
 

 

 University of Groningen

5th SC@RUG 2008 proceedings
Smedinga, Rein; Isenberg, Tobias

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., & Isenberg, T. (Eds.) (2008). 5th SC@RUG 2008 proceedings: Student Colloquium 2007-
2008. Rijksuniversiteit Groningen. Universiteitsbibliotheek.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-06-2022

https://research.rug.nl/en/publications/dd64f7e8-cc45-4ad2-9952-59709718e807


SC@RUG 2008 proceedings

Rein Smedinga
Tobias Isenberg

editors

2008
Groningen



ISBN 978-90-367-3522-3
Publisher: Bibliotheek der R.U.

Title: Proceedings 5th Student Colloquium 2007-2008
Computing Science, University of Groningen

NUR-code: 980



Contents

1 Generating Artistic Effects Using Edge and Corner Preserving Smoothers – Sander Land, Bob Dröge 6

2 Recent improvements in on-the-fly garbage collection methods – Wieger Hofstra, Bram Noordzij 12

3 Art-based Rendering with Graftals – Joël van Neerbos, Watze Winsemius 18

4 High Quality Printing Of Pen-and-Ink Rendering Methods – Hedde Bosman, Imco Veenstra 25

5 Non-Photorealistic Expressive Modeling and Animation – Jaap Bresser, Nico de Poel 31

6 The User-friendliness of NPR Interfaces – Tim Havinga, Jasper Hafkenscheid 37

7 Architecture documentation on design rationale and decision –Bart van Teeseling, Arnaud van Gelder 43

8 Creation and utilization of Pattern Languages – Dyon Keupink, Martijn de Groote 49

9 Using Model Checking to Prevent Data Loss by File System Errors – Simon P. Takens, Dennis Kanon 62



Contents

4



SC@RUG 2007 proceedings

About SC@RUG

Introduction SC@RUG (or student colloquium in full)
is a course that master students in computing science fol-
low in the first year of their master study at the University
of Groningen.

In the academic year 2007-2008 SC@RUG was orga-
nized for the fifth time as a conference. Students wrote a
paper, participated in the review process, gave a presenta-
tion and were session chair during the conference.

The organizers Tobias Isenberg and Rein Smedinga
would like to thank all colleagues, who cooperated in this
SC@RUG by collecting sets of papers to be used by the
students and by being an expert reviewer during the review
process. They also would like to thank Femke Kramer from
the Faculty of Arts for her help in organizing this course
and Janneke Geertsema for her workshops on presentation
techniques and speech therapy.

In these proceedings all accepted papers are published.

Organizational matters SC@RUG 2008 was organized
as follows. Students were expected to work in teams, con-
sisting of two persons. The student teams could choose
between different sets of papers, that were made available
through Nestor, the digital learning environment of the uni-
versity. Each set of papers consisted of about three pa-
pers about the same subject (within Computing Science).
Some sets of papers contained conflicting opinions. Stu-
dents were instructed to write a survey paper about this sub-
ject including the different approaches in the given papers.
The paper should compare the theory in each of the papers
in the set and include own conclusions about the subject.
Some teams proposed their own subject.

After submission of the papers individual students were
assigned one paper to review using a standard review form.
The staff member who had provided the set of papers was
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors of the paper through Nestor.

All papers could be rewritten and resubmitted, inde-
pendent of the conclusions from the review. After resub-
mission each reviewer was asked to re-review the same pa-
per and to conclude whether the paper had improved. Re-
reviewers could accept or reject a paper. All accepted pa-
pers can be found in these proceedings.

All students were asked to present their paper at the
conference and act as a chair and discussion leader during
one of the other presentations. Half of the participants were

asked to organize the of the conference day (i.e., to make
the time tables, invite people etc.) The audience graded
both the presentation and the chairing and leading the dis-
cussion.

Femke Kramer of the Faculty of Arts gave an intro-
ductory lecture about general aspects of presentation tech-
niques to help the students with their presentation. She also
taught a workshop on writing scientific papers. Janneke
Geertsema gave workshops on presentation techniques and
speech therapy that was very well appreciated by the par-
ticipants.

Students were graded both on all three aspects: the
writing process, the review process and the presentation.
Writing and rewriting counted for 50% (here we used the
grades given by the reviewers and the re-reviewers), the re-
view process itself for 15% and the presentation for 35%
(including 5% for the grading of being a chair or discus-
sion leader during the conference). For the grading of the
presentations we used the judgements from the audience
and calculated the average of these.

In this edition of SC@RUG students were videotaped
during their presentation. Jan Apotheker of the Institute of
Didactics and Education provided equipment so that stu-
dents could copy this recording on DVD.

On January 24th, the actual conference took place.
Each paper was presented by both authors. That day, we
had twelve presentations, each consisting of a total of 20
minutes for the presentation and 10 minutes for discussion.
As mentioned before, each presenter also had to act as a
chair and discussion leader for another presentation during
that day. The audience was asked to fill in a questionnaire
and grade the presentations, the chairing and leading the
discussion. Participants not selected as chair were asked
to organize the day. They did an excellent job and even
provided coffee and tea and a lunch.

Thanks We could not have achieved the ambitious goal
of this course without the invaluable help of the follow-
ing expert reviewers: Marco Aiello, Paris Avgeriou, Henk
Bekker, Wim Hesselink, Tobias Isenberg, Jan Jongejan, M
Ikram Lali, Peng Liang, Nikolay Petkov, Gerard Renardel,
Jos Roerdink, Alex Telea, Michael Wilkinson

Also, the organizers would like to thank the School of
Computing and Cognition for making it possible to publish
these proceedings and EyeToEye Informatica for sponsor-
ing the conference.

Rein Smedinga

5



Generating Artistic Effects Using Edge and Corner
Preserving Smoothers

Sander Land and Bob Dröge

University of Groningen

Abstract. In image processing, a special class of filters exists that can remove
noise while preserving or enhancing edges and corners. Some of these edge and
corner preserving smoothers can be used to generate artistic effects, effectively
turning an image into a painting. Papari et al. proposed a new filter of this class
which was designed specifically for this purpose. In this paper, we compare
this new filter with several others. We not only show which of these smoothers
are capable of generating artistic effects, but also how well they perform in
removing noise.

1 Introduction

A major facet in image processing is the
removal of noise. Several smoothing fil-
ters exists which are capable of removing
noise, but often these filters blur sharp
edges as well. A special class of smooth-
ing filters, the so-called edge and corner
preserving smoothers (ECPS), solves this
problem by smoothing out texture details
and removing noise while preserving or
even enhancing edges.

Usually, paintings differ from photo-
graphic images in having sharp edges and
not having texture details. Some ECPSs,
when applied on a photographic image,
will replace the small details by more ho-
mogeneous patches, while preserving or
sometimes enhancing the edges and cor-
ners. Therefore, the resulting image will
have a painting-like effect.

In this paper we discuss several exist-
ing ECPSs and review their ability to cre-
ate artistic images. In the following sec-
tion we introduce the ECPSs to be re-
viewed and the way they work. In section
3 we introduce a set of test images which
we use to compare the ECPSs. In section 4

we compare the results of these ECPSs for
this test set, both on their ability to gen-
erate artistic effects and on their ability to
remove noise. Finally in section 5, we give
a conclusion about the various ECPSs.

2 ECPS Filters

In this section, we give a detailed descrip-
tion of the various ECPSs which we im-
plemented or used in our implemetation
and hence which will be compared. This
set of ECPSs consists of the median filter
[5], the Kuwahara filter [1,2], the Papari-
Petkov-Campisi filter [3], the weighted Kuwa-
hara filter and finally the Rudin-Osher-
Fatemi denoising model [4].

2.1 Median Filter

The median filter [5] is one of the most
basic edge preserving smoothers. It sim-
ply replaces the color of the pixel with
the median of the values in a k × k area
centered on the pixel.

This filter is well-known for its abil-
ity to remove noise, especially salt-and-
pepper noise, while preserving edges. It is

6



also extremely simple and, for small sizes,
the fastest among the filters we will dis-
cuss. To increase the amount of noise re-
duction, the filter size k can be increased,
or the filter can be iterated. We imple-
mented both of these options as parame-
ters.

2.2 Kuwahara Filter

The Kuwahara filter [1,2] is another well-
known ECPS. Given a grayscale image,
the Kuwahara filter looks at four square
neighbourhoods of size k× k, overlapping
only on a central pixel, and replaces the
value of the central pixel with the aver-
age value of the most homogeneous neigh-
bourhood. More formally, the means µi
and variances σ2

i of all the neighbourhoods
are calculated, and the pixel is replaced
with the µi of the region with the lowest
σ2
i . Because all the neighbourhoods are of

the same size, only two convolutions are
needed (one for the means and one for
the variances), making the filter almost
as fast as a single iteration of a median
filter of size k.
Generalizing this filter for use with full-
color images by simply applying the fil-
ter to each of the color channels does not
work very well , because different color
channels may have different regions with
minimal σ2

i , and choosing the µi from dif-
ferent regions could introduce colors very
different from those in the original im-
age. Instead, the minimal total variation
‖(sr, sg, sb)‖ =

√
s2r + s2g + s2b is used to

pick a region, and the means of all the
three color channels of that region are used.
The filter is also well-known for its ca-
pability to generate artistic effects, even
though it was not specifically created to
do this.
There are many variations of the Kuwa-
hara filter. The most common variations
involve varying the number of regions, the
shape of the regions, or function used to
choose the pixel color given the mean and
standard deviation values.

2.3 Papari-Petkov-Campisi Filter

Papari et al. [3] developed a variation of
the Kuwahara filter, which involves a vari-
able number of regions (N). These regions
are circle sectors of a gaussian function
with standard deviation σ.

Also, instead of simply choosing the
region with the lowest variance, a weighted
sum is used. The output of the pixel is

given by
∑

µis
−q
i∑

s−q
i

, where µi, si are the means

and variances and q is a parameter which
influences the edge and corner preserva-
tion. For higher q the filter will be more
like the standard choice function, and for
lower q it approaches Gaussian smooth-
ing.

The Papari-Petkov-Campisi filter coun-
ters a weakness in the Kuwahara filter
that occurs when two regions have almost
identical variance: the Kuwahara filter will
pick one, almost at random, and this gives
very discontinuous results. On the other
hand, the Papari filter is two or more times
slower than the Kuwahara filter.

Weighted Kuwahara Filter We also
introduce a new edge preserving smoother,
the weighted Kuwahara filter, by applying
the weighting function proposed by Pa-
pari et al. to the standard Kuwahara fil-
ter. This filter is nearly as fast as the stan-
dard Kuwahara filter, but does not have
the weaknesses inherent in the discontin-
uous choice function.

2.4 Rudin-Osher-Fatemi
Denoising Model

The Rudin-Osher-Fatemi denoising model
[4] is a more mathematical approach to
edge preserving smoothing. It assumes that
the given image u0(x, y) is the sum of the
original image u(x, y) and additive white
noise n(x, y) with mean zero and standard
deviation σ. The noise needs to be re-
moved, restoring the original image. This
is done by finding an image u such that

SC@RUG 2007 proceedings

7



∫ √
u2
xx + u2

yy is minimized under the con-

straints
∫
u =

∫
u0 and

∫
(u−u0)2 = 2σ2.

Because additive noise adds edges on
all sides of the noisy pixel, while being
easy to remove without changing the im-
age too much, this method excels at re-
moving such noise. It also preserves the
rest of the image because of the strong
constraints.

This implementation involves a param-
eter λ, which is related to the denoising
strength. Higher λ will result in stronger
denoising. There is also a parameter which
limits the number of iterations for the nu-
merical method which solves the resulting
set of partial differential equations.

3 Test methods

We will use four test images to compare
these edge preserving smoothers. These
images are shown in figure 1. The images
were chosen for being suitable for artis-
tic effects, and differing in their amount
of detail, so the edge preserving effects of
these filters can be compared.

The Kuwahara filter will be tested for
sizes between 3 and 11 and the weighted
Kuwahara filter also for q ∈ {2, 4, 8}. The
Papari-Petkov-Campisi filter will be tested
for 4, 6, 8 or 12 regions, σ ∈ {1, 2, 3, 5, 7, 9}
and q ∈ {3, 6, 12}. The median filter is
tested for sizes between 3 and 9 and up
to 16 iterations. Finally, the Rudin-Osher-
Fatemi filter is tested for λ between 64
and 1024 and an iteration limit between
64 and 1024.

The test method consists of two parts:
first we will compare the ECPSs based
on generating artistic effects. In order to
rank the ECPSs, we will pick the best
painting-like image for every method by
looking at the preservation of edges and
corners and the removal of texture details.
The second part of the test consists of a
comparison based on noise removal, for
which we use copies of the ’field’ image

Fig. 1. The test images used. The top row
has images with less detail (in the rest of the
paper referred to as the ’bird’ and ’grass’ im-
ages), while the bottom row has images with
all levels of detail (referred to as the ’field’
and ’tracks’ images).

with Gaussian noise (with zero mean and
σ = 0.01) added. For this part of the test,
we will rate the results on the amount of
noise in the resulting image and the qual-
ity of the resulting image (preservation of
edges, corners and details).

4 Results

In this section we show some results of the
filters applied to images of the test set.
We only show some of the, in our opin-
ion, best results. However, the full set of
results (containing nearly 800 images) is
available on the internet. 1

4.1 Artistic effects

The median filter hardly produces artistic
effects for any of the test images: for small
values of r, the result is still more photo-
realistic than artistic. For higher values of
r, the result is a very blurred image.

More or less the same holds for the
Rudin-Osher-Fatemi filter: a lower num-
ber of iterations gives too realistic results,
while using more iterations the image gets
blurred too much. The value of λ hardly
changes anything.
1 http://d0td0td0t.com/images.tar.gz

Generating Artistic Effects Using Edge and Corner Preserving Smoothers – Sander Land, Bob Dröge

8



The (weighted) Kuwahara filter does
a better job at producing artistic effects.
A size of about 5 replaces the too detailed
parts by homogeneous patches. In case of
the weighted Kuwahara filter, higher val-
ues of q, e.g. q = 8, result in stronger
edges. However, there are hardly any dif-
ferences in the best results of the Kuwa-
hara and weighted Kuwahara filter.

The Papari-Petkov-Campisi filter usu-
ally gives the best artistic effects using
3 ≤ σ ≤ 5. For lower values, the result
is too photorealistic, while higher values
result in very sharp edges and loss of too
many details. However, for the ’field’ and
’tracks’ test images, using these values of
σ already result in too much loss of de-
tails. For example, due to the close dis-
tance of the various cross ties, they are
blurred to a brown-gray patch. Therefore,
σ = 2 works better for these images. Fur-
thermore, a high value of q, about 8 −
12, preserves the edges and corners better
and hence gives better results. As Papari
et al. claim, the size of N does not sig-
nificantly influence the edge preservation
and usually N = 8 or N = 12 gives satis-
factory results.

Some of the best results are shown in
figure 2 and 3. As already indicated and
as can be seen in these figures, the me-
dian filter and Rudin-Osher-Fatemi filter
are the least suitable filters for generating
artistic effects. Some additional results of
the other filters are shown in figure 4.
The Kuwahara and weighted Kuwahara
filter perform about equally well, but the
Papari-Petkov-Campisi filter just performs
better in preserving edges and corners.

4.2 Noise removal

The median filter removes a decent amount
of this noise for a size of 3 − 4 and 2 − 3
iterations, but higher sizes or more itera-
tions degrade the image too much.

The Kuwahara and weighted Kuwa-
hara filters for sizes larger than 5 the filter

Fig. 2. Some of the best artistic effect results:
a) Original, b) Kuwahara weighted (s = 5,
q = 8), c) Kuwahara (s = 7), d) Papari-
Petkov-Campisi (σ = 3, N = 8, q = 6), e)
Median (r = 4, N = 5), f) Rudin-Osher-
Fatemi (λ = 64, N = 32)

Fig. 3. Some of the best artistic effect results:
a) Original, b) Kuwahara weighted (s = 5,
q = 8), c) Kuwahara (s = 5), d) Papari-
Petkov-Campisi (σ = 2, N = 12, q = 12),
e) Median (r = 4, N = 7), f) Rudin-Osher-
Fatemi (λ = 64, N = 64)

SC@RUG 2007 proceedings

9



Fig. 4. Some of the best artistic effect results: a) Original, b) Papari-Petkov-Campisi (σ = 3,
N = 8, q = 12), c) Kuwahara weighted (s = 5, q = 8), d) Kuwahara (s = 5)

are too strong and removes most impor-
tant details. For the lower sizes there is
a clear tradeoff between removing noise
(greater size, lower q) and preserving edges
(smaller size, greater q).

When using the Papari-Petkov-Campisi
filter with σ ≥ 5 many details are lost,
although using a high number of regions
can compensate a bit. Even at σ = 3 some
important details are lost, so the best ef-
fects are obtained when using σ = 1, 2.
At this level there is once again a tradeoff
between losing some detail and removing
noise.

The Rudin-Osher-Fatemi filter has good
noise removal for λ = 64, iterations = 16,
but for a higher number of iterations the
image is blurred too much and changing
λ does not visibly affect the result.

Five of the best results are shown in
Figure 5. Even among these there are trade-
offs and no result is clearly the best. The
Rudin-Osher-Fatemi filter has the best noise
removal, but at a cost of some blurring
of edges. The Papari-Petkov-Campisi fil-
ter with σ = 2 has similar performance,
but losing slightly more details while en-
hancing some larger edges.

The Kuwahara filter and the Papari-
Petkov-Campisi filter with σ = 1 perform
about the same as eachother, although
the Papari-Petkov-Campisi filter preserves

Fig. 5. Some of the best test results for de-
noising an image.

Generating Artistic Effects Using Edge and Corner Preserving Smoothers – Sander Land, Bob Dröge

10



some more details. However, the Kuwa-
hara filter is much faster.

The median filter is the worst of them
all, although it has decent results consid-
ering its speed and simplicity.

For higher amounts of noise the re-
sults are nearly the same in terms of the
maximum settings that are usable before
the image is blurred too much, and the
best settings for the filters, so we will not
repeat them here. We did however dis-
cover a nice effect that appears when us-
ing the Papari-Petkov-Campisi filter for
a low sigma and a rather high N and q
on images with a lot of noise. As can be
seen in figure 6, the high amount of noise
causes patches to appear in the sky, even
though this region was originally homoge-
neous.

Fig. 6. Part of the results of the Papari-
Petkov-Campisi filter with σ = 2, q =
12, N = 12 applied to the ’field’ image with
Gaussian noise with zero mean and σ = 0.05.

5 Conclusion

We gave a comparison, based on gener-
ating artistic effects and removing noise,
of the following edge and corner preserv-
ing smoothers: a median filter, a Kuwa-
hara filter, the Papari-Petkov-Campisi fil-

ter, the weighted Kuwahara filter and the
Rudin-Osher-Fatemi denoising model.

For generating artistic effects, the Papari-
Petkov-Campisi filter indeed gave the best
results, as was claimed in the paper by Pa-
pari et al. The Kuwahara and weighted
Kuwahara filter performed well too, but
the median filter and Rudin-Osher-Fatemi
filter gave poor results.

The other part of the comparison, based
on removing noise, did not really show
a clear winner, though the median filter
performed worst.

We conclude that even among filters
that are designed specifically to preserve
or enhance edges there is a tradeoff be-
tween the denoising strength and the edge,
corner and detail preservation: better de-
noising filters blur edges and corners or
lose details, while better edge and corner
preserving filters are worse at removing
noise.

References

1. Kuwahara, M.; Hachimura, K.; Ehiu,
S.; Kinoshita, M. Processing of ri-
angiocardiographic images Digital Pro-
cessing of Biomedical Images (1976)
187–203

2. Nagao, M; Matsuyama, T. Edge Preserv-
ing Smoothing Computer Graphics and Im-
age Processing 9 (1979) 394–407

3. Papari, G.; Petkov, N.; Campisi, P. Artis-
tic Edge and Corner Enhancing Smooth-
ing IEEE Transactions on image process-
ing, Vol. 16, Issue 10 (2007) 2449–2462

4. Rudin, L.I.; Osher, S.; Fatemi, E. Non-
linear total variation based noise removal
algorithms Physica D, Vol. 60 (1992) 259–
268

5. Tukey, J.W. Exploratory Data Analysis
Addison-Wesley (1971)

SC@RUG 2007 proceedings

11



Recent improvements in on-the-fly garbage collection methods

Wieger Hofstra, Bram Noordzij

February 18, 2008

Abstract

With multiprocessor systems becoming the stan-
dard as well as the high demand for automatic
memory management, the need for garbage collec-
tion methods which utilize all available processors
is increasing. Most of the garbage collection meth-
ods currently in use incorporate synchronization
algorithms requiring big locks, or even worse,
many have the necessity to temporarily stop the
application. These algorithms introduce uncontrol-
lable delays while executing an application. These
delays are a big obstacle towards high performance
and they make garbage collection unusable for
time critical applications. This paper contains
an overview of recent developments in the field
of on-the-fly garbage collectors, which promise to
improve performance and possibly overcome the
aforementioned problems.

Keywords: Memory management, Garbage
collection, Reference-counting, Cycle collection

1 Introduction

Since the original invention of Garbage Collection
(GC) by John McCarthy in 1959, this field of re-
search has seen numerous developments, of which
the most recent will be discussed. Automatic mem-
ory management, which fully depends on GC, is an
important tool, aiding in the fast development of
large and reliable software systems. It is a must in
popular rapid development languages like Python
and Ruby. In addition, popular programming envi-
ronments like Java and .NET heavily rely on GC.
While making the life of a developer easier and
programs more stable with the elimination of most
types of memory leaks, GC has a major drawback:
the garbage collection process has a significant im-

pact on the overall runtime performance of a sys-
tem. The allocation and reclamation of memory
space takes a noticeable percentage of the overall
execution time. Therefore, developing smarter and
more efficient garbage collection methods is an im-
portant field of research.

This paper surveys a selection of some of
the most recent and promising techniques, which
greatly improve garbage collection performance.
First, in section 2 an overview of the basics of
garbage collection algorithms is given. Secondly,
in section 3 a novel reference counting algorithm
created by Levanoni and Petrank[7] is presented,
followed by recent improvements for cycle collectors
by Paz et. al.[2] in section 4. Finally we present a
conclusion.

2 Garbage Collectors

For simple memory allocation methods such as
static and stack allocation, there is no need for
garbage collection. However, these allocation
methods are limited: the size of datastructures
must be known at compile time. This is a severe
limitation on data structures like lists and trees.
This making it impossible to use dynamically-sized
objects as return values of functions. Heap allo-
cation resolves these issues, but comes at a prize:
the administration of allocated and free memory is
much more complex and since it dynamically allo-
cates and deallocates in arbitrary order, it leaves
‘holes’ of free memory between blocks of allocated
memory. When the application needs to allocate a
data structure larger in size than the largest consec-
utive free space (or hole), the heap needs to be com-
pacted, which is the process of reallocating all the
allocated memory sequentially. The deallocation is
the responsibility of the programmer in languages
like C, C++ and Pascal. While this can be very

12



efficient, it is the cause of many programming er-
rors such as memory leaks (forgetting to deallocate
storage no longer in user) and double free errors
(deallocating the same storage twice). Many mod-
ern programming languages offer automatic storage
management. The task of this management is to
collect garbage. An object in the heap is live when
its address is held in a root, which can be: values in
registers; the stack and global variables. Moreover,
if there is a pointer to it held by another live heap
object, it is also a live object. Objects that are not
live, but not free either, are called garbage.

To determine the liveliness of objects, there can
be two methods distinguished: direct and indirect.
A direct method to determine liveliness, is to keep
a Reference Count for every object which stores the
number of pointers to the object. The alternative,
indirect, method is to use a tracing collector. These
collectors take all the roots as a starting point, fol-
low all the pointers and thereby visit all the reach-
able objects. There are many direct and indirect
algorithms and optimizations on these algorithms.
In this paper we discuss a reference counter, com-
plemented by a so called indirect mark-and-sweep
collector as well as an innovative cycle collector.

3 Reference Counting

3.1 Introduction

As previously explained, conventional tracing col-
lectors must traverse all live objects. The more
live objects in the heap, the more work for the
collector. However, when using reference count-
ing, the asymptotic complexity changes from be-
ing proportional to the space in use by all the live
objects, to just being proportional to the amount
of work done by the mutator (the user program)
per collection interval, in addition to the amount
of space reclaimed. Reference-counting is conse-
quently very promising for future garbage-collected
systems, since the memory size is growing faster
than processor speed; the increase in usage of very
large heaps and the spread of the 64-bit architec-
tures.

Reference-counting is an intuitive method for au-
tomatic storage management and follows the fol-
lowing simple steps:

1. Attach a counter to each object in memory

2. When a new reference is connected to that ob-
ject, increment the counter

3. When a reference is removed, decrement the
counter

4. Any object with counter value 0 is garbage, it
can immediately be reused

However, there are two major disadvantages to ref-
erence counting. When two or more objects re-
fer to each other they can create a cycle whereby
neither will be collected as their mutual references
never let their reference counts become zero. Also
in naive implementations, each assignment of a ref-
erence and each reference falling out of scope, of-
ten requires modifications of one or more reference
counters.

Many GC algorithms run on a single thread and
require all mutators to be suspended. This is not
suitable for a multiprocessor environment. So far,
there is little research about reference-counting on
multiprocessors, in comparison to the study of con-
current and parallel tracing collectors. The reason
for this is that traditional reference-counting meth-
ods have problems with concurrency: the update
of a reference-counter must be atomic, since they
can be updated by concurrent mutators. A sec-
ond problem updating a reference, is that a mu-
tator must be aware of the previous value of the
reference slot being updated. A single error in this
process will corrupt memory and will result in a
memory leak, data corruption or a total crash. A
simple solution to this problem is the use of a lock-
ing mechanism on an update operation.

3.2 Recent improvements

Recently completed research done by Levanoni and
Petrank[7] introduces a reference counting method
that eliminates the need for this unwanted lock-
ing mechanism. The approach does not require
any synchronized operation in its write-barrier1,
which is obviously a big improvement since modifi-
cation of datastructures is very common in almost
all applications. In addition, the algorithm elimi-
nates most of the reference-count updates, thereby
greatly improving its efficiency. By eliminating all

1Memory management code which is executed whenever
a reference slot is modified

SC@RUG 2007 proceedings

13



synchronization operations, an important step to-
wards on-the-fly garbage collection2 is made.

Updating a reference-count is an expensive op-
eration: the operation of a write barrier; synchro-
nization and possible the paging in of a paged-out
object3 are costly. This algorithm, which is par-
tially based on work of Deutsch and Bobrow [5],
does not keep track of the changes to the local ref-
erences. The method only keeps track of references
in the heap. When GC is needed, the collector
inspects all objects in the heap with a reference-
count of zero. By the roots unreferenced objects
may be reclaimed. Levanoni and Petrank greatly
improve on the work of Deutsch and Bobrow by
removing many redundant and avoidable updates
of the reference-counts. The following example is
given:

Consider a reference slot p which is, between two
garbage collection iterations, sequentially assigned
with the values o0, o1, o2,. . . ,on, for objects
o0,. . . ,on in the heap. All previous reference-
counting collectors performed 2n updates on the
reference counter:

RC(o0)−−, RC(o1) + +, RC(o1)−−,
RC(o2) + +, RC(o2)−−, ..., RC(on) + +

However, only two are really required:

RC(o0)−−, RC(on) + +

Building on this observation, it follows that in or-
der to update all reference counts of all objects
before a garbage collection, it is enough to know
which reference slots have been modified between
the collections. For each such slot, the value in the
previous garbage collection and its current value
must be determined. The difficulty in this ap-
proach is to keep a record of all changed reference
slots and the o0 value that was in the slot before
it was first modified. It can be problematic to ob-
tain the o0 value in a concurrent setting. Levanoni
and Petrank describe how this can be done without

2On-the-fly Garbage Collectors do their work in a non-
intrusive way, by removing the big delays which are present
in most other GC algorithms.

3A paged-out object is a part of memory temporarily
stored on the hard disk, instead of the main memory. Mov-
ing this object back, or paging in, is expensive since hard
disk are much slower than main memory.

the need for synchronization. Since the reference-
counts are only updated at the start of a garbage
collector run, it is said that the garbage collector
operates on a snapshot.

Taking a snapshot requires to stop all mutators.
This is undesirable, since the goal is an on-the-fly
collector. A smart approach is to halt only one
thread at the time instead of all of them. The prob-
lem is however that we then obtain a sliding view
instead of a snapshot. With a snapshot we have
the content of the heap at time exactly t, with a
sliding view we know the content associated with a
time t somewhere between the time the first thread
is suspended, t1 and the time the last one is sus-
pended, t2. The solution described in Levanoni
and Petrank[7] works with a snooping mechanism,
which is implemented in the write barrier, and is
in use during the time between t1 and t2. The
snooping mechanism stores the addresses of all ob-
jects which have acquired a new reference, which
are then treated as roots. Therefore they are not
reclaimed, this makes the sliding view safe.

The reference-counting algorithm designed by
Levanoni and Petrank still does not solve the prob-
lem of circular referencing cycles. To overcome this
problem, the implementation of the algorithm uses
an on-the-fly mark-and-sweep collector4 at a very
low interval to collect and restore stuck reference-
counts. References can get stuck because the imple-
mentation uses only 2 bits for the reference-count
like in the implementation of Roth and Wise[9],
Wise[12], Stoye et al.[10], and Chikayama and
Kimura[11]. In the event this happens it can be re-
paired by the mark-and-sweep algorithm. In bench-
marking the complete algorithm it turns out it per-
forms really well and has an extremely low latency.
These findings are confirmed by Domani et al.[6].

4 Cycle collection

4.1 Introduction

Tracing collectors are known by this name because
they trace through the working set of memory and
perform collections in cycles. The original tracing
collector employs a naive mark-and-sweep method,

4A garbage collection method that recursively traces and
marks objects starting from the roots, then frees all non-
marked objects.

Recent improvements in on-the-fly garbage collection methods – Wieger Hofstra, Bram Noordzij

14



in which the entire memory set is touched several
times. In this method, every object in memory has
an extra bit reserved for garbage collection, initial-
ized as cleared. During a collection cycle the tracer
sweeps the entire root set, marking each accessible
object. All transitively accessible objects from the
root set are marked as well. After the sweep is com-
pleted the memory is examined again, all objects
with the extra bit still cleared will be reclaimed. In
the final step of the algorithm all the flags of the ob-
jects still in use will be set as cleared. This method
has several disadvantages, most notable: the need
for a stop-the-world event and the need for an ex-
amination of the complete working memory, most
of it twice.

Most modern tracing garbage collectors imple-
ment some variant of the tri-colour marking ab-
straction. Tri-colour marking works as follows:

1. Init stage: Mark objects than cheaply can be
proven to have no references to objects in the
white set to black

2. Mark stage: trace reachable objects, subtract
self references, mark all traversed nodes grey.
When completed, all unreachable elements will
have reference-count zero

3. Scan stage: trace through all grey elements,
mark those with positive reference-count and
their descendants black, mark all other ele-
ments white

4. Collect stage: reclaim all white elements

The tri-colour marking algorithm preserves an im-
portant invariant: no black object points directly
to a white object. This property ensures all white
objects can be safely reclaimed once the grey set is
empty. A great advantage of the tri-colour method
is that by marking objects during allocation and
mutation, the algorithm can be performed on-the-
fly.

The research of Bacon and Rajan[4] proposes
two cycle collectors. The first one is a simple syn-
chronous collector that requires a stop-the-world
event. This collector is the most efficient cycle col-
lector known today. The second one is the only on-
the-fly asynchronous cycle collector currently avail-
able. However the asynchronous collector requires
a lot of work to make it safe: in order to dis-
cover unreachable cycles, the live objects are traced
multiple times. A problem arises when a muta-
tor changes the object graph while this process is
running. This results in two drawbacks: in order
to achieve safety, all objects have to be scanned
multiple times and the completeness can not be
guaranteed. A rare race condition may prevent
an unreachable cyclic structure from being ever re-
claimed.

4.2 Recent improvements

Recent research done by Paz et al.[2] proposes
an algorithm for on-the-fly cycle collection which
solves these drawbacks. The new algorithm uses
the sliding views techniques from research by Lev-
anoni and Petrank[7] and applies these methods to
the cycle collector. The idea is to ‘fix’ the chang-
ing object graph problem. It is using sliding views
as in [7] and changes this model so it can scan for
object graphs like in [1]. To improve speed of this
algorithm an improved implementation of Bacon
and Rajan[4] is applied to detect cyclic structures
faster and more efficiently.

The use of sliding views for cycle collection is
not trivial. Most cycle collectors need a list of all
decrements of reference-counts to work on. This
is a problem when introducing sliding views. The
sliding views reference-quoting collectors basically
improve the performance because they do not keep
track of all decrements. Paz et al. find a solution in
carefully analyzing the sliding view collector. They
discovered that the collector can actually do its
work by tracing only the recorded decrements. In
this case it also needs to record newly created ob-
jects. The sliding view saves the addresses of all
objects which have received a new reference, so it
is easy to adapt this to create a separate list of the
new objects. The implementation uses an Update
and a YoungObjects buffer. The latter does not
need to be checked by the cycle collector.

The research of [2] also detects, and later proves

SC@RUG 2007 proceedings

15



by measurement, that newly created objects sub-
stantially add to the burden of the cycle collector.
To exploit this characteristic, an age-oriented col-
lector [8] was implemented. The age-oriented col-
lector keeps track of generations, but it does not
run on frequent young generation collections. The
reason is that short pauses are obtained by con-
currency already and do not need to be obtained
by short young collections. The heap is collected
only when it is full. When that happens, the age-
oriented collector uses a reference counting collec-
tor to reclaim objects in the old generation and
mark and sweep collector to reclaim objects in the
young generation. Since these collections always
happen together, there is no need to record inter-
generational pointers. Using the age-oriented ap-
proach it is possible to eliminate a significant frac-
tion of cycles and also eliminate a large fraction of
the cycle collectors work, because it is no longer
necessary to consider young objects, increasing the
efficiency of the cycle collector.

Implementing all these optimizations results in
an on-the-fly cycle collector with the same short
pauses of recent on-the-fly collectors like in [7], [1]
and [3]. In the benchmarks the cycle collector is
outperformed by reference-counting with backup
tracing collectors implementations. However they
also measured the cycle collector when the reference
counting was run only on objects in the old gener-
ation, in that case the cycle collector performed
equally, and even better on tight heaps. In the fu-
ture when heaps and live data become much larger,
the implementation of Paz et al. may become a
more and more effective GC method.

5 Conclusion

Vast amount of progress has being made on all as-
pects of automatic memory management. Levanoni
and Petrank introduce a new on-the-fly reference-
counting garbage collector, significantly reducing
the overhead of reference slot updates. Using ex-
tremely fine synchronization it can avoid any syn-
chronization in the write barrier. These improve-
ments not only create a very efficient reference-
counter, they also allow the algorithm to be used
for multithreaded programs on multiprocessor sys-
tems.

Paz et al. use and adapt advancements made

by Levanoni and Petrank to create an efficient on-
the-fly cycle collector. Their implementation com-
bines the use of sliding views and aging-collection
methods. Both implementations are a huge step
foreward, and allow others to create better, more
efficient applications.

References

[1] Hezi Azatchi, Yossi Levanoni, Harel Paz, and
Erez Petrank. An on-the-fly mark and sweep
garbage collector based on sliding views. In
OOPSLA ’03: Proceedings of the 18th an-
nual ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and
applications, pages 269–281, New York, NY,
USA, 2003. ACM.

[2] D. F. Bacon, V. T. Rajan, E. Petrank, H. Paz,
and E. K. Kolodner. An efficient on-the-fly
cycle collection. ACM Transactions on Pro-
gramming Languages and Systems, 29(4):1–43,
2007.

[3] David F. Bacon, Clement R. Attanasio,
Han B. Lee, V. T. Rajan, and Stephen Smith.
Java without the coffee breaks: a nonintrusive
multiprocessor garbage collector. In PLDI ’01:
Proceedings of the ACM SIGPLAN 2001 con-
ference on Programming language design and
implementation, pages 92–103, New York, NY,
USA, 2001. ACM.

[4] David F. Bacon and V. T. Rajan. Concurrent
cycle collection in reference counted systems.
Lecture Notes in Computer Science, 2072:207–
220, 2001.

[5] L. Peter Deutsch and Daniel G. Bobrow. An
efficient, incremental, automatic garbage col-
lector. j-CACM, 19(9):522–526, September
1976.

[6] Tamar Domani, Elliot K. Kolodner, Ethan
Lewis, Eliot E. Salant, Katherine Barabash,
Itai Lahan, Yossi Levanoni, Erez Petrank, and
Igor Yanover. Implementing an on-the-fly
garbage collector for java. In ISMM, pages
155–166, 2000.

[7] Yossi Levanoni and Erez Petrank. An on-
the-fly reference-counting garbage collector for

Recent improvements in on-the-fly garbage collection methods – Wieger Hofstra, Bram Noordzij

16



java. ACM Trans. Program. Lang. Syst.,
28(1):1–69, 2006.

[8] H. Paz, D. Bacon, E. Kolodner, E. Petrank,
and V. Rajan. fly cycle collection revisited.
2003.

[9] David J. Roth and David S. Wise. One-bit
counts between unique and sticky. ACM SIG-
PLAN Notices, 34(3):49–56, 1999.

[10] W. R. Stoye, T. J. W. Clarke, and A. C. Nor-
man. Some practical methods for rapid com-
binator reduction. In LFP ’84: Proceedings
of the 1984 ACM Symposium on LISP and
functional programming, pages 159–166, New
York, NY, USA, 1984. ACM.

[11] K. Ueda and M. Morita. Message-oriented
parallel implementation of moded flat GHC.
In Proceedings of the International Conference
on Fifth Generation Computer Systems, pages
799–808, ICOT, Japan, 1992. Association for
Computing Machinery.

[12] David S. Wise. Stop-and-copy and one-bit ref-
erence counting. Information Processing Let-
ters, 46(5):243–249, 1993.

SC@RUG 2007 proceedings

17



Art-based Rendering with Graftals

Joël van Neerbos and Watze Winsemius

University of Groningen

Abstract. An area of computer graphics is art-based rendering. The goal of art-based rendering is
to create scenes like an artist would do on paper. Graftals can be very helpful for this task, especially
for objects like trees, grass, and fur. In the first part of this paper we explain the concept of graftals,
how this concept has been modified over time and how graftals can be used in rendering art-based
scenes. In the second part of this paper we go into the challenges of rendering graftals. Several papers
have come up with methods of using graftals in art-based scenes. We compare these methods with
each other and draw some conclusions. Also, we give some suggestions on how these methods can be
combined or extended.

1 Art-based Rendering

Photorealistic rendering is an area of computer graphics which focuses on photorealism. This in contrast
with non-photorealistic rendering or, specifically, art-based rendering, which is inspired by artistic styles
such as painting, drawing, and cartoons. Art-based rendering has application areas in, for example, movies
and video games, but also in children’s picture books. Judging by the fact that those books use hand-drawn
images, it seems that art-based rendered images appeal better to children than photorealistic images. One
reason for this could be that art-based rendered images are more abstracted and therefore leave more to the
imagination than photorealistic rendered images, which show even the smallest details. This is probably
the biggest advantage of the art-based rendering approach. An other advantage of art-based rendering is
that it can reduce the cost of rendering under the right circumstances.

(a) (b)

Fig. 1. Photorealistic rendered tree (a)1, art-based rendered tree(b)2

Figure 1(a) shows a photorealistic image of a tree, Figure 1(b) is art-based rendered. If both images could
be rotated one can imagine that Figure 1(a) needs much more rendering time than Figure 1(b) and why
use Figure 1(a) in children’s books if they like Figure 1(b) better?

1 Image from www.marlinstudios.com
2 Image from [1]

18



This introduction shows a few reasons why art-based rendered images are valuable in computer graphics.
In this paper we focus on rendering virtual scenes using art-based styles. For this we use graftals, which
are most suitable for the rendering of fur, grass and trees. In section two we introduce graftals, first in the
original form and then in the form it is used nowadays. After that, we show how graftals can be used in
art-based rendering. We focus on the challenges which arise in art-based rendering with graftals and the
different solutions to those challenges. We end this paper with a conclusion and some recommendations
for future work.

2 Graftals

Graftals, as they are introduced by Alvy Ray Smith [4], are originally defined as parallel graph grammar
languages. They are no different than L-systems [5], but specifically used to describe tree and plant models.
Graftals are similar to fractals, in the sense that they are self-similar (the whole has the same shape as
one or more of the parts). However, graftals are less restrictive than fractals. The L-systems, introduced
by Lindenmayer [5], are similar to conventional grammars, but they differ in two aspects. Firstly, all
grammar rules are applied simultaneously. Secondly, there is no distinction between terminal and non-
terminal symbols, so the production rules can be applied infinitely often. An example is the L-system with
the alphabet {0, 1, [, ]}, the production rules {0 → 1[0]1[0]0, 1 → 11, [→ [, ] →]} and the axiom (starting
symbol) 0. For this grammar, the first three steps are:

1. 0
2. 1[0]1[0]0
3. 11[1[0]1[0]0]11[1[0]1[0]0]1[0]1[0]0

If such a grammar is translated to a graphical presentation, rather complex structures can emerge, as
shown in Figure 2.

(a) (b) (c) (d)

Fig. 2. Production rules (a), axiom (b) and the results after one (c) and two steps (d). Example taken from [4].

Later, graftals have come to be more generally described, for example by Badler and Glassner [6]: ”Fractals
and graftals create surfaces via an implicit model that produces data when requested”. More specifically,
the word ’graftals’ is used for particles (graphical detail elements) in a three-dimensional scene that are
only generated when requested. They do not necessarily need to be specifically placed on the geometry of
the scene. For example, Markosian et al. [2] use graftals for giving leaves and blades of grass a cartoon-like
style. When a surface should be entirely covered in grass, it may not look nice to just draw blades of grass
over the entire surface. Instead, for just a few specific patches the graftals can be ’requested’, covering
those parts with blades of grass while the rest of the surface remains empty.

Kaplan et al. [3] introduced the concept of geograftals, which further generalizes the definition of graftals
to include procedural geometric entities. The geograftals allow more precomputation of information about

SC@RUG 2007 proceedings

19



the graftals, so less computations have to be performed at run-time. Both the graftals as described in the
previous paragraph and the geograftals are discussed in this paper.

3 Art-based Rendering with Graftals

In this section we look into art-based rendering with graftals. The Figures 3(a) and 3(b) show the same
scene, once without graftals and once with graftals.

(a) (b)

Fig. 3. Scene rendered without graftals (a)3, the same scene rendered with graftals (b)3.

Figure 3(b) demonstrates what the result can be of a scene rendered with graftals. In this section we focus
on the challenges when rendering a scene like the one in Figure 3(b). We compare the papers [1], [2], and
[3] to see what the challenges are in working with graftals and how these challenges can be dealt with. It
appears that the challenges arise when navigating through the scene. The papers use different solutions
for those challenges which we describe in this paper.

3.1 Graftal placement algorithm

To place the graftals in the scene, Kowalski et al. [1] used a modified version of the ”difference image”
algorithm by Salisbury et al. [7]. An important aspect of this algorithm is that it uses reference images:
off-screen renderings of the scene. Two kinds of reference images are used: a color reference image and an
ID reference image.

The color reference image is used to determine where graftals need to be placed. Every patch that is
to be drawn in a specific style, should render its texture in some appropriate way to the color reference
image. Which ways are appropriate depends on the style and the way that style is implemented. Kowalski
et al. [1] let the “desire” (the desired density of graftals) depend on the amount of shade, so the color
reference image of the scene in Figure 3 could be similar to Figure 3(a), because for most patches the
amount of shade in Figure 3(a) gives a rough estimation of the graftal density in Figure 3(b).

To actually draw a scene like 3(b) from an image similar to 3(a), first a location with enough desire
is determined. Then the graftal is placed and the color reference image is updated. Placing a graftal should
decrease the desire in its location, so in this example the shade in that location should be decreased. This
is done by subtracting a blurred version of the graftal, or usually just a Gaussian dot of roughly the same
size, from the color reference image. Then a new location with high enough desire is determined and the
procedure is repeated.
3 Images from [1]

Art-based Rendering with Graftals – Joël van Neerbos, Watze Winsemius

20



Because one of the requirements of believable rendering with graftals is that the graftals need to ap-
pear to stick to the surfaces in the scene, a 3D position of the graftal is needed. The 3D position can
also be used to calculate the distance to the surface on which the graftal resides, to determine the level
of detail in which the graftal needs to be rendered. To determine this position, the ID reference image is
used. This reference image contains the same triangles that are rendered in the color reference image, but
every triangle has a unique color. For every color the corresponding triangle is stored. So if the position of
the graftal is determined, the color of that same position in the ID reference image is retrieved and from
that color the corresponding triangle is identified. Because this triangle is defined in 3D space, it can be
used to determine the 3D position of the graftal.

In every frame, the graftals are first attempted to be placed in the 3D positions of the preceding frame.
After all graftals from the preceding frame have been attempted, new graftals will be rendered in areas
with sufficient desire.

3.2 Challenges

Although the graftals seem to stick with the surface, a lot of appearance and disappearance of graftals still
occurs between frames. This causes a flickering that is distracting and not aesthetically pleasing. Markosian
et al. [2] discuss the challenges and propose some solutions that we discuss here.

One problem that was encountered was caused by the fact that only graftals on visible surfaces are
rendered. Graftals on invisible surfaces just behind silhouettes should be partially visible in most cases.
Their absence is most notable when their surface becomes visible and the graftal suddenly pops into view.
An other problem was that a small number of discrete levels of detail were used with a sudden and visually
distracting transition between them.

A major improvement to this was the addition of gradual transitions. Transitions between different levels
of detail, but also new transitions for the appearance and disappearance of graftals. By varying the length,
color and thickness of the lines over time, the transitions are not as sudden anymore and are less distrac-
tive. This has the consequence that new graftals are not yet entirely visible in their first few frames but
that they grow into the scene over time.

An other new step was to introduce compound graftals, or tufts. Tufts have several levels of detail, all of
which can contain a different number of graftals. In the lowest level of detail, the tuft may consist of only a
single graftal, while it can contain a lot of graftals on higher levels of detail. In this sense it comes closer to
the original definition of graftals. In combination with gradual transitions, it is possible to look at a surface
defined by a tuft from far and then zoom in to a very detailed look, while no significant visual distractions
will occur. As an additional advantage, tufts also allow for more efficiency due to their multi-resolution
nature. When the tuft is to be drawn in a low level of detail, there is no need to visit the individual graftals
needed in higher levels.

3.3 Geograftals

Another approach is taken by Kaplan et al. [3]. They introduce the concept of geograftals. A geograftal
differs from a graftal in a sense that each geograftal is statically placed on the model’s surface while graftals
are placed at run-time. This placing can be done manually by selecting the specific points on the surface
or randomly if the user sets the density, see Figure 4. In this way information like position and color can
be precomputed as much as possible. In this section we describe some properties of geograftals.

SC@RUG 2007 proceedings

21



Fig. 4. A blue leaf/fur geograftal on a surface4. The white dot illustrates the location point.

The goal of geograftals is, just like with graftals, to imitate hand-drawn images. For example, trees could
be rendered with this technique. The effects needed are most evident near silhouette edges and therefore,
geograftals near silhouette edges are drawn as large as possible. To achieve frame-to-frame coherence all
geograftals are drawn each frame. This prevents distracting popping effects. This popping normally occurs
when the surface where the graftal is placed at is becoming visible. By drawing all the geograftals this
problem is avoided.

Another property of geograftals is the scaling factor. This scaling factor creates large geograftals near
silhouettes and tiny geograftals in the interior. The problem with these tiny geograftals is that the black
edges disrupt the effect of displaying information near silhouette edges. Kaplan et al. solve this problem
by introducing two extra scaling functions. The first one scales the edge width, the second one scales the
color of the edges so that it matches more with the color of the interior. An example can be seen in Figure 5.

Fig. 5. Leafs on a sphere which show scaling of the edges of the geograftals in the interior4.

Kowalski et al. faced the problem that as distance varies, graftals were appearing and disappearing. Instead
of removing and adding geograftals to a scene, Kaplan et al. solve this problem by using a scaling factor
with distance. Only a few geograftals are drawn bigger to achieve the effect of artist who only draw a few
graftals if the object is at a far distance.

In this section we have seen challenges and different solutions for this challenges when rendering art-based
scenes with graftals. The next section compares the different solutions.

4 Images from [3]

Art-based Rendering with Graftals – Joël van Neerbos, Watze Winsemius

22



4 Results and discussion

We discussed two different ways of rendering graftals, being the graftal implementation first introduced
by Kowalski et al. [1] and later improved by Markosian et al. [2], and the geograftal implementation by
Kaplan et al. [3].

Because the geograftals are placed statically on a surface, no new graftals will appear when zooming
in past a certain level. This property moves the graftals even further away from their original definition,
which had the property that a surface looked similar independent of the zoom level. But, as mentioned
in the previous section, placing graftals statically does give a significant performance boost because much
information can be precomputed. The graftal implementation can generate new graftals when zooming in,
for example with tufts, but does so at a higher performance cost.

A problem with both implementation methods is the appearing graftals on surfaces just behind a sil-
houette. With the geograftals implementation, this can be solved by just drawing all graftals, including
the ones on hidden surfaces. Of course, the graftals that should not be visible at all will be drawn as well,
but because they are part of the scene geometry they won’t be visible in the final picture. While this
solves the problem of graftals on hidden surfaces that should be partially visible, it also slows down the
rendering process significantly. Drawing hidden graftals with the first graftal implementation will require
some modification of the algorithm and will probably slow the rendering process down even more, but with
the gradual appearance and disappearance it may not be as needed either.

The geograftal implementation uses fading and scaling for smooth appearance and disappearance, while
the other graftal implementation varies the detail of the graftals, introduces or removes graftals (with tufts)
and uses scaling as well. Opinions may differ, but the geograftal method will usually give less realistic and
visually less pleasing results. For example, when a graftal should be drawn quite small between graftals of
a normal size, drawing it with reduced detail will probably look more natural than just scaling and fading
the full graftal. Also, when zoomed in a lot on a graftal, increased detail or even newly introduced graftals
will probably look nicer than just a bloated version of a graftal with normal detail.

In short, while the first graftal implementation generally gives a bit more pleasing results, the geograftal
implementation has better overall performance. On modern hardware, performance may not be as much an
issue as it was when the methods were introduced, but demands and expectations tend to grow along with
the possibilities, so performance will not lose its importance any time soon. However, increased hardware
performance does make computationally more intensive methods more feasible.

In the end, we may not even have to choose between visual quality and performance, because it may
be possible to combine the methods. It could very well be possible to combine statically placed tufts and
gradually changing levels of detail with the concepts of geograftals, to get the best of both. It will not be
trivial because the precomputation will definitely be affected, but it should be possible to combine both
concepts in a useful way.

SC@RUG 2007 proceedings

23



5 Future Work

We do think that graftals can be very useful in art-based rendering. It has less performance costs while the
scenes produced are comparable with hand-drawn images. But there are a few disadvantages in rendering
graftals. The most important one is the appearance/disappearance when navigating through a scene. Even
though this has been improved over time, we still believe some research in this area can be useful.

Also, the current application areas for graftals are rather limited. In our paper we only discussed graftals
for rendering trees, grass and fur. We think graftals can be useful in other application areas as well. One
could study work of artists to see where graftals also can be used. An other option is to explore the possi-
bilities of extending the styles of graftals. They now have more or less the same shape, but why shouldn’t
it be possible to extend those styles to render different objects? As an example we are thinking of flames
like those in Figure 6. We believe it is possible to extend the styles of graftals in a way that flames can be
rendered.

Fig. 6. An art-based rendered image of a fire5

The last proposal for future work we would like to make is combining the two methods we described
in this paper. Tufts as used in [2] are useful for changing the level of detail and geograftals have the prop-
erty that they avoid popping of graftals as one navigates through the scene. We think that exploring the
possibilities of combining those two methods can yield remarkable results.

References

[1] M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bourdev, R. Barzel, L. S. Holden and J. F. Hughes: Art-Based
Rendering of Fur, Grass and Trees. Proceedings of SIGGRAPH 99 (1999) 433–438

[2] L. Markosian, B. J. Meier, M. A. Kowalski, L. S. Holden, J. D. Northrup and J. F. Hughes: Art-based Rendering
with Continuous Levels of Detail Proceedings of NPAR 2000 (2000) 59–66

[3] M. Kaplan, B. Gooch and E. Cohen: Interactive Artistic Rendering Proceedings of NPAR 2000 (2000) 67–74
[4] A. R. Smith: Plants, fractals and formal languages. Proceedings of SIGGRAPH 84 (1984) 1–10
[5] A. Lindenmayer: Mathematical Models for Cellular Interactions in Development, Parts I and II Journal of

Theoretical Biology 18 (1968) 280–315
[6] N. I. Badler and A. S. Glassner: 3D object modeling SIGGRAPH 97 Introduction to Computer Graphics Course

Notes (1997)
[7] M. P. Salisbury, M. T. Wong, J. F. Hughes and D. H. Salesin: Orientable textures for image-based pen-and-ink

illustration Proceedings of SIGGRAPH 97 (1997) 401–406

5 Image from www.openclipart.org

Art-based Rendering with Graftals – Joël van Neerbos, Watze Winsemius

24



High Quality Printing Of Pen-and-Ink Rendering Methods

Hedde Bosman1 and Imco Veenstra1

University of Groningen, Postbus 407 9700 AK Groningen, The Netherlands

Abstract. This paper discusses the printing quality of non-photorealistic rendering methods called pen-
and-ink rendering methods. The general aspects of printing quality are discussed and four different
pen-and-ink methods will be reviewed with emphasis on these printing quality aspects. The focus here is
on scalability to higher resolutions. Based on our findings, we present a unifying model for pen-and-ink
rendering methods.

1 Introduction

Since the conception of computer graphics, the goal of
this field has been to produce ever more photorealistic
images.

For certain applications it turned out that photo-
realistic rendering is not the optimal way of depicting
things. Photorealistic images are not ideal if they need
to portray structure or domain-specific information. It
is, for example, very hard for a layman to identify the
main artery when looking at a photorealistic rendition
of a hart.

Photorealism is only one aspect of an image. Re-
alising that an image can have more aspects than just
photorealism, such as structure, texture and domain-
specific information, gives rise to the field of non-
photorealistic rendering (NPR).

The field of non-photorealistic rendering investi-
gates algorithms that produce non-photorealistic im-
ages. These can be purely artistic and illustrative
renderings with hand-drawing quality, or any other
method that is not geared to photorealism. The latter
can be specialized methods which are used in medical
illustration, scientific illustration and technical illus-
tration.

This paper focuses on a specific area of NPR called
pen-and-ink rendering. This area of NPR concentrates
on researching and developing methods that render
objects using only line and dot primitives. This re-
search depends heavily on the traditional artistic line
and dot drawing techniques from scientific and tech-
nical illustration.

Almost every computer is equipped with raster dis-
play devices nowadays, which makes it more natural
to use raster representations when working with these
computers. As a consequence, a huge gap exists be-
tween NPR methods and the requirements for print-

ing, especially concerning the quality of the generated
images when printed.

Therefore, we discuss the printing quality aspect
of pen-and-ink rendering. First the general issues con-
cerning printing quality will be discussed in Section
2. In Sections 3, 4, 5 and 6 four different pen-and-ink
rendering styles are discussed with special attention
to the printing quality of these methods. We present
a unifying model for pen-and-ink rendering methods
in Section 7, which should make these methods more
suitable for high quality printing. Section 8 concludes
this paper with suggestions for future work.

2 Hiqh Quality Output

The term high quality output has a different meaning
depending on the output device. It is also a matter
of taste to some degree as to what constitutes high
quality. For the purpose of this paper we distinguish
between methods for generating hatch lines and stip-
pling, methods for storing these lines and dots, and
methods used to render them. This distinction indi-
cates that these three elements of a pen-and-ink ren-
dering method also have their own levels of quality. It
is, thus, not trivial to define what is meant with high
quality in this context. We start with looking at the
different output media involved in the process.

2.1 Output Media

Displays - CRT, LCD and projectors are the stan-
dard devices for visual feedback of a computer these
days. Projectors are a special case which is ignored in
this paper. Aforementioned output devices consist of
a raster of pixels which output a color. Colors are de-
fined as RGB values and can be anything from black
to red, green, blue to white, in steps defined by the

25



video card. Pixel resolution of modern displays range
from 72 to 130 Pixels Per Inch (PPI), which is quite
low in contrast with 3600 Dots Per Inch (DPI) used
in high end laser printers.

For a raster display device, aliasing can occur due
to the rasterization process. Aliasing gives a jagged ap-
pearance to lines and borders, which degrades the vi-
sual quality of an image. The methods to counter this
aliasing effect are called anti-aliasing methods. Anti-
aliasing reduces jagged edges in the displayed image
by using gray pixels to create visually smooth lines.

Printers - A printer is a device that produces hard
copies of documents that are stored electronically.

Plotters are printers which use vector graphics for
input. A pen is moved over the surface of the paper
to create solid smooth lines. Printing detail is related
to the pen size and the motor precision.

Most modern printers however, use rasterized
methods. These include Inkjet, Laser and LED print-
ers. The source material may be encoded in any
number of special page description languages such as
Adobe PostScript (PS) or HP Printer Command Lan-
guage (PCL), as well as unformatted text-only data.
A Raster Image Processor uses the page description
language to generate a bitmap of the final page in the
raster memory. Once the entire page has been ren-
dered in raster memory, the printer is ready to begin
the process of sending the rasterized stream of dots to
the paper in a continuous stream. These dots can be
spaced in a range from 300 to as little as 3600 DPI.

These printer types use four primary printing col-
ors: cyan, magenta, yellow and black (CMYK). These
colors are sometimes called process colors when the
printer mixes these four colors to get the desired out-
put color.

This means that all colors except cyan, magenta,
yellow and black have to be displayed as a mix of dots
with some (white) spacing, the amount of dots convey-
ing the color tone. This technique is called half toning.

Another way for printers to apply colors is spot col-
ors. Spot colors are specially prepared colors that are
not mixed by the printer itself. A printer can apply
one spot color in a single run. To apply three spot col-
ors, the printer needs to do three separate print runs
to apply the three colors to the medium.

2.2 Quality Of Method

When assessing the printing quality of pen-and-ink
rendering methods, it is also necessary to look at the
quality of the method itself. The printing quality can
never be better than the quality of the generated im-
ages, so when a specific pen-and-ink method generates
poor quality images, printing these images will also re-
sult in a poor quality output.

The way a pen-and-ink method generates hatches
and stipples can be divided into two types: object-
space and image-space. This is of influence on how
such a method stores the images. Hatched and stip-
pled renderings can be stored in vector or raster for-
mats. The former needs to be rasterized at some point
to be displayed on screen or in print, unless a plotter
is used.

Image-space methods usually make use of the tra-
ditional 3D rendering pipeline and perform operations
on buffers containing pixels. The results of these meth-
ods are also stored as pixel images. Object-space meth-
ods, on the contrary, use the three-dimensional de-
scriptions of objects to generate line or stipple infor-
mation. These types of methods lend themselves more
to vector representations.

There are, of course, exceptions to these rules.
Object-space methods could generate vector informa-
tion while processing a buffer of pixels, but this is not
supported on graphics hardware and is done on the
CPU1.

2.3 General Quality

Pixel images have some inherent problems. Every pic-
ture element is stored as an explicit color and an im-
plicit coordinate, usually in a two-dimensional array.
This means that the size of a pixel image will increase
when the desired resolution of the image increases.
The image size is output sensitive, thus, the size in-
creases with the desired resolution and does not de-
pends on what is being depicted 2.

When such an image is used with another size or
resolution it must be resampled or scaled. Scaling and
resampling are the same thing in this context. Scaling
gives unwanted aliasing effects because of the pixel
replication or deletion.

Zooming is another problem with pixel images.
The discrete nature of a pixel image becomes appar-
ent very quickly when zooming in. This is not desired

1 With the new Shadermodel 4 graphics hardware this could become possible.
2 Some pixel image formats allow for indexed color palettes. This means that an image with two colors will be smaller

than an image with 256 colors.

High Quality Printing Of Pen-and-Ink Rendering Methods – Hedde Bosman, Imco Veenstra

26



behavior when we want to print an image with part of
that image zoomed in for greater detail.

A solution to these problems is storing an image for
a series of resolutions, a technique called mipmapping.
This obviously costs even more in terms of storage.
And there is another problem.

Depending on the output resolution, type of
printer used and various other factors, printers some-
times need to resample images internally to be able to
obtain the desired output image. These effects should
be accounted for when maintaining various resolutions
per image, which is extremely hard because this means
a pen-and-ink rendering method should consider every
printer that could reasonably be used for printing its
images.

Vector graphics do not have these problems. Vec-
tor representations can be sent to the printer, where
the printer driver will convert the image to whatever
format is optimal for the print job at hand.

Other advantages of vector graphics are the fact
that scaling does not cause unwanted artifacts like
aliasing. This means that one vector representation
can be used for every resolution imaginable.

Zooming is also no problem for vector images, as
the analytic nature of vector representations makes it
possible to show every detail present in an image, even
when zoomed in heavily, without loosing any resolu-
tion.

The image size of vector images is dependent on
the number of objects represented. This means that
vector graphics can be bigger for smaller images sizes
in comparison with pixel images, but they tend to be-
come smaller in comparison with pixel images when
the resolution is bigger. This turn around point dif-
fers per image, but for resolutions used in high quality
printing vector graphics are usually smaller than pixel
images.

There are some problems with scaling vector im-
ages, as mentioned by Salisbury et al. [SA96]. When
simple scaling is used, the same amount of lines or
dots will be used to shade the same relative area of an
image, which will result in perceiving a lighter tone
overall. This means that more lines or dots must be
added when the image is scaled to obtain the same
perceived tone as the original image.

A similar problem is the fact that line and dot plac-
ing influence the perceived tone. When these lines or
dots are generated in object-space, curved areas will
have different perceived tones due to perspective map-
ping.

Salisbury et al. [SA96] present an image based so-
lution to these problems by maintaining a gray-scale
image per used texture and per used texture a link
to a stroke texture [WS94]. These stroke textures are
used together with the gray-scale images to recreate
the image at the desired resolution in a process called
blasting. This means that the strokes from the stroke
textures are applied to the gray-scale images to get the
same tone as the gray-scale image. This solution is a
hybrid between pixel based images and vector based
stroke textures.

3 Stroke Textures

A pen-and-ink illustration creates the appearance of
surface texture by applying strokes in a certain pat-
tern to the surface. Cross-hatches can express differ-
ent tones as well as textures depending on their use.
Winkenbach and Salesin [WS94] have devised a way
to convey these patterns in so called stroke textures.

Stroke textures are collections of strokes described
in an analytical way. In a sense it could be called a vec-
tor representation of a texture containing stroke infor-
mation. The strokes in these collections are prioritized
to be able to express texture. Starting with the high-
est priority, the strokes are drawn until a proper tone
is achieved. This prioritization is different for every
stroke texture. The path of a stroke is modified with
a waviness function, to give character to the stroke
as well as indicating material properties. Wood, for
instance, is wavier than glass.

Outlines do not only indicate the boundary of ob-
jects, but they can also express texture and even shad-
ows. To that extent each stroke texture has a boundary
outline texture, which is applied when the outline of a
polygon is rendered, but only if the shades of different
regions are not sufficiently different. This minimizes
outlines.

The advantage of using stroke textures is that the
system scales the stroke textures automatically and
chooses the right prioritized stroke from a stroke tex-
ture depending on the scale and resolution of the out-
put needed. This prevents aliasing artifacts and also
brightness change since the amount of strokes can be
increased with increased scale. In other words, this
method scales well to different resolutions for print-
ing.

This method however is tailored for use with ar-
chitectural models only; it can not be directly applied
to other types of objects such as plants and animals.

SC@RUG 2007 proceedings

27



Another major disadvantage is that only a certain
amount of stroke textures can be devised beforehand
expressing different materials. For materials that have
no stroke texture yet, the user must define his own.

4 Illustrating smooth surfaces

Hertzmann and Zorin [HZ00] introduce an object-
space method for generating line drawings from tri-
angle meshes that represent smooth surfaces. Their
algorithm consists of three parts: compute a direction
field in object space on the object surface, generate
silhouette curves and apply hatch lines.

Smooth surfaces are most notably curved. This
curvature can be described by the two principal cur-
vatures at a point p that are the minimal and maxi-
mal curvatures of all the curves on the surface going
through that point. From these principal curvatures
principal directions can be obtained, being tangent to
the curves which belong to the principal curvatures.

The principal directions are always orthogonal and
lie in the tangent plane to the surface. Principal curva-
tures and principal curvature directions locally define
the best approximating quadratic surface, so these are
used to generate outlines for silhouettes and to gener-
ate direction fields used for hatching.

The direction fields are calculated by first smooth-
ing the object if necessary. Then the field is initialized
at points where the surface is sufficiently curved using
principal curvature directions. And finally the field is
calculated on the points on the surface with low cur-
vature using the information from the second step.

Curvature information is also used to compute the
outlines of the smooth surfaces. These outlines are the
points of a surface where the normal of the surface is
orthogonal to the viewing direction, (n(p) · (p− c)) =
0. Here n() is the normal, p the point on the surface
and c the camera position.

Boundary outlines pose no problems, but
interior outlines may contain singularities.
Hertzmann and Zorin [HZ00] name these
outline singularities cusps, see Figure 1.

Figure 1: (a) Cusps (b) With undercuts (c) With
Mach bands. [HZ00]

These cusps are detected and used to determine
the proper outlines including the cusps.

Finally the hatch lines are generated. Stepping
along boundary and silhouette outlines Mach bands
and undercuts are detected by a ray test near each
curve point. Both areas are marked in a 2D grid. Cells
in which a Mach band occurs are not to be hatched,
and undercuts are to be hatched extra dense. Then,
all regions designated for single and cross hatches are
cross hatched, after which in the single hatch regions
cross hatches are removed.

The 2D grid suggests rasterized processing of the
hatches, which would probably show in high resolu-
tion images. The algorithms, however, are suited for
vector processing, allowing for rasterizing at different
scales. The use of Mach bands and undercuts increase
contrast where surfaces overlap, aiding in the inter-
pretation of the surface.

The use of direction fields and their principal cur-
vatures is a good way to generate hatches in smooth
corners and other non-linear surfaces, as opposed to
the stroke texture mapping of Winkenbach et al.
[WS94]

5 Streaming through vector fields

Similar to the method of Hertzmann and Zorin [HZ00],
Zander et al. [ZA04] also start off with calculat-
ing principal direction fields. However, this direction
field is processed further to enhance its quality. Cross
hatching can be achieved by rotating the resulting
lines. This allows not only orthogonal hatching but
hatching arbitrary angles.

Streamlines can be computed by integrating the di-
rection vector field, obtained from a smooth direction
field, on the model surface. To prevent two stream-
lines from crossing, a space around a streamline is pre-
served in the form of a tube that no other streamline
may penetrate. However, the faces of these tubes are
flat and end at the streamline end. This allows other
streamlines to come closer to the endpoint and reduce
gaps between two line ends.

Hatching lines can be generated from the stream-
lines in 3D space. To accomplish this, a Hidden Line
Removal (HLR) algorithm is used from Isenberg et al.
[IS02] together with removing all strokes on back faces.
This ensures that occluded lines are not visible. Next,
a NPR line shader is used to produce smooth transi-
tions from fully drawn to transparency according to
the lighting. Using byte code and a virtual machine,
the shader model can be adapted by the user. This al-

High Quality Printing Of Pen-and-Ink Rendering Methods – Hedde Bosman, Imco Veenstra

28



lows one not only to adjust parameters but also create
other lighting effects.

Shaded lines conflict with the goal of monochrome
lines, thus a form of one-dimensional stippling is used.
This stippling is used to change the tone of a line and
does have the nice property of being able to generate
a cross-over between hatching and stippling.

All computations thus far have been done in
object-space and the resulting hatch strokes have to
be projected to image-space. This introduces a draw-
back of this method because tone and shading are not
only conveyed by the amount of strokes in an area,
but also by the stroke density. Strokes on surfaces not
orthogonal to the viewing direction appear closer to-
gether from the viewing direction after projection. To
counter this effect the line width is adapted using a
correction factor.

This method being an object-space method gener-
ating streamlines as vectors makes it very suitable for
high quality printing.

6 Weighted Voronoi stippling

Stippling is the technique of placing small dots of ink
onto paper such that their density gives the impression
of tone. One of the features of a good stipple drawing
according to Secord [SE02] is that the stipples are well-
spaced, that is, the stipples do not clump together,
leave uneven voids or form unwanted patterns. The
artist achieves this by carefully placing each stipple
onto the page, explaining why stipple drawings often
take weeks to create by hand.

Secord [SE02] starts off with placing stipples
roughly using a dithering algorithm. Using the concept
of Centroidal Voronoi Diagrams the generated stipples
are relaxed to form an evenly distributed set of stip-
ples. In a Centroidal Voronoi Diagram each generating
point lies exactly on the centroid of its Voronoi region.
The Voronoi diagrams are calculated using graphics
hardware by placing cones on the generating points
and looking at the cones from above. Using the z-
buffer tests the creation of Voronoi regions becomes
quite fast.

However, using this method implies using a raster-
ized representation. This is noted by Secord [SE02],
also stating that the relative error of the calculated
centroid increases as the number of pixels per Voronoi
region decreases. With very low resolution two gen-
erating points might even overlap. The solution is to
compute the Voronoi diagram in tiles and ’stitch’ these
together to create a high resolution diagram.

This gives good results as can be seen in
Figure 2. However, for sufficient printing qual-
ity, the image must be precomputed in very
high resolution. Hardware / memory limita-
tions can limit this resolution substantially.

Figure 2: Variations in line width and tone. [SE02]

Another suggested way to render stippled drawings
is to precompute stippling textures and map these in
an image according to the needed tone. This allows
fast real time rendering of stippled drawings but it
has poor quality due to artifacts occurring because
different textures do not tile together well. This intro-
duces very visible voids, clumps of stipples and pat-
terns. Thus this method can only be used in preview-
ing.

7 Towards a unifying model

The methods discussed above all aim at producing
pen-and-ink illustrations. Each paper addresses some
aspect of high quality printing. To this end, a good
standard model might improve overall quality.

A unifying NPR model would be suited to out-
put images in different viewing formats. We suggest
a model based on the Model-View-Controller concept
[KP88]. The underlying representation of the model
needs to contain all information to (re)create the im-
age in different scales without the loss of features or
changes in tone, or other errors that might occur with
scaling. The different views might be printers, plotters
or computer screens (with for instance anti-aliasing).

Strokes should have a set of properties that de-
scribe how the output is generated. These properties
might include

Priority like the stroke priority mentioned in the
paper of Winkenbach et al. [WS94]. Rendering
higher scales might then include extra information
(strokes) with lower priority.

Line Style might indicate thickness and waviness as
mention by Winkenbach et al. [WS94].

Line End lets one describe the shape of the end of
a line, to be rounded or taggered as suggested by
Zander et al. [ZA04]

SC@RUG 2007 proceedings

29



General direction to be used, for instance, with
stippling to indicate a general direction in which
the dots are placed. Non-uniform dots can indi-
cate a certain pen direction or marks left by the
pen imprint to add realism. This direction can be
inferred by direction fields as described by [HZ00]

Tone/color to introduce the stippling of a stroke
path when the tone of a line is not just binary
(black or white) like described by Zander et al.
[ZA04]

These are only a few of the possible properties, and
thus the representation of the model should allow for
extension.

Existing pixel-based pen-and-ink methods need a
custom post-processing step to generate output for our
suggested model, one of the requirements being that
the strokes or stipples should be stored as vectors. Sal-
isbury et al. [SA96] describe a reconstruction method
that magnifies a low-resolution image that keeps the
resulting image sharp along discontinuities. A tech-
nique like this can be used to describe the output of
existing pixel-based methods in a vector representa-
tion.

New techniques can output directly to a format for
the model. Output format and the level-of-detail con-
tained in the model determine the printing quality in
our proposed model.

Today, graphics hardware can play a useful part
not only in the generation of the data for the model,
but also in the model itself. The latest GPUs have
Vertex and Geometry shaders, which present a lot of
possibilities to manipulate vectors and vector graphics
in hardware.

8 Conclusion / Future work

The field of NPR, with pen-and-ink rendering in par-
ticular, is a rich field with widely varying approaches.
We have discussed several methods that add innova-
tive ideas to increase quality. Be it stroke textures, the
generation of hatches with the help of principal direc-
tion fields or streamlines generated in the principal di-
rection fields, placing evenly spaced dots or increasing
contrast around surface features like cusps, all these
methods are eventually outputted on a device using a
raster. We suggest a model in which all of these meth-
ods of hatching and stippling might fit. This model

in turn takes care of the different aspects encountered
with the output on different media, especially making
all the different pen-and-ink methods suitable for high
quality printing.

Although this model is a step toward unifying the
creation of realistic pen-and-ink methods, a lot more
can be done, as a study of Isenberg et al. [IS06] shows.
A good assessment of the use and results of NPR with
end users can also increase quality by targeting aspects
that are of importance to the targeted audience.

References

WS94. Winkenbach, G. A., Salesin, D. H.: Computer-
Generated Pen-and-Ink Illustration.
Proceedings of ACM SIGGRAPH 94 pages 91–100, New
York, 1994. ACM Press

HZ00. Hertzmann, A., Zorin, D.: Illustrating Smooth Sur-
faces.
Proceedings of ACM SIGGRAPH 2000 pages 517-526,
New York, 2000. ACM Press.

SE02. Secord, A.: Weighted Voronoi Stippling.
Proceedings of the Second International Symposium on
Non-Photorealistic Animation and Rendering pages 37–
44, New York, 2002. ACM Press.

ZA04. Zander, J., Isenberg, T., Schlechtweg, S.,
Strothotte, T.: High Quality Hatching.
Computer Graphics Forum, 23(3) 421–430, September
2004.

SA96. Salisbury, M., Anderson, C., Lischinski, D., Salesin,
D.H.: Scale-Dependent Reproduction of Pen-and-Ink Il-
lustrations
SIGGRAPH 96 Conference Proceedings pages 461–468,
1996. ACM Press.

IS02. Isenberg, T., Halper, N., Strothotte, T.: Stylizing
SIlhouettes at Interactive Rates: From Silhouette Edges
to Silhouette Strokes.
Computer Graphics Form 21(3) 249–258, September
2002.

IS06. Isenberg, T., Neumann, P., Carpendale, S., Sousa,
M.C., Jorge, J.A.: Non-Photorealistic Rendering in Con-
text: An Observational Study
Proceedings of the Fourth International Symposium on
Non-Photorealistic Animation and Rendering pages 115–
126, 2006. ACM Press.

KP88. Krasner, G.E., Pope, S.T.: A cookbook for using
the model view controller user interface paradigm in
Smalltalk-80.
Journal of Object-Oriented Programming pages 26–49,
1988.

High Quality Printing Of Pen-and-Ink Rendering Methods – Hedde Bosman, Imco Veenstra

30



Non-Photorealistic Expressive Modeling and Animation

Jaap Bresser (1567160)
Nico de Poel (1277219)

Abstract

While most non-photorealistic computer rendering (NPR) techniques succeed in emulat-
ing different artistic and illustrative drawing techniques, they generally fail to infuse their
depictions with the same character and expressiveness that are so typical for real man-made
drawings. We look into the reason why traditional NPR techniques are lacking in this respect
and why modeling and animation play a part in the solution. We also discuss several solutions
involving expressive modeling and animation that have already been tried and tested.

1 Introduction

For a long time, computer graphics research has been largely aimed at producing images that
are increasingly close to photorealism. A different branch of research is involved in developing
techniques that actually go in the other direction, creating computer renderings that are ever
farther away from reality and more closely resemble artistic and illustrative drawings. This type
of computer rendering is called non-photorealistic rendering (NPR).

One specific research topic in the field of NPR involves giving computer generated imagery the
same expressiveness and character that can be found in cartoon drawings made by human artists.
With the large amount of computer animated cartoons released today, this is an issue that is faced
regularly by many computer graphics artists.

Most non-photorealistic graphics research tends to focus on different ways in which an object can
be drawn, and it is indeed possible to add a layer of expressiveness to a computer rendering by using
specialized techniques. The loose line drawing technique described by Sousa and Prusinkiewicz
[Sou03] is a good example of this. Such techniques, however, are still inherently limited by the
amount of geometric information that is available in a 3D model. It makes sense to go further
than just applying rendering techniques and to involve modeling and animation techniques as well
in trying to bring a character alive.

In this paper, we look at the problems that are involved in giving computer graphics the same
expressiveness as drawings made by illustrators, and we discuss several methods that have been
employed to solve these problems.

2 Methods

A study that observed the human perception of non-photorealistic images [Isen06] has shown that
the impression that an object was drawn by an illustrator does not only come from the way in
which it is rendered. One of the major factors that separates man-made drawings from computer
renderings is the subtle deviations from the original shape that man-made drawings have. This
difference is clearly visible in Figure 1, showing a pen-and-ink drawing of a tropical pitcher plant,

31



with the drawing from an illustrator on the left and the computer rendering on the right. The
professional illustrator used his knowledge of the object in question to add details that were not
present in the original model. It is these deviations from reality that add a human touch to these
drawings and give them their expressive nature.

Figure 1: Man-made drawing vs. a computer rendering [Isen06]

An important conclusion drawn by this study [Isen06] is that computer-generated images lack
character and expressiveness because they follow the original model too closely. In order to add
expressiveness to an image, computerized image generators will have to be able to diverge from
the rigid shape of a 3D model. In other words, NPR research should be concerned with modeling
and animation aspects as well, instead of just focusing on rendering techniques.

These concepts are reflected in the different methods that are described below. They all center
around the deformation of a model in such a way that it receives an extra layer of expressiveness
not found in the original geometry, but they strongly differ in their approach. One of the key
differences that we focus on is the amount of freedom these methods offer to artists for adding
their own knowledge and judgement to influence the results.

2.1 Silhouette shaping and articulation

One area where non-photorealistic rendering, animation and modeling techniques are actually used
in practice is at movie animation studios such as Pixar. Because many animation movies tend to
focus on unorthodox situations with unlikely heroes, animators are often faced with the challenge
of making an otherwise unlikeable character appealing to audiences.

One example is Pixar’s recent movie Ratatouille, in which a rat plays the part of the hero and
therefore needs to win the audiences’ hearts, despite the fact that rats are usually portrayed
negatively in our society. In one of their articles, Konishi and Venturini describe the steps they
have taken to give animated rats appeal [Kon07].

Figure 2: Complex vs. simple silhouette of a rat [Kon07]

Non-Photorealistic Expressive Modeling and Animation – Jaap Bresser, Nico de Poel

32



Figure 2 demonstrates the effect of a silhouette on the appeal of a model. The left silhouette is
more realistic, but it looks rough and clumsy. By reducing the silhouette back to a simple teardrop
shape, as shown by the right silhouette, a soft appeal is created that is easier on the eyes.

Konishi and Venturini go on to describe more subtle effects for adding appeal. Lip movements
influence the appearance of the eyes through deformation of the cheeks, mimicking the complex
muscle structure of a human face and thus making a rat face easier to relate to. Teeth are kept
framed within the lips to avoid exposing a gum-line, which would otherwise give the character
an aggressive appearance. A rat’s ears and the way they are positioned are also helpful tools in
giving a character expression. The latter is visible in Figure 2, where the lower position of the
ears in the right silhouette gives the character a friendlier appearance.

2.2 Caricaturization

One way of adding expressiveness images is to exaggerate certain trademark features of the subject
being portrayed. Caricaturization is an example of where this technique is used. In caricatures,
distinguishing features are exaggerated, while irrelevant features are thrown out to create an
instantly recognizable image of a person or object. One of the challenges with the creation of
caricatures is identifying which features are distinguishing and which are irrelevant.

Figure 3: Caricaturized model of Sylvester Stallone [Akle04]

This technique of feature exaggeration can be applied to 3D models. Akleman and Reisch have
described a step-by-step methodology for the creation of recognizable caricatures in the form of
3D models [Akle04], which they have applied for a course in 3D computer art and design. By
employing an iterative method, students would identify a person’s unique features, exaggerate
these features one at a time, and verify with each step whether or not this improved the likeness of
the model. This has resulted in models such as shown in Figure 3, which is a clearly recognizable
caricature of Sylvester Stallone.

Much as the silhouette shaping and articulation techniques used by Pixar, the caricaturization
technique developed by Akleman and Reisch is a purely artistic one. As such, it does not depend
on any specific tools or algorithmic support. Feature identification and evaluation of the resulting
caricature are all done by hand and eye, which means that a lot of input is required from the artist
working on the models.

2.3 Collage assembly

A completely different approach in adding expressiveness to an object is creating compound rep-
resentations of a model (also known as a collage), consisting of smaller elements or shapes. These
smaller elements that make up the collage are typically related to the object the collage represents.
For example, a collage of a seahorse could be all made up out of seashells. The key challenge in
creating a collage is that both the original shape and the smaller parts should still be recognizable
in the end result.

SC@RUG 2007 proceedings

33



Collages have been used for centuries as an artistic device for adding a layer of expressiveness
to drawings or paintings. One famous example is the painter Giuseppe Arcimboldo (1527-1593),
whose surrealistic paintings of human faces made up of vegetables and fruits showed that people
are capable of perceiving both shape and contents separately.

Figure 4: Collage of a running sportsman [Gal07]

Ran Gal et al. have researched a method [Gal07] to make collages of 3D models by approximating
them using a collection of 3D shapes that can be selected from a database. Their research has
resulted in a collage assembly framework that has been used to generate images such as Figure
4. It employs local fitting and partial shape matching algorithms to calculate the best fit for a
model, using a predefined set of parameters.

After specifying the set of elements to use in collage construction, the collage assembly framework is
capable of fully automatically constructing complete 3D collages of a given target shape. However,
as demonstrated by the various examples described in their article [Gal07], the initial results
produced by the assembly framework are rarely satisfactory. Although the tool is able to construct
complex compound models that would be practically impossible to create manually, it is incapable
of identifying key features in the original model, and consequently chooses elements without paying
respect to these features. This results in an overall loss of recognizability of the target shape. To
compensate for this shortcoming, the artist working with the assembly framework is able to provide
feedback and make manual changes to the various stages of the collage assembly.

2.4 Implying and stylizing motion

The above methods have all been concerned with changing the static appearance of a 3D model.
However, expressiveness can also be influenced by the way an object animates and how that can
affect its look. Paul Noble and Wen Tang have taken this approach in their article [Noble07]. They
have investigated the techniques that real-life cartoonists use to imply motion in still images, such
as speedlines, after-images and subtle bending of otherwise rigid objects.

The modeling technique described by Noble and Tang’s paper involves using animation data to
bend an object according to its movement. The strength of the bend depends on the velocity with
which that object moves. This effect plays into the way the human eye reacts to motion. One well
known example is the “rubber pencil illusion”, where a rigid pencil will appear to bend when it
is quickly moved up and down. Figure 5 demonstrates the effect in a cartoon image. By bending
the tennis racket in the opposite direction of its movement, it is easy to imagine that the racket
moves at a high velocity, despite the fact that the image is static.

To achieve this effect, Noble and Tang use the animation data from the 3D model’s bone structure
to determine in what direction a limb moves and how fast. This information is applied to a
combination of lattice and non-linear bend deformers to bend the limb in the opposite direction of
its movement. The magnitude of the bend is directly influenced by the velocity of the movement.
Smoothing of the animation over a longer time frame is applied to remove any ‘popping’ of the

Non-Photorealistic Expressive Modeling and Animation – Jaap Bresser, Nico de Poel

34



Figure 5: Different visual cues for implied motion [Noble07]

bones caused by transitions in animation.

This research [Noble07] has resulted in a tool for Autodesk Maya that performs these deformations,
allowing artists to specify a set of parameters that influence the strength of the bending effect.
It is a relatively simple yet elegant solution for adding cartoon-like expressiveness to computer
generated images. As Figure 5 shows, there are more types of visual cues that help to imply
motion, and the motion data extracted for Noble and Tang’s technique could very well be reused
to implement additional effects. Combining the bending effect with a speedline rendering technique
such as described by Masuch et al. [Mas99] would result in even more convincing implied motion.

3 Conclusion

As we have seen, there are many different approaches to the common problem of adding character
and expressiveness to computer generated images. Solutions range from stylized shape defor-
mations [Akle04], [Kon07] to creating surrealistic approximations of objects [Gal07], to employing
techniques used by cartoonists [Noble07]. Some techniques consist merely of a set of artists’ guide-
lines, while other techniques have been implemented into fully automatized computer applications.

A common factor in these solutions, however, is that they all show that adding expressiveness
to non-photorealistic images goes further than simply drawing it in a different style. Much like
the evaluation of NPR techniques has shown [Isen06], non-photorealistic changes in the shape of
a model can play an important part in moving the feel of computer generated imagery closer to
that of an artist’s impression.

While the different solutions require different levels of user interaction, they all depend one way
or another on the influence of an artist to improve the quality of their results. Nevertheless, the
methods described in this article only scratch the surface of what is possible in the field of non-
photorealistic modeling and animation. It might therefore be possible that researchers manage to
develop modeling and animation techniques that can automatically create expressiveness without
the intervention of an artist. For now though, the conclusion is that the intuition and expertise
of an artist remain just as important as the tools that will aid them.

SC@RUG 2007 proceedings

35



References

[Akle04] Ergun Akleman, Jon Reisch. Modeling Expressive 3D Caricatures. In ACM SIGGRAPH
2004 Conference Abstracts and Applications, New York, 2004. ACM Press.

[Gal07] Ran Gal, Olga Sorkine, Tiberiu Popa, Alla Sheffer, and Daniel Cohen-Or. 3D Collage:
Expressive Non-Realistic Modeling. Proceedings of the Fifth International Symposium on Non-
Photorealistic Animation and Rendering (NPAR 2007, San Diego, California, USA, August
4-5, 2007), pages 7–14, New York, 2007. ACM Press.

[Isen06] Tobias Isenberg, Petra Neumann, Sheelagh Carpendale, Mario Costa Sousa, and Joaquim
A. Jorge. Non-Photorealistic Rendering in Context: An Observational Study. Proceedings of
the Fourth International Symposium on Non-Photorealistic Animation and Rendering (NPAR
2006, Annecy, France, June 5-7, 2006), pages 115–126, New York, 2006. ACM Press.

[Kon07] Sonoko Konishi, Michael Venturini. Articulating the Appeal. Pixar Technical Memo #07-
12. Images are c©Disney / Pixar. All rights reserved.

[Mas99] Masuch, M., Schlechtweg, S., and Schulz, R. Speedlines, depicting motion in motionless
pictures. In: SIGGRAPH’99 Conference Abstracts and Applications. S. 277. ACM, New York,
1999.

[Noble07] Paul Noble, Wen Tang. Automatic Expressive Deformations for Implying and Stylizing
Motion. The Visual Computer, 23(7):523–533, July 2007.

[Sou03] M. C. Sousa and P. Prusinkiewicz A few good lines: Suggestive drawing of 3D models.
Computer Graphics Forum, 22(3), pages 381–390, 2003.

Non-Photorealistic Expressive Modeling and Animation – Jaap Bresser, Nico de Poel

36



The User-friendliness of NPR Interfaces

Tim Havinga s1457489 t.s.havinga@student.rug.nl
Jasper Hafkenscheid s1650173 j.m.hafkenscheid@student.rug.nl

University of Groningen

Abstract. Several methods have been developed to improve on the current practice
of applying artistic or illustrative effects to images. These methods are called non-
photorealistic rendering (NPR) methods. They apply NPR to images, or create NPR
images from the ground up, using a more advanced and user-interactive approach.
Most of them have new and innovative ways to influence the rendering process, and
use non-standard input devices.

Our research extends to some of the most frequently used NPR algorithms available
today, from RenderBots swarming the image to Surface Drawing in 3D. We consider
these from the viewpoint of ordinary users, who want to adapt the image, and not
tweak lots of parameters and re-render countless times. In other words, we discuss
what method gives the best results with the least amount of effort.

Methods are discussed and judged based on their usability, interactivity, and the ob-
tained results. Therefore, user interaction, hardware requirements, and user feedback
incorporation are compared. The future of NPR and the interfaces used in that field of
work are also examined, to see what user interfaces perform best for working with NPR.
The user interface should be easy to learn, and intuitive, easy to use. Furthermore, as
keyboard and mouse are not adequate for capturing painting movements, alternative
methods of interaction are investigated.

Keywords: Non-photorealistic rendering, interactive, interface, user-friendliness.

1 Introduction

In this paper, four approaches are discussed
and evaluated that apply a non-photorealistic
rendering (NPR) style to an image, or render
NPR images. This means that images do not
need to look realistic, but rather artistic. In
our research we looked at the methods that
are used to apply such algorithms. They are
mostly targeted at ordinary people, who like
a simple user interface.
For artistic uses, parameter tweaking is not
that important, but for a photo or a 3D-model
it is. Art is more about the style of drawing

and the freedom to create complicated shapes
quickly. These ‘artists’ want to just start draw-
ing, without having to know every setting in
advance.

We now give an introduction to each method,
to illustrate the general idea behind them.

Modeling with Rendering Primitives: An In-
teractive Non-Photorealistic Canvas [1, 2] is
about drawing primitives on a large display
with a touch screen. The concept is that all
primitives are stored individually: this enables
the user to change them, in contrast to most

37



programs that allow no interaction with the
strokes as soon as they are drawn. The inter-
face is based on a canvas with a palette to
select tools and colours.
Figure 1 shows a ‘painting’ made with the
Rendering Primitives implementation, featur-
ing multiple layers of strokes. The colour is
defined by a picture of a sunset.

Surface Drawing: Creating Organic 3D Shapes
with the Hand and Tangible Tools [3] is about
creating 3D models with hand motions. The
interface used is the Responsive Workbench,
that can capture the movement of the hand,
and converts it to a 3D location. These loca-
tions are combined with the hand posture to
generate the 3D strokes. With tools the user
can further adjust the shape.
Figure 2 shows some examples of drawings
created with the Surface Drawing technique.
(Note that these shapes are actually 3D.)

RenderBots: Multi-Agent Systems for Direct
Image Generation [4] generates NPR images
or styles, that resemble much of the methods
available today for rendering of artistic im-
ages or styles. The difference is in the way
these styles are applied: RenderBots can be
seen as robots, or agents, that are placed by
hand and then swarm the image. There are
a number of different types of RenderBots.
Some draw lines or strokes, others are points
or mosaic tiles. Every RenderBot can multiply
itself, draw and delete himself.
Figure 3 shows an example image, created with
the RenderBots method. It contains different
drawing styles: stippling, hatching, painting
and mosaics.

WYSIWYG1 NPR: Drawing strokes Directly
on 3D Models [5] draws lines on 3D models
to create a 2D scene. The program offers a lot
of possibilities to change line styles and types,
and also the background. These strokes are

1 WYSIWYG is a common abbreviation for
“What You See Is What You Get”.

Fig. 1. A drawing of a sunset with Rendering
Primitives that clearly shows the strokes. Taken
from [1].

Fig. 2. Several sample drawings made with the
Surface Drawing technique. Taken from [3].

Fig. 3. A bird scene created with RenderBots,
featuring different drawing styles. Taken from [4].

The User-friendliness of NPR Interfaces – Tim Havinga, Jasper Hafkenscheid

38



replicated across the line.
There is also a possibility to draw hatching
strokes (to mimic shade), and decal strokes.
These strokes can be painted individually.
Figure 4 shows a rendered image of a simple
landscape with two cones (the trees), three
spheres (the snowman) and a flower. There
are creases at the base of the snowman, the
snowman itself features hatching strokes and
decal strokes for the face.

Fig. 4. A snow scene created with the WYSI-
WYG NPR program, an example of a simple
model that gives nice results. Taken from [5].

2 Discussion

This section gives more detail about the four
methods that we reviewed. They are discussed,
especially as regards user interaction, hard-
ware requirements and user feedback.

2.1 Rendering primitives

The concept The program of this method is
meant to run using the canvas concept. This
means that the only interaction method is by
hand, and the application is full screen. The
tools and colours can be chosen by using the
palette. It allows both hands to be used (at the

same time), one for drawing and the other for
selecting tools and colours.
In later versions of the implementation the
Wiimote (remote control of the Nintendo Wii
gaming console) can be used, together with a
set of pens. The screen can detect the size of
the object used to touch the screen, i.e. a pen,
one or multiple fingers, a fist or a flat hand.
The palette, which was meant to make the in-
teraction feel like painting, is replaced by a
more modern, stylish menu.

User interaction The user-interface is user-
friendly after a short familiarization with its
meaning. It uses symbols that represent the
settings that can be altered. These symbols
are relatively intuitive, and easy to interpret.

Feedback The developers used colleagues and
four professional artists to evaluate the imple-
mentation of their concept. [1] The feedback
of the reviewers was that although the inter-
face is made to resemble a canvas, it did not
feel like painting. However, they were pleased
with the effects that can be created with it.
The artists missed the option to create their
own primitives. This was added to a newer
version of the implementation. They needed
some time to get used to the concept, but were
able to quickly create images with it.
During the process of development the feed-
back from the users was directly used to adapt
the implementation.

Hardware requirements The software be-
hind this interactive canvas require a lot of
memory, because all primitives, colours, sizes
and directions need to be stored. On a stan-
dard monitor this is not a problem with up-to-
date hardware. For large resolutions however,
a high-end videocard and a reasonable amount
of memory is required.

Judgement We think the user interaction
can be improved. The programmers have al-
ready adapted their interface and interaction

SC@RUG 2007 proceedings

39



with user comments, but it could be even more
intuitive.
Because the screen can detect multiple fingers,
you could let the distance between them indi-
cate the amount of strokes to be drawn or the
stroke width.
Also, the placing of the strokes is a peculiar
process, obligating the user to fill the canvas
themselves. For example, when using a picture
for colours, a blurred version of this picture
could be used as background.

2.2 Surface drawing

The concept The main tool to create shapes
is a glove that can be tracked, with a thumb-
switch attached to it. Drawing begins when
the thumb is pressed against the hand.
Other tangible tools have been added to mod-
ify the created shapes. They can be tracked
on their own, or have to be used with the
glove. The eraser enables removing parts of a
shape, creating holes or removing it entirely.
The magnet deforms the shape, stretching it
into the direction of the hand. The last tool is
a pair of kitchen-tongs, that allow the user to
reposition, rotate and resize the model. The
strokes that are drawn are always the size of
the hand or a finger: small details can be added
by first enlarging the object. For colour selec-
tion a colour-wheel is added to the workbench.

Feedback The evaluation of the product has
been done by on-site demos, exhibitions, col-
laborations with artists and industrial design-
ers, and a small user study. [3] The devel-
opment has been going on for a while and
the developers have used feedback from the
users to improve their product. The first ver-
sion did not have props (the eraser, magnet
and tongs), hand postures changed the func-
tion. Computer scientists were not all com-
fortable with the interface: they asked for con-
trol points or other shape handles. Artists and
general users, however, were very pleased.

Hardware requirements The method was
developed to work with the Responsive Work-
bench, which is an expensive piece of equip-
ment to show 3D images and track movements.
It is a large machine that is not that mobile,
making it hard to demonstrate it somewhere
else, in contrast to other NPR ideas, which are
not dependent on specific equipment.

Judgement An improvement to this method
(as also mentioned by the authors) could be
adding the notion of interfering with exist-
ing objects. Because the 3D objects cannot
be sensed by a physical blockage, it is hard
to attach different strokes to each other. The
user could be made attentive of colliding with
earlier drawn strokes by means of vibrations.
We do think the improvements that the pro-
grammers made (adding additional props for
stretching, erasing, etc.) according to user feed-
back are good ones, that make the system
more manageable.

2.3 RenderBots

The concept This technique was implemen-
ted by creating several example bots. These
bots all create a different effect. Examples are
the StippleBots, HatchingBots, LineBots, Mo-
saicBots, PaintingBots, and VectorFieldBots.
The last category shows the direction of the
normal in the image, for more scientific pur-
poses. It is also possible to create new bots,
to implement a drawing style that is not yet
present.
For each RenderBot type, the weight, maxi-
mum speed and accelerations can be set, so
the bots behave to physics rules. This influ-
ences their paths, giving different results.

User interaction The bots are placed on the
image by hand, and it is possible to influence
the rendering by deleting bots, attracting the
bots to the mouse or adding extra bots. The
end of the rendering process is decided by the
user, because the program is (naturally) not

The User-friendliness of NPR Interfaces – Tim Havinga, Jasper Hafkenscheid

40



capable of deciding when the rendering pro-
cess is finished.
The implementation uses a more traditional
user interface, with sliders and input fields to
change the parameters. Sadly there are a lot of
parameters: each different type of RenderBot
has about 20 to 30 parameters that can be set
to a preferred value. Without any knowledge
of their meanings, it was unclear what the ef-
fect of each parameter was, making it hard to
set them to the right value.
More natural interaction could be achieved by
using a tablet, but this is not a requirement.

Hardware requirements Requirements for
this program can be high: they depend on the
number of bots. For example, one image can
contain a lot of StippleBots, which slows down
the program significantly.

Feedback This paper did not discuss any
form of evaluation or implementation, they fo-
cus more on the technical details of their algo-
rithm. We tried the demo-program and men-
tion our own experiences here.

Judgement Some values of sliders or input
fields just had to be tested to see the result.
A major flaw is that we were not able to pro-
duce any output without the RenderBot mark-
ings. The obtained output was a very unknown
(but easy to make) file format.
The creators of the program were able to pro-
duce some nice results (see Figure 3).
Improvements to this software could be ob-
tained by making the user interface more in-
tuitive. Some parameters are guessable, but
most are not.

2.4 WYSIWYG NPR

The concept The general idea is that, given
a 3D model, the silhouette strokes and differ-
ent types of creases are automatically found.
Creases are strokes for an edge that is not part

of the silhouette. Each line type belonging to
a different object can then be set to adjust
the stroke colour, thickness, texture and (re-
peated) shape. Different settings of these val-
ues can be seen in Figure 4. Once the model
is loaded, it is viewable from all sides as a 2D
NPR scene. With the help of an exterior pro-
gram, it is even possible to create animations
with it.

User interaction The program is started by
loading a model, using a command prompt.
Clicking on the 3D model turns it into a 2D
scene. Now, any stroke type can be clicked to
change its appearance.
There are many ways in which a line can be
changed. The right half of the screen is com-
pletely filled with parameter sliders, and even
more (collapsible) menus. There are buttons
at the top which allow browsing though the
different windows.
This program was designed to work with a
tablet: all interaction with the image (zoom-
ing, rotating, moving) is done with the point-
ing device. Clicking right or left on different
parts of the preview has different effects: it
was not always clear what action would be
performed with a certain mouse action.

Hardware requirements Generally, the im-
plementation runs just fine. Adding too much
creases can slow it down significantly, but hav-
ing a lot of silhouette strokes does not seem
to greatly affect the performance. [5]

Feedback This paper focuses on the tech-
nical details of this algorithm. We tried the
demo-program and mention our own experi-
ences here.

Judgement As mentioned before, the WYSI-
WYG NPR program allows every parameter
to be set – but it needs a lot of sliders for this.
The most frustrating is that even the colour
selection is done with a slider, while this could

SC@RUG 2007 proceedings

41



be easily done with a colour dropping tool.
Without the manual, the program would be
hard to understand, especially because it also
uses keyboard shortcuts to open other menus
or accept changes.
However, the algorithm does allow creating
very nice pictures, and one can quickly cre-
ate their own (simple) drawing of a model.
The program produces very nice results with
a minimum of models (see Figure 4), which
gives the probability to create some interac-
tive landscape with it.
This program has way too much options. More
options (features) are not always a good thing.
Adding some sort of menu to open models, in-
stead of the command prompt, is also a good
idea.

3 Conclusion

After viewing different approaches that are
some possible futures of NPR, we must agree
that the user-friendliness of these methods can
be improved. But these methods take a step
in the right direction: bringing more influence-
able artistic images a step closer to the home
PC.

We saw Modeling with Rendering Primitives,
that pretends to act a lot like drawing on a
real canvas, but is different due to the fixed
shape of strokes, and their mobility. It could
be a nice idea to really implement the paint-
ing on a canvas with their tools, by mixing
colours as variable-length strokes are drawn.
Surface Drawing is a nice and new way to
model things in 3D, but not really feasible for
the average user. Also, their input methods
could be improved, for example, by allowing
more colours to be drawn.
RenderBots yield some very nice images, but
these are yet to be exported out of the pro-
gram in an easy way. The parameters given
here to adjust the different RenderBot types
are not obvious in their effects.
The WYSIWYG NPR program features a lot

of options, but this comes at the cost of a
good user interface. New users will probably
soon give up because they cannot find their
way. Nevertheless, the program allows creat-
ing very nice images and even animations with
a minimum of models and not much work.

To summarize, these new methods for apply-
ing new, innovative and interesting non-photo-
realistic rendering techniques to an image are
great, only the developers have to think more
about the users and thus the usability of the
system or software that comes with it, and less
about the possibilities that the software has.

References

1. Martin Schwarz, Tobias Isenberg, Katherine
Mason, and Sheelagh Carpendale. Modeling
with rendering primitives: an interactive non-
photorealistic canvas. In NPAR ’07: Proceed-
ings of the 5th international symposium on
Non-photorealistic animation and rendering,
pages 15–22, New York, NY, USA, 2007. ACM.

2. Jens Grubert, Mark Hanckock, Sheelagh
Carpendale, Edward Tse, and Tobias Isenberg.
Interacting with stroke-based rendering on a
wall display. Technical report, University of
Calgary and University of Groningen, 2007.

3. Steven Schkolne, Michael Pruett, and Peter
Schröder. Surface drawing: creating organic
3d shapes with the hand and tangible tools. In
CHI ’01: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems,
pages 261–268, New York, NY, USA, 2001.
ACM.

4. Stefan Schlechtweg, Tobias Germer, and
Thomas Strothotte. RenderBots—Multi
Agent Systems for Direct Image Genera-
tion. Computer Graphics Forum, 24(2):137–
148, June 2005.

5. Robert D. Kalnins, Lee Markosian, Barbara J.
Meier, Michael A. Kowalski, Joseph C. Lee,
Philip L. Davidson, Matthew Webb, John F.
Hughes, and Adam Finkelstein. Wysiwyg npr:
drawing strokes directly on 3d models. In SIG-
GRAPH ’02: Proceedings of the 29th annual
conference on Computer graphics and interac-
tive techniques, pages 755–762, New York, NY,
USA, 2002. ACM.

The User-friendliness of NPR Interfaces – Tim Havinga, Jasper Hafkenscheid

42



Architecture documentation on design rationale
and decision

Bart van Teeseling and Arnaud van Gelder

Rijksuniversiteit Groningen, The Netherlands

Abstract. Software architectures usually don’t document the rationale
behind design decisions and design decisions themselves very well. We
will present a couple of methods to identify the decisions and rationale
in a structured way and document them so every stakeholder knows
exactly why design decisions are made and what influence they have on
the system design in a whole. We’ll compare the methods and show the
similarities and differences between them.

1 Introduction

Large software systems have a complex structure and designing such a system
involves much thinking about the requirements and how to turn those require-
ments eventually into a real working system. In this process many decisions
have to be made. The architecture which describes the system often doesn’t
show what the decisions were, and yet as important, why these decisions have
been taken and how they influence the rest of the system. Software architecture
is not only important for developing the system, people have focused mainly on
the result for many years, but it should also be the basic assumption for contin-
uous maintenance, enhancements and integration. Architects and designers who
are not the original developers often have to maintain and control the quality
of the system. These people require a good understanding of the architecture
and the system. They have to understand why decisions have been taken and
how they affect parts of the system. Generally design rationale (the fundamen-
tal considerations and reasons behind decisions) cannot be obtained from design
specifications because there is no systematic practice to capture them. We will
compare several ways of documenting the design rationale and explain how they
can be used in the right manner.

2 Problem area

Design rationale capture the reasons behind design decisions. They show why
certain design choises are selected over other ones, how the design satisfies the
requirements and environmental conditions influence the architecture. Often de-
cisions are made and justified, but the justifications are often not documented
and are lost over time. When designers are asked why they have made these de-
cisions they often have to reconstruct the rationale from the design. Often they

43



have forgotten what the idea behind the decision was and this might result in an
inconsistent design or violations of design constraints. The impact can be really
serious because architecture design is fundamental to a system and rectification
of errors might be very costly.
Software architecture design often involves many implicit assumptions; for ex-
ample how one component influences another. A change in one part of the design
might affect many other parts of the system. This change could have been a small
one, but the influence in the other parts might be huge and such change-impacts
can not be easily identified. Without traceable design rationale, the implicit
relationshpis between the design objects can be lost, creating many problems.
Examples of problems that might arise are an expensive reconstruction of the
design rationale through analysis; unclear design criteria and environmental fac-
tors that influence the system; violation of design integrity when intricatley
related assumptions and constraints are omitted; misunderstanding or lacking
of the tradeoffs in decisions or a wrong assessment of the impact of changing
requirements and evironmental factors. Therefore it is of the most importance
that design decisions and rationale are well captured.

3 The stated solutions

The solutions for documenting design decisions we have considered are described
in detail in [1],[2], and [3]. We will sumarize the essence of these solutions in this
section.

3.1 Solution 1 - Tyree’s Template

The solution described in [1] is derived from REMAP (Representation and Main-
tenance of Process Knowledge) and DRL (Decision Representation Language).
First the criteria leading to a decision are stated in a table, together with the
alternatives for the decision, like in the table below:

Alternative 1 Alternative 2 Alternative 3
Selection criterion 1 yes no yes
Selection criterion 2 yes yes no
... ... ... ...
Selection criterion N yes no no
Table 1: Check which criteria are satisfied by the design decision alternatives.

Yes or no stands for whether or not the criterion is met by the specific alterna-
tive. Using this table helps to show why a certain alternative is finally chosen
in the design decision. This table can also help to trace back the decision to the
requirements, since the selection criteria often relate to requirements or even are
requirements themselves. When the decision is actually made its properties are
displayed in a list or table:

Architecture documentation on design rationale and decision –Bart van Teeseling, Arnaud van Gelder

44



Decision ID: Title
Issue
Decision
Status
Grouping
Assumptions
Constraints
Positions
Argument
Implications

Related decisions
Related requirements
Related artefacts
Related principles
Notes
Table 2: Documenting a design decision and its properties.

Finally, [1] gives an example in which new design decisions are identified that
have to be taken as a result of the initial decision just taken, and to display
these in a tree, using UML notation. This way relations between different design
decision can be shown in a clear way, and architects can analyze whether a new
decision results in new problems. If so, the decision, and the decisions that might
depend on it, might have to be reconsidered.
The authors of [1] claim that their solution conveys architectural changes, and
conveys implications and rationales of design decisions, and that it provides for
good traceability between decisions and requirements. It should support good
agile documentation.

3.2 Solution 2 - Kruchten’s Ontology

The second solution we’ve considered proposes to create an ontology of design
decisions, in which a clear classification of decisions exists, and in which each
decision has a set of relevant attributes. Also a set of relationships between
decisions are defined. In [2] there are three major classes of design decisions
defined:

1. Existence decisions: These decisions state that some element or artifact
will exist in the design or implementation. This type of decisions can be
further divided into structural and behavioral decisions. Also non-existence
decisions can be defined, stating that some element will not appear in the
design or implementation.

2. Property decisions: These decisions state an enduring, overall property
of the system. These could be design guidelines or constraints that apply to
the design as a whole. This should be a separate class of decisions because
they are hard to trace.

SC@RUG 2007 proceedings

45



3. Executive decisions: These are business driven decisions that affect the
development process, the people, the organization, and the choices of tech-
nology and tools.

Attributes of a decision are Epitome (the decision itself in a textual description),
a rationale, the scope of the decision, the decision state (approved, rejected, et
cetera), the author, time-stamp, the decision’s history, possible categories the
decision may belong to, the decision cost, and the decision risk. The relationships

Fig. 1. Attributes of a design decision in solution 2, picture taken from [2].

defined are mostly binary relationships that can exist between decisions, like
decision A depends on decision B, A conflicts with B, et cetera.

Fig. 2. Possible relationships between design decision in solution 2, image from [2]

3.3 Solution 3 - The AREL Model

The solution described in [3] is called the AREL (Architecture Rationale and
Element Linkage) model. This model can be used to capture the relationships

Architecture documentation on design rationale and decision –Bart van Teeseling, Arnaud van Gelder

46



between the entities Architecture Rationale and Architecture Elements.

First a conceptual model is presented in which a motivational reason (for in-
stance a requirement) acts as input for a design decision. An architecture ra-
tionale is created by a design decision, and justifies this decision. Finally, the
decision outcome is the result of the design decision in this model. The AREL

Fig. 3. Conceptual model that serves as a basis for the AREL model.

model is an implementation of the conceptual model described above using UML
notation. In AREL motivational reasons, design decisions, and design outcomes
are called architectural elements (AE). An architectural rationale (AR) describes
related issues, options, and arguments of a design decision.

By displaying the AR’s and AE’s and their relationships in UML notation deci-
sions should be made traceable according to this solution.

4 Similarities and differences between solutions

What are big differences and similarities between the three solutions described?
By considering the similarities and differences between the solutions we try to
find properties that the any solution for documenting design decisions should
have.

4.1 Similarities

What all solutions state is the need for treating a design decision as an en-
tity in itself. Design decisions shouldn’t implicitly emerge from text and dia-
grams in architecture and design documents. Design decisions should be explic-
itly documented, so that architects can clearly understand why an architecture

SC@RUG 2007 proceedings

47



has emerged to what it is, and so that they don’t take any decisions in the future
that conflict with important design decisions made in the past. Also, all three
solutions propose to have a set of properties belonging to the decisions docu-
mented, although the properties differ in some aspects. They also all propose a
UML-like way for documenting relationships between decisions. In The AREL
Model this is mandatory, and in Tyree’s template and Kruchten’s Ontology this
is optional.

4.2 Differences

The biggest difference can be found in the way decisions are displayed. While
Tyree’s Template proposes a rather loose format, in which an architect can
describe a predefined set of attributes in his own words using text, and optionally
some diagrams, Kruchten’s Ontology and The AREL Model propose to use a
much more strict format for describing a decision. Kruchten’s Ontology defines
a strict classification and set of properties, but does not explicitly propose a
way displaying the decision. The AREL Model clearly states the use of UML
notation for documenting the decisions.

5 Discussion

Software architectures are hard to develop and it isn’t always easy to develop
an architecture in which everything is crystal clear. However, it is important,
especially in large software systems, that every decision is documented in a well-
formed manner. Maintainers, quality managers and many other stakeholders
need to understand why the system is build in this specific way. Therefore the
architecture has to document all the decisions, rationale and the influence the
decisions have on some parts and components of a system. [1] propose a system
in which key architecture decisions are documented in table form. For every
decision the properties and traces are filled in and this way people can obtain
the rationale behind the decisions in a structured way. [2] proposes a system
in which a decision is an entity, which has several attributes and relationships.
They model this in UML which is already a standard in the software architecture
community and therefore easy to adapt and to understand. [3] propose the AREL
model, in which rationales are strictly coupled to decisions. This way there is a
very good understanding of the traceability and the influence a change has on
the rest of the system.

References

1. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Archtitecture. Capital
One Financiel (2005)

2. Kruchten P.: An Ontology of Architectural Design Decisions in Software-Intensive
Systems. (2004)

3. Tang, A. et al : A rationale-based architectural model for design traceability and
reasoning. Elsevier (2006)

Architecture documentation on design rationale and decision –Bart van Teeseling, Arnaud van Gelder

48



Creation and utilization of Pattern Languages 

Dyon Keupink (s1665790) and Martijn de Groote (s1650130) 

Rijksuniversiteit Groningen 

Abstract. Today, using Software Patterns to setup the architecture of a 
software project is becoming more and more common. In this paper we 
will explain what a “software pattern” is, and how one can create a 
pattern language from it. We will also explain how one can make use of 
a pattern language. How classification of architectural patterns in this 
context is done will also be talked about. This classification can only be 
done when you have a certain architectural view. What architectural 
views might be relevant to classify what patterns also is something we 
will talk about in the paper. Furthermore we will of course give 
examples of architectural views and the patterns that can be classified 
under that view. We will discuss the use of MetaPatterns; a pattern 
language for the actual writing of patterns. Furthermore, we will give 
an example of a pattern language for “Distributed computing”. When 
addressing this specific pattern language we will mainly talk about the 
distribution and application infrastructure of the language and 
concurrency. We expect to find some general new way to describe and 
look at the design of software and / or it’s architecture. 

1 Introduction 

Christopher Alexander, an architect and author, coined the term pattern language. He 
used it to refer to common problems of civil and architectural design, from how cities 
should be laid out to where windows should be placed in a room. The idea was 
initially popularized in his book “A Pattern Language”. Alexander's book “The 
Timeless Way of Building” describes what he means by pattern language and how it 
applies to the design and construction of buildings and towns. However, it is also 
applicable to any field of designing computer programs.  
During a design process, the designer must make many decisions about how to solve 
problems. A single problem, documented with its best solution, is a single design 
pattern. Each pattern has a name, a descriptive entry, and some cross-references, 
much like a dictionary entry. A documented pattern must also explain why that 
solution is considered the best one for that problem in the given situation. 
Just as words must have grammatical and semantic relationships to each other in order 
to make a spoken language useful, design patterns must be related to each other in 
order to form a pattern language. Implicit in Alexander's work is the idea that the 
patterns should be organized in such a way that it makes the most intuitive sense to 

49



the designer. The actual structure (hierarchical, iterative, etc.) may vary, depending on 
the topic. Each pattern should indicate its relationship to other patterns and to the 
language as a whole. This gives the designer some guidance about the order in which 
problems should be solved. In the paper Architectural Patterns Revisited - A Pattern 
Language [1] by Paris Avgeriou and Uwe Zdun a common way of using and 
documenting Patterns was introduced by proposing a Pattern Language which acts as 
a superset of the existing architectural pattern collections and categorizations. 
This language is particularly focused on establishing the relationships between the 
patterns and performs a categorization based on the concept of "architectural views". 
 

2 Creating a pattern language from Architectural Patterns 

Architectural patterns are a key concept in the field of software architecture because 
they offer well-established solutions to architectural problems, help to document 
design decisions and describe the quality attributes of a software system as forces. 
Those forces are working against eachother and the designer has to make choices in 
order to bring all forces in balance. As far as the granularity of architectural patterns 
is concerned, the boundaries between design patterns and architectural patterns (or 
potentially other classifications) are unclear. In general it is hard to draw the line 
between architectural patterns and design patterns. In fact, it depends heavily on the 
viewpoint of the designer or architect whether a specific pattern is categorized as an 
architectural pattern or a design pattern. Unfortunately, there is no single catalog of 
architectural patterns for software architects to use. Instead there is a voluminous and 
heterogeneous literature about patterns, where the various patterns differ in their 
scope, context, way of description and they are often not related in the context of a 
pattern language. To make things worse, many architectural pattern languages have 
been developed since the earlier software patterns literature was documented. And the 
former are not clearly related to the latter. Of course, there have been attempts to 
classify architectural patterns, but again there is no consensus on these classifications 
that could possibly lead to a single scheme. 
 
As stated in the introduction, in the paper Architectural Patterns Revisited - A Pattern 
Language [1] by Paris Avgeriou and Uwe Zdun the classification scheme for 
architectural patterns that was proposed is based on the concept of architectural views. 
An architectural view is a representation of a system from the perspective of a related 
set of concerns (e.g. a concern in a distributed system is how the software components 
are allocated to network nodes). This representation is comprised of a set of system 
elements and the relationships associated with them. An Architectural Pattern, on the 
other hand, defines types of elements and relationships that work together in order to 
solve a particular problem from some perspective. 
 

 
 
 

Creation and utilization of Pattern Languages – Dyon Keupink, Martijn de Groote

50



 

Fig. 1. The patterns of the different views and the most significant pattern relationships from 
[1]  

Now we will summarize all the patterns Paris Avgeriou and Uwe Zdun used and 
show the categorization used and the relationships between the patterns. By doing 
this, a pattern language was created. The emphasis of this language is not on 
describing the individual patterns; they have already been elaborately described in 
other works. Instead, emphasis is given only on the related pattern sections that 
analytically describe the relationships between the patterns. So, the language, as a 
whole, is greater than the sum of its parts because it particularly focuses on 
establishing the relationships between the patterns in order to present the "big 
picture". 

- Layered decomposition view 
 
Each layer offers a dedicated explicit interface to the higher-level layers, which 
remains stable, whereas internal implementation details can change. This way the 
layers pattern allows the work to be sub-divided along clear boundaries. Two adjacent 
layers can be considered as a client-server pair, the higher layer being the client and 
the lower layer being the server. Also, the logic behind layers is especially obvious in 
the indirection layer where a special layer “hides” the details of a component or 
subsystem and provides access to its services. The patterns pipes and filters and 
shared repository may use the layers pattern for structuring the internal architecture of 
individual architecture elements. A microkernel is a layered architecture with three 
layers: external servers, the micro kernel, and internal servers. Similarly the 
presentation-abstraction-control pattern also enforces layers: a top layer with one 
agent, several intermediate layers with numerous agents, and one bottom layer which 
contains the “leaves” agents of the tree-like hierarchy. The indirection layer pattern 
allows implementing the reflection, virtual machine and interceptor patterns. 

 

SC@RUG 2007 proceedings

51



- Data flow and transformation view 
 
In batch sequential there is no explicit abstraction for connectors. In the patterns 
“pipes” and “filters” though, the pattern considers the pipe connector to be of 
paramount importance for the transfer of data streams. The keyword in pipes and 
filters is flexibility in connecting filters through pipes in order to assemble custom 
configurations that solve specific problems. Also in pipes and filters there is a 
constant flow of data streams between the filters, while in batch sequential, the 
processing steps are discrete in the sense that each step finishes before the next step 
may commence. Pure pipes and filters is an alternative to layers and shared 
repositories if data sharing between nonadjacent processing tasks is not needed. More 
relaxed forms of the pipes and filters pattern can be combined with data repository 
architectures like shared repository, active repository, or blackboard to allow for data-
sharing between filters. Pipes and filters can also be used for communication between 
layers if data flows through layers are needed. 

- Data repository view 
 
A shared repository offers an alternative to sequential architectures for structuring 
software components, such as layers and pipes and filters when data sharing or other 
interaction between non-adjacent components is needed. Shared repositories can be 
used in a pipes and filters architecture to allow for data sharing between 

filters. A shared repository, where all its clients are independent components, can 
be considered as client-server, with the data store playing the server part. Similarly it 
can be considered as a system of two layers where the higher level of clients uses the 
services of the lower level of the shared repository. A variant of the shared repository 
pattern is the active repository pattern in which the notification mechanism can be 
realized using ordinary explicit invocations, but in most cases implicit invocations, 
such as publish-subcribe are more appropriate. Another variant of the shared 
repository pattern is the blackboard pattern which is appropriate when a shared 
repository is used in an immature domain in which no deterministic approach to a 
solution is known or feasible. 

- Adaption Infrastructure View 
 

Microkernels are usually structured in layers: the lowest layer implements an 
abstraction of the system platform, the next layer implements the services (of the 
internal servers), the following layer implements the functionality shared by all 
application versions, and the highest layer glues the external and internal servers 
together. Apparently, the lowest layer is an indirection layer hiding the low-level 
system details from the application logic. The reflection pattern is organized into 
layers: the meta-level contains the meta-objects which encapsulate the varying 
structure and behavior; and the base level contains the application logic components 
that depend on the meta-objects. Plugins often use reflection because reflection 
enables connecting components with out compile-time dependencies on them. The 
Reflection facility simply looks up the Plugin class at runtime and connects it. 

Creation and utilization of Pattern Languages – Dyon Keupink, Martijn de Groote

52



Interceptor can use a reflection mechanism in order to query the framework and 
retrieve the necessary information to process incoming events.The interceptor pattern 
can be realized using an indirection layer or one of its variants, such as interpreter or 
virtual machine. 

- Language Infrastructure View 
 
Some interpreters use optimizations like on-the-fly byte-code compilers. Internally 
they realize elements of a Virtual Machine. Note that an interpreter is different to a 
virtual machine because it allows for runtime interpretation of scripts, whereas the 
virtual machine architecture depends on compilation before runtime. An alternative to 
interpreters and virtual machines, when rule-based or logical languages are needed, is 
a rule-based system. Indirection layer is the architectural foundation for interpreter, 
virtual machine, and rule-based system, since either the instructions of the language 
or the byte-code are re-directed dynamically (at runtime). 

- Interaction Decoupling View 
 
The notification mechanism that updates all Views and Controllers in the Model-
View-Controller pattern can be based on Publish-Subscribe. All Controllers and 
Views subscribe to the Model, which in turn publishes the notifications. The 
Presentation-Abstraction-Control pattern is in essence based on MVC, in the sense 
that every agent is designed according to MVC: the Abstraction matches the MVC 
Model, while the presentation matches the MVC View and Controller. On a more 
macroscopic level, the PAC pattern is structured according to layers: the top layer 
contains the chief agent that controls the entire application; the middle layer contains 
agents with coarse-grained functionality while the lower layer is comprised of fine-
grained agents that handle specific services which users interact with. The C2 pattern 
provides substrate independence, isolating a component from the components 
underneath it, the layer where a component is placed is in essence an indirection 
layer. The interaction between the C2 components takes place through asynchronous 
message exchange, thus utilizing an implicit invocation mechanism, and specifically 
callbacks, e.g. publish-subscribe. 

- Component Interaction View 
 
During the Explicit invocation the identification of the service supplier can be 
realized, for instance by using the pattern Object ID. The client also knows the 
location of the service supplier, and furthermore, in some systems, the service 
supplier needs to know about the location of the client, so that the result can be sent 
back. This can be achieved by Object IDs enriched with location information, as 
mandated by the pattern Absolute Object Reference. Explicit Invocation usually uses 
a Broker to hide the details of network communication and allow the components to 
contain only their application logic. This also applies to the Implicit Invocation 
Pattern, a general alternative to Explicit Invocations, even though they can be used 
together in a single system. An example of implicit invocation is the synchronization 

SC@RUG 2007 proceedings

53



between Model, View, and Controller in the MVC pattern. If Implicit Invocation is 
used asynchronous the Poll Object and Result Callback patterns are used. Implicit 
Invocation is used for looking up the initial reference in a Peer-to-Peer system. In the  
Client-server pattern, Both client and server must implement collective tasks, such as 
security, transaction, and systems management, something that is more complex in a 
Client-Server architecture than in simple Explicit Invocations. Sophisticated, 
distributed Client-Server architectures usually rely on the Broker pattern to make the 
complexity of the distributed communication manageable. The same is true for the 
Peer-to-Peer pattern: once an initial reference of the Peer-to-Peer network is found, 
we need to find other peers in the network. For this purpose, each peer (or each 
dedicated peer) realizes the Lookup pattern. Using Lookup peers can be found based 
on their names or their properties. Peer-to-Peer can be realized internally using Client-
Server, or other patterns. As stated before, it usually also uses a Broker architecture. 
Whereas Client-Server and Peer-to-Peer concentrate on Explicit Invocations, Publish-
Subscribe is an interaction pattern that is heavily based on Implicit Invocations. In the 
local context the Publish-Subscribe can be based on the Observer pattern, where the 
Publish-Subscribe mechanism is implemented as part of the `subject' (i.e. the event 
producer). In the remote context Publish-Subscribe is used in Message Queuing 
implementations or as a pattern implementation of its own. The Publish-Subscribe 
pattern can be used in the context of the Active Repository pattern, so that accessors 
of data subscribe to the repository, which in turn notifies them when the data is 
updated. Publish-Subscribe is sometimes used to realize Client-Server and Peer-to-
Peer: for instance, in distributed implementations of Client-Server and Peer-to-Peer it 
is necessary to bridge between the asynchronous network events and the synchronous 
processing model of the server. This can be done using a local Publish-Subscribe 
model, where event handlers subscribe for the network events. 

- Distributed Communication View 
 
The Broker is a compound pattern that is realized using a number of remoting 
patterns. The most fundamental remoting patterns in a Broker architecture are 
Requestor, Invoker, and Marshaller. There are many others. Some important 
examples are a Client Proxy, which represents the remote object in the client process. 
This proxy has the same interface as the remote object it represents. An Interface 
Description is used to make the remote object's interface known to the clients. Lookup 
allows clients to discover remote objects. The Broker uses a layers architecture. Many 
well-known Broker realizations are based on the Client-Server pattern. However, the 
other patterns for component interactions, such as Explicit Invocation, Peer-to-Peer, 
Message Queuing, and Publish-Subscribe, can also use a Broker to isolate 
communication-related concerns, when used in a distributed setting. Remote 
Procedure Calls is a variant of Client-server. They usually operate in a distributed 
setting and are mutual alternatives. They usually employ a Broker architecture 
internally. Remote Procedure Calls leverage the Client-server pattern of interaction: a 
client invokes operations, and a server provides a well-defined set of operations that 
the client can invoke. Message Queuing realizes Client-Server interactions and 
implements Implicit Invocation as the primary invocation pattern. 

 

Creation and utilization of Pattern Languages – Dyon Keupink, Martijn de Groote

54



In the next chapter we will discuss the use of MetaPatterns; a pattern language for the 
actual writing of patterns. We will learn that there is no single correct way to write a 
pattern language. This is because creative individuals try new ways to communicate 
and organize their thoughts.  
  

 

3 Metapatterns 

In the article Metapatterns [2], the authors Meszaros and Doble came to the 
conclusion that there was a “Pattern” behind what they liked about Patterns and 
Pattern languages of different kinds. This has lead to the development of a pattern 
language for writing patterns which they called “Metapatterns”. Metapatterns 
describes the characteristics what the authors and reviewers in their review groups 
found most interesting about the patterns and pattern languages they reviewed. The 
authors describe these characteristics using patterns themselves. Patterns in 
Metapatterns fall into two broad categories: patterns which are applicable to all 
patterns, and patterns which are only applicable to patterns within a pattern language. 
To be exact the patterns in Metapatterns can be divided into the following categories: 
 
• Context-Setting Patterns, this category introduces the concept of a Pattern (which 

is a solution to a problem in a certain context) and a pattern language (patterns 
grouped into collections which are related to each other because they solve the 
same problems or they are parts of a solution to a larger partitioned problem) so 
that they may be used throughout Metapatterns; 

• Pattern Structuring Patterns, this category consists of patterns which describe the 
intended content and structure of individual patterns, whether part of a larger 
Pattern language or not; 

• Pattern Naming and Referencing Patterns, this category consists of patterns which 
specify techniques for naming patterns and patterns which describe how including 
to references or other patterns should be done. 

• Patterns for making Patterns Understandable, this category consists of patterns 
which embody techniques for making patterns and pattern languages easier to read, 
understand and apply to certain problems; 

• Pattern Language Structuring Patterns,  this category consists of patterns which 
specify the intended content and structure of pattern languages. 
 

Techniques and approaches for writing patterns and pattern languages are constantly 
being improved because creative individuals try new ways to communicate and 
organize their thoughts. Also there is no single correct way to write a pattern 
language. This makes that the patterns in the Metapatterns language should be treated 
as suggestions to be tried and adopted where they help. One of the characteristics of 
Metapatterns is that it has been designed to give examples of the patterns it consists 
of. The idea is that this pattern language will help authors of patterns to organize and 
communicate their thoughts.  

SC@RUG 2007 proceedings

55



Every pattern in Metapatterns has been written with sections that can be skipped 
depending on the intentions of the reader. A reader who is trying to get a sense of the 
language can focus on the sections (in Meszaros and Doble [2]): Problem, Context 
and Solutions. In the event that a reader finds a certain pattern interesting he/she can 
look at a section called Forces for guidance on the determination on whether the 
pattern is applicable to the situation of the reader. The authors indicate that the pattern 
language Metapatterns will continue to evolve as long as the art of pattern writing 
continues to evolve. Finally, the authors of [2] make the remark that there are several 
areas that Metapatterns does not cover (or even attempted to cover).  

4 Distributed computing 

One important aspect of modern computing nowadays is distributed computing. 
Distributed computing enables the connection of resources and users in a transparant 
and scalable way. Furthermore distributed systems are open in the sense that each 
subsystem is always open to interaction with other systems. This kind of computing 
however poses new challenges, especially when distributed applications use 
concurrency and event handling. Patterns and pattern-languages could address at least 
some of these challenges.  
The article of Buschmann and Henney [3] is about parts of a pattern language for 
distributed computing. Patterns from the Pattern-Oriented Software Architecture 
series [POSA1] [POSA2], the Gang-of-Four [GoF95], and some other authors of this 
specific topic are weaved together. This pattern language is not intended as a 
replacement for the original descriptions of the patterns, but instead complement them 
by looking at them from a different view. For implementation-details the article 
simply refers to the original source where the authors got the pattern from. 

Distribution infrastructure 
 
Many distributed systems are exposed to the following design challenges: 
 
• Location-independece of components, in the perfect situation client components in 

a distributed system should be able to communicate with remote service 
components as if they where located in the same address space. To reach this goal 
the service components and clients should not include code that deals with remote 
communication or with location-specific details (e.g. IP-addresses and port 
numbers) of other components; 

• Flexible component deployment, redeployment of a distributed system should be 
possible. In the best case it should be able to without shutting the entire system 
down and changing the system’s code; 

• Integration of legacy code, because most distributed systems are constructed from 
existing software components integration with the distributed system might 
become challenging. Especially if the source-code of the existing legacy 
component is no longer availlable; 

Creation and utilization of Pattern Languages – Dyon Keupink, Martijn de Groote

56



• Heterogeneous components, a distributed system should be able to be comprised of 
components that are written in different programming languages. 

 
To overcome these challenges distributed systems should be equipped with dedicated 
middleware and distribution infrastructures that handle the above issues in order to let 
the application code focus only on its primary responsibility: the implementation of 
the required domain-specific functionality. Technologies developed by Sun 
Microsystems, Microsoft and consortia like the Object Management Group (OMG) 
can handle these challenges. These technologies share a common architectural vision, 
which is reflected in the entry point of the distributed computing pattern language: 

 
The Broker architectural pattern manages the interaction with remote services. 
Specifically the broker component is responsible for coordinating communication. 
One can think of types of communication like forwarding requests, transmitting 
results and transmitting exceptions.  
One of the design-patterns that helps to realize the Broker-pattern is a distribution 
infrastructure pattern called “Client-Dispatcher-Server”. Application of this pattern 
means that an extra layer will be introduced to the client-server model. This layer is 
called “the dispatcher component” and hides the details of the establishment of the 
communication between clients and servers. Furthermore, a name service provides 
location transparency (which means that the client-code does not necessarily needs to 
now the IP-address of the server it is talking to and vice versa).  
Both the Broker- and the “Client-Dispatcher-Server” pattern are integrated in the 
pattern language of the authors as displayed below: 

 
 

Fig. 2. Integration of the Broker- and the “Client-Dispatcher-Server”-pattern from [3] 
 

SC@RUG 2007 proceedings

57



The authors do not view Pipes, Filters and Microkernel patterns as being distribution 
infrastructures. Instead of this they are viewed as patterns that help to provide 
structure for distributed applications. The authors of the article are also aware of the 
fact that their distribution infrastructure patterns are not complete. As an example of 
this they talk about peer-to-peer computing which requires more than just Broker-
based middleware.  

Application infrastructure 
 
The following questions and challenges needed to be answered in order for the 
authors to gain a application architecture (basically a component and subsystem 
decomposition that expresses the system’s functionality): 
 
• How is application processing organized? 
• How does the application interact with its environment? 
• What is the life expectancy of the application? 
 
The distributed computing pattern language of the article included seven strategic 
patterns that helped to answer those questions: 
 
• Layers-architectural pattern. This pattern provides structure to applications that are 

basically a composition of subtasks into groups in which each group of subtasks is 
at a certain abstraction-level; 

• Pipes and Filters-architectural pattern provides structure for systems whose 
purpose is to process a stream of data; 

• BlackBoard-architectural pattern where some subsystems each having a certain 
specialization assemble their knowledge to build a possibly partial or approximate 
solution to a problem; 

• Model-View-Controller-architectural pattern that divides an interactive application 
into three components (a model, a view and a controller); 

• Presentation-Abstraction-Control-architectural pattern is meant for interactive 
systems. This pattern defines a hierarchy consisting of cooperating agents, where 
each agent is responsible for a specific task of the application; 

• Reflection-architectural pattern supports fundamental aspects of software systems 
to be adapted dynamically. When thinking about these aspects one can think of 
things such as function call mechanisms and structures; 

• Microkernel-architectural pattern is used for systems whose requirements can 
change over time. This pattern separates a core with minimal functionality from 
extended functionality and parts that are specific to the customer. 

 
These seven patterns comprise all the patterns from A Systems Of Patterns (POSA) 
that is classified as user interaction and system adaptation-patterns. 

Concurrency 
 

Creation and utilization of Pattern Languages – Dyon Keupink, Martijn de Groote

58



When developing distributed systems, concurrency is often used as well. 
Concurrency-programming has the following challenges: 

 
• Application diversity, different types of components expose the application to 

different structural and behavioural characteristics; 
• Multi-threading-costs. Thread-management, context switches, synchronization and 

data-movement influence how the application will behave (e.g. overhead); 
• Multi-threading hazards, incorrect use of synchronization mechanisms can not 

only lead to extra overhead but also to application misbehavior due to deadlocks 
and race conditions; 

• Portability, different hardware and software platforms that the distributed 
application must be able to work on/with complicate the development of 
concurrent applications. This accidental complexity arises from limitations with 
existing development methods, tools and operating systems. 
 

The above challenges has the consequence that a concurrent architecture must always 
be specified early in the development-cycle of a software system. To cope with the 
above challenges the authors included the following patterns to their pattern language: 

 
• Half-Sync/Half-Async architectural pattern introduces two intercommunicating 

layers, one for asynchronous and one for synchronous processing of a service; 
• Leader/Followers-architectural pattern. This pattern introduces a model where 

multiple threads take turn sharing a set of event sources. This is done to detect, 
demultiplex, dispatch and process requests that occur on the event sources; 

• Active Object design pattern. This pattern enhances concurrency and makes it 
easier for synchronized access to objects that reside in their own thread of 
control; 

• Monitor Object design pattern. This pattern ensures that only one method at a 
certain time is running in a object. To do this it synchronizes concurrent method 
execution; 

• Guarded Suspension design pattern. Objects within this pattern can only execute 
when certain conditions hold.  

 
The authors of the article have deliberately left the Thread-Specific-Storage and the 
Scheduler-pattern out of their pattern language. Unfortunately they did not give an 
reason to why they did this. 

Event handling 
 
The following patterns have been included to enable Event handling: 

 
• Reactor architectural pattern. This pattern allows event-driven applications to 

dispatch and demultiplex service requests which are being delivered to an 
application from a client or several clients; 

SC@RUG 2007 proceedings

59



• Proactor architectural pattern. This pattern allows efficient dispatch and 
demultiplex service requests which are triggered by completion of asynchrous 
operations; 

• Acceptator-Connector design pattern. The processing performed by the peer 
services after they are connected and initialized are decoupled and initialized in a 
networked system; 

• Asynchronous Completion Token design pattern. This pattern allows to demultiplex 
and process efficiently the responses of asynchronous operations which are 
invoked on the services. 

Conclusion 

In the first part of the paper we showed how different Architectural Patterns can be 
combined to create a Pattern Language. It actually formed a whole architecture which 
can be used in software development projects. This architecture provides a sole base 
for architect builders who want to create good software. In larger projects, you can be 
sure that most of the patterns mentioned above will be implemented in some way. Our 
advise to software developers is: before coding, think of building your architecture 
and use patterns to create it! They provide in common tasks to get your software to 
work. 
 
The authors Meszaros and Doble [2] came to the conclusion that there was a “Pattern” 
behind what they liked about Patterns and Pattern languages of different kinds. This 
lead to the development of a pattern language for writing patterns called 
“Metapatterns”. Metapatterns describes using patterns the characteristics which the 
authors and other reviewers in their review groups found most interesting about the 
patterns and pattern languages that they reviewed. In the event that a reader finds a 
certain pattern interesting he/she can look at a section called Forces for guidance on 
the determination on wheter the pattern is applicable to the situation of the reader.  
 
Finally we believe that when it comes to distributed systems there is made a good 
start in creating a pattern language for this type of computing. Specifically things like 
the handling of events, concurrency and also the application and distribution interface 
have been handled to some extend already. We believe that in the future a pattern 
language like the one discribed in [3] will make it very easy to take important 
decissions when it comes to the engineering of distributed software. 

Creation and utilization of Pattern Languages – Dyon Keupink, Martijn de Groote

60



 

References 

[1] Paris Avgeriou and Uwe Zdun, Architectural Patterns Revisited - A Pattern 
Language 

[2] Gerard Meszaros and Jim Doble, MetaPatterns: A Pattern Language for 
Pattern Writing 

[3] Frank Buschmann and Kevlin Henney, A Distributed Computing Pattern 
Language 

Links 

http://en.wikipedia.org/wiki/Pattern_language 
http://en.wikipedia.org/wiki/Distributed_computing 

SC@RUG 2007 proceedings

61



Using Model Checking to Prevent Data Loss by File 
System Errors. 

 
Simon P. Takens (1675478), Dennis Kanon (1673491) 

Department of Computer Science, University of Groningen 
s.t.takens@student.rug.nl, d.kanon@student.rug.nl 

 

Abstract: File System crashes and errors can cause a lot of “headaches” to us-
ers and administrators everywhere. We would like to do research in the possi-
bilities to detect these errors before they actually happen. Using earlier Re-
search done in this field we would like to think of ways to try and warn before 
such errors  happen. The reason why this is interesting is because if you can 
detect a “dangerous” and/or “vulnerable” area or write action, you would be 
able to give a warning in time to the user to make a backup of his data before 
proceeding further. We would like to use the possibilities found by earlier re-
search in the field of using model checking to find serious file system errors to 
identify the problems before they might happen. Model checking uses tech-
niques to reduce states so that a huge amount of states that are actually impor-
tant can be checked in an efficient manner. So by combining this technology 
with the findings made in previous research we hope to achieve a way to detect 
errors before they happen. 

1 introduction 

Using model checking to prevent data loss by file system errors is an ambitious re-
search that can be very useful. That is why we have chosen to research this and make 
it our main focus. 
 
This is interesting for use in Operating Systems already on the market and even as a 
separate product. Often people, especially consumer and users of workstations without 
a IT background, don't realise the impact of a File System error and that rebooting 
and/or using the system might only make the problem worse. 
 
First we give an introduction to model checking. Secondly we talk about the main part 
of our research namely using model checking to detect hard disk errors. This consist-
ing of the advantages of using model checking, detecting error/crashes before they 
happen and implementation. Finally we give our conclusion. 

62



2 Intro to model checking 

2.1 What is model checking 

Model checking is a process that checks if a model adheres to rules of existing logics. 
Model checking is a general concept that applies to all kinds of logics and structures 
suitable. 

2.2 Where is it used 

Model checking is mostly used in the design of hardware, in software design however 
it isn’t used as much as it is with hardware. This is caused by different points of view 
in software and model design in this field. Often model checking proofs or disproof’s 
something that is actually the opposite. 

2.3 What are we going to use it for 

We want to use the logical formulas to check and predict hard disk errors before they 
actually happen. Now with the help of model checking this process should be able to 
speed up. Hoping we are able to get it to a level so that it can run as a constant resi-
dent program, without interfering too much with the other processes on the system. 
 
This would be a very handy tool for servers to backup really critical data before actual 
crashes and/or errors happen. Also, if the process gets speed up to a level that it 
doesn’t interfere in a notable way with the rest of the computer, it can be a resident 
program for everyday consumer use as well. 

3 Using model checking to detect hard disk errors 

3.1 Advantages of using model checking 

The first advantage that can be mentioned is that if you are going to use model check-
ing for security than you wouldn’t need RAID 1. Although model checking is cheaper 
than RAID 1 it is not as good and can still fail and it’s also a strain on the system. But 
this strain is relative because model checking uses techniques to reduce states so that a 
huge amount of states that are actually important can be checked in an efficient man-
ner. 
 

SC@RUG 2007 proceedings

63



Recent work has developed implementation-level model checkers that check imple-
mentation code directly without requiring an abstract specification [2, 3, 4]. [1] has 
leveraged this approach to create a model checking infrastructure, the File System 
Checker (FiSC), which lets implementers model-check real, unmodified file systems 
with relatively little model checking knowledge. 
 
Model checking works best at ferreting out complex interactions of a small number of 
nouns (files, directories, blocks, threads, etc) since this small number allows caching 
techniques to give the most leverage. Also some bugs are hard to find without a model 
checker. 
 
Model checking has some nice properties. First, it makes it trivial to verify that the 
original error is fixed. Second, it allows more comprehensive testing of patches than 
appears to be done in commercial software houses. Third, it finds the corner-case 
implications of seemingly local changes in seconds and demonstrates that they violate 
important consistency invariants. 
 
Model checking also has multi-threading support. The model checker is single-
threaded both above and below the system call interface. Above, because only a single 
user process does file system operations. Below, because each state transition runs 
automatically to completion. This means many interfering state modifications never 
occur in the checked system. In particular, in terms of high-level errors, file system 
operations never interleave and, consequently, neither do partially completed transac-
tions (either in memory or on disk). [1] expects both to be a fruitful source of bugs 
that is why we have to check them to. 

3.2 Detect errors/crashes before they happen 

3.2.1 Checking the file system 
This section will talk more in-depth about how we are planning to check our File Sys-
tem and the writes to our File system. We are not considering the reads because if 
those would cause errors/crashes the system and the disk where already unstable and a 
mayor hardware failure is imminent.  
 
There is only a slight difference between checking an empty just formatted disk, or a 
disk that is already in use. We split them up in two separate sections and just mention 
the extra consideration the second one needs. We talk a bit more in detail about each 
possible option the software has as an initial state. 
 
On an empty disk 
We check our empty disk by adding a layer for writing files, this layer basically adds a 
virtual file system on which we can test every possible way to write data to this file 
system. By using model checking we create a model of this disk with each write, see-
ing if the write causes any problems before continuing. 

Using Model Checking to Prevent Data Loss by File System Errors – Simon P. Takens, Dennis Kanon

64



 
With this we will be able to give a warning and cancel the write in case it would be 
harmful to the system and thus let the system prevent possible bad writes or choose the 
safest one that won’t cause a File System Error and keep the data on this disk safe. 
 
If there is a write to a non-system disk, and it causes a major problem in at least one 
test in every possible way it can be written, then the user gets a warning not to write 
this data and is requested to try this again on a later time. If the error persists the users 
is prompted to write the data to another disk or data-carrier. 
 
On an already in use disk 
On a disk that is already in use there are more variables that need to be kept in mind, 
one cannot just assume: ”This disk was working “OK” till now so lets assume we can 
start with an empty slate as if it where a disk that was just formatted.” For instance 
many users at home use the same disk that also contains their OS or other data that 
they got before they started using this system. 
 
So before we do a model checking per write, we make a map of the whole disk as to 
provide a model of the data already there (metadata). To be absolutely sure this map-
ping won’t cause errors the map will first be written to a virtual disk created in the 
computers RAM. Although the mapping of a hard drive is pretty compact it may be 
done in blocks if the mapping turns out to exceed the RAM size. 
 
After this check is done, the system runs the checks (described earlier) on the popu-
lated disk. First to check if it would be safe and what the best way is to write this 
model to the disk in use. Secondly we write the actual model to the disk. Afterwards 
any disk write made by the OS or user can be checked. 
 
However since, as stated above, this disk can be the main OS disk, the OS itself with-
out any interaction (of the user per say) does a lot of these disk-writes. To make a 
system that can communicate with the OS at that level, the program has to run at driv-
er level as if becoming total separate driver that pipes the date towards the disk, thus 
adding a layer to the communication between OS and the Disks involved. 
 
As described above, if the user makes his own writes to the disk, say save a document. 
He would just get a warning if the write would be harmful and is asked to try again or 
doing the disk write to another disk or data carrier. 
 
One might argue if you stop the OS from making writes, the OS will cease its func-
tions and wont work properly. We just want to add the possibility of backing up the 
data, even if the OS is corrupted and the OS would ruin the data on the disk if used. 
This can involve a separate OS booting up to create the backup of the essential data. 
So even if the OS is corrupted and needs to be repaired or reinstalled the data is safe 
to be backed up first. 

SC@RUG 2007 proceedings

65



3.2.2 Description of the different checks available 
Doing different checks is essential to our research. That is why we have looked at a lot 
of the different checks that were well defined, and used the ones that are relevant to 
the tasks we want them to fulfil. 
 
Here are the descriptions of the checks that we used, which are preformed by the File 
System Checker (FiSC). We used FiSC because it inspects the actual state of the sys-
tem and can thus catch errors that are difficult or impossible to diagnose with static 
analysis. It is capable of doing a set of general checks that could apply to any code run 
in the kernel: 
·  Deadlock Checking for circular waits is important to ensure to integrity of 
the files that are being used; 
·  NULL FiSC reports an error whenever a NULL pointer accurse; 
·  Paired functions There are some kernel functions, like iget, iput for inode 
allocation and dget, dput for directory cache entries, which should always be called in 
pairs. FiSC instruments these functions in the kernel and then check that they are al-
ways called in pairs while running the model checker; 
·  Memory leak Memory allocation and deallocation functions need to be in-
strumented so FiSC can track currently used memory. The system-wide freelist needs 
to be altered to prevent memory consumers from allocating objects without the model 
checker’s knowledge. 
 
These were generic checks. FiSC checks the following consistency properties (de-
scriptions of these checks can be found in [1]): 
·  System calls map to actions 
·  Changed buffers are marked dirty 
·  Buffer consistency 
·  Double fsck 

3.2.3 Scaling 
For some systems scaling may not be realistic but because it can be useful we are 
thinking of implementing it but are not yet at that stage. Because there is a lot of resi-
dual research still to be done on this subject and we haven’t had time to find the parts 
that are relevant to our research. Some possible fields of interest would be to run the 
checks in parallel. 
 
A good area for further research would be the recent developments in Video Cards. 
These GPU (Graphical Processing Unit) can run a lot of calculations in parallel with-
out breaking a sweat. If optimised for these new universal shaders/stream processors, 
we think we can reap enormous benefits of this development and offer a rather cheap 
solution as an add-on card for servers. 

Using Model Checking to Prevent Data Loss by File System Errors – Simon P. Takens, Dennis Kanon

66



3.3 Implementation 

In this section we try to better explain how we plan to implement this system. This 
section tells in more detail about what we exactly researched in earlier articles that use 
model checking to prevent data loss in different ways. 

3.3.1 Driver Level 
Because we want to monitor and test actual reads and writes before they happen, we 
want to run our virtual disk at a driver level. Thus providing one extra layer between 
the actual OS and the Disk. The reason for this is that the OS can’t write data to disks 
without interception of our system. 
 
We planned to implement this by sitting in-between the two, to an OS the program 
would identify itself as a HDD but to the HDD it would be looking like it was an OS 
making a write. 

3.3.2 Optimisation 
Because model checking can be very intensive, model checking big HDDs (that are 
standard these days) can take very long so we need some form of optimisation. 
 
Cluster-based model checking 
With the current trend of multi core CPU’s it would be a shame not to use them for 
this process. Like most model checking, can easily be converted to run in parallel. 
This has an advantage that it speeds up the whole check and the model making of an 
already in used disk considerably. 
 
In the future 4 core systems will be sold a lot more and 8 core systems are already on 
the horizon. Making this process parallel would not only be a smart choice with this in 
mind, but almost a necessity. 
 
Splitting up large models 
Because a computers memory is a lot smaller then its HDD capacity there is a good 
change that a model of this HDD will be bigger then the memory available. The solu-
tion to this would be to split up the model in separate chunks, because you don’t want 
to swap, as that would give you more data to check before writing. One could first 
check a chunk of model before checking the next one required and so on. 
 
These chunks would have to be considerably smaller then the memory because the 
system also needs to remember the states it wend trough during the check. 

4 Conclusions 

Although our source documents had a lot of problems providing a good system for 
normal sized disks, we think it is still a feasible solution to provide checks before the 

SC@RUG 2007 proceedings

67



actual data is written. We think that with the coming of multi core CPU’s and faster 
bandwidth in memory this thing would actually be very well possible. 
 
Also by creating certain optimisation and not fixing the disk only to warn users that 
data is being corrupted one can optimise to an extend not possible with checking. By 
cutting out the more strenuous tests and checks. We hope to provide a better perform-
ing alternative to the ones used. One might be able to further evolve and improve on 
the existing system. The goal is an almost unnoticeable effect on resource usage so 
that a server can run this system in the background. 

References 

[1] Junfeng Yang, Paul Twohey, Dawson Engler and Madanlal Musuvathi. Using Model 
Checking to Find Serious File System Errors. 

[2] P. Godefroid. Model Checking for Programming Languages using VeriSoft. In Proceedings 
of the 24th ACM Symposium on Principles of Programming Languages, 1997. 

[3] M. Musuvathi and D. R. Engler. Model checking large network protocol implementations. 
In Proceedings of the First Symposium on Networked Systems Design and Implementation, 
2004. 

[4] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A pragmatic ap-
proach to model checking real code. In Proceedings of the Fifth Symposium on Operating 
Systems Design and Implementation, 2002. 

Using Model Checking to Prevent Data Loss by File System Errors – Simon P. Takens, Dennis Kanon

68


