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 CONSISTENCY OF THE TAKENS ESTIMATOR

 FOR THE CORRELATION DIMENSION1

 BY S. BOROVKOVA, R. BURTON AND H. DEHLING

 University of Groningen, Oregon State University and
 University of Groningen

 Motivated by the problem of estimating the fractal dimension of a

 strange attractor, we prove weak consistency of U-statistics for station-

 ary ergodic and mixing sequences when the kernel function is unbounded,

 extending by this earlier results of Aaronson, Burton, Dehling, Gilat, Hill

 and Weiss. We apply the obtained results to show consistency of the Takens

 estimator for the correlation dimension.

 1. Introduction. Estimation of the fractal dimension of a strange attrac-

 tor from a chaotic time series has attracted considerable attention in the past
 few years and has become one of the tools in the analysis of the underlying
 dynamics. Though there are various notions of noninteger dimensions, most
 attention has been devoted to the correlation dimension. This is mainly be-
 cause this type of dimension is relatively easy to estimate, and it provides a
 good measure of the complexity of the dynamics, that is, the number of active
 degrees of freedom.

 Suppose ( t, ?, , T) is a dynamical system, where X c RP and T:

 X is a measurable transformation with invariant probability measure /_t. We
 define the correlation integral

 CQ(r) = (t x )f{(x, y): 11x-y 1 < r}
 for r > 0. In many examples it turns out that there exists a constant a such
 that

 (1.1) CQ(r) const ra as r -+ 0.

 Then the exponent a is called the correlation dimension of [t. More formally,
 one defines the correlation dimension by a := limr,o log C(r)/ log r, provided
 this limit exists.

 In most practical situations, the dynamical system and thus also the invari-
 ant measure ,c are unknown and one has to rely on (partial) observations of a
 finite orbit (Tkw)o<k<ll of the system. Most models assume that the actual ob-
 servations are functions of the state. More precisely, one postulates existence

 of a so-called read-out function f: ( -+ R such that y,, = f(Tn w) is observed
 at time n. Of course, one cannot hope to get much information about the state

 Received October 1996; revised December 1997.
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 CONSISTENCY OF THE TAKENS ESTIMATOR 377

 w by just observing f (X). This, however, changes completely if one replaces
 f(w) by the vector of observations f (Tcw) at q consecutive time points, that is,

 Rec(co) := (f (w), f (Tw), . . ., f (T q-1Wt)).

 The Takens reconstruction theorem [Takens (1981)] then assures that in

 generic situations, Rec: ( -? Rq defines an embedding, provided q > 2p + 1.
 Consequently we can obtain information about the state space and the
 dynamics of T by studying the process of reconstruction vectors

 Xn= Rec(T nc), n > O.

 Among other things, one can show that the correlation dimension of the invari-

 ant measure [t coincides with that of the marginal distribution F of Xl, again
 provided we are in the generic situation and q > 2p + 1. For smaller values
 of q, the correlation dimension of F will equal the embedding dimension.

 It is thus of interest to estimate the correlation dimension of the marginal

 distribution of a stationary stochastic process from a finite sample X1, ..., Xn.
 Note that the correlation integral can be written as

 C(r) = CF(r) = P(IlX-X'll < r),

 where X and X' are independent copies of X1.

 A number of procedures for estimating the correlation dimension has been
 introduced in the literature. Here we concentrate our attention on the ap-

 proach proposed by Takens (1985). Assume for a moment that in a neighbor-
 hood of r = 0 an exact scaling law holds for the correlation integral, that is,

 (1.2) C(r) = const ra, r < ro

 for some ro > 0. Then Takens first considered estimating a from i.i.d. re-
 alizations Ri = IXi- Yill of the distance X - Yll, where Xi and Yi are
 independent with distribution ,[. If (1.2) holds, the conditional distribution of
 Ui := Ri/ro given Ri < ro is given by

 P(Ui < tlUi < 1) = ta for t E [0, 1].

 Then the (conditional) distribution of Si = -log Ui is exponential with pa-
 rameter a, that is, Si has density

 g(s) = ae-a1[oo)(s).
 Given an i.i.d. sample S1, S2, ..., SN of exponentially distributed random
 variables, the maximum likelihood estimator (MLE) of the parameter a is
 given by

 N
 (1.3) aML - N

 i=l Si
 It turns out that the ML estimator is biased but that the variant , a

 (N - 1)/ ENi Si, is unbiased and actually the uniformly minimum variance
 unbiased (UMVU) estimator. This is a simple consequence of the Lehman-

 Scheff6 lemma and the fact that i=1 Si is a complete, sufficient statistic.
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 378 S. BOROVKOVA, R. BURTON AND H. DEHLING

 In general, independent realizations of the distances IIX - Y will not be
 available and thus a modification of the estimator (1.3) becomes necessary.
 Given a finite segment X1, ..., Xn of an orbit, we can form n(n-1)/2 pairwise

 distances lIXi - Xjll. Motivated by the ML estimator (1.3), Takens proposed
 to use

 (1.4) aT= 1) E log b

 as estimator for the correlation dimension.

 A completely different approach was suggested by Grassberger and Pro-
 caccia (1983), actually in the same paper where they introduced the notion

 of correlation dimension. The Grassberger-Procaccia procedure is motivated

 by the approximately linear relationship log C(r) /? + alog r, for r small,
 obtained by taking logarithms on both sides of (1.1). Estimating now the cor-
 relation integral by its empirical analogue,

 (1.5) Cn(r) = 21) E l{llXi-XjII<r},
 n(n - i 1<i<j<n

 for a vector of distances (rl, ..., rk), Grassberger and Procaccia use least-
 squares linear regression of log Cn(ri) versus log ri to estimate a.

 In the analysis of both the Grassberger-Procaccia and the Takens estimator,

 the theory of U-statistics plays a central role. Let h: (RW)l R be a measur-
 able function that is symmetric in its arguments. Given a sample X1, . . ., Xn
 from a distribution function F, define the associated U-statistic of degree m by

 Un~~-

 m 1<ij< ..<i,,<n

 Note that Un(h) can be viewed as the empirical analogue of the parameter

 0(F) = | h(xl, .. IXm) dF(xl) ..dF(x)..

 It turns out that Un(h) is an unbiased estimator of 0(F) and, in the case
 of an i.i.d. sample, even the UMVU estimator, provided the distribution is
 completely unknown.

 In order to establish consistency of the Takens estimator, we have to study
 the U-statistic

 (1.6) 2 l log XI-Xi - . n(n - 1) <ijl

 For the Grassberger-Procaccia estimator, consistency of the U-statistic (1.5)
 has to be investigated.

 Halmos (1946) and Hoeffding (1948) independently introduced U-statistics.

 In the case of i.i.d. observations (Xn)n,l, their asymptotic behavior is well un-
 derstood. The law of large numbers and the central limit theorem were already
 established by Hoeffding (1948). Mainly motivated by the above-mentioned
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 CONSISTENCY OF THE TAKENS ESTIMATOR 379

 applications to dimension estimation, there has been in recent years consider-

 able interest in U-statistics of stationary dependent observations. Early con-
 tributions were Yoshihara's (1976) central limit theorem for absolutely regular
 processes and Denker and Keller's (1983, 1986) CLT for certain Lipschitz func-

 tionals of an absolutely regular process.
 Surprisingly, the law of large numbers for U-statistics of stationary ergodic

 sequences has not been investigated until the recent paper by Aaronson, Bur-
 ton, Dehling, Gilat, Hill and Weiss (1996). They first showed, by means of a

 simple counterexample, that the law of large numbers might fail unless extra
 conditions on either the kernel or the process (Xn) are imposed. One of the
 main results of Aaronson et al., which we state below, implies strong consis-

 tency of Un(h) for bounded continuous kernels.

 THEOREM A [Aaronson et al. (1996)]. Let (X,,),,,N be a stationary ergodic
 sequence with marginal distribution F, and let h: Rqm -? R be a measurable,
 bounded and Fm-a.e. continuous function. Then

 Un _O(F) as n -+ oc.

 Stronger results can be obtained if the underlying process (Xn)n satisfies
 some mixing conditions. In the context of U-statistics laws of large numbers,

 absolute regularity turns out to be an important concept. Denote by ,a the
 o-field generated by {Xi, a < i < b}, where 0 < a < b < oc. We define the
 mixing coefficients (f3k)k>O by

 f8k = supE{ sup IP(ALI,a) - P(A)IJ.
 a Ac---/+01

 The process (Xn)n is called absolutely regular if f3k -? 0 as k -? oc.
 For absolutely regular sequences, Aaronson et al. established a result sim-

 ilar to Theorem A under milder conditions on the kernel function. Along a

 different line, Yoshihara (1976) could show that U-statistics of absolutely reg-
 ular sequences are asymptotically normal, provided certain extra assumptions
 on the moments of h and on the rates (/3k) hold.

 For stationary and ergodic sequences strong consistency of the estimator

 (1.5) of the correlation integral follows from Theorem A if (F x F)f(x, y):
 IIx - y = r} = 0, that is, if r is a continuity point of the correlation integral
 C(r). If C(r) is continuous, convergence of Cn(r) to C(r) is even uniform in
 r E [0, ro], as can be shown using monotonicity properties of Cn(r) and C(r).
 However, none of the theorems of Aaronson et al. (1996) is directly applicable

 to obtain consistency of the Takens estimator, as log x - y is an unbounded
 kernel. In the next section we will provide several counterexamples showing
 that the Takens estimator can indeed be inconsistent. General consistency
 results will be obtained in Section 3 under extra moment assumptions.

 2. Counterexamples. A first simple counterexample to consistency of
 the Takens estimator was already provided by Aaronson et al. (1996). We
 include it here for completeness and reference.
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 380 S. BOROVKOVA, R. BURTON AND H. DEHLING

 EXAMPLE 1. Let W1, W2, ... be i.i.d. random variables with a continuous

 distribution function F, satisfying

 (2.1) E(log IW1-W21 |) < C

 Let Y1, Y2, ... be i.i.d. Bernoulli random variables, independent of (Wn)>,

 with P(Yi = 1) = p (0 < p < 1). Define the process (X,,)l2,N by X1 = W1 and

 Xn = Wn(1 - Yn) + Xn_Yln for n > 1.

 This process is stationary and absolutely regular with marginal distribution

 F. Observe that Xn = Xn-1 whenever Yn = 1. As the latter occurs infinitely
 often, the U-statistics (1.6) diverges to -oc, almost surely, showing that the
 Takens estimator (1.4) is not consistent.

 It is instructive to analyze what went wrong in this example. The main
 problem lies in the drastic difference between the product distribution F x F

 and the two-dimensional joint distributions Pii induced by the pairs (Xi, Xj).
 For any pair (i, j) there is positive probability that Xi = Xj and hence

 (2.2) Epij (log I Xi-Xj ) = oc.

 This is in contrast to EFXF( log Xi - Xj l) < oc, which is a consequence of
 (2.1) and the fact that (Xn)n>l has marginal distribution F.

 The previous example is quite crude in the sense that I log I Xi- = X
 with positive probability, and thus E log Xi -XjI = oc for all pairs (i, j).
 In our next example we consider a stationary sequence (Xn)n,z for which
 pairs (Xi, Xj) have a bounded density with respect to Lebesgue measure and
 EllogIXi-Xjl <oc,but

 lim Elog lXn-Xll I = oc n-?oo

 and for which the Takens estimator is inconsistent.

 EXAMPLE 2. Let (Xn)n,Z, (Yn)n,z and (Zn)n,z be three mutually indepen-
 dent i.i.d. processes, with X91 and Zn uniformly distributed on [0, 1] and Yn
 symmetric Bernoulli variables, that is, P[Yn = 0] = P[Yn = 1] = 1/2. Let
 +(k) := exp(22k) and define a new process (Xn)n>l by

 xn={~~z 2 ne-k + ?P(k) iYn =1 n-1 = =Yn-k = O, Yn-k-1 = 1,
 Xn= 1-

 _Xn, if Yn =0.

 By stationarity of the processes (Xn), (Zn) and (Yn), also (Xn)n>l is station-
 ary. In addition, one can show quite easily that (Xn)n>l is absolutely regular.
 Moreover, I Xi -Xj has a bounded density and hence E log Xi -Xj < oc
 for all pairs (i, j).
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 CONSISTENCY OF THE TAKENS ESTIMATOR 381

 Define the event A,. {Yr = 1, Y._1 = =Yo = 0, Y_1 = 1}, and note
 that P(Ar) = 2(r?2). On A,. we have X0 = 2X0 and Xr = 2X0 ? Zrftk(r)
 and thus

 E(|log IXO-Xr |) > E(Ilog lXo-Xr I IA?.)2-(?'+2)
 2-(r+2)[E(- log Zr) + log +b(r)]
 > 2-('+2)'2 - 2r-2

 Hence supi, j E log IXi - Xj = oc. This result already suggests that the
 corresponding U-statistic (1.6) might be divergent, and this is indeed the case
 as we shall show now. We will make use of the following lemma.

 LEMMA 1. Suppose that (Y,,),,> is an i.i.d. sequence of nonnegative random
 variables with E[Y ]1/2 = oc. Then

 I n
 lim sup 2 Yi = oc almost surely.
 no? n i=1

 PROOF. Since all Yi's are positive,

 1 Yn
 limsup-2EY.>limsup 2'
 n->oo n j=1 n--oo n

 and the fact that the r.h.s. of this inequality is infinite is a consequence of the
 following line of equivalent statements, valid for all 8 > 0:

 00

 E[y1] /2 =- 00 <, P(Y > 8n2) = 00 ? P{Y,, > En2 i.o.} = 1,
 n=1

 which follow from the Borel-Cantelli lemma. D

 Note that

 2
 -(L loglXi-X
 n(n - 1) 1i< - o -

 - = in<-2n

 > 2 -log Ixi - XoX X

 (2.3) ?i, j:Xi= 1Xi, X j=o XXi /+Xj-] =n(n -1) [ lg|X-jI _ X = Xi, !i.
 2 J2

 + -logZ

 i, j: Xi= g i, Xij= 2 gi+z jlp(i-i)

 M_

 ? E log (R
 m=1
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 382 S. BOROVKOVA, R. BURTON AND H. DEHLING

 where R1, . . ., RM are lengths of full zero-blocks of Yi contained in the sample

 of size n. An application of the ergodic theorem yields that M/n -4 as
 n -? oc. The last term in (2.3) is divergent a.s. according to Lemma 1, because

 12 E log 4(Rm) = (M 1 log &4(R2)
 and

 E[log 4i(Rm)]112 = j[log 4)(r)]l/22r = L1 =
 r r

 So the Takens estimator is not consistent for this example as well.

 In the last section we shall give a numerical example which illustrates

 the divergence of the Takens estimator in the case of infinite expectation in
 (2.2), while the Grassberger-Procaccia approach gives a reasonable estimate

 of the correlation dimension. However, in general, the Takens estimator has

 advantages, such as computational efficiency, over the Grassberger-Procaccia
 method. It also turns out that if one imposes some additional conditions on
 the expectations in (2.2), this leads to the weak consistency of the Takens
 estimator in the case of absolutely regular and stationary ergodic processes.
 This is the consequence of more general results on the weak consistency of

 U-statistics, which we present in the next section.

 3. Weak consistency of U-statistics. This section contains the main
 theoretical results of the present paper. We prove two consistency results for
 U-statistics of stationary ergodic, respectively, absolutely regular sequences.
 Compared with the results of Aaronson et al. (1996), we replace their condition

 that the kernel h(x, y) be bounded by a uniform integrability requirement on

 h(Xj, Xj), i, j > 1. For simplicity we formulate and prove our theorems here
 only for U-statistics of degree m = 2 and with one-dimensional inputs Xi,
 that is, q = 1. Nonetheless the results continue to hold for general m and q.

 THEOREM 1. Let (X,)n>1 be a stationary ergodic process with marginal dis-
 tribution F, and let h: R x R -- R be measurable and (F x F) - a.e. continuous.
 Suppose moreover that the family of random variables {h(Xi, Xj): i, j > 1}
 is uniformly integrable. Then, as n -- oo,

 (3.1) Un -- 0(F) in probability.

 In particular this holds, if supi j E h(X , X j) I+ < oc for some 8 > 0.

 PROOF. A well-known result in ergodic theory states that, given a sta-

 tionary ergodic process (Xn)n>l with marginal distribution F, one has for all
 measurable sets A, B that

 in

 - E P(X1 E A, Xk E B) -- F(A)F(B)
 n k=1
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 CONSISTENCY OF THE TAKENS ESTIMATOR 383

 as n -- oo. Denoting by Ilk the joint distribution of (X1, Xk), this implies that
 (1/n) X2k=l ILk converges weakly to the product measure F x F.

 We now define the truncated kernel hK(x, y) = h(x, y)l{lh(x,y)I<K}J where
 K is such that (F x F)f(x, y): Jh(x, y)J = K} = 0. As hK(x, y) is bounded
 and F x F-a.e. continuous, we get f IhK(x, y)J d((1/n) 2k- Ik)(X, Y)
 f IhK(x, y)J dF(x) dF(y) and thus

 f hK(x, y)J dF(x) dF(y) = lim f hK(x, Y) d( k (X Y)

 n n
 = lim - L EIhK(Xl, Xk)

 k=1

 i n
 < lim sup - Y Elh(Xl, Xk)1

 it-* , n k=1

 < sup Elh(Xl, Xk)1.
 k

 By uniform integrability of {h(Xi, Xj): i, j > 1}, the right-hand side is finite.
 Hence we may conclude that f Jh(x, y)J dF(x) dF(y) < oo, that is h is F x F-
 integrable.

 Moreover, hK(x, y) satisfies all the conditions of Theorem A, and hence

 1 (Z hK(Xi, Xj)
 (3.2) ~n(n - 1) 1<i#j- <n

 - ffthK(x, y) dF(x) dF(y) a.s. as n -- oo.

 By F x F-integrability of h we obtain

 (3.3) f h(x, y) dF(x) dF(y) - ff hK(x, y) dF(x) dF(y) -O 0

 as K -- oo. Uniform integrability of {h(Xi, Xj), i, j > 1} implies

 supElhK(Xi, Xj) - h(Xi, Xj)l = supElh(Xi, Xj) 1{Ih(Xi,Xj)I>K} 0
 i, i, j

 as K - oo. This implies that

 (3.4) E hK(Xi, Xj) - 1 h(Xj, Xj) 0, n(n - 1)Xi Xj)n(n -1)1tji 1<i#Aj<11niAi1

 as K - oo. Combining now (3.2), (3.3) and (3.4), the statement of the theorem
 follows. Ew

 In case of an absolutely regular process, we can drop the continuity condi-
 tion on the kernel, as the next theorem shows. Absolute regularity of a process
 implies that the sequence of long segments of this process, separated by short
 ones, can be perfectly coupled with another sequence of long segments, which
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 384 S. BOROVKOVA, R. BURTON AND H. DEHLING

 are independent and have the same distribution as those of the original pro-
 cess. This is stated precisely in the following result of Philipp (1986).

 LEMMA 2 [Theorem 3.4 in Philipp (1986)]. If (Xn)neN is stationary and

 absolutely regular with mixing coefficients /3k, then for every m, N > 0 there
 exists an i.i.d. sequence of N-dimensional random vectors 4j, 1 ,..., such that
 for all k = 1, 2,

 (3.5) P((k = = rn

 where (k = (X(k-1)(N+?n)+ ...**, XkN+(k-l)m) and the vectors (k and ('k have
 the same marginal distributions.

 THEOREM 2. Let (Xn)neN be a stationary and absolutely regular process
 with marginal distribution F, and let h: R2 -- R be measurable. Suppose

 moreover that the family of random variables {h(Xi, Xj): i, j > 1, i 7& j} is
 uniformly integrable. Then, as n oo,

 U-,0(F) in Ll,

 and hence also in probability.

 PROOF. Let e > 0 be given. By uniform integrability of {h(Xi, Xj): i, j > 1,
 i 7& j} there exists a 8 > 0 such that

 (3.6) Elh(Xj, Xj) 'B <I
 holds for all measurable sets B with P(B) < 8. The same holds if (Xi, Xj) is
 replaced by an independent pair (Xi, XJ). To see this, note first that absolute

 regularity of the process (Xi)i>l implies that the joint distribution of (X1, X71)
 converges in total variation norm to the product measure F x F. Thus for the

 truncated kernels hK(x, y) = h(x, y)I{1h(x,y)I<K} we get

 f f hK(x, y)J dF(x) dF(y) = lim ElhK(Xl, X7J)
 n-*xoo

 < supElh(X1, X71) <oN.
 n

 Letting K -- oo, we find that h is F x F-integrable, and hence we can find a
 8 > 0 such that

 (3.7) Elh(X , X9)IIB <8

 holds for all measurable sets B with P(B) < 8.

 Then choose m, N so big that 2,83, < 8 and m/N < 8. Define integers
 nk = (k - 1)(m + N) and consider the blocks

 (k = (Xnk?+1 n. Xnk+N).

 Observe that given the sample size n, the index of the last block (k fully

 contained in (X1, . . ., Xn) is p = [n/(N + m)]. By Lemma 2 there exists
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 CONSISTENCY OF THE TAKENS ESTIMATOR 385

 a sequence of independent N-dimensional vectors 4:, 42, ... with the same

 marginal distribution as (4k) such that (3.5) holds.
 In the rest of the proof we will show that the random variables in the small

 separating blocks of length m can be neglected and that the error introduced
 by replacing (i by (i is negligible. The main term will then be a U-statistic
 with independent vector valued inputs (4i) that can be treated by Hoeffding's
 classical U-statistic law of large numbers. To this end we define a new kernel
 H: RN xRN -? Rby

 N2 E h(xi, yj),
 1<i, j<N

 where 4 = (xl, ... , XN) and 7 = (Ylp , YN). From (3.6) we can infer that,
 for k 0 1,

 (3.8) E IH(4k, (I)}lB < 8

 for all sets B with P(B) < 8. The same holds if (:k)k is replaced by (4'k)n by

 (3.7).
 Independence of 4:k and 4: implies that

 EH(4:k, 4:) = ffh(x, y)dF(x)dF(y) = 0(F) for all k + 1.

 Thus by the U-statistics law of large numbers for independent observations,

 (3.9) E' H((k (1) O(F)

 almost surely and in L1. By construction of (4,), we have P(4k # (' or 4j +
 < 2,/3m < 8 and thus by (3.8),

 E IH(4k, :) - H(4:k, :) I = E IH(4k, :) - H('k, 41) l{4p4(& or < K 28.
 Hence,

 (3.10) E 1) H1k,<p H( 1) LH(4', 4:) < 28.

 Moreover,

 1 N 2 28

 p(p-1) n(n-1) p(p-1)
 for p large enough, and thus

 E 1n ) N H(4k, 41) < 2Co0, p(p -1 H(:k, 4:)-n(n - 1 ~#~
 where C0 = supi , EIh(fj, 4j) . This last estimate, together with (3.9) and
 (3.10), shows that for n large enough,

 (3.11) E N((k2 2-(F) < C2.
 n(n - 1 1,<k:hl<p 4i -0F)<
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 Now, decompose the original U-statistics as follows:

 nk+N n1+N

 h(Xj, Xi) = h(Xj, Xj
 l<ij#j<n 1<kAl< p i=nk+l j=nl+l

 p

 + Y, YL h(Xj, Xj)
 k=1 nk+l<i#ij<nk+N

 nk+1 n1+N

 +2 E E E h(Xj, Xj)
 1<k, l<p i=nk+N+l j=n1+1

 nk+1 nl+l

 + ) L L h(Xi,Xj)
 1<khl< p i=nk+N+l j=n1+N+l

 p

 + Y, YL h(Xj,Xj)
 k=1 nk+N+l<i#hj<nk+l

 71n

 + L h(Xj, Xj)
 i=np+N+l j=1

 np+N n

 + Y3 Y3 h(Xi, X).
 i=1 j=np+N+l

 A careful study of the index set shows that

 nk+N nj+N

 EE h(Xi, Xi)- h(Xj, X)
 <i7<11 1<k:Al<p i=nk+l j=nl,+l

 < CO(pN2 + 2p2 mN ? p2mN + p2m2 + 2n(m + N)),

 where CO = supi, j E h(Xi, Xj) . As p < n/N and m <EN the r.h.s. of the
 above inequality is bounded by C(8 + N/n)n2 and hence,

 E 1 12H k,0 <C
 n(n - 1) ( X j) n(n - 1) LN2H(-k, (1) -

 for n large enough. This, together with (3.11), proves the theorem. Dz

 4. Application to the Takens estimator. By Theorem 2, consistency
 of the Takens estimator for an absolutely regular sequence X1, X2, ... of
 q-dimensional random vectors follows if, for some 8 > 0,

 (4.1) supE|log IXi-Xjll < oo.
 i, J

 In this section we will briefly indicate some conditions on the distribution of

 the process (Xn) that imply (4.1).
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 Observe first that for any bounded domain A c Rq we have, for all 8 > 0,

 'A'A log||x yll I'+" dxdy<oo.

 Now suppose that Xi takes values in A and that the joint density f ij(x, y) of
 (Xi, Xj) is bounded, say by C. Then

 Elog [[Xi - Xjll I1+= fflog 1xYx - y jf(x, y)dxdy

 < C | log ||x-y 1?+ dx dy < co

 and the condition (4.1) is satisfied.

 On the other hand, if the distribution of the distances Rij = lXi - Xj
 has a density pij(x), then the expectation in (4.1) can also be expressed as

 E log lI Xi-X j j I log r I +1pi>(r) d r.

 This integral is bounded for all 8 > 0, for example, if supi j pi>(x) = O(x-a)
 as x -O 0 for some a < 1. Thus in this case the condition (4.1) is fulfilled as
 well.

 5. Numerical example. In this section we apply both the Takens estima-
 tor and the Grassberger-Procaccia method to the stationary ergodic process
 { Xn }neN, defined by

 X (Xn + exp(-I/Y,+1)) mod 1, if Yn+1 < 1/2,
 n Xn, otherwise,

 where {Yn}n2N, {Xf}lnnN are i.i.d. sequences of uniformly [0, I]-distributed
 random variables and X0 is uniform [0, 1].

 This process is absolutely regular and has the Lebesgue measure as its
 marginal distribution, so the correlation dimension in this case is a =1.

 We generated a sample of the size 1000 of this process. In Figure 1 the

 delay map Xn+1 versus Xn is shown.
 Note that for this process,

 Ellog jX-X +j 1 1/2 dy

 and, according to the results above, we expect the Takens estimator to diverge.
 And, indeed, computing a^T as in (1.4) gives us extremely low values of the
 estimate, such as

 aT = 8. 10-3,

 that is, the reciprocal of aT indeed diverges due to the pairs (Xn, Xn+J) which
 are close to the diagonal.
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 388 S. BOROVKOVA, R. BURTON AND H. DEHLING

 On the other hand, this is no danger for the Grassberger-Procaccia estima-

 tor (1.5). In Figure 2 we plotted log C (r) versus log r for a number of small
 r, together with estimated confidence bounds for log C (r). The straight line
 fit is good and it gives the value of the estimate for the correlation dimension

 agGP = 0.89.

 The problem of small distances in the Takens estimator can be attacked in

 the following way: introduce not only an upper (ro), but also a lower cutoff
 distance r1 > 0, which still can be very close to 0, and consider only those dis-

 tances between points in the orbit which lie between r1 and ro. This certainly
 brings a bias into the estimate, but it keeps the estimator from diverging.
 [Such an estimator for the correlation dimension was first suggested by Ellner
 (1988).] For our numerical example it gives the values of the estimate (when

 the lower cutoff distances were taken r(l) = (0-3 r(2) = 10-4 r(3) = 10-5)

 ~T, r1
 a 1 0.98,
 ^T, r(2)
 a 1 0 .96
 ^T, r(3)
 a 1= 0.95,

 which is closer to the real value than the Grassberger-Proccacia estimate.
 Moreover, this "cutoff" Takens estimator has the same advantage over least-

 1 I I X X 1> X1 X I X X X )K

 08 X X xs X X X X X s
 K sX X X X X X Xss X k X

 0.9 _ X 0 x X 4X

 K x ss xwF 0 xs XX
 06X X s X XX x s 9 x

 __8 -Ks ss X X X t X X x x

 02 x gx xs3 3
 4 X XX * *

 0. -X I 1 3H 1 X I K I xsA

 * * W>*

 s0.6 x

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 x_n

 FIG. 1. Delay map x,21 versus x, .
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 CONSISTENCY OF THE TAKENS ESTIMATOR 389

 squares as the original Takens estimator, that is, it is computationally more
 efficient.

 Acknowledgment. The authors thank the referees for their very helpful

 comments that improved the presentation of the paper, as well as for spotting

 an error in an earlier version of the proof of Theorem 2.

 4.5 I I I I I

 5 -

 5.5 -

 0
 0)
 0

 6-

 6.5-

 7 1 11 l l

 8 7.5 7 6.5 6 5.5 5
 log r

 FIG. 2. Linear regression, log Cn (r) versus log r.
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