there is much
to be said for the idea. But ultimately, the com-
munity itself will decide the future of such a
large scale enterprise.

6 Discussion

We feel that the view presented by the re-
searchers is a tad pessimistic. Concerning the
gap between customers’ and researchers, we feel
the point is not valid. The scientific field is
meant as a playground for new ideas and they
should not have to concern themselves with spe-
cific practical applications. The sensed lack of
interesting subject material leading to the de-
cline of the field is — in our opinion — exag-
gerated. Many fields within computer science
thrive on incremental advancement. This is not
necessarily a bad thing.

Van Wijk’s model for assessing the useful-
ness of visualization algorithms is overly sim-
plistic, but the awareness he creates is a positive
thing. We hope more researchers will follow him
in this area.

Concerning the creation of an visualization
ontology, we think it would be a blessing for the
field. A more consistent approach would lead

SC@RUG 2007 proceedings

123

to better literature and more collaboration with
other fields. This might lead to new ideas and
might bring more people to the field.

All in all, the field is nowhere near dead, and
we see a bright future for visualization. Every

year more raw data is being gathered than in
previous years, and visualization can be a very
useful tool in analyzing this endless stream of
data.

References

[1] Bill Lorensen On the Death of Visualization Position Papers NIH/NSF Proc. Fall 2004 Work-
shop Visualization Research Challenges, 2004.

[2] Jarke J. van Wijk The Value of Visualization C. Silva, E. Groeller, H. Rushmeier (eds.), Proc.
IEEE Visualization 2005, p. 79-86, 2005.

[3] Graham J. Wills “NicheWorks Interactive Visualization of Very Large Graphs” Journal of
Computational and Graphical Statistics, Volume 8, Number 2, Pages 190-212

[4] Duke, D.J., Brodlie, K.W., Duce, D.A. and Herman, I. Do you see what I mean? IEEE
Computer Graphics and Applications, 25 (3). pp. 6-9. ISSN 0272-1716

[5] K. W. Brodlie, ”A classification Scheme for Scientific Visualization” , 1993

[6] Vital Images http://www.vitalimages.com/

[7] World Wide Web Consortium http://www.w3.org/

[8] Thomas Ball, Stephen G. Eick Software Visualization in the Large IEEE Computer, Vol. 29,
No.4, April 1996. pp. 33-43.

Visualization: at a crossroad – Menno Nijboer, Ceesjan Luiten

124

Structural Similarity in Image Quality Assessment

Frans Delvigne

f.m.delvigne@student.rug.nl

Abstract. The Human Visual System is ideally suited to recognize structures in

images and the quality of images that are distorted but retain their structural

information is usually judged as acceptable by humans. Why is it then that

current quality assessment algorithms do not take this into account? Quality is

usually measured by calculating the mean squared error between the original

image and the distorted image. This can be an accurate objective measure of

quality, but has no real relevance when the image is intended to be viewed by

humans.

In this paper a method will be presented which uses a structural similarity index

to measure the quality of a (distorted) image.

Keywords: image quality assessment, full-reference, human visual system

(HVS), sctructural similarity (SSIM).

Introduction

With the widespread use of digital images and the various ways in which they can be

distorted: during acquisition, processing, compression, transmission and reproduction,

it is important to be able to measure the quality of the image.

If there is an efficient way to objectively measure image quality, the quality can be

monitored and adjusted in real-time. For instance, a network digital video server can

examine the quality of transmitted video data to control and allocate streaming

resources.

It can also be used to optimize algorithms and parameters of image processing

systems. Lastly, it can be used to benchmark different image processing systems or

algorithms.

When an image is intended to be viewed by humans the best way to assess the

quality is by looking at the image and grading it subjectively. However to do this with

all images would be costly and time-consuming. It is therefore necessary to come up

with satisfactory ways in which to objectively quantify the quality of an image as it

would be interpreted by the Human Visual System (HVS).

In image quality assessment there are three different categories based on whether

or not the original distortion-free image is available for comparison.

- Full-reference (FR) metrics are used when the complete original image is

known at the point where the quality is measured.

125

- Reduced-reference (RR) metrics are used when only a feature set of the

original image is available.

- No-reference (NR) (or blind) metrics work when the original image is not

available.

Obviously full-reference metrics are preferable since the differences in the copy

can be compared with the original undistorted image. However it is not always

possible or practical to have the original image available at the evaluating point, for

instance in broadcast TV or video on demand.

It would be useful to use no-reference methods, since it would then be possible to

use this quality assessment in a wide variety of applications without having to find a

way to send the original image along. However, to provide accurate quality

assessment with no-reference is very difficult and so far a largely unexplored

territory. At this point no-reference methods are only used in systems where the type

of expected distortion is known beforehand.

The third option would be to send a set of representative feature data of the

original image to the evaluation point. This feature data would provide just enough

information to make a decent assessment possible without the added expense and

complexity of sending the original image along.

From Error Visibility to Structural Similarity

The most used method of image quality assessment is based on mean squared error

(MSE), which is computed by taking the average between the squared intensity

differences of distorted and reference image pixels. This method is attractive as it is

easy to calculate and has a clear physical meaning. However it is not very well-

matched to the perceived visual quality by the Human Visual System.

In recent years there have been proposals to modify the mean squared error

measure by giving weights to the errors based on their visibility. This error-sensitivity

approach has a few limitations and difficulties, which will be discussed in briefly in

this paper in section 2.1.

In section 2.1 a method for quality assessment will be presented that was

proposed in the paper Image Quality Assessment: From Error Visibility to Structural

Similarity by Z. Wang et al.[1].

The Human Visual System is ideally suited to recognize structural information in

images. This approach therefore gives a good representation of how humans will

perceive the quality of the image. By measuring the Structural SIMilarity (SSIM) and

comparing local patterns of pixel intensities an assessment can be made of the quality

that gives a better indication of the perceived image quality.

Structural Similarity in Image Quality Assessment – Frans Delvigne

126

Structural Similarity in Image Quality Assessment 3

The Error Sensitivity Approach

Fig. 1. A prototypical quality assessment system based on error sensitivity. Note that the CSF

feature can be implemented either as a separate stage or within Error Normalization.

When evaluating an image it can be regarded as the sum of an undistorted reference

signal and an error signal, shown in figure 1.

- Pre-processing: This step performs several operations to eliminate known

distortions from the images that are being compared. Things like scaling and

aligning the images are done here.

- CSF-Filtering: The Contrast Sensitivity Function describes how sensitive the

Human Visual System is to certain spatial and temporal frequencies. Weights

can be added based on this sensitivity to increase the importance of those

features in describing the perceived quality.

- Channel Decomposition: The images are separated into sub bands that are

selective for spatial and temporal frequency as well as orientation.

- Error Normalization: This step calculates the difference between the

decomposed reference and distorted images in each channel. Then this

difference is normalized using a certain masking model.

- Error Pooling: This stage combines the calculated errors over the spatial

extent of the image and all the channels into a single value. This is usually

done using a Minkowski norm:

E({el,k}) = (∑l∑k |el,k|
β
)

1/β (1)

Where el,k is the normalized error of the k-th coefficient in the l-th channel and β

is a constant, typically chosen to lie between 1 and 4.

Limitations of the Error Sensivity Approach

Most early models are based on linear or quasilinear operators, even though the

Human Visual System is complex and highly nonlinear. In order to make use of these

linear operators strong assumptions and generalizations need to be made. This leads to

problems that impede quality assessment using these models.

- Quality definition problem: Some errors, while highly visible, are not

considered by most humans as constituting a loss of quality, for instance

multiplying the image intensities by a global scale factor.

- Natural image complexity problem: Most error sensitivity models are tested

using experiments with simple geometric shapes such as spots and bars. But

SC@RUG 2007 proceedings

127

can these models evaluate the interactions between the tens or hundreds of

shapes that are in real-world images?

- Decorrelation problem: Most models make use of a Minkowski metric (1)

for pooling errors. This assumes that errors at different locations are

statistically independent. However this is not the case for linear channel

decomposition methods such as the wavelet transform.

Cognitive interaction problem: Cognitive understanding and interactive visual

processing (e.g. eye movements) influence the perceived image quality, but these

things are difficult to quantify and therefore are left out of most models.

Structural Similarity (SSIM)

Since natural image signals are highly structured their pixels exhibit strong

dependencies. These dependencies carry important information about the structure of

the objects in the image.

Whereas the error-sensitivity approach estimates perceived errors, the new

method in [1] looks at perceived changes in structural information. This can be seen

in Figure 2. All distorted images have the same Mean Squared Error with respect to

the original (2a) even though the differences in quality can easily be seen. This can be

explained by the new method since in the first two copies the structural information is

mostly preserved.

Underneath the images the Mean Squared Error (MSE) with respect to the

original is show, as well as the Measure of Structural SIMilarity (MSSIM).

well.

Fig. 2. Comparison om images with MSE=210 (a) Original image (b) contrast stretched image,

MSSIM=0.9168 (c) mean-shifted image, MSSIM=0.9900 (d) jpeg compressed image,

MSSIM=0.6949 (e) blurred image, MSSIM=0.7052 (f) speckle noise, MSSIM=0.7748

These results show that, in these cases at least, the structural similarity index gives

a better representation of perceived image quality than calculating the mean squared

Structural Similarity in Image Quality Assessment – Frans Delvigne

128

Structural Similarity in Image Quality Assessment 5

error. In figures 2a and 2b the MSSIM index is close to 1, which means that the

structural information from the original is almost perfectly preserved. This

corresponds to what humans would perceive as good image quality. In the other

images, the MSSIM index is much lower and this difference can easily be seen as

Calculating the Structural Similarity Index

This method makes use of a structural similarity index, this value is calculated

according to the diagram show below. Here Signal x is the original undistorted image

and Signal y is the image whose quality needs to be assessed.

Fig. 3. Diagram of the Sctuctural Similarity measurement system

From the above diagram you can see that the structural similarity is calculated using

separate calculations for the luminance, contrast and structure. These values are then

multiplied to give us the final Structural Similarity Index, like so:

SSIM(x,y) = [l(x,y)]
α
 · [c(x,y)]

β
 · [s(x,y)]

γ

The individual formulas look like this:

Luminance:

l(x,y) = 2µxµ y + C1 / µx
2
 + µy

2
 +C1

Contrast:

c(x,y) = 2σxσy + C2 / σx
2
 + σy

2
 + C2

Structure :

s(x,y) = σxy + C3 / σxσy + C3

The variables α, β and γ are simply parameters to adjust the relative importance of

the three components. To get the values calculated in [1], these parameters were set to

1.

SC@RUG 2007 proceedings

129

Discussion of Structural Similarity for Image Quality Assessment

In this paper the traditional method of image quality assessment was explained

briefly, including its limitations. In order to counteract these limitations a method

using structural similarity was introduced and a few experimental results were shown

using a Structural Similarity index. Early testing show that this method is well suited

to measuring the quality of an image as it is perceived by the Human Visual System.

However, this method is still being further developed and some issues with the

Structural Similarity index still need to be researched. Firstly the optimization of the

Structural Similarity index for different image processing algorithms needs to be

studied. It could be used for instance for rate-distortion optimization when designing

image compression algorithms. This is not as easy as mean squared error, since the

structural similarity function is mathematically more cumbersome. Secondly, since

the structural similarity index is a symmetric measure it could be used to compare any

two signals and not just images.

The Structural Similarity index is a technique that describes the perceived image

quality more accurately than some other methods. However, it is just one possible

approach in the field of structural similarity. With more research into structural

similarity it is possible that other approaches may emerge that are very different from

the indexing algorithm presented in [1].

References

[1] “Image Quality Assessment: From Error Visibility to Structural Similarity”, Z.

Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli

Structural Similarity in Image Quality Assessment – Frans Delvigne

130

Assembling Protocols for Sharing Secrets

Jasper van de Gronde Twan van Laarhoven

21st January 2007

Abstract
This paper deals with protocols for proving possession of secrets without giving them away.
Although protocols for this problem come in all shapes and sizes, they often use similar
methods. These similarities are unfortunately often ignored, which makes it hard to directly
compare protocols. In contrast, we will break down the protocols to their basic building blocks.
We present these building blocks as a base protocol and a number of transformations that can
be applied to derive more complex protocols (with more desirable properties). An example is
given of how the building blocks can be used to construct one of the protocols given by Teepe
[1].

1. Introduction

Suppose there are two parties, lets call them Alice and Bob. They could be people, but they could
also be computers on a network. The parties want to exchange knowledge of some secret, but they
do not trust each other. For example Alice could ask Bob: \Do you know the combination of the
safe?". Just answering yes or no is not enough, since Alice has no way of knowing whether Bob
is truthful. On the other hand, Bob can not just prove his knowledge by giving the combination;
Alice might not actually know the combination and could be �shing for information.

Alice wants to know whether Bob knows the combination of the safe, so we are interested in
protocols that can determine whether a certain secret (the combination of the safe) is known to
Bob. And it should work without letting Bob know the combination of the safe unless he already
knew it.

There are several protocols to answer such questions, ranging from informal `games' [2] to formal
cryptographically sound protocols [1]. These protocols di�er not only in how thoroughly they are
described but also in the exact de�nition of the problem. In fact there is not a single unique
problem being solved at all. In the next paragraph we will investigate these di�erences.

2. The problems

We will look at several variations of the basic problem described above. First of all, instead of
wanting to know whether they both have the same value in mind, Alice and Bob might also want
to perform more general comparisons without revealing their actual values. For example, Alice
may want to know whether Bob is willing to sell his car for a price that is within her budget.
Neither Alice nor Bob will want to reveal any exact prices however, as that might give them a
disadvantage in the negotiations. In general we can say that Alice wants to know whether the two
values of the secrets, if there are any, satisfy some relation R.

Usually you want to limit yourselve to just a small subset of all the knowledge, as Alice and Bob
will usually have much more knowledge than what is relevant to the situation. In many situations
Alice will be able to simply tell Bob what she is interested in, but this is not always the case as it
might give Bob some knowledge of the secret. For example, suppose Alice wants to know whether
Bob knows about some fact or event, it can be quite tricky to ask anything about it without giving
at least something away.

131

We can also distinguish between methods that guarantee that both parties will know the correct
outcome and methods in which only one of the parties will know the correct outcome. In some
cases the latter may be all that is needed, for example if Alice wants to talk about her secret with
Bob, but Bob is not necessarily interested in what Alice knows.

Protocols can also be distinguished by the amount of certainty they give. Some protocols will give
a solution with a very high probability, others will provide a de�nite answer. Protocols that give a
solution with a very high probability are often easier or provide other advantages, but might not
always be appropriate.

Finally, there are quite a lot of methods which use a more or less trusted third party to some extent.
If a completely trustworthy third party is available the problem can be solved quite trivially. Both
parties would simply tell that third party their secrets and be told the outcome of the comparison.
But in general a third party can be used to prevent Alice or Bob from gaining knowledge they
should not gain. For example the safe itself is a third party which can verify that person knows
the combination.

3. A Model

We model the knowledge of the parties as sets of `secrets'. A secret can be, for example, the
combination of the safe or the price of a product. We call such a set of secrets a knowledge base,
and we talk about the knowledge of a party. For example Alice's knowledge of the combination of
the safe could be f1234g. Her entire knowledge of course contains much more, we model it as a
set of tuples:

Ka = f(combination of the safe; 1234); (my name;Alice); : : :g

Now the core of all the problems is whether one of Alice's secrets has a certain relation R with one
of Bob's secrets. In other words, the outcome o of the comparison will be:

o = 9s 2 Ka 9t 2 Kb : R(s; t)

Usually we limit ourselves to just a small subset of all knowledge, for example only the combination
of the safe.

4. Protocols

To be able to understand the di�erent protocols and why they have their speci�c properties we want
to break them down. We consider all protocols as a basic protocol to which some transformations
are applied.

It turns out that the core of most of the protocols is the same, since all methods ultimately rely
on comparing the knowledge. The di�erence therefore lies in the transformations.

To be able to reason about protocols we describe them by a protocol signature:
Protocol [x]

This signature refers to the class of protocols with properties x, as described in table 1. For
example:

Protocol [compare: = ; domain: N ; A learns: fog]
refers to protocols where the knowledge consists of natural numbers, which are compared for
equality. Only A learns the outcome o of the comparison.

Protocol transformations operate on protocol with a speci�c signature, and transform it into a new
protocol with a di�erent signature. We use the notation:

Protocol [x] ! Protocol [y]
For example:

Protocol [x ; A learns: fog] ! Protocol [x ; B learns: fog]
Transforms a protocol in which A learns the outcome into a protocol where instead B learns the
outcome. All other properties x are unchanged.

Assembling Protocols for Sharing Secrets – Jasper van de Gronde, Twan van Laarhoven

132

compare: R Knowledge is compared using the relation R.
domain: D The values that are compared are in the domain D, relation R has the

type P(D �D).
complexity: O(x) The number of items that must be transferred is of the order O(x).
A learns: x What does A learn? For example A learns: fog means that party A

learns the outcome o of the comparison and nothing else.
extra: x Any extra requirements of the protocol, for example that a third party

is needed.

Table 1: Di�erent properties with a shorthand notation and a description

4.1. Base protocol

Protocol [compare: any R ; domain: dom(R) ; complexity: O(#Kb) ; A learns: fKb; og ; B learns: ;]

The most basic method of comparison would be for Bob to simply tell Alice his secret(s):

1. B sends Kb to A.
2. A computes o = 9s 2 Ka 9t 2 Kb : R(s; t)

Obviously this protocol fails to ful�ll even the basic requirement that A should not learn any of
B's secrets if A did not know them already.

4.2. Security transformations

The base protocol does not satisfy the requirements of the problem at hand, A will learn secrets it
is not supposed to know. It is therefore useful to look at a number of ways to modify the protocol
so the security is improved.

Third party

Protocol [x ; A learns: y] ! Protocol [x ; A learns: fog ; T learns: y [fKbg ; extra: 3rd party]

If a third party (T) is available that third party can be used to prevent A from learning too much
as follows:

1. B sends Kb to T .
2. A and T perform the original protocol with T taking on the role of A and A the role of B,

so at the end T will know the outcome o.
3. T sends the outcome to A.

Scrambling

Protocol [x ; X learns: fKig] ! Protocol [x ; X learns: ff(Ki)g ; A and B learn: ffg]

To prevent a party from learning any secrets of the other party the secrets can be scrambled
�rst. The parties agree on a scrambling function f . This function is applied to all items in their
knowledge base before sending it. Note that we use f(K) to denote ff(k) j k 2 Kg. The new
protocol becomes:

1. A agrees with B upon a scrambling function f .
2. A and B perform the original protocol with f(Ka) and f(Kb) instead of the normal knowledge

bases.

f must have the following properties:

� f should be a one-to-one mapping. If it is not then it is possible that there is a false positive
match. Alternatively it can be su�cient if the probability of collisions is very small.

SC@RUG 2007 proceedings

133

� If the comparison relation R is used, then R(f(s); f(t)) , R(s; t). In other words, f must
preserve the comparison. For equality this is always the case, but when comparing using for
instance <, f must be an increasing function.

� Since both A and B will learn f , either:
{ A must not learn K 0

b and B must not learn K 0
A,

{ or knowing f and f(s) must not lead to knowledge of s.
The latter is possible by using a cryptographic hash function [3].

� Beforehand parties should not know or be able to compute f(s) without also knowing s. This
is often not the case, since f(s) could be learned in a previous run of the protocol. f should
therefore be unique, or be made unique by including for example the names of A and B or
a random value.

4.3. Performance transformations

The base protocol requires that the entire knowledge base of B be sent to A. This is of course not
practical. There are ways to drastically improve the performance.

Identifying question

Protocol [x ; domain: V] ! Protocol [x ; domain: N � V ; complexity: O(1) ; B learns: fng]

If the secret could somehow be identi�ed �rst, then only the secret itself has to be transferred. To
identify the secret, A could just name it, assuming that the name n would not tell B anything
con�dential about the secret. For example, when trying to con�rm that Bob knows the combination
of the safe it would usually do no harm to tell Bob that you are looking for the combination.

1. A sends n to T .
2. A andB perform the original protocol withK 0

a = fv j (n; v) 2 Kag andK 0
b = fv j (n; v) 2 Kbg.

Identifying predicate

Protocol [x ; complexity: O(c)] ! Protocol [x ; complexity: O(c=2#P) ; B learns: fPg]

Another way to reduce the amount of information sent is for A to give B a predicate P , and say
\The secret I am looking for satis�es P". The protocol now becomes:

1. A determines a predicate P . P must have the property that 8s 2 Ka 8t : R(s; t)) P (t). In
other words, the secret A is looking for must indeed satisfy P .

2. A sends P to B.
3. A and B perform the original protocol with Ka = fk j k 2 Ka ^ P (k)g and similarly for Kb.

The reduction of the number of items to be sent depends on the information content #P of P . So
if #P is 1 then only half of the knowledge will satisfy it, the other half will not have to be sent.

Since the predicate P will be revealed to B, he should not be able to learn the secret from it.
One way to ensure this is to use a cryptographic hash function [3]. When comparing secrets for
equality, Ka will usually contain just one item we are actually interested in. Calling this item s,
the predicate can be P (t) := H(s) = H(t). Alternatively when the knowledge takes the form of
tuples, a hash of the name n can be used instead of the name itself in identifying question.

One problem with hash functions is that there can be collisions, two di�erent names which map to
the same hash. To reduce that problem A can generate a random challenge C that further reduces
the size of the knowledge base, and send it along with the hashed secret (see [1]).

Another problem is that knowing H(s) is not completely useless to B, he can use it to determine
if the same secret is asked for again. To prevent this a random value V can be added, so the
predicate now becomes P (t) := H(s+ V) = H(t+ V). Since the random values are di�erent each
time, the predicates can not be compared.

Assembling Protocols for Sharing Secrets – Jasper van de Gronde, Twan van Laarhoven

134

4.4. Symmetry transformations

In the base protocol only A learns the outcome. B might need to know the outcome too.

Broadcast

Protocol [x ; y = [extra: 3rd party ; T learns: fog]] ! Protocol [x ; y ; A and/or B learn: fog]

In a protocol where a trusted third party learns the outcome it can simply broadcast it to A and/or
B so they know the outcome as well:

1. Perform the original protocol.
2. T sends o to A and/or B.

Perform twice

Protocol [x ; A learns: fog] ! Protocol [x ; A and B learn: fog]

If there is no third party it might still be desirable for B to learn the outcome of the comparison
as well. The solution is simple:

1. Perform the original protocol.
2. Perform the protocol again, with the roles of A and B reversed.

Note that it is always possible for A to stop after the �rst step, or for the parties to lie in one of
the steps. This could result in one of the parties (incorrectly) having o = false.

5. Example

As an example we will reproduce the symmetric protocol from [1]. In this protocol A wants to
verify that B possesses some secret s, both parties will learn the outcome.

1. We start with the base protocol. As we are only looking at the speci�c secret s, the protocol
can use the following relation:
R(t; u) := t = s ^ u = s
We will consider the items s, t and u to be strings, this means the basic protocol has the
signature:

Protocol [compare: R ; domain: Strings ;
complexity: O(#Kb) ; A learns: fKb; og ; B learns: ;]

For brevity we will leave out the compare and domain part of the signature from now on.

2. Of course A should not learn Kb. We can prevent this using the scramble transform. Since
A learns the scramble function as well we have to ensure that it is not invertible. A good
approach is to use a cryptographic hash function, combined with the identity of B.

Protocol [complexity: O(#Kb) ; A learns: ff(Kb); f; og ; B learns: ffg]
Since f is a known hash function, and it is infeasible to invert it, we can say that f(Kb) and
f are not useful information, so the signature simpli�es to:

Protocol [complexity: O(#Kb) ; A learns: fog ; B learns: ;]

3. Since we want B to know the outcome we use the perform twice transformation, giving:
Protocol [complexity: O(1) ; A learns: fog ; B learns: fog]

4. With this protocol B must send a value to A for each item in his entire knowledge base, this is
a huge amount of information. We can greatly improve the e�ciency by using an identifying
predicate. Since we do not want to reveal anything we will use a hash function H together
with a challenge C and random value V . Assuming the hash has length O(log(#Kb)) (which
is a reasonable assumption), this leads to a protocol with the signature:

Protocol [complexity: O(1) ; A learns: fog ; B learns: fH(s+ V); V; Cg]
Again, since it is infeasible to invert H all of the information B learns is useless to him:

Protocol [complexity: O(1) ; A learns: fog ; B learns: ;]

SC@RUG 2007 proceedings

135

The protocol arrived at in step 4 is:

I. A computes a random value V and challenge C.
II. A sends the predicate P using H(s+ V), V and C to B.
III. A and B perform the protocol of step 3 with the knowledge base �ltered by P :

(a) Perform the protocol of step 2, so the base protocol with f(Ka) and f(Kb):
i. B sends the �ltered f(Kb) to A.
ii. A computes the outcome o.

(b) Perform the protocol of step 2 again, with the roles of A and B reversed:
i. A sends the �ltered f(Ka) to B.
ii. B computes the outcome o.

If you atten this list, it corresponds directly to the protocol given by Teepe [1].

6. Discussion/Future work

By combining di�erent transformations many di�erent protocols can be created. Not all of them
are practical or even correct. In particular it is possible to create algorithms that give away the
secret to the other party. Fortunately the protocol signatures give a reasonable indication when
this is the case, since they will say: \B learns: secrets".

In this paper we give only one base protocol and six transformations. Using these we can already
recreate the three protocols without encryption from [1]. However, the work by Fagin et al, [2],
contains a wider variety of protocols. Among them are protocols based on di�erent primitives, such
as `oblivious transfer' [4] and many physical objects. To describe these protocols in our framework
at least a few new transformations would be needed and perhaps even a di�erent base protocol.

Also note that we only give informal descriptions of the protocols and protocol transformations.
In a future work it would be interesting to see whether these could be formalized further. The
properties of the protocols could then be analyzed thoroughly. In particular it would be good to
verify that the protocols do indeed work as intended and that the di�erent transformations we
described are not prone to any problematic interactions.

Having formalized the methods described in this paper it might even be possible to construct
a framework to allow designing protocols semi-automatically. Such a framework would make
it relatively easy to design protocols that are both correct and have the desired properties by
combining di�erent transformations. To ensure correctness this would of course �rst require a
thorough analysis of the method.

An interesting open question is whether the overview given in this paper is in any way complete.
It is possible to use the transformations to create all sorts of protocols with di�erent combinations
of properties. However, there are combinations of properties conceivable that are not possible to
create with the transformations described in this paper. To what extent this is due only to missing
transformations or protocols we do not know.

References

[1] W. Teepe. Proving possession of arbitrary secrets while not giving them away. Synthese -
Knowledge, Rationality and Action, 149(2):409{443, 2006.

[2] Ronald Fagin, Moni Naor, and Peter Winkler. Comparing information without leaking it.
Communications of the ACM, 39(5):77{85, 1996.

[3] Shahram Bakhtiari, Reihaneh Safavi-Naini, and Josef Pieprzyk. Cryptographic hash functions:
A survey. Technical Report 95-09, Department of Computer Science, University of Wollongong,
July 1995.

[4] S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186{208, 1989.

Assembling Protocols for Sharing Secrets – Jasper van de Gronde, Twan van Laarhoven

136

Verifying knowledge without revealing it

Ando Emerencia& Eamon Nerbonne

Rijksuniversiteit Groningen
A.C.Emerencia@student.rug.nl, eamon.nerbonne@gmail.com

http://eamon.nerbonne.org/

Abstract. Dealing in secrets is a delicate business: how do people discuss confidential
matters without inadvertently revealing information to each other? For instance, when two
managers each receive the same complaint, they want to know whether it originates from only
one person - but without revealing their source if the complaints came from different people.
These managers are facing an instance of a wider class of problems known as Comparing
Information Without Leaking It (CIWLI). Solutions to CIWLI are one way of comparing
knowledge (such as the sources of complaints), without revealing this knowledge. This paper
discusses two variants of CIWLI, “with reference” and “without reference”; the former
assumes that both participants know which secret is being referred to, and the latter in
which such an a priori agreement does not exist. The language of Quadratic Non-Residuosity
(QNR), a superficially unrelated problem, contains only numbers that are not quadratic
residues. The relation to CIWLI (and its protocols) is a two-person protocol, which lets one
person (the verifier) verify whether a given term is a member of the language by asking the
other (the prover) without revealing the term itself. This relation highlights the essence of
the CIWLI problem: that of verifying knowledge without revealing it.

1 Introduction

Consider a person that wishes to find out if an-
other person also knows some secret without ei-
ther person revealing it if it is not shared. In a
real life situation, such a scenario will result in a
game of “hints”: he asks the other to verify lit-
tle details that don’t give away the secret, thus
building confidence that they really do share
this secret before openly discussing it. Unfor-
tunately, in doing so, these people are revealing
parts of their secret in the process - small, less
relevant details, but parts of the secret nonethe-
less. This problem is known as Comparing In-
formation Without Leaking It: CIWLI in short.

We differentiate between two classes of CI-
WLI problems using the terminology introduced
in [TEE06]. In CIWLI “with reference” it is
clear to both persons which secret is to be com-
pared, as there is some common reference such
as a question for which both persons have a
secret answer. In CIWLI “without reference”
there is no common question, but rather a uni-
lateral reference: one person would like to know
if the other person knows the secret he does. In
both cases, no knowledge may be leaked.

Is there a protocol to verify knowledge with-
out revealing it? In search of such a protocol,

we also examine the language of Quadratic Non-
Residuosity (QNR), a seemingly unrelated issue.
However, a protocol exists [GMR85] which al-
lows a verifier to determine whether a term is
a member of this language by communicating
with a prover capable of computing such mem-
bership, while leaking neither the term nor its
membership to the prover. This protocol solves
the very CIWLI-like question “Do you know if
the following term is a member of the language
of QNR?” - without leaking the term.

2 CIWLI “with reference”

Two persons are thinking of a secret, and would
like to know whether they are thinking of the
same secret, without revealing these secrets.
Several solutions to this problem are given
in [FNW96], but the focus in that paper lies
on solving the problem using simple, everyday
methods, and (mostly) without complex pro-
gramming. These simple solutions share many
crucial features. We partitioned some of the
known solutions by the type of communication
used in the protocol: Third person, Shared data
and Direct messages, and discuss them without
going into implementation details.

137

2.1 Assumptions

Two persons A and B wish to compare secrets,
and can only communicate by means of sending
direct messages, looking into shared data, or by
sending messages to a trusted third person C. A,
B, and C are distinct. They are consistent and
accurate in their computations. If a person con-
sistently shares a value different from the “real”
value of their secret, the protocols will work, but
the result will reflect the false value, and not
the real value. These protocols only compare
one value though, namely the one claimed. If
one party consistently claims a particular value,
then the “real” value is irrelevant. Specifically,
it should not be possible to change the value you
are comparing mid-protocol and thus conclude
facts about multiple secrets by trial and error
without rerunning the protocol with coopera-
tion from the other person.. Clearly, it should
not be possible to cause the other person to
leak any information to you by violating the
protocol (or being inconsistent or inaccurate),
but conversely, assuming you are truthful and
consistent, you should never leak information,
and when the other partner is equally honest,
the protocol should always terminate with the
correct answer.

2.2 Third person

The first solution to CIWLI “with reference”
uses a trusted intermediary C. A tells C secret
SA. B tells C secret SB . Finally, C checks if SA

and SB are equal and notifies A and B about
this result.

In this most basic form, C finds out every-
thing - the secrets of both A and B (so whether
they are equal or not), even when these secrets
differ. To restrict the information C receives
about the secrets of A and B, some kind of en-
coding is needed for these secrets.

Random Permutation An alternative ap-
proach that uses such an encoding is Random
Permutation [FNW96]. Here, A and B first
agree on two random numbers which are effec-
tively used as encryption keys. So in this case, C
only finds out whether the (encrypted) secrets
of A and B are equal, but cannot derive any
information about the secrets other than that
they are equal or not.

Random Rotation A slightly weaker version
of this concept is dubbed Random Rotation
[FNW96], this solution does not require a prede-
fined set of keys, but here C not only finds out
whether the secrets are equal, but also the mod
between indexes in the array of possible values
for the secrets, in the case that the secrets are
not equal.

Permutation Composition Permutation
Composition is even stronger than Random Per-
mutation in the sense that C does not find out
whether the two secrets are equal. In this proto-
col, A and B first agree on a set of lists of per-
mutations of some set to encode their secrets. C
then performs some computation on these per-
mutations and gives an answer that is encoded
in such a way that only A and B can derive from
it whether their secrets were equal.

Hashing Another alternative we mention here
is that of Hashing. Like in Random Permuta-
tion, C only finds out whether the secrets are
equal or not, but in this case, no predefined keys
are needed assuming that the hash-functions
used by A and B are equal and hard to reverse.

2.3 Shared data

Where shared data is an available method for
communication and is secure in the sense that
it can only be accessed by A and B, and that a
person cannot read from the shared data when
it is supposed to write in it, and vice versa.
This replaces the need for a third person, but
the computations performed on the shared data
will instead have to be performed by either A or
B, so caution must be taken that they can not
directly infer information about each other’s se-
crets if those secrets are not equal.

Hashing For instance the solution of Hash-
ing can also be implemented using shared data
and is informally described in [FNW96] as Cups.
Here the shared data is an array of the size of
possible secrets with all values set to 0. A and
B each increment the index of their secret, the
shared array is then randomly permuted and
searched for the first index that contains a non-
zero value. If this value is 2 then the secrets
are equal, if this value is 1 then the secrets are
not equal. Note that after the array has been
randomly permuted, no information about the

Verifying knowledge without revealing it – Ando Emerencia, Eamon Nerbonne

138

secrets of A and B can be revealed other than
the fact that they are equal or not.

Deck of Cards A weaker alternative named
Deck of Cards [FNW96] presents the method of
having a shared array of size 26, where A in-
crements the alphabetical indices of the charac-
ters appearing in the secret in the array and B
decrements these indices. The array is then ran-
domly permuted and checked for non-zero val-
ues. This method is weaker than Hashing be-
cause the number of non-zero indices in the ar-
ray gives a measure of equality between the se-
crets. This method is also more error prone since
prior agreements will have to be made about
spelling as some special characters are excluded
and since no differences are detected between a
secret and its permutations.

2.4 Direct messages

There exist solutions for situations where we
do not have or want a third person or shared
data, by only letting A and B directly mes-
sage each other. To not reveal any information
about their secrets other than the fact whether
they are equal or not, some kind of encoding
is needed in the messages conveyed. Here we
cannot, for instance, agree on a common set of
keys because A and B will then be able to de-
crypt each other’s messages and find out about
each other’s secrets. One-way encryption meth-
ods such as hashing solve this problem, but in-
troduce a small error chance that the encrypted
messages are equal while the unencrypted mes-
sages are not.

Envelopes The solution Envelopes [FNW96]
describes the solution where A and B each cre-
ate a sequence of pairs of random values. These
sequences have the length of the secret repre-
sented in bits. A steps through his sequence,
uses each bit of his secret to choose one value
from each pair (the first value should the bit be
0, and the second should it be 1), adds all these
together and shares this computed value. B does
the same with B’s sequence. A and B then use
oblivious transfer1 to exchange their sequences,
1 Oblivious Transfer [RAB81]: in the variant “1 out

of 2 oblivious transfer”, which we use here, the
receiver receives only one of the two messages sent
by the sender, and the message received remains
unknown to the sender.

choosing one value from each pair as they did
for their own sequence. They can then check
whether they found the same value as shared
by the other.

This method however has a small error prob-
ability that the randomly chosen numbers were
equal for differing indices. Furthermore it relies
on a complexity theoretic assumption and on the
fact the computational power of A and B is lim-
ited to probabilistic polynomial time. We also
note that this approach has the danger that one
of the persons might “walk away” after receiv-
ing the other’s information, and thus not giving
the other person their information.

3 The language of QNR

The problem that occurs in many of the solu-
tions listed above is that they still reveal some
information about the secret. For instance, in
many of the solutions that used a third person,
this person would gain some information about
the secrets of A and B. In this section, we dis-
cuss a protocol for a language in which a person
A proves a fact about a secret using another per-
son B, without B ever even getting to know this
secret.

In [GMR85], a protocol is presented for prov-
ing the hypothesis H2 = a ∈ Lm, that is, for
proving a term a to be in the language Lm of
quadratic non-residuosity. An element b ∈ Zm is
a quadratic residue mod m if b = x2 mod m,
where Zm denotes the set of integers between 1
and m that are relatively prime with m. An ele-
ment a is not a quadratic residue in Zm, if for all
x’s in Zm, a never equals x2 mod m. The lan-
guage of quadratic non-residuosity Lm is thus
defined as

Lm={a∈Zm | ¬∃x∈Zm a=x2 mod m}.
This language is in fact found to be in NP as

it has been shown that it can be reduced to the
problem of factorizing m; this seems probable,
since in a naive approach we would have to cal-
culate all the quadratic residues from numbers
in Zm before being able to conclude that a term
is not in this language.

A problem with the protocol from [GMR85] is
that it only works for the language of quadratic
non-residuosity and moreover only works with
certain algebraic secrets. In the next section we
discuss a zero-knowledge protocol solving CI-
WLI “without reference” that can work with
arbitrary secrets. Here however, we have to use

SC@RUG 2007 proceedings

139

the extra assumption that the other person also
knows the secret (note that this was not needed
with QNR).

4 CIWLI “without reference”

The methods of comparing information without
leaking it mentioned in section 2 make it pos-
sible to verify that indeed two persons are re-
ferring to identical pieces of information. Both
persons need to know which piece of information
they are comparing however, and verification
can only meaningfully occur if they are indeed
referring to the same information block (hence-
forth termed IB). [TEE06] calls the problem in
which such an a priori reference does not exist
CIWLI “without reference” as opposed to CI-
WLI “with reference”. The aim of the protocol
remains; neither person may learn anything new
about the secret which (s)he didn’t know before-
hand. Compared to CIWLI with reference, the
protocols to solve CIWLI “without reference”
must surmount two additional difficulties: de-
ciding which IB is to be compared, and uniquely
referring to it without leaking information.

4.1 The protocol

The protocol, as proposed by [TEE06], differ-
entiates the two persons involved into a prover
and a verifier, and identifies the IB by means
of a one-way function H(x): a secure hash. The
initiator (which may be either the prover or the
verifier) chooses an IB, and identifies it to the
other person by sending its hash. Thus agreed,
the verifier sends a challenge to the prover; this
challenge can only be correctly answered using
the IB in question. The prover proves his knowl-
edge then by answering the challenge. The chal-
lenge in question is simple, consisting of a block
of information chosen by the verifier. The prover
then sends H(I + N + P + C) in return, where
I is the IB in question, N is a nonce which is
a mutually determined value intended to make
eavesdropping impossible, P is the identity of
the prover, which makes man-in-the-middle at-
tacks2 impossible, and C is the challenge is-
sued by the verifier. The full algorithm including
proof of correctness can be found in [TEE06].

2 A man-in-the-middle attack is an attack in which
a third party is able to intercept (and sometimes
modify and generate) messages sent between the
two main parties undetected.

4.2 Hash function

As stated by [TEE06], the above protocol de-
pends on the existence of a one-way hash-
function [DAM88] [GMW91], and it relies on
an authenticated, modification-proof commu-
nication channel [DAM88] [TSU92] [BSP95]
[SCH96]. The hash-function must satisfy two re-
quirements. First, its output (the hash) must
not reveal anything about its input. Second,
given a hash H(X), it must not be feasible to
determine the hash of some variation of X with-
out knowing X; that is, the only feasible means
of determining the hash should be full recompu-
tation [TEE06].

4.3 Protocol analysis

[FNW96] suggests a number of beneficial prop-
erties a CIWLI protocol should have. We ana-
lyze this protocol on those fronts which make
sense in a computer implemented system.

Resolution The protocol should let the veri-
fier determine whether the prover indeed knows
what is claimed. This protocol succeeds at that;
when the verifier receives the hash of the IB
(with extra information), he knows that the
prover has possession of the IB, as without pos-
session of the IB, its hash cannot be determined.

Leakage The protocol should not leak infor-
mation; Neither prover nor verifier should learn
anything about the other’s knowledge beyond
whether they possess it. Assuming that the
hash-function is indeed one-way, clearly no in-
formation of the IB itself was transferred, thus
the algorithm is leakage free.

Privacy The protocol should not let third par-
ties determine any information about the IB
in question. Since only hashes are transferred,
no third party can determine any information
about the IB in question.

Simplicity The protocol should be easy both
to implement and to understand. Given faith
in one-way hash-functions, the rest of the pro-
tocol is surprisingly simple. However, verifying
the properties of a one-way hash-function is not
at all trivial. Furthermore, although the IB it-
self clearly is not revealed, the security of meta-
information about it is a more difficult matter:

Verifying knowledge without revealing it – Ando Emerencia, Eamon Nerbonne

140

neither is it easy to see that the protocol pro-
vides security for more than just the informa-
tion block itself, but also for meta-information
concerning who knows what and avoiding third
parties gleaning important revelations based on
the communication. For instance, a nonce does
nothing to avoid leakage of information of the IB
itself, but does avoid third parties which already
possess the IB from interpreting the protocol.
More on this below.

4.4 Issues

A core tenet of CIWLI protocols is that they
are zero-knowledge: This means that nothing of
the secret is revealed by performing the proto-
col. Clearly, other information is transmitted -
namely information about the information. CI-
WLI protocols are thus absolutely secure with
respect to the data, but not necessarily with re-
spect to the metadata. This suggests we look
at the metadata which can be revealed. The CI-
WLI “with reference” problem and protocols are
generally symmetric: that is, person A can only
tell whether his secret is equal to B’s if B can
learn the same. It is generally not possible to
cheat in such a way that only one person learns
this information.

4.5 Asymmetry as metadata leak

CIWLI “without reference” is not symmetric
however, and while it may be possible to develop
a protocol which reveals its results only to both
players simultaneously, the protocol in [TEE06]
does not: the initiator that chooses the IB to be
proved, and transmits this to the other person.
At this point, if the other person has that IB, he
has learned that the initiator possesses that IB
(although the initiator may have simply copied
the hash from someone else). Since the protocol
terminates on any failure, a third party can, un-
der the assumption that the two persons follow
the protocol truthfully and faithfully, determine
whether the prover was successful - even if that
third party knows nothing of the secret. This
problem might be mitigated by a multiple round
variant of the protocol in which the amount of
metadata knowledge leaked each round is kept
small.

Of course, the very fact that two persons are
communicating is a meta-information leak, so
there is a limit to how much a well-designed

protocol can achieve. Nevertheless, precisely be-
cause this issue is so difficult to control, atten-
tion and awareness of it is relevant.

4.6 Timing Attack

As the protocol depends crucially on one-way
functions which need (costly) complete recom-
putation on any change, the players, and even a
third party observer can draw conclusions about
the maximum size of the IB in question by ob-
serving response times. This attack could for ex-
ample allow a third party to determine whether
the IB being verified is a short snippet of iden-
tity data (say, a database record), or a pic-
ture of a person (generally a much larger pre-
compressed piece of data), and could be helpful
in conjunction with other such leaks to reveal
much about the aims of the persons involved.

4.7 Hash as a reference

The difference between CIWLI with and with-
out reference which causes the metadata issue
is one of symmetry: As CIWLI “without refer-
ence” needs to identify the secret to compare, it
delegates that responsibility to one person who
uses a hash to identify the secret. That hash
acts as a reference which reduces the CIWLI
“without reference” problem to that of CIWLI
“with reference”. Once the secret has been de-
cided, any CIWLI “with reference” protocol can
replace the rest of the protocol.

5 CIWLI “without reference” as
a proof system

In [TEE06], a protocol is given for CIWLI “with-
out reference”, where the verifier V initiates the
proof. In the following we shall use V to denote
the verifier, P for the prover and x for the secret
of which V wants to have proven that P knows
it. Abstracting from the implementation we can
model this in the spirit of [GMR85] as a proof-
system trying to prove to V the hypothesis H1 =
“P knows x” to V , where V needs to commu-
nicate with P to prove this, since P is assumed
to have the knowledge and computational power
to prove H1. The protocol has zero knowledge
complexity, which is possible because the data
x that occurs in the hypothesis is assumed to
be known by P a priori, and so it suffices to
send some one-way encrypted description of x,
so that only P can derive its actual value.

SC@RUG 2007 proceedings

141

5.1 Problem setting of the language of
quadratic non-residuosity

In [GMR85], a stronger yet more restrictive pro-
tocol is given for a language that also has knowl-
edge complexity zero, the language of quadratic
non-residuosity as discussed in section 3. In this
protocol we again have the V to prove H2 to
and the P who has the knowledge or computa-
tional power to prove H2. However, in this case,
x is not known to P a priori and in fact P will
never know x. The fact that P helps V with
proving that x is in Lm without knowing x and
with knowledge complexity zero is remarkable
and we note that this holds only for certain al-
gebraic languages such as Lm. Furthermore a
small error probability is present and time com-
plexity assumptions are needed.

5.2 Comparison

So in both protocols we have certain data x,
V wants to prove a hypothesis about x, P has
the information or computing power to prove
the hypothesis, and the difficulty is proving this
to V using P , while not disclosing information
about x. In [TEE06], a protocol is given that has
knowledge complexity zero assuming P knows x
a priori, for any x; that is, no knowledge needs to
be disclosed about x since P already knows x. In
[GMR85], a protocol is given that has knowledge
complexity zero while not disclosing to P any
information about x such that it can deduce x,
however this only works for very specific data
x ∈ L, for specific algebraic languages L.

6 Conclusion

CIWLI aims to securely verify another’s knowl-
edge of a fact while maintaining maximal se-
crecy. The QNR protocol achieves extreme se-
crecy, allowing a prover to prove a fact while re-
maining ignorant of both the fact and whether
it is true. Thus, viewed as an abstract proof sys-
tem, both CIWLI and quadratic non-residuosity
protocols achieve a similar goal: communicat-
ing a proof without transmitting other knowl-
edge. CIWLI and its solutions are far more
general, capable of proving possession of arbi-
trary secrets with knowledge complexity zero,
but achieve that generality at the cost of an as-
sumption: both persons must possess the secret
in question in advance.

CIWLI “without reference” is asymmetric,
and thus does not provide the same fairness

guarantees that CIWLI “with reference” might.
Whenever it is acceptable to potentially iden-
tify the secret in question, however, it enables
a new level of flexibility by not requiring agree-
ment upon a secret, achieving a secure means of
verifying knowledge without revealing it.

References

[BSP95] S. Bakhtiari, R. Safavi-Naini, J. Pieprzyk:
1995, ‘Cryptographic Hash Functions: A Sur-
vey’, in Technical Report 95-09, Department
of Computer Science, University of Wollongong.

[DAM88] L. Damg̊ard: 1988, ‘Collision Free Hash
Functions and Public Key Signature Schemes’,
in D. Chaum and W. Price (eds.), EURO-
CRYPT, Lecture Notes in Computer Science,
Volume 304, Springer Verlag, Berlin, pp.
203-216.

[FNW96] R. Fagin, M. Naor, P. Winkler: 1996,
‘Comparing Information Without Leaking It’,
in Communications of the ACM, Volume 39,
Number 5, pp. 77-85.

[GMR85] S. Goldwasser, S. Micali, C. Rackoff:
1985, ‘The Knowledge Complexity of Inter-
active Proof-Systems’, in Proceedings of the
Seventeenth Annual ACM Symposium on
Theory of Computing, Providence, RI, pp.
291-304.

[GMW91] O. Goldreich, S. Micali, A. Wigderson:
1991, ‘Proofs that Yield Nothing But their
Validity or All Languages in NP have Zero-
Knowledge Proofs’, in JACM 38, pp. 691-729.

[RAB81] M.O. Rabin: 1981, ‘How to exchange
secrets by oblivious transfer’, in Tech. Memo
TR-81, Aiken Computation Laboratory, Har-
vard University.

[SCH96] B. Schneier: 1996, ‘Applied Cryptogra-
phy’, John Wiley & Sons, New York.

[TEE06] W. Teepe: 2006, ‘Proving possession of
arbitrary secrets while not giving them away:
new protocols and a proof in GNY logic’, in
Synthese, Volume 149, Number 2, Springer, pp.
409-443.

[TSU92] G. Tsudik: 1992, ‘Message Authentication
with One-Way Hash Functions’, in Proceedings
of IEEE INFOCOM 1992, IEEE Computer
Society Press, Los Angeles, pp. 2055-2059.

Verifying knowledge without revealing it – Ando Emerencia, Eamon Nerbonne

142

