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Direct knowledge of Ca2+ patterns in vertebrate
development is largely restricted to early stages, in which
they control fertilization, ooplasmic segregation and
cleavage. To explore new roles of Ca2+ in vertebrate
development, we injected the Ca2+ indicator aequorin into
zebrafish eggs and imaged Ca2+ throughout the first day of
development. During early cleavages, a high Ca2+ zone is
seen in the cleavage furrows. The high Ca2+ zone during
first cleavage spreads as a slow wave (0.5 µm/second) and
is preceded by three Ca2+ pulses within the animal pole
region of the egg. When Ca2+ concentrations are clamped
at the resting level by BAPTA buffer injection into the
zygote, all signs of development are blocked. In later
development, Ca2+ patterns are associated with cell
movements during gastrulation, with neural induction,
with brain regionalization, with formation of the somites

and neural keel, with otic placode formation, with muscle
movements and with formation of the heart. Particularly
remarkable is a sharp boundary between high Ca2+ in the
presumptive forebrain and midbrain versus low Ca2+ in the
presumptive hindbrain starting at 10 hours of
development. When Ca2+ changes are damped by injection
of low concentrations of BAPTA, fish form with greatly
reduced eyes and hearts. The present study provides a first
overview of Ca2+ patterns during prolonged periods of
vertebrate development and points to new roles of Ca2+ in
cellular differentiation and pattern formation.

Key words: Calcium signaling, Imaging, Aequorin, Cell cycle,
Differentiation, Pattern formation, Central nervous system, Danio
rerio
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INTRODUCTION

The intracellular concentration of free Ca2+ is generally low,
in the order of 0.1 µM, but can rapidly increase to reach value
in the 1 µM or even 10 µM range. When elevated, Ca2+

activates a wide variety of intracellular events such 
contraction, secretion, and gene expression (Ghosh 
Greenberg, 1995; Ginty, 1997). With this broad range 
effects, Ca2+ should be an important regulator in embryon
development. In early development, this role of Ca2+ is well
established. Thus so-called fast (10 to 30 µm/second) Ca2+

waves are known to restart development during fertilization
metazoa from sponges to man (Jaffe, 1991, 1993); while s
(~1 µm/second) Ca2+ waves both accompany and are need
to start and to extend early cleavage furrows in the large e
of Xenopus(Miller et al., 1993; Snow and Nuccitelli, 1993)
medaka fish (Fluck et al., 1991) and zebrafish (Chang a
Meng, 1995; Webb et al., 1997). Moreover, the segregation
cytoplasm and of oil droplets to the opposite poles of t
medaka egg before first cleavage is accompanied 
dependent upon the prolonged presence of high Ca2+ zones at
these poles (Fluck et al., 1992, 1994). Additional roles of C2+

in axis formation and pattern formation are suggested 
studies in fucoid eggs and slime molds. In the exceptiona
symmetrical fucoid zygote, formation of a localized
subsurface zone of high, free Ca2+ is needed to establish the
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region of future rhizoidal outgrowth and thus the basal pole
the organism (Speksnijder et al., 1989). In multicellul
aggregates of the cellular slime mold, D. discoideum,
formation of high free Ca2+ regions presage future regions o
stalk as opposed to spore cell differentiation (Cubitt et a
1995; Jaffe, 1997). 

Most of our knowledge on roles of Ca2+ in late vertebrate
development comes from the amphibian embryo, in whi
inhibition or activation of the inositol-Ca2+ signaling pathway
affects specification of the dorso-ventral axis (Ault et al., 199
Kume et al., 1997). Moreover, there is very interestin
evidence that neural induction in amphibians involves 
increase in cytosolic Ca2+ via L-type Ca2+ channels (Moreau
et al., 1994; Drean et al., 1995; Leclerc et al., 1995, 199
However, Ca2+ patterns have never been imaged during lo
periods in vertebrate development. For example, no C2+

measurements have been made during regionalization of
vertebrate central nervous system, which depends on var
secreted signaling proteins such as WNT-1 and FGF-8 (Ba
Cuif and Wassef, 1995). Perhaps Ca2+ plays a role in the
secretion of these signaling proteins or in the transduction
the extracellular signal to the nucleus. 

In order to directly explore the character and roles of fr
Ca2+ during vertebrate development, we have imaged Ca2+

patterns in embryos of the zebrafish, Danio rerio, using the
luminescent Ca2+ indicator aequorin. Aequorin-based Ca2+
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imaging is non-disturbing to the embryo allowing continuou
imaging during the first days of development. Although it 
possible to express apo-aequorin genetically (Rizzuto et 
1994; Brini et al., 1995), we chose to directly microinje
aequorin since this circumvents slow uptake of the aequo
co-factor (Créton et al., 1997). We observed free Ca2+ patterns
during normal development over 24 hours and thus through
the cleavage, blastula, gastrula and segmentation per
(Kimmel et al., 1995). 

MATERIALS AND METHODS 

Zebrafish embryos
A small colony of zebrafish (100 fish in two aquaria) was kept on 
artificial 14 hour day/10 hour night cycle at 28.5°C. Fertilized eg
were collected in a spawning cage 30 minutes after ‘dawn’. T
embryos were kept at 28.5°C in spring water containing 1 mg/l
methylene blue during all measurements up to 24 hours. Afterwa
the embryos were immobilized by adding 1% agarose to this sa
medium.

Use of aequorin
Zygotes were injected with 2 nl of aequorin dissolved in a buff
containing 100 mM KCl, 0.05 mM EDTA and 5 mM MOPS, pH 7.05
using a high pressure system PLI-100 from the Medical Systems C
Greenvale, NY 11548 (Miller et al., 1994). We injected either th
usual, near natural, recombinant, R-aequorin (at 0.57 mM) or a se
synthetic recombinant h-aequorin (at 0.24 mM); these were kindly
provided by Dr Osamu Shimomura. The more sensitive h-aequorin
was used to image the first 6 hours of development, whereas the lo
lasting R-aequorin was used to image Ca2+ in later development. With
an egg volume of about 200 nl the final aequorin concentrations in
embryo were 5.7 µM for R-aequorin and 2.4 µM for h-aequorin. The
microinjection needle was pushed through the vegetal regions of
chorion and the plasma membrane to inject the aequorin into 
center of the uncleaved egg. However, when focusing on pattern a
the animal-vegetal axis, the needle was pushed through the e
lateral region to avoid vegetal wound signals. The use of aequo
for Ca2+ imaging has been reviewed by Miller et al. (1994).

In the course of 25 experiments, we injected approximately 2
embryos with aequorin. From a batch of about ten injected embry
we typically selected one embryo for Ca2+ imaging and one embryo
for Ca2+ measurements with the photomultiplier tube. In selecting t
embryos, we looked for an embryo which had little or no cytoplas
leaking from the injection wound. The injection wounds were visib
on the imaging photon detector as high Ca2+ regions. Large wounds
obscured the Ca2+ patterns and decreased embryonic survival. Sm
wounds healed up quickly (within half an hour) and did not affe
embryonic development. 

To map the Ca2+ patterns during embryonic development, we hav
measured a total of 25 embryos using the imaging photon dete
and 17 embryos using the photomultiplier tube. To calculate 
average luminescence and the standard error of the mean (s.e.m
used those embryos, which developed normally, were imaged 
specific embryological stage, had the same orientation (side or 
view), and had the same type of aequorin injected (h- or R-aequo

Ca2+ measurement and imaging 
The total level of luminescence versus time was monitored with
Hamamatsu model 464 photomultiplier tube or PMT. The PMT do
not provide spatial information, but does provide an overview of Ca2+

levels throughout development. PMT values were calibrated to ma
the output of our imaging system. 

Our Ca2+ imaging system is based on a Zeiss 100TV axiove
microscope with a 20× fluar objective (NA=0.75). To minimize
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instrumental noise and allow the recording of data over many hou
without overloading memory, we record the dim aequorin light wit
a so-called Imaging Photon Detector or IPD made by Photek Inc., E
Sussex TN389NS, England (reviewed by Miller et al., 1994). Th
instrument stores data in a computer as a list of photon events, e
recorded photon having two horizontal space coordinates and one t
coordinate. The two space coordinates identify an individual pixel 
the imaging field and with the 20× objective, each pixel corresponded
to a specimen area of 10 µm × 10 µm. The digital storage of photons
allows flexible reviewing of the Ca2+ patterns. Thus images of light
emitted over any desired period can be created pointillist style. 
general, we first graphed the total luminescence emerging from 
embryo against time to detect any peaks in Ca2+. Then, subsequent
images of 10 minute photon exposures are analyzed to detect any C2+

localizations. Whenever a Ca2+ peak or Ca2+ localization is found, the
data is analyzed in more detail, making graphs of specific regio
within the embryo and forming images using shorter exposure tim
Our imaging system collects data from a wide depth of field along t
z-axis (at least 200 µm with the 20× objective). To obtain three-
dimensional information on Ca2+ patterning we routinely imaged
developing embryos in various orientations. This wide depth of fie
also makes the system more sensitive for differences in tiss
thickness than for instance a confocal imaging system would. 
control for such differences we consistently compared embryon
regions of equal thickness. 

In order to determine Ca2+ pulse frequencies, we needed to
distinguish genuine pulses from statistical fluctuations. To do this, w
compared the time course of luminescence from developing embry
to that from BAPTA buffered droplets containing comparable leve
of free Ca2+ and of aequorin. A Ca2+ pulse was defined as an increase
in luminescence which was twice the resting level since su
fluctuations were never seen in the droplet dummies.

To control for differential distribution or consumption of aequorin
we added 0.1 ml of 10% Triton to the water surrounding the embr
at the end of a typical experiment. The Triton treatment causes
massive increase in cellular Ca2+ and ‘burns out’ the aequorin still
present. These burnouts indicated that the aequorin was still eve
distributed in the embryos and that little decay of the aequorin h
occurred. 

Calibration of the imaging system
The IPD system was calibrated using BAPTA buffers in which fre
Ca2+ was set at specific concentrations. The BAPTA buffers contain
either 5.7 µM R-aequorin or 2.4 µM h-aequorin in 100 mM KCl, 10
mM monopotassium Hepes, pH 7.0, 1 mM MgCl2, 5 mM
tetrapotassium BAPTA and either 1.0 mM, 1.6 mM, 2.4 mM or 3.
mM CaCl2 to set the free Ca2+ concentration at 50, 100, 200 or 400
nM (Pethig et al., 1989). Immediately after adding aequorin, 0.2 µl of
the luminescent buffer was injected as a spherical droplet und
halocarbon oil. The luminescent spheres were imaged on the IP
using the 20× objective as if they were eggs.

Fig. 1 shows the result of this calibration. We measured 6.7 tim
more light with h-aequorin at a 2.4 times lower concentration. Thi
16-fold ratio (6.7 × 2.4) in sensitivities of R and of h aequorins
corresponds well to the figure reported earlier by Shimomura et 
(1993). The luminescence of both R- and h-aequorin rises with the
2.1 power of free Ca2+ over the mid range needed to interpret spik
heights from developing embryos. This is the same power recen
reported by Shimomura and Inouye (1996).

Ca2+ clamping and damping in the embryo
To clamp the Ca2+ level in the embryo, we injected high
concentrations of a Ca2+ buffer, in which the free Ca2+ concentration
was set at pCa 7 (or 100 nM). The Ca2+ buffer contained 250 mM
tetrapotassium BAPTA, 81 mM CaCl2 and 10 mM Tris, pH 7.5. With
an injection volume of 1 nl, the final cytosolic concentration o
BAPTA was estimated to be about 2.5 mM (assuming that half of t
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Fig. 1.Calibration of aequorin luminescence with known
concentrations of free Ca2+. The Ca2+ concentration (Ca) can be
calculated from the luminescence (L) using the equations or the
curves in the graph. The equations are represented by dotted line
and are only valid for the range in which they overlap with the
calibration curve. The exponential portions of both curves show
luminescence rising with the 2.1 power of free Ca2+. 
egg volume is non-cytosolic). As a control we injected 1 nl of a Tr
buffered, pH 7.5, KCl solution, which was isotonic to the BAPT
buffer. To dampen Ca2+ changes in the embryo, we injected the sam
BAPTA buffer at a five times lower concentration, thus giving a fin
cytosolic BAPTA concentration of approximately 0.5 mM. 

RESULTS

An overview of Ca 2+ signals during embryonic
development
Fig. 2 shows a representative record of total luminesce
versus time from a whole, normally developing embryo duri
Fig. 2.Representative time
course of luminescence from an
R-aequorin injected zebrafish
embryo during the first 22
hours of development. The
inferred average Ca2+ level
cycles during the first five
cycles (0.75-2 hours) and is
elevated during mid-
gastrulation (6-8 hours) and
early segmentation (11-16
hours). Note the greatly
increased frequency of Ca2+

spikes after 10 hours. The
emitted light was measured
with a photomultiplier tube. 
is-
A
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the first day and thus up to the end of the segmentation per
It shows increasing levels of luminescence and hence of f
cytosolic Ca2+ during three main periods: first, during each o
the first 5 relatively synchronous cleavages in the peri
between 0.7 and 2.0 hours. Second, during specification of 
dorso-ventral axis and the beginning of gastrulation from abo
4 to 7 hours. Third, from about 10 to 13 hours during ear
segmentation. In addition to relatively slow changes in Ca2+,
Fig. 2 shows numerous Ca2+ spikes which appear as vertica
lines on this time scale. All of these vertical lines represe
discrete Ca2+ signals rather than noise. These brief signa
become larger and more frequent after about 10 hours w
segmentation starts. 

The three periods of Ca2+ elevation and the late Ca2+ spikes
shown in Fig. 2 were similar in all of the embryos studied (n=9
for 0.5-2 hours, n=7 for 2-3 hours, n=6 for 3-22 hours). Thus
the relative changes in luminescence were essentially the s
in all embryos; however, the absolute levels of luminescen
covered a fourfold range in different embryos. Thi
considerable range in absolute luminescence was probably 
to variability in microinjection volume, in the amount of
aequorin burned up by Ca2+ leakage during injection, as well
as variability in Ca2+ levels from embryo to embryo. To
estimate the total amount of aequorin present in each of 
embryos, we burned out all of the available aequorin after 
hours of development. These burnouts averaged 72 mill
photons for R-aequorin (±36, n=4). By comparing these
burnouts with the total luminescence emitted durin
development, we calculated that 71% of the injected aequo
was still present after 24 hours of development (±9%, n=3).
This corresponds to an in vivo half-life of R-aequorin of 4
hours. The ultra sensitive h-aequorin is expected to decay 16×
faster (Shimomura et al., 1993), and was thus used for C2+

imaging during early development only (0-6 hours).

Ca2+ patterns during the cleavage period
Ca2+ patterns during the cleavage period were imaged us
the ultra-sensitive h-aequorin. The earliest imageab
luminescence (at half an hour after fertilization) was uniform

s
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Fig. 3.Representative Ca2+ patterns during early cell division obtained by using the ultra-sensitive h-aequorin. (A-E) Side views in the median
focal plane. (F-J) Top views with focal plane 30% down from the animal pole. High Ca2+ is seen at the sites of cytokinesis. The images (A-J)
are 30,000 photon exposures (~ 1 minute), in which the level of luminescence was color-coded, red representing high Ca2+, blue representing
low Ca2+. (K) Graph showing Ca2+ levels during the early cleavage cycles. Cleavage signals can be observed up until the 10th cleavage cycle.
From 3.5-4.5 hours of development, small spikes are seen which clearly exceed the noise levels shown between cycles 8 and 9. (L) Three peaks
were observed during first cleavage initiation. The arrow indicates the time of furrow deepening. (M-Q) Subsequent 50 second exposures show
that the Ca2+ elevation during furrow deepening spreads as a slow wave (0.5 µm/second) along the cleavage furrow. Bars, 200 µm. 
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Fig. 4.Ca2+ patterns in the blastula, gastrula and segmentation periods. (A-C) The overall Ca2+ pattern is uniform within the cellular region of
the blastula and early gastrula. (D-F) At 75% epiboly (8 hours), luminescence is high in the blastoderm margin, with peak levels in the dorsal
blastoderm margin. Dorsal luminescence becomes stronger and spreads anteriorly in the period from 8 to 10 hours. In the bud stage, a high
Ca2+ region (arrowhead) appears at about the location of the forming first somite. From the 3 somite through the 14 somite stage (G-K), this
high Ca2+ region accompanies the tailward formation of additional somites together with the tailward elongation of the neural keel. During and
beyond this same period, a remarkable low Ca2+ region appears and remains in the future hindbrain region. Note the sharp Ca2+ boundary at
about the midbrain/hindbrain border arrowed at the 6-somite stage in H and N. (The top view shown in N also shows that the high Ca2+ in the
front is not coming from the eye primordia.) Also note the small high Ca2+ region arrowed in J which probably represents formation of the otic
placode. The high Ca2+ regions at the 18-22 somite stages (L-M) probably arise from early muscle movements. Images are 30,000 photon
exposures. Bars, 200 µm.
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distributed (Fig. 3A,F) and averaged 25 (±10, n=5)
milliphotons per pixel second (mp/ps). This resting lev
corresponds to approximately 60 nM free Ca2+ (Fig. 1). Then,
in the first five minutes of first cleavage initiation, Ca2+ elevates
at the animal pole of the egg (Fig. 3B). During this fir
cleavage initiation period, three distinct peaks are seen (
3B,G,L). These three peaks average 69 (±31, n=5), 108 (±60,
n=5), and 74 (±32, n=5) mp/ps, corresponding to
approximately 90, 120, and 100 nM free Ca2+ (for calibration
see Fig. 1). We could see these initiation signals with h-
aequorin, but could not see them with the less sensitive
aequorin, nor were they seen with Ca2+ green dextran by Chang
and Meng (1995).

Large rises of Ca2+ are seen within the deepening furrow
during each of the first three cleavages (Fig. 3C-E, H-J). Dur
the first cleavage, this rise begins near the central nuc
reaches a peak of 360 mp/ps (±140, n=5) corresponding to a
peak level of about 250 nM free Ca2+ and spreads outwards a
0.5 µm/second (Fig. 3M-Q). Although cleavage signals can 
observed up until the 10th cleavage (Fig. 3K), the to
luminescence generated by all of the synchronous cleav
blastomeres becomes smaller in later cell divisions (Fig. 2

Ca2+ patterns in blastula and gastrula stages
Small spikes were generated at a frequency of about one
minute between 3.5 and 4.5 hours during the blastula st
(Fig. 3K). These spikes were most apparent when usingh-
aequorin, but could also be observed using R-aequorin. 
overall Ca2+ pattern is uniform within the cellular region of th
blastula and early gastrula (Fig. 4A-C). However, in four o
of seven embryos, we observed higher Ca2+ in the presumptive
ventral region than in the presumptive dorsal one from 2.
hours of development. (The dorso-ventral axis was determi
retrospectively, by videotaping embryos up until 6.5 hours
development.) We did not pursue this Ca2+ gradient, since one
of the seven embryos showed a reverse Ca2+ gradient, while
the two remaining embryos showed uniform Ca2+ patterns
from 2.5-3 hours of development. 

At 75% epiboly (8 hours), luminescence is high in th
blastoderm margin, with peak levels in the dorsal blastode
margin (Fig. 4D). Dorsal luminescence becomes stronger 
spreads forwards (in anterior direction) from the organiz
region at about 0.05 µm/second from 8 to 10 hours (Fig. 4D
F).

The segmentation period; Ca 2+ patterns in the head
region
At 10-11 hours of development, distinct Ca2+ patterns can be
recognized along the antero-posterior axis of the embryo (F
4F,G). Most apparent is the high Ca2+ zone which appears in
the presumptive fore and midbrain regions in contrast to 
presumptive hindbrain region. The presumptive hindbrain o
10-hour old embryo consists of a small area that is latera
stretched over the blastoderm. The lengthening of the low C2+

zone seen from 10 to 14 hours in Fig. 4F-J probab
corresponds to the elongation of the future hindbrain dur
this same period (Woo and Fraser, 1995). The Ca2+ elevation
in the anterior head region becomes more pronounced a
hours of development (Fig. 4H). At this point, the mid- an
forebrain luminesce 1.7 times (±0.3, n=4) brighter than the
hindbrain. This corresponds to a Ca2+ concentration of 144 nM
el
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in the mid- and forebrain and 112 nM in the hindbrain (see F
1 for calibration). A relative sharp border separates eleva
Ca2+ in the presumptive mid- and forebrain from low Ca2+ in
the presumptive hindbrain. At 14 hours, the low level of Ca2+

in the hindbrain is locally interrupted by an elevation of Ca2+

which is associated with the formation of the otic placode (F
4J). The overall luminescence remains 1.7 times (± 0.2, n=4)
higher in the forebrain as compared to the hindbrain. Even
16 hours of development, Ca2+ remains low in the hindbrain
region. Ca2+ patterns were also studied in embryos viewe
from the top. Again, the most striking feature was th
midbrain-hindbrain border, with high Ca2+ in the fore and mid
brain and low Ca2+ in the hindbrain (Fig. 4N). 

An important control in Ca2+ imaging with aequorin is the
burnout, which shows whether or not aequorin was uniform
distributed throughout the embryo (Fig. 4O). For the burno
Triton is added to the culture medium creating holes in t
plasma membranes. Intracellular Ca2+ levels quickly rise to the
millimolar range and all of the aequorin burns up. From the
burnout experiments we learned that aequorin concentrati
are low in the yolk region. Probably very little of the cytoso
(which contains aequorin) is present between the dens
packed yolk granule. Thus, the low luminescence observed
the yolk area during embryonic development may be simp
due to a lack of aequorin. In contrast, aequorin was uniform
distributed in the embryo proper.

The segmentation period; Ca 2+ patterns in the trunk
and tail
The trunk region develops a higher Ca2+ zone than the
adjoining hindbrain and tail regions. This zone move
backwards to the tip of the tail from about 10 to 14 hours
0.07 µm/second (Fig. 4F-J). At 14-16 hours, Ca2+ appears as
a gradient along the antero-posterior axis, with the highest C2+

concentrations in the tip of the tail. Thus, an ultraslow Ca2+

wave moves posteriorly along with the formation of th
somites and neural keel. 

At 14 hours, the trunk emits 1.8 times (±0.3, n=4) more
luminescence than the hindbrain. The tail emits 2.4 tim
(±0.7, n=4) more luminescence than the hindbrain. Th
corresponds to a Ca2+ concentration of 86 nM in the hindbrain,
115 nM in the trunk region, and 133 nM in the tail region. A
18 hours, the tail of the embryo starts moving and high Ca2+

is observed in the region of the embryo showing spontane
muscle contractions. A similar Ca2+ signal is observed in the
tail region of the embryo at 20 hours of development (Fig. 4M

The segmentation period; Ca 2+ spikes
Starting at 11 hours of development, a radical increase in 
frequency of Ca2+ spikes is seen (Fig. 2). From 12 to 22 hou
embryos generate about 80 spikes. The 12 hour embr
averaged 8.5 spikes per hour (±4, n=4) and the 14 hour
embryos averaged 8.0 spikes per hour (±2, n=3). 

The duration of the spikes ranges from 10 to 200 secon
and the increase in luminescence has a doubling time rang
between 1 and 40 seconds (Fig. 5). The vast majority of 
spikes (96%) are present in the hindbrain, trunk and tail reg
(approximately 32% each). Only 4% (±3, n=7) of the spikes
are localized in the head region even though it represents
most anterior 25% of the embryo. Thus the spike frequency
the head region is extremely low - on average only one sp
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per three hours. Moreover, the pulses in the head region w
small as well, increasing the levels of luminescence by onl
two to four fold (Fig. 5A). Ca2+ spikes may be far more
important in other embryonic regions particularly the hindbra
and the heart where the pulses occur far more frequently 
are much larger. For example, spikes from the heart 
observed every 10-20 minutes and the level of luminesce
increases up to a 100-fold (Fig. 5E,F). This 100-fold increa
in luminescence corresponds to approximately a 10-fo
increase in Ca2+ concentration, suggesting that the Ca2+

concentration in the heart is temporarily raised to t
micromolar range. 

Ca2+ buffering with BAPTA
To block normal Ca2+ patterning during cleavage, we injecte
the Ca2+ buffer BAPTA into uncleaved zygotes to yield a fina
BAPTA concentration in the cytosol of about 2.5 mM. The
embryos did not cleave and remained in the one cell stage u
they lysed (data not shown). In some cases, they survived
more than 24 hours without any sign of development. 

When lower concentrations of BAPTA were injected (0
mM final concentration in the cytosol), the embryos develop
into fish having several developmental defects (Fig. 6). T
most apparent defect was the deformation of the he
Although an atrium and a ventricle were formed within th
heart, the heart remained small and was usually not capab
pumping blood. A large pericardium formed around the he
and the heart was stretched in the longitudinal direction. 

A second defect observed in such BAPTA injected embry
was a reduction in eye size. The eyes of the BAPTA injec
embryos were measured after 4 days and averaged 182 µm in
diameter (±4, n=9). The eyes of the control embryos averag
320 µm in diameter (±3, n=16), and were therefor 1.8× wider
and 6× larger in volume. In contrast, the otic placodes of th
BAPTA injected embryos were not significantly reduced 
size. The otic placodes of the BAPTA-injected embry
averaged 193 µm (±3, n=9) and the ones of the control embryo
averaged 200 µm (±2, n=16). The BAPTA-induced reduction
of eye size can not be explained by a simple delay 
development. This because younger control embryos h
small eyes, but have small otic placodes as well. For exam
a 24-hour-old control embryo has an average eye size of 
µm (±4, n=12) and an otic placode size of 86 µm (±3, n=12).
Apart from the heart and eye defects, such BAPTA inject
embryos developed fairly normally according to gro
morphological criteria. For example, the embryos had blo
cells, somites, a brain, pigmentation in the retina, a lens in 
eye, fins, and showed muscle movements and a touch re
Such BAPTA-injected embryos were usually a bit smaller th
the controls and in the more severe cases they had short t

DISCUSSION

The cleavage period
Ca2+ signals associated with cleavage have been previou
measured in medaka and zebrafish eggs (Fluck et al., 19
Chang and Meng, 1995; Webb et al., 1997). Our results sup
these earlier observations. Moreover, we have measu
additional Ca2+ peaks in the first five minutes of cleavag
initiation. 
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At the onset of first cleavage we observed three distinct Ca2+

peaks. The second, and largest, of the three cleavage initia
peaks probably corresponds to the ‘furrow propagation signa
which is a Ca2+ wave associated with the furrow elongation a
described in zebrafish embryos (Webb et al., 1997). A simi
Ca2+ signal or ‘furrowing wave’ has also been shown in
medaka fish embryos (Fluck et al., 1991). The role of the tw
additional Ca2+ signals (the first and third initiation signal)
remains to be determined. Judging from observations on 
urchin and amphibian eggs the first of these Ca2+ signals may
function in nuclear envelope breakdown (Browne et al., 199
Wilding et al., 1996), chromosome disjunction (Groigno an
Whitaker, 1998), surface contraction (Hara, 1971), or furro
positioning (Miller et al., 1993; Webb et al., 1997). 

During the subsequent deepening of the cleavage furrow 
observed a Ca2+ wave which spreads at a velocity of 0.5
µm/second. It has been previously suggested that similar sl
Ca2+ waves cause growth of furrowing membranes by mea
of exocytosis and are required for ‘zipping’ the blastomere
together (Fluck et al., 1991). Another possible role of hig
furrow Ca2+ is to localize cytoplasmic factors, as previousl
shown during polarization in fucus eggs (Speksnijder et a
1989) and during ooplasmic segregation in medaka fish eg
(Fluck et al., 1994). Interestingly, a germ-cell-specific mark
(vas RNA) localizes to the cleavage plane in 2- and 4-cell sta
zebrafish embryos (Yoon et al., 1997). The speed of the C2+

waves during furrow deepening (0.5 µm/second), corresponds
well with observations in medaka in which both the furrowin
and zipping waves move at 0.5 µm/second (Fluck et al., 1991).
Moreover, the data of Webb et al. (1997) do show furrowin
and deepening waves with velocities of 0.5 and 0.5 to 0
µm/second, respectively. These cleavage waves are believe
be members of a large and distinct class of slow Ca2+ waves
with conserved speeds (Jaffe, 1993). 

Strong evidence that Ca2+ is needed for cleavage is provided
by the results of Ca2+ buffer (BAPTA) injection into Xenopus
(Miller et al., 1993; Snow and Nuccitelli, 1993), and zebrafis
eggs (Chang and Meng, 1995; Webb et al., 1997). In our han
a final cytosolic concentration of 2.5 mM BAPTA can
completely block development for up to 24 hours. A simila
effect was previously observed in fucoid eggs, some of whi
respond to comparable Ca2+ buffer injections by suspending
visible development for ten days or more (Speksnijder et a
1989).

The blastula and gastrula period
The first sign of Ca2+ signaling during the blastula period is an
increase in spike frequency at 3.5 hours after fertilization. O
might imagine that these small spikes reflect the asynchrono
divisions of relatively small cells. However, a detailed study o
Ca2+ spikes in the zebrafish blastula (done with a fluoresce
reporter) showed comparable signals that are restricted to 
outermost or EVL cells, that often occur within single cells a
more than 10 times per hour and that occur at times which 
not correlated with the cell cycle (Reinhard et al., 1995). Thu
the blastula spikes are not likely to be cell division signals. T
observed increase in spike frequency might indicate t
activation of a particular signal transduction pathway. Th
spike frequency in the enveloping layer can for example 
doubled by expression of Xwnt-5A in zebrafish embryo
(Slusarski et al., 1997). Moreover, endogenous IP3 levels 
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Fig. 5.Ca2+ spikes appear from 11 hours onwards. These spikes a
very rarely seen in the future head (A) but appear at a frequency o
about 8 times per hour in the future hindbrain (B), trunk (C; top
view) and tail (D) from 11 to 22 hours. Ca2+ pulses are not observed
in the heart region at 26 hours (E) but are seen at 28 hours (F). Th
huge (!) spikes appear every 10 to 20 minutes for several hours.
Numbers next to upward arrows in the graphs indicate luminescen
doubling times. Images are 30,000 photon exposures, Bar, 200 µm.

Fig. 6. Embryonic defects after injection of the Ca2+ buffer BAPTA.
The pictures show 4-day-old embryos as observed with transmitted
light microscopy. (A) Control embryo: the size of the eye (e) and otic
vesicle (ov) were measured along the antero-posterior axis.
(B) BAPTA-injected embryos have reduced eyes (arrowheads). The
size of the otic vesicle is not affected by BAPTA injection.
(C) Control embryo ventral view, showing the heart (h). (D) The
BAPTA injected embryos have small hearts. (E) Control embryo at
lower magnification. (F,G) The majority of the BAPTA-injected
embryos have a pouch around the heart (arrowhead).
(H) Approximately 5% of the BAPTA-injected embryos has a more
severe phenotype, with a shortened antero-posterior axis and a
deformed heart, which is outlined on the picture (arrowhead). This
heart contracts but is incapable of pumping blood. Bars, 100 µm.
substantially elevated at 3-4 hours after fertilization (Reinha
et al., 1995). 

In the late blastula stage, the total level of free Ca2+ increases
(Fig. 2). This increase starts at a time coincident with the fi
indicators of organization along a second axis, nam
goosecoid expression (Stachel et al., 1993) followed b
rd

rst
ely
y

blastoderm thinning (Schmitz and Campos-Ortega, 1994) a
endocytosis (Cooper and D’Amico, 1996) in the dorsal regio
The level of free Ca2+ reaches a maximum during early
gastrulation (6.5 hours), when epiboly resumes and th
embryonic shield starts to extend towards the animal pole. 

At 75% epiboly (8 hours), luminescence is high in the
blastoderm margin, with peak levels in the dorsal blastoder
margin. Dorsal luminescence becomes stronger and spread
the anterior direction from 8 to 10 hours. While this anterio
spread does suggest a corresponding, ultraslow Ca2+ wave, it
may only indicate extension of a thicker embryonic region. Ou
imaging method fails to distinguish between these possibilitie
However, observations of a 0.1 µm/second surface contraction
wave spreading along a comparable path during primary neu
induction in the axolotl (Brodland et al., 1994) suggest that o
luminescence wave may partly reflect a slow Ca2+ wave. So
does evidence which indicates that neural induction 
amphibians involves an increase in cytosolic Ca2+ within the
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ectoderm via an influx of Ca2+ from extracellular regions
(Moreau et al., 1994; Drean et al., 1995; Leclerc et al., 19
1997).

The segmentation period
At 10-11 hours of development, distinct Ca2+ patterns can be
recognized along the antero-posterior axis of the embryo. H
Ca2+ was observed in the presumptive mid- and forebrain
contrast to low Ca2+ in the presumptive hindbrain. This striking
Ca2+ pattern in the brain remains clearly visible for sever
hours and precedes morphological patterning of the bra
Morphological segmentation of the zebrafish brain is fir
apparent at 11 hours of development when eye primordia 
formed from the lateral walls of the presumptive forebrai
However, the classical division into forebrain, midbrain an
hindbrain is first morphologically obvious at 16 hours o
development. We propose that the observed Ca2+ patterns help
regionalize the central nervous system. The boundary betw
high and low Ca2+ may be involved in formation of the
midbrain/hindbrain boundary and high Ca2+ itself may be
required for rostral differentiation. This idea is supported 
the BAPTA-induced reduction of eye size. Since the eyes 
formed from the lateral walls of the diencephalon, th
reduction in eye size points towards a role of Ca2+ in
diencephalon development. 

Which Ca2+-mediated pathways could possibly underl
brain regionalization? We can imagine at least two roles
Ca2+ in brain regionalization: (1) Ca2+ may activate
transcription, as it does in other neural systems (Ghosh 
Greenberg, 1995; Ginty, 1997; Hardingham et al., 1997).
thus seems possible that the rostral high Ca2+ zone induces the
transcription of rostral-specific genes. Possible target genes
zebrafish versions of orthodenticle which are expressed in
presumptive forebrain and midbrain of zebrafish embryos 
et al., 1994; Mercier et al., 1995). These so-called Otx or zOtx
genes have a sharp posterior limit of expression at 
midbrain-hindbrain border from 10-30 hours of developme
(2) Ca2+ is known to control secretion in a variety of cellula
systems and might thus regulate secretion of extracellu
proteins in the brain as well. The process of secretion could
turn be important in brain regionalization, since the formati
of the midbrain-hindbrain border depends on secreted prote
such as WNT-1 and FGF-8 (Bally-Cuif and Wassef, 199
Kelly and Moon 1995; Joyner, 1996; Lee et al., 1997). 

Apart from the Ca2+ patterns in the head, various Ca2+

waves, gradients, and spikes were observed in the trunk 
tail region. The most pronounced is an ultraslow Ca2+ wave
moving posteriorly along with the formation of the somites a
neural keel (10-14 hours). Although Ca2+ is known to mediate
cellular contractions, it remains to be shown wheth
intracellular Ca2+ plays a role in large scale morphogenet
movements such as infolding of the neural keel and format
of the somitic furrows. 

The highest Ca2+ levels during embryonic development wer
observed in the spikes. Such high Ca2+ may be related to rapid
changes in cell morphology or apoptosis. The most pronoun
Ca2+ spikes were the ones imaged in the heart. These lo
frequency high-amplitude spikes are first observed at abou
hours of development and thus seem to be unrelated to the h
beat, which starts to beat at a rate of 25 beats per minute a
hours of development (Stainier et al., 1993). The timing 
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these Ca2+ signals shows a closer correlation with separatio
of the heart chambers (24-30 hours) or with looping of th
heart, which occurs at between 30 and 36 hours of developm
(Stainier et al., 1993; Fishman and Chien, 1997). The he
defects observed after BAPTA injection suggest that Ca2+

signaling is needed for heart growth and development. Defe
in the embryonic heart may act back on further hea
development, as suggested by studies in the zebrafish muta
sih, web, str, pip, and hip. The heart shape in these mutan
embryos is often distorted (small, stretched, pipe-like) as
result of failing function (Chen et al., 1996). 

Future prospects
In the present study we imaged Ca2+ patterns in the zebrafish
embryo from the uncleaved egg to a small moving fish larv
We did not provide a high resolution picture of each of the Ca2+

signals, but rather aimed for an overview. This overview ca
be used as a guide for Ca2+ inhibition studies and for high
resolution studies using confocal Ca2+ imaging with
fluorescent indicators. Confocal Ca2+ imaging has already
resulted in detailed knowledge of neural activity in post
hatching zebrafish embryos (O’Malley et al., 1996; Fetcho 
al., 1997) and seems a promising approach to study spec
Ca2+ signals in zebrafish development with greater spatio
temporal detail. Moreover, the large number of mutan
zebrafish that has become available, will provide a uniqu
opportunity to study how specific genes affect the Ca2+

patterns. For instance, do mutant embryos in which th
midbrain hindbrain boundary is affected, e.g. ace and noi
(Brand et al., 1996), have altered Ca2+ patterning in the brain?
Or are Ca2+ spikes inhibited in mutant embryos with defective
heart development? And if so, would it possible to rescue the
mutants by manipulation of Ca2+ patterns?
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