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NTRODUCTION AND SUMMARY

Statistical mechanics provides the mathematical techniques that enable,
.n principle, the prediction of the thermodynamic behaviour of a system on
the basis of a model for its microscopic (molecular) structure1_3. For any
realistic interacting system of macroscopic size, however, the overwhelming
~omplexity of the calculation makes the introduction of some kind of
approximation unavoidable. In the past decades, as a consequence of the
increasing availability of ever larger and faster computers, there has been
2 growing interest in the development and application of ever more sophis-
ticated approximation schemes.

For lattice systems the so-called cluster approximations are widely
ssed. Here the behaviour of the whole system is extrapolated from that of
one or a few relatively small subsystems (clusters), approximations being
mnade for the influence of the surrounding system. Despite at least thirty
vears of widespread application the validity of such an extrapolation has
never been investigated in general. In this thesis it is shown, among other
things, that to guarantee the validity of this approach the chosen cluster
has to satisfy an infinite number of conditions. This makes the selection
of the proper cluster into what is called an undecidable problem that

cannot be solved by computer4.

It has been known for a long time that the laws of phenomenological
thermodynamics hold exactly only in the thermodynamic limit, where the
system is taken infinitely large with a finite density. The success of
phenomenological thermodynamics then shows that a system of macroscopic
size can be approximated very well by one of infinite size. This obser-
vation has led to the development of a statistical-mechanical formalism for
infinite systems, sometimes called "rigorous statistical mechanics", which
reflects the fact that in dealing with the subtleties of infinite systems
mathematical rigor is a necessity. Particularly for infinite lattice
systems a fair number of exact results have been obtained5'7.

The development and application of approximation techniques seems at

first glance to be in a way just the opposite of the rigorous approach. Yet
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there is a two-sided relation.

On the one hand, approximation results may have a rigorous inter-
pretation. Griffiths® first showed that for spin - Ué ferromagnets the
critical temperature as predicted by the mean-field approximation was more
than just an approximation: it is a rigorous upper bound. Recently more
results along these lines have been obtained, most of them dealing with the
mean-field approximat:iong-12 (which is a one-site cluster approximation).

On the other hand, comparison of results from rigorous theory with
approximation techniques can lead to a better understanding of the validity
of the approximations and may also point the way to better approximation
schemes13.

In this thesis certain aspects of cluster approximations for classical
lattice systems are analysed in the light of recent exact results. It turns
out that a number of physically reasonable and generally accepted

assumptions are far from trivial or even dubious from a mathematical point

of view.
d14

All cluster approximations, including the mean-fiel , quasi-
chemical'® and Kramers-Wannier'® approximations, can be described within
the framework of one general formalism, which is called the Cluster
Variation Method (CVM)17. The CVM has received much attention and has been
widely used. Evidence for an ongoing interest is the fact that in no year
in the period 1979-1984 less than 25 papers have appeared that deal with
the CVM or its application. Surprisingly enough, however, with the
exception of the special case of the mean-field approximation, which has
been studied thoroughly, little effort has been spent on clarifying the

exact nature of the approximations involved in the CVM and their influence

on the results of the calculations.

In order to summarise the contents of this thesis we shall briefly
describe the CVM,

To predict the thermodynamic behaviour of a system one must find the
free energy function of the system in equilibrium. The Gibbs prescription
to obtain this function is equivalent to a variational principle: write

down the free energy for each thermodynamic state; the equilibrium state is
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that state that gives minimal free energy. The free energy F is given by
ES=s8UF=ETS (1)

where U is the (average) energy of the system and S is the entropy.

Consider a translation-invariant lattice L. With each lattice site a
there is associated an occupation index or spin ca. For instance, if the
model describes a binary alloy of atoms A and B, Ua may take the values A
or B indicating which type of atom occupies site a. If A is a finite set of
lattice points (a cluster) of L, then GA = {da I a€4A} gives the occupation
of A, or the configuration on-A. The probability of finding the
configuration OA on A is written pA(oA). The probabilities p, are called
the occupation variables for the cluster A.

Now consider a large but finite system L within L. L then is a finite
system for which the Gibbs prescription is valid. The thermodynamic state
of this system is described by the occupation variables for L. To find the
equilibrium state we must write U and S as a function of these occupation
variables and minimise the difference U - TS. Since the number of variables
is extremely large, this is an insurmountable task.

For many models, however, the (average) energy density u = U/N (where
N is the number of sites of L) can be written as a furiction of only the

occupation variables for one or a few small clusters:
L AR (2)
1 2 n

The entropy density, s = S/N, however, always depends on all the variables

pL(cL):

4 o Ks
L % pL(cL) log pL(oL) (3)
9,

The essence of the CVM is to approximate the entropy density s by an

expression that also involves only a small number of occupation variables:
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where the a, are (real) coefficients and
= - 5
S[A] k i pA(GA) log pA(GA) (5)
A
Each particular CVM approximation is determined by specification of
the clusters Ai and the coefficients .

As a consequence of the approximation in Eq. (4) an expression for the

free energy per lattice site, f = u - Ts, is obtained that depends only on
a relatively small number of occupation variables. This expression is
minimised by variation of these variables. Thus, approximations are
obtained to the equilibrium free energy as well as to the equilibrium
values for these occupation variables. Since no values are obtained for all
the other occupation variables, the CVM thus only yields a partial

specification of an approximation to the equilibrium state.

In Chapter 1 of this thesis, after some general remarks, the
relationship is established between the CVM and the rigorous version of the
variational principle for the free energy density as valid in the
thermodynamic limit of an infinitely extended lattice.

Chapter 2 is concerned with the entropy approximation (Eg. (4)) that
is the heart of the CVM. It is shown that this approximation is based on
the truncation of a series expansion that is not necessarily absolutely
convergent. We show, however, that there is a particular sequence of
partial sums that converges monotonically to the correct value for the
entropy density, for any translationally invariant thermodynamic state.
Identification of such sequences is important: since the series expansion
does not converge absolutely the mere addition of an extra term in the
summation may actually deteriorate the approximation.

Chapter 3 is concerned with what we call the compatibility assumption.
We saw that a CVM approximation yields only partial information on the
equilibrium state. It gives values for the occupation variables for those
clusters that have been used in the calculation. A thermodynamic state,

however, is specified by the occupation variables for all clusters in the

lattice. The cvm
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lattice. The CVM harbours the hidden assumption that the produced partial
information is compatible with such a complete specification. The reason
that this "compatibility assumption" is not trivially satisfied lies in the
requirement of invariance under lattice translations. The very existence of
this assumption is seldom recognised; when it is not justified, nonsensical

185 19 oraes

results may be obtained, as has been reported on some occasions
give a set of conditions that is both necessary and sufficient to guarantee
compatibility. In their stated form the conditions entail an infinite
number of inequalities; thus, in general they are not amenable to
verification.

Some more insight is obtained by studying the CVM in the limit of zero
temperature. To ensure compatibility it is then necessary to know whether a
given lattice model exhibits frustration. To determine this in general is a
so-called undecidable problem. This means that it is not possible to
construct an algorithm (i.e. write a computer program) that will solve the
problem in a finite amount of time for any arbitrary lattice model. For the
CVM this means in particular that the question which clusters should be
taken into account in setting up the approximation does not admit a general
answer: the set of criteria that have to be met is infinitely large.

In a number of special situations the compatibility assumption can be
justified by a more direct method: the explicit construction of the missing
part of the specification. This is the subject of Chapter 4. The method of
construction uses the theory of Markov chains.

In Chapter 5 it is shown that the CVM can yield rigorous upper and
lower bounds on the free energy density. In particular we show that the
Bethe (or quasi-chemical) approximation on the two-dimensional square

lattice gives an upper bound on the free energy per site.

Background material on the statistical-mechanical theory of infinite
lattice systems may be found in Ref. 7. A review of the cluster-variation
method from the traditional, application-oriented point of view may be
found in Ref. 20.

The original formulation of the CVM17'21'22 was based on the idea of
constructing an approximate expression for the combinatorial factor (i.e.

the number of configurations with specified energy) that occurs in the



partition function and involved rather complicated counting procedures.
Later, Morita23 reformulated the CVM using a Mobius transformation
formalism; the Mobius transformation serves to automate the counting
procedures of the original formulation. Morita's formulation underlies the
one we present in Chapter 1; Morita considered only finite lattices,
however. Finally a paper by Woodbury should be mentioned24; Woodbury showed
that a number of cluster approximations may be derived from considerations
based on general properties of the entropy set function S[A]l. Notions such
as conditional entropy, Markov process and strong subadditivity are already

implicitly present in his approach.

We want to end this introduction with a few remarks on the phenomenon
of phase coexistence as it manifests itself in the CVM. It has been known
for a long time that phase transitions in the sense of non-analytic
behaviour of thermodynamic functions or of non-uniqueness of equilibrium
states (coexistence of phases) can occur only in the thermodynamic limit of
an infinitely large systemzs. In the lattice systems we are considering
here, this follows immediately from the fact that for any finite system the
free energy is a strictly convex functional of the thermodynamic state.
Only in the thermodynamic limit the strictness is lost and there may be
more than one equilibrium state. The CVM is, in a way, a finite-system
calculation; however, since it employs an approximate free energy
functional that is not necessarily convex, there may be more than one
minimising set of occupation variables. By means of the familiar Maxwell
construction this is then interpreted as indicating separation into pure
phases.

In this thesis we show in Chapter 5 that the use of increasingly
accurate entropy approximations in the CVM results in increasingly accurate
information on some equilibrium state or states. We expect these to be the
extremal equilibrium states (which represent the pure phases). Were this
not to be true, it would mean that the CVM would miss part of the region of
phase coexistence at any level of accuracy: a state that is interpreted as
a pure phase on the edge of the coexistence region may then be in fact non-
extremal, thus a mixture of pure phases and actually inside the coexistence
region. A proof to substantiate our expectation would thus be of interest,

but is as yet lacking.
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