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IIIRODUCTION AND SI]MMARY

Statistical mechanics provides the mathematical techniques that enable,

h principle, the prediction of the thernodynanric behaviour of a systêm on

the basis of a motiel for its nicroscopic (nrolecular) structurel-3. Fot .r,y

rcalistic interacting system of macroscopic size, however, the overwhelming

ccplexity of the calculation nakes tbe introduction of some kind of

epproximation unavoidable. In the past decades, as a consequence of the

Íncreasing availability of ever larger and faster computers, there has been

a grrow'ing interest in the development and application of ever more sophis-

ticated approximation schenès.

For lattice systems the so-caIled cluster approximations are wiilely

nsed. ttere the behaviour of the whole system is extrapolated from that of

one or a few relaÈively smal1 subsystems (clusters), approximations being

rade for the influence of the surrounding system. Despite at least thirty

years of widespread application . the mliility of such an êxtrapolation has

never been investlgated in general. In this thesis 1t is shown, among other

thinqs, that to guarantee the validllty of this approach the chosen cluster

has to satlsfy an infinite number of conditlons. Thls makee the selection

of the proper cluster into r*rat is called an undecidable problen that

cannot be solved by cornputer .

It has been known for a long time that the laws of phenomenological

therrnodynanics hold exactly only in the thermodynamic limit, where the

systên is taken infinitel-y large w'ith a finite density. ltre success of

phenonenological thermodynamics then shows that a system of macroscopic

size can be approximated very vell by one of infinite size. Ttris obser-

vation has led to the development of a statistical-nrechanical fornalisn for

infinite systêms, sometines called "rigorous statistical mechanics", wtrich

rêflects the fact that in dealing with the subtleties of infinite systems

mathematical rigor is a necessity. Particularly for infinite lattice

systems a fair number of exact results have been obtaineds-7.

The developnent and application of approximation techniques seems at

first glance to be in a way just the opposite of the rigorous approach. Yet
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there is a t\,ro-sided relation.

on the one hand, approxination results nay have a rigorous inter-

pretation. GriffithsS first showed that for spin -172 ferromeignets the

critical tenperature as predictedl by t}le rnean-field approxirnation $as nrore

than just an approxination: it is a rigrorous upper bounil. Recently more

results along these l-ines have been obtained, rnost of thern dealing with the

mean-field approximatiorP-12 (which is a one-site cluster approxirnation).

On the other hand, conparison of rêsults fron rigorous theory with

approxination techniques can lead to a better understanding of the validity

of the approximations and may also point ttre rday to better approxination

s"h"res1 3.

In this thesis certain aspects of cluster approxirnations for classical

lat t ice systems are analysed in the l ight  of  recent  exact  resul ts.  f t  turns

out that a number of physical.ly reasonable and generally acceptêd

assurnptJ.ons are far from trivial or even dubious from a rnathenatical point

of view.

All cluster approximations, including the mean-fieId14. quasi-

chemicall5 and Kramers-wannierl6 approxirnations, can be described within

the frarnework of one general formalisn, wtrich is called thê Cluster

Variation Method (CVM)17. gh. CVtrt has received nuch attention and has been

widel-y used. Evidence for an ongoing interest Ls the fact that in no year

in the period 1979-1984 less than 25 papers have appeared that deal with

the CVM or its application. Surprisingly enough, however, with the

exception of the special case of the mean-fie1d approximation, which has

been studied thoroughly, Iittle effort has been spent on clarifying the

exact nature of the approxÍmations involved in the CVM and their influence

on the results of the calculations.

In order to summarise the contents of this thesis le shall briefly

describe the Cl'Ir{.

To predict the thermodynanic behaviour of a system one nust find the

free energy function of the system in equilibrium. The Gibbs prescription

to obtain this function is equivalent to a varlational principle: write

down the free energy for each thermodynanric state; the equill-brLunr state is

that  state that  g iv

F = u - :
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that state that gives minimal free energry. The free energTy F is given by

F = U - T S ( 1 )

where U is the (averagte) energy of ttre systen and s is thê entropy.

Consider a translation-invariant lattice í. witl each lattice site a

there is associated an occupation index or spin da. For instance, if the

rnodel describes a binary alloy of atoms A and B, da may take the values A

or B indicating whlch type of atom occupies site a. If À is a finite set of

lat t ice points (a c luster)  of  i ,  then d^ = {da I  ael}  g ives the occupat ion

of A, or the configuration on. ^. The probability of finding the

con f i gu ra t i on  d .  on  À  i s  w r i t t en  p . ( d . ) .  t he  p robab i l i t i e s  p r  a re  ca l l ed' l I - A À - - A

the occupation variables for thê cluster ^.

Now consider a large but finite systen L within i. r, then ís a finite

system for which the Gibbs prescription is va1id. The therrnodlmanic state

of ttris systen is describecl by the occupation variables for L. To find the

equilibrium state we must vrite U and s as a function of these occupation

variables and rninimise tie difference U - Ts. Since ttre number of rrariables

is extremely large, this is an insurmountable task.

For nany nodels, however, the (average) energy density u = U/N (where

N is the nurnber of sites of L) can be written as a furiction of only the

occupation variabl-es for one or a few srnall clusters:

u = u ( p n t p 1 1  t . . , p À )  ( 2 )
-1 "2 --n

l[he entropy density, s = S/Nr however, always depends on all the variables

p " ( o " ) :

ks  =  - l - X n" (o" )  log  p" (o" )
- L

( 3 )

The essence of the CVM is to approximate the entropy density s by an

expression that also involves only a small number of occupation variables:
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- m
s  =  E  c .  s t À . l  ( 4 )

i = l r a

where ttre q. are (rea1) coeff icients and

stÀl = -  k X en(on) los pn(on)
"^

( s )

Each particular CVM approximation is deterrnined by specification of

the clusters À. and ttre coeff icients c..
1 1

Às a consequence of ttre approxination in Eq. (4) an expression for the

free energy pêr lattice site. f = u - Tsr is obtained that depends only on

a relatively srnall number of occupation variables. Tttis e:q>ression is

ninimised by variation of these varlables. Thus, approxinations are

obtained to the equilibrium free energy as well as to the equilibriun

values for these occupaÈion varíables. Since no values are obtained for a1l

the other occupatlon variables, the G/liÍ thus only yieLds a partial

specification of an approximation to the equilibriun state.

In Chapter 1 of this thesis, after some generaL renarks, ttre

rel-atlonshlp ls established betvreen thê C\rM and the rigoroug version of the

variational principle for the free energy denslty as valid in the

thermodynanic llnlt of an lnfinltely extended lattice.

Chapter 2 ie concerned w'ith the entropy approxination (89. (4)) that

is the heart of the O/M. It is sholvn that this approxirnation is based on

the truncation of a series expansion tiat is not necessarily absolutely

convergent. We show, however, that there is a particular sequence of

partial surns that convêrges monotonlcally to tJle correct value for the

entropy density, for any translationally invariant thermodynarnic state.

ïdentification of such sequences is inportant: since the series e:<pansion

doês not converge absolutely the nere additÍon of an extra term in the

summation nay actually deteriorate the approxination.

Ctrapter 3 is concerned with what we call the conpatibility assumption.

vfe saw that a CVM approximation yields only pa.rtial infornation on the

equilibriun state. It gives values for the occupation varl-ables for those

clusters that have been used in the calculation. À thernodynanic state,

however, is specified by the occupation variables for all clusters in the

lattice. The CVM
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lattice. The C\tM harbours the hidden assumption that the produced partial

information is compatible with such a complete specification. rtre reason

that this "cornpatibility assumption" is not trivially satisfied lies in the

requirement of invariance rmder lattice translations. Itre very existence of

this assunption is seldom recognised; when iÈ is not justified, nonsensical

results Írny be obtained, as has been reporteil on sone occasions18,19. vfe

give a set of conditions that is both necessary and sufficient to guarantee

compatibility. In their stated forn the conditions entail an infinite

nurnber of inequalities; thus, in general they are not anenable to

verif icat ion.

Some rnore insight is obtained by studying the CVM in the lirnit of zero

teÍrperature. To ensure compatibility it is thên necesaary to know \thether a

given lattice nodeL êxhibits frustration. Fo deternine ttris in general is a

so-called unilecidabtre problem. This means Èhat it is not possJ-ble to

construct an algorithn (i.e. write a conputer progran) that will solve the

problem in a finite anount of tine for any arbitrary lattice rnodel. For the

Cr/M this neans in particular that the question r*rich cl-usters should be

taken into account in setting up the approxination does not admit a general

answer: ttre set of criteria that have to be rEt is infinitely large.

In a nurnber of special situations the compatibility assumptlon can bê

justified by a nore direct method: the explicit conatruction of the nissing

part of the specification. This is the subject of Chapter 4. The method of

construction uses the theory of Markov chains.

In Chapter 5 it is shown that the C\|II{ can yield rígorous upper and

lower bounds on the free energy density. In pa.rticular rre shorÍ that the

Bethe (or quasi-chenical) approximation on the two-dirnensional square

lattice gives an upper bound on the free energy per site.

Background naterial on the statistical-mechanical theory of infinite

lattice systems nay be found in Ref. 7. A revLew of the cluster-variation

method from the traditional, application-oriented point of view nay be

found in Ref. 20.

lltre original fornulation of the Cl]I.17r21,22 r^" based on t]re idea of

constructing an approxinate expression for the cornbinatorial factor (i.e.

tlte number of cronfigurationg vdth specifÍed energy) that occurs in the

I
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partition function and involved rather complicated counting Procedures.

Later, Morita23 reformulated the CVI-1 using a Móbius transformation

formalism; the Móbius transforrnation serves to automate the counting

procedures of the original fornulation. liloritars forrnulation underlies the

one ne present in ct rapter  1 i  Mor i ta consldered only f in i te lat t ices,

however. Finally a paper by lÍoodbury should be mentioned24; wooilbury showed

that a number of cluster approximations may be derived fron considerations

based on general properties of the entropy set function s[À]. Notions such

as conditional entropy, Markov process and strong subadditivity are already

implicitty present in his approach.

vÍê want to end this introduction with a few remarks on the phenonenon

of phase coexistence as i t  mani fests i tsel f  in  the c1/u.  I t  has been known

for a long tine that phase transitions in the sense of non-analytic

behaviour of thernodynamic functions or of non-uniqueness of equilibriun

states (coexistence of phases) can occur only in the ttrerrnodynanic limit of

an inf in i te ly 1arge system25. In the lat t ice systems we are consideríng

here, this follows inrnecliately from the fact that for any finite systen t].e

free energy is a strictly convex functional of the thernoilynanic state.

only in the tfiermodynamic timit the strictness is lost and there may be

rnore than one equilibriun state. The cvtit is, in a way, a finite-systen

calculationi however, since it employs an approximate free ener!ry

functional that is not necessarily convex, therê rnay be nore than one

minirnising set of occupation variables. By means of the faniliar Maxwell

construction this is then interpreted as indicating separation into pure

phases.

In ttris ttresis ne show in chapter 5 that the use of increasinqly

accurate entropy approximations in the cvÈl results in increasingly accurate

information on ge equilibrium state or states. we expect thèse to be the

extrenal equilibriun statês (which rePresênt the pure phases). I{ere this

not to be true, it r,ould rnean that the c1/M lroulil rniss Part of the region of

phase coexistence aÈ any level of accuracy: a state that is intêrPreted as

a pure phase on the edge of the coexistence region may then be in fact non-

extremal, thus a mixture of pure phases and actually inside the coexistence

region. A proof to substantiate our expectation rould tltus be of interest,

but  is  as yet  lacking.
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