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Abstract. A theory is developed on the assumption that 
early sensory processing aims at maximizing the infor- 
mation rate in the channels connecting the sensory 
system to more central parts of the brain, where it is 
assumed that these channels are noisy and have a 
limited dynamic range. Given a stimulus power spec- 
trum, the theory enables the computation of filters 
accomplishing this maximizing of information. Result- 
ing filters are band-pass or high-pass at high signal-to- 
noise ratios, and low-pass at low signal-to-noise ratios. 
In spatial vision this corresponds to lateral inhibition 
and pooling, respectively. The filters comply with 
Weber's law over a considerable range of signal-to- 
noise ratios. 

In this article I discuss a more general strategy for 
early sensory processing. It results in a reduced redun- 
dancy of the stimulus at high signal-to-noise ratios, and 
in an increased redundancy at low signal-to-noise ra- 
tios. The general assumption it is based upon is that 
early sensory processing maximizes the amount of in- 
formation transmitted through a noisy channel of lim- 
ited dynamic range. I will derive the general theory, 
including several properties and approximations, and 
give a numerical example showing that the theory is 
consistent with Weber's law for sensory processing. The 
purpose of this article is to present the theory in a way 
as general as possible. Elsewhere I present specific 
applications of the theory to spatiotemporal processing 
in the early visual system (van Hateren 1992a, b). 

1 Introduction 

What principles govern the first stages of sensory pro- 
cessing? An answer due to Attneave (1954) and Barlow 
(1961) is that the first stages of sensory processing are 
designed to remove redundancy from the stimulus. Re- 
dundancy in the stimulus is associated with those fea- 
tures and characteristics that are repetitive and 
predictable. For instance, Kretzmer (1952; see also 
Srinivasan et al. 1982) showed that elements (pixels) in 
an image are on average not very different from their 
immediate neighbours. By removing this predictability, 
e.g. by predictive coding (Kretzmer 1952), the stimuli 
can be more efficiently transmitted through the avail- 
able channels connecting the early sensory system to 
more central parts of the brain. 

As already noted by Kretzmer (1954), reducing 
redundancy has its drawbacks. In particular, when the 
stimulus is very noisy, redundancy is beneficial because 
it increases the reliability of transmission. In these 
circumstances it may even be better to increase redun- 
dancy, thus using a repetitive code with reasonable 
success, rather than using a compact code that results in 
many errors. 

2 Theory 

Below I will sketch the theory (Sect. 2.1), derive the 
main results (Sect. 2.2), give a numerical example (Sect. 
2.3), derive several properties of the theory (Sect. 2.4), 
and show that the theory leads to a close approxima- 
tion of Weber's law (Sect. 2.5). 

2.1 Theoretical scheme 

The scheme underlying the theory is shown in Fig. 1; 
the equations on the right are explained in Sect. 2.2. A 
stimulus is acquired by a transducer which also acts as 
a prefilter. The prefilter limits the frequency-bandwidth 
of the stimulus, in order to restrict the amount of 
further processing required. The resulting prefiltered 
stimulus is contaminated by noise, either due to the 
stimulus (e.g., photon noise) or due to the transducer. 
For simplicity, we will lump both of these noise sources 
to a source of additive noise introduced after the 
prefiltering. 

The noisy, prefiltered stimulus is eventually trans- 
ferred to a channel (e.g., a neuron) that has a limited 
dynamic range (i.e., it can only support a certain range 
of response values), and that produces some noise of its 
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Fig. 1. Scheme of early sensory processing. A stimulus is transduced 
and low-pass filtered by a prefilter, and to the result noise is added. 
A neural filter subsequently filters the prefiltered stimulus in such a 
way, that as much  as possible o f  the information it contains is 
t ransmitted through a channel of  limited dynamic range that pro- 
duces some noise of  its own 

own. Thus the channel has a limited information capac- 
ity (see e.g. Goldman 1953). It is the purpose of the 
neural filter in Fig. 1 to condition the prefiltered stimu- 
lus in such a way that the available channel capacity is 
utilized as much as possible. Thus the neural filter must 
be chosen such that the signal present in the channel 
gives as much information on the stimulus as possible, 
with the constraint that the signal values stay within the 
channel's dynamic range. In the next section I show 
how the unique neural filter with this property can be 
computed. 

2.2 Derivation of the theory 

The theory will be developed in the frequency domain. 
The frequency f then denotes a component of  a suitable 
Fourier transform of  the stimulus. For  example, when 
applying the theory to spatial vision, f could represent a 
spatial frequency. Although f is treated below as a 
one-dimensional variable, generalization to more di- 
mensions is straightforward (e.g., three dimensions for 
images changing in time, with two dimensions for spa- 
tial frequencies, and one for the temporal frequency). 

The power spectrum of  the stimulus (see e.g. van 
der Ziel 1970) is denoted by S( f ) .  Obviously, if S( f )  is 
completely different for different stimuli, the resulting 
neural filter (see Fig. 1) will be different as well. Then 
each stimulus would require its own filter. Fortunately, 
the power spectrum of stimuli is often much more 
constant than one might expect: it is mainly the phase 

of the spectrum, rather than its amplitude (or power), 
that determines differences between individual stimuli 
(Oppenheim and Lim 1981). For  example, the spatial 
power spectrum of natural images is usually propor- 
tional to 1/f  2 in good approximation (Field 1987; see 
also van Hateren 1992a). If  S( f )  has fixed characteris- 
tics, with individual stimuli only varying slightly around 
it, we can find a fixed neural filter optimized for this 
average power spectrum. 

If  the prefilter has a power transfer function pp(f), 
the resulting prefiltered stimulus will have a power 
spectrum Sp(f), with 

Sp(f) = S( f )pp( f )  . (1) 

To this power spectrum, noise with a power spectrum 
Np(f)  is added, and the result is filtered by a neural 
filter with a power transfer function p , ( f ) ,  resulting in 

Sp( f )p , ( f )  + Np( f )p , ( f ) .  (2) 

Finally, the channel adds noise with a power spectrum 
N<(f), thus yielding the total signal and noise power in 
the channel, Pc(f)  

Pc(f)  = Sv( f )P . ( f )  + Np( f )p . ( f )  + N<(f) . (3) 

Pc(f)  consists of a part due to the signal (Sp(f)p.( f))  
and a part due to the noise (Np( f )p . ( f )+No( f ) ) .  
Thus the signal-to-noise ratio a ( f )  (signal amplitude 
divided by noise amplitude) in the channel is 

__[ Sp(f)pn(f) ]1,2 
a( f )  - L N p ( f ) ~ ( f  ) T-N<(f)A " (4) 

From a ( f )  we can find the information rate R (see e.g. 
Goldman 1953) 

R = ~ lOge(1 + o-2(f)) df  

( s,(s)p~ dS, = I  lOge 1+  (5) 
af N , ( f ) ~ ( f ) + - - N c ( f ) )  

where Af is the frequency-bandwidth selected by the 
prefilter. I have chosen loge rather than log 2 in (5) for 
mathematical convenience. Thus R must be divided by 
1oge 2 if the information is wanted in terms of  bits. 

How much of the dynamic range of  the channel will 
be occupied by the total power in the channel, as given 
by (3)? We will approximate the dynamic range needed 
for signal and noise by the mean square value K 2 of  the 
response in the channel, which follows from (see e.g. 
van der Ziel 1970) 

K2 = S Pc(f)  df  = ~ (Sp( f )p , ( f )  + Np( f )p , ( f )  
4 f  aS 

+ Nc(f)) df.  (6) 

K is a measure of  the range of  response values occur- 
ring in the channel (due to both signal and noise). For  
a given channel with a limited dynamic range, K has to 
be fixed to a certain maximum. 

The final step in this derivation is the execution of 
the main strategy of the theory: the information rate R, 
as given in (5), has to be maximized (through varying 
p,( f)) ,  while keeping the response within the channel's 
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dynamic range (i.e., K = constant, see (6)). A similar 
problem was solved by Goldman (1953, p. 159) using 
the method of Lagrange multipliers, and we will follow 
that approach here. For simplicity of notation, I will 
drop from here on the arguments ( f )  of spectra and 
transfer functions. With 2 a Lagrange multiplier, we 
require that 

Op~ log~ 1 + NpPn + N~ 

+ 2 ~ ( S p p , + N p p , + N c ) = O .  (7) 

This leads to 
/ l\l/2 

--Nc(2Np + Sp) + NZS2p - 4 N p S p N c -  

P" = 2Up(Up + Sp) , (8) 

where the negative root of Pn was dropped, because a 
power transfer function has to be nonnegative. Now we 
can find Pn by choosing 2 such that (6) is satisfied with 
K fixed. This has to be done numerically by varying 2, 
thus varying p, (8) and thereby (3), and (6). 

2.3 Example 

Figure 2 shows a numerical example of the application 
of the theory for an average signal-to-noise ratio ( ~ ,  
see Sect. 2.5) of 100. In Fig. 2a the amplitude spectrum 
(square root of the power spectrum S) of a stimulus is 
shown. The power spectrum of the stimulus here de- 
pends as 1/f z on the frequency f. The stimulus is 
subsequently filtered by a prefilter with an amplitude 
transfer function (square root of the power transfer 
function pp) shown in Fig. 2b. The result is shown as 
the solid line in Fig. 2c. The dashed line shows additive 
noise with a power spectrum Np. The neural filter of 
Fig. 2d is such that it maximizes the information rate in 
the channel (see below). The solid line in Fig. 2e shows 
the stimulus after pre- and neural filtering, the line with 
the short dashes the noise of Fig. 2c filtered by the 
neural filter, and the line with the long dashes additive 
channel noise (with a power spectrum Arc). The ampli- 
tude spectra of Fig. 2e are such, that if they are squared 
(yielding power spectra), added, and integrated over f,  
as in (6), the result is a mean square response K 2 that 
exactly fits the channel's capabilities (i.e., its dynamic 
range). Fig. 2f shows the signal-to-noise ratio a, as in 
(4), derived from the signal and noise shown in Fig. 2e. 
The information (Fig. 2g) then follows from the inte- 
grand of (5), and the total information rate R from the 
integral over the curve in Fig. 2g. The neural filter in 
Fig. 2d is the filter that maximizes R, under the con- 
straint that the response does not exceed the channel's 
dynamic range. Finally, Fig. 2h shows the combined 
action of the prefilter and the neural filter. 

Note that the neural filter (Fig. 2d) has a maximum 
for the frequency where the signal and noise in Fig. 2c 
are equal (see Sect. 2.4). Both lower and higher fre- 
quencies are reduced. Lower frequencies are reduced 
because they are so strongly present in the stimulus 

(Fig. 2a), that they threaten to occupy too much of the 
channel's dynamic range. Although reducing them costs 
some information, this is more than regained by the 
boosting of other frequencies, protecting those against 
the detrimental effects of channel noise. The reason of 
this surplus of information is the logarithmic relation- 
ship between signal-to-noise ratio and information, as 
in the integrand of (5). Thus it is better to have many 
frequencies of moderate signal-to-noise ratio, than to 
have a mixture of very low and very high ones. 

Higher frequencies are also reduced by the neural 
filter, because their original signal-to-noise ratio (see 
Fig. 2c) is so small that they carry very little informa- 
tion. Therefore, it is better to reduce them and prevent 
the associated noise (Np) at these frequencies from 
wasting part of the channel's dynamic range. 

2.4 Properties of  the theory 

As suggested by Fig. 2, the neural filter has a maximum 
at a frequency where the signal-to-noise ratio right after 
the prefilter equals 1. Below I will show that this is 
actually the case, under certain conditions. Further- 
more, I will derive simple approximations ofpn for very 
large and very small signal-to-noise ratios. 

2.4.1 Maximum of p,. For convenience of notation I 
will substitute p for - l / k ,  and rewrite (8) to 

2 2 -N~(2Np + Sp) + (NcSp + 4NpSpNcp) ~/2 
P" = 2Np(Np + Sp) (9) 

For the derivation of the maximum of Pn, relationships 
between /t and Nc, and between # and Np are needed, 
which I will derive first (15 and 16). I assume that for 
f~>0 
Sp ~ Np (10) 

and 

sp ~N~. (11) 

This assumption holds for the example of Fig. 2 
(see Figs. 2c and 2e), and holds in general if the 
characteristic stimulus power spectrum and the prefil- 
ter transfer function decrease much more strongly than 
the noise power spectra for large f. Now the second 
term of the square root of (9) must be much larger 
than the first, because otherwise the square root would 
be of the order of NcSp. This would lead to a contra- 
diction, because then the numerator (and thus p,) 
would be negative (using 10), whereas a power transfer 
function must be nonnegative. Thus with (10), (9) 
becomes 

, )M1/2  ,~, 1/2 N 1 / 2  H 1/2 -- 2NcNp + -- . p - p - . ~ ,- 
p, ,~ 2Ne2 for f > 0. (12) 

Requiring Pn >~ 0 for (12) leads to 

2N~p/z S~/2 N~c/2 Iz ,/2 >~ 2NcNp , (13) 

o r  

# >1 NcNp/Sp. (14) 
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Combining (14) with (10) gives 

/~ ~ Uc, (15) 

and (14) with (11) yields 

]A ~ Up . (16 )  

Although (15) and (16) were derived for f >  0, they are 
valid for any f.  This is because # is a constant, and 
because we assume that Nc and Np are constants as well 
(as in Fig. 2), at least in good approximation. 

Now we can proceed to show that p,  has a maxi- 
mum for Sp/Np = 1. We will for that purpose study the 
behaviour of p,  for f in a neighbourhood where 

Sp ~ Up. (17) 

Combining (17) with (15) yields 

2 2 (18 )  4NpSpN~# ~> NcSp. 

Then we find for p, from (9) and (18) 
1/2 1/2 1/2 1/2 - N c ( 2 N  p + Sp) + 2Np Sp N~ # 

P" ~ 2Np(Np + Sp) (19) 

With N~p/ZS~p/2 of the order of (2No + Sp), which follows 
from (17), and #1/2 ~> N1/2, which follows from (15), we 
find 

1/2 1/2 1/2 1/2 2Np Sp Nc # ~ N~(2Np-~ Sp), (20) 

and thus 
1/2 1/2 1/2 1/2 1/2 1/2 1/2 Np Sp Nc ~ _ Sp N~ It 

- ( 2 1 )  
Pn -- Np(Np + Sp) Nlp/2(Np + Sp)" 

Requiring that the derivative of  p, to f equals zero, and 
assuming that dNp/df and dNc/df are zero in good 
approximation, we finally get 

Sp/Np = 1, (22) 

thus the signal-to-noise ratio right after the prefilter 
(Sip/2 ~Nip/2) also equals 1. 

2.4.2 p, for large signal-to-noise ratios. Assuming 

Np --* 0,  (23) 

we find from (9) 
4NplA~I/2 

-NcSo + NcS. I + N : . ]  

Pn ~ 2NpSp 

. 2Np#'~ 

l + p/~] I~ (24) 
2NpSp Sp ' 

where the approximation of the square root is valid if 
N o is sufficiently small to have Np/Sp ~ N,/#. Then, 
using (1), 

p, oc (Spp) -1 ,  (25) 

i.e., for very large signal-to-noise ratios the power 
transfer function of the neural filter is proportional to 
the inverse of the prefiltered stimulus power spectrum. 
As S, and in particular pp, have in general low-pass 

characteristics, p, will thus be high-pass. This leads to 
phenomena in sensory physiology like lateral inhibition 
and self-inhibition. 

2.4.3 p, for small signal-to-noise ratios. Assuming 

Np > Sp, (26) 

we derived already, (12), 
1/2 1/2 1/2 1/2 --2NON p + 2Np Sp Nc I~ 

p, ~ 2Np2 (27) 

Assuming that Sp is not very much smaller than Arc 
(which is a reasonable assumption for a certain range 
of low frequencies f ) ,  we known that ,~0/2 Jv 1/2 is of the 
order of magnitude, or larger than N,. Furthermore, 
NJ/2ktm > Np because of (16). This yields 

(Nlp/2 iA I/2"b(,~ 1/2 N 1/2 ) , ,-p -.c , ~ NoN, (28) 

and with (27) 
NI/2 .g l /2N1/2  H 1/2 

p. ~ " P  -P " "  ~" (29) 

As # is a constant as a function of frequency, and 
assuming again that Np and Arc are also constants in 
good approximation, we get, using (1) 

p.  oc (Spp)1/2 , (30) 

i.e., for very small signal-to-noise ratios the power 
transfer function of the neural filter is proportional to 
the square root of the prefiltered stimulus power spec- 
trum. With S and pp of a low-pass nature, Pn will be 
low-pass as well. This leads to phenomena in sen- 
sory physiology like (spatial) pooling and temporal 
summation. 

2.5 Weber' s law 

In Sect. 2.3 I have presented an example of a neural 
filter for a certain level of Np. As can be seen in Fig. 2c, 
the signal-to-noise ratio at the prefilter (i.e., (Sp/Np) ~ 
is a function of frequency. It would be convenient, 
however, to have a scalar variable indicating the signal 
quality, and for this purpose I define the average signal- 
to-noise ratio, SNR, as 

Sa: Sp(f) df ~ '/" (31) 
SNR = [_S . :N . ( f )  d f  j " 

How will the filter change as a function of SNR? 
Figure 3 shows the total filter (combined prefilter and 
neural filter) as a function of frequency for various 
SNRs (0.1, 1, 10, and 1000; for SNR = 100 see Fig. 2h). 
As expected from the theoretical results in the previous 
sections, the filter gradually changes from low-pass to 
band-pass for increasing SNR. Note that the gain is 
defined relative to a normalized stimulus power spec- 
trum of fixed total power (Fig. 2a): the SNR is varied 
here by shifting the level of Np (see Fig. 2c). 

Figure 4 shows the total filter as a function of SNR 
for several frequencies, again for the numerical example 
of Fig. 2. In fact, cross sections through Fig. 4 were 
already shown in Fig. 3. At low SNR the filter's gain is 
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Curves comply with Weber 's  law in regions where they are approxi- 
mately constant  as a function of  

largest for low frequencies, whereas this optimal fre- 
quency shifts to higher values at higher SNR. Interest- 
ingly, for an appreciable range of frequencies, the gain 
is approximately constant over a substantial range of 
SNRs.  This is related to Weber's law (the just-notice- 
able difference of a stimulus is proportional to the 
background stimulus strength). Figure 4 was calculated 
for a normalized stimulus power spectrum (i.e., normal- 
ized background stimulus strength), thus the just- 
noticeable difference will be inversely proportional (at 
least in good approximation) to the filter's gain. There- 
fore, the flat curves in Fig. 4 shows that the Weber 

fraction is approximately constant as a function of 
SNR (with the exception of low S N R  and high f ) .  This 
phenomenon will be further enhanced by the fact that 
usually the dependence of SNR on the average stimulus 
level is not linear, but saturating (for an example of this 
behaviour for photoreceptors see e.g. Howard and 
Snyder 1983). 

3 Conclusion 

The theory I derived in the previous section is, at least 
qualitatively, consistent with the experimental finding 
that the senses generally 'sharpen' the stimulus (e.g. 
show lateral inhibition) at sufficiently high signal- 
to-noise ratios. It is also consistent with the finding 
that, at low signal-to-noise ratios, the signals from 
many sensory receptors are usually pooled, appar- 
ently to obtain a more reliable signal. Finally, it 
is consistent with the general finding that Weber's 
law holds in a certain range of average stimulus 
strengths. 

In those cases where it is possible to find a general 
(statistical) description of the natural stimuli for a 
certain sensory modality, the theory allows quantita- 
tive predictions of how the sensory data are to be 
processed by the early sensory system. Indeed, the 
theory was recently successfully applied to spatiotem- 
poral vision in both the blowfly visual system and the 
human visual system (van Hateren 1992a, b). Here the 



statistical structure of the stimuli is de termined by the 
spatial power spectrum of  na tu ra l  images (Field 1987) 
combined  with the dis t r ibut ion of velocities perceived 
by the visual system when it is moving  around.  The 
resulting spat io temporal  filters are very similar to those 
that  can be measured in second order  neurons  in the fly 
visual system (van  Hate ren  1992a). Fur thermore ,  the 
theory generates spat io temporal  contras t  sensitivities 
close to those measured psychophysically,  e.g. by Kelly 
(1979), in the h u m a n  visual system (van  Hateren  
1992b). It seem likely that  the theory can also be 
successfully applied to other aspects of the visual sense, 
and  to other senses as well. 
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