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Spatiot~mporal Contrast Sensitivity of 
Early Vision 
J. H. VAN HATEREN* 
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Based on the spatial and temporal statistics of natural images, a theory is developed that specifies 
spatiotemporal filters that maximize the flow of information through noisy channels of limited dynamic 
range. Sensitivities resulting from these spatiotemporal filters are very similar to the human 
s~tiotem~r~ contrast sensitivity, ~1~~~ the dependence on ambient light intensity. The theory 
predicts several ~y~o~ysical laws: Ferry-Porter’s law, the de V&s-Rose law, Weber’s law, Blocb’s 
law, Ricco’s law, and Piper’s law. 

Natural images Human vision Weber’s law Bloch’s law Ricco’s law 

INTRODUCTION 

Barlow (1961) proposed that a major task of early vision 
is the reduction of redundancy present in natural images. 
By removing redundancy through lateral inhibition in 
the spatial domain and self-inhibition in the temporal 
domain, the incoming information is conditioned to fit 
more efficiently into the channels transporting it to 
higher brain centres. Similar ideas were formulated and 
explored by, for example, Laughlin (1981, 1983, 1987) 
and Srinivasan, Laughlin and Dubs (1982). 

Indeed, work on the statistics of television images 
(Kretzmer, 1952) and more recent work by Field (1987) 
and Huang and Turcotte (1990) show that natural 
images have remarkably constrained statistics. More- 
over, the temporal structure as perceived by an animal’s 
visual system depends mostly on the movements of the 
animal itself, and will therefore possess characteristic 
statistics as well. These spatial and temporal character- 
istics are such that much of the spatial and temporal 
information in natural images is predictable, and thus 
redundant. 

Although reducing redundancy is a good strategy for 
images with good signal-to-noise ratios, it can be coun- 
terproductive if the signal-to-noise ratio becomes small 
(such as at low ambient light intensities, due to photon 
noise). Then it can even be a better strategy to increase 
redundancy, by spatial pooling and temporal smearing, 
in order to obtain more reliable signals. A general 
strategy that works for arbitrary signal-to-noise ratios is 
the principle of maximizing the amount of information 
transferred to the brain (see e.g. Snyder, Laughlin & 
Stavenga, 1977, for an application to the theory of 
sampling and eye design). 

*Department of Biophysics, University of Groningen, Nijenborgh 4, 
NL-9747 AC Groningen, The Netherlands. 

In this article I apply this principle of maximizing 
information to spatiotemporal processing in the human 
visual system. Information on the spatiotemporal struc- 
ture of natural images is combined with known proper- 
ties of the eye’s optical apparatus and of the temporal 
properties of cones. On the assumption that the visual 
system samples its surroundings through an array of 
noisy channels of limited dynamic range, the theory 
results in the construction of a spatiotemporal filter that 
maximizes the flow of info~ation through each chan- 
nel. Interestingly, spatiotemporal filters thus constructed 
are similar ta the human spatiotemporal contrast sensi- 
tivity measured psychophysically, including the depen- 
dence on ambient light intensity. Moreover, the theory 
predicts several psychophysical laws: Ferry-Porter’s law 
(the critical flicker frequency depends linearly on the 
logarithm of the background light intensity), the de 
Vries-Rose law (sensitivity proportional to the square 
root of the background light intensity), Weber’s law 
(contrast constancy), Bloch’s law (threshold contrast 
inversely proportional to stimulus duration for short 
durations), Ricco’s law (threshold contrast inversely 
proportional to stimulus area for small areas), and 
Piper’s law (threshold contrast proportional to the 
square root of stimulus area for larger areas). 

lXEORY AND RESULTS 

Below I will first discuss the spatiotemporal structure 
of natural images, then outline and explain a general 
theory of early vision aimed at maximizing information 
transfer, and subsequently apply this to the human 
visual system. 

Spatiotemporal structure of natural images 

Recently, Field (1987) showed that the spatial power 
spectra of several natural images depend on the spatial 
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frequency, f,, as l/f:. Similar results were obtained 
by Burton and Moorhead (1987), and by Huang and 
Turcotte (1990) on satellite images of the surface of the 
earth. To investigate this further, I computed the power 
spectra of 117 images of widely varying natural scenes 
(see van Hateren, 1992, for details), and found that 
virtually all are fitted well by a straight line when the 
spectra are drawn in a double logarithmic plot. The 
mean and standard deviation of the slopes are 
-2.13 + 0.36, thus confirming Field’s results. For the 
calculations below I will assume a l/f t behaviour. 

Interestingly, the power spectrum of a step function 
behaves as l/f i, and it is probably the abundance of 
edges in natural images (correlated to object boundaries) 
that produces their l/f:-behaviour. Thus, although the 
power spectra discussed here are a global property of 
images, similar considerations apply to more local parts 
of images, as long as these contain edges. 

Laughlin (1983) found that the average contrast of 
natural scenes is about 40%, and I will use this value 
below. (My set of images did not allow an accurate 
estimate of the average contrast of natural scenes; see the 
Appendix for a definition of contrast.) 

Most of the temporal variation encountered by the eye 
of an organism will be produced by its own movements, 
be it locomotion, head movements, or eye movements. 
Although movements of other agents (e.g. predators or 
prey) can be biologically very important, I will assume 
that early vision is best tuned to the most common of 
movements, namely those caused by the organism itself. 
Thus we need a description of the resulting distribution 
of velocities as perceived by the eye. This distribution, 
which I will call the velocity model, is difficult to 
determine exactly, because it not only depends on the 
organism’s movements, but also on how it moves 
through a three-dimensional world full of objects. It can 
be shown, however, that if an organism is moving in a 
straight line through a world filled uniformly with 
objects, the velocity model behaves as l/v* for large 
velocities v (see the Appendix). As a simple function that 
follows this behaviour, and also behaves well for low 
speeds, I will use 

a,(v) = 
&“)” 

(1) 

as an approximation of the velocity model, with c a 
calibration constant. It gives the probability distribution 
a, of velocities v of components in the image as perceived 
by the eye, with 6, a parameter determining the width of 
the distribution. I assume here that this function is also 
a reasonable approximation of the distribution of the 
velocities due to rotations rather than translations of the 
visual system. 

The spatial structure of natural images together with 
the velocity model determine a power density giving the 
average power expected for a given spatial frequency 
moving at a given velocity. For theoretical reasons and 
because psychophysical measurements are usually made 
in the space-time domain rather than in the space- 
velocity domain, we will transform the power density to 

the space-time domain by a change of variables (see 
Appendix). The result is shown in Fig. 1, which gives the 
power spectrum of the image stream (the image as a 
function gf time) expected on average by the organism 
when it is moving through a natural environment. Only 
one of the two spatial dimensions (f, and f,) is shown 
in the figure. Note that most of the power is in low 
spatial and temporal frequencies, with progressively less 
power in both higher spatial and higher temporal fre- 
quencies. 

A theory of early vision 

The theory is developed for a single information 
channel in the visual system. The visual system is 
assumed to consist of any array of similar channels, each 
looking at a different position in visual space. Although 
it is the entire array that determines the ultimate limits 
of visual performance, we will see that the single channel 
performance as predicted by the theory is very similar to 
what is observed experimentally for the entire system. 

Figure 2 shows a scheme of the theory elaborated 
below. Natural image streams contain power over a 
virtually unlimited range of spatial and temporal fre- 
quencies. A visual system limits this amount of infor- 
mation basically by low-pass filtering. This is partly 
because of physical limitations (eye size limits spatial 
resolving power because of diffraction, metabolic cost 
puts bounds on the temporal bandwidth of photo- 
receptors), and presumably partly because of limitations 
of brain size and complexity: the brain must be able to 
cope with the amount of information allowed access by 
the photoreceptors. Thus we assume that the image- 
stream is first low-pass filtered, in space and time, by a 
prefilter (Fig. 2). The resulting prefiltered image is 
degraded by noise: photon shot noise due to the absorp- 
tion of light by the visual pigment, transducer noise 
produced by the phototransduction process, and any 
other noise source involved in the processes of prefilter- 
ing. The resulting noisy image is eventually transferred 
to a channel of limited dynamic range (i.e. it only 
supports a certain range of response amplitudes) which 
adds some noise of its own (channel noise) to the image. 

I \ 

FIGURE 1. Spatiotemporal power spectrum of natural images ob- 

served by a visual system with a velocity model as described in the text. 
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FIGURE 2. Scheme of the theory. An image is low-pass filtered by a 
prefilter, and noise is added to the result. A neural filter subsequently 
delivers a filtered image and filtered noise to a channel of limited 
dynamic range, which also adds noise to the result. The basic 
assumption of the theory is that the amount of information transferred 
by the channel is maximized by a suitable choice of the neural filter. 

Before the prefiltered image is transferred to this chan- 
nel, however, it is first transformed, in space and time, 
by a neural filter. The basic assumption of the theory 
is that this filter is tuned to maximize the total amount 
of information that is transferred by the channel. In 
the Appendix, I show how this neural filter can be 
computed. 

Note that the fact that the channel is noisy and that 
it has a limited dynamic range is not only realistic, but 
also essential for the concept of maximizing information 
to work. No noise or an unlimited dynamic range would 
put no limits on the amount of information that could 
be transferred through the channel, and would leave the 
neural filter undetermined. 

Before presenting results on the full spatiotemporal 
case, I will first discuss a one-dimensional example (in 
the time domain) to clarify the theory. 

An example in the time domain 

Figure 3(a) shows the square root of the temporal 
power spectrum of a natural image stream. It was 
calculated by integrating the power spectrum of Fig. 1 
over the two spatial dimensions, and taking the square 
root. This spectrum is subsequently filtered by a tem- 
poral prefilter [Fig. 3(b)]. For this filter I chose a 
multistage low-pass filter (e.g. Watson, 1986; see also 
below), adjusted such that it corresponds to an im- 
pulse-response with a temporal full width at half-maxi- 
mum of 40 msec. This value was recently measured in 
light adapted macaque cones (Schnapf, Nunn, Meister & 
Baylor, 1990). The resulting amplitude spectrum is 
shown in Fig. 3(c) (solid line).This also shows the noise 
amplitude spectrum (dashed line) added to the prefil- 
tered image. The noise amplitude is chosen such that the 

average signal-to-noise ratio (SNR, see the Appendix for 
a definition) equals 100. The power density spectra of 
neither the noise at the prefilter nor the channel noise are 
known in detail. As a simple first-order approximation 
we will assume that they are flat in the region of 
frequency-space where the analysis is performed. This 
assumption is not essential for the formulation of the 
theory, however, and it could be loosened in future 
elaborations. 

Image and noise are subsequently filtered by a neural 
filter [Fig. 3(d)], determined such that it maximizes 
information flow (see below). Figure 3(e) shows the 
result of this filtering: filtered image (solid line), filtered 
noise (dashed line), and additive channel noise (dots). 
The amplitude of the channel noise was chosen such that 
it occupies one-tenth of the available dynamic range of 
the channel. This means that the root-mean-square 
(r.m.s.) value of channel noise is one-tenth of the r.m.s. 
value of the total amplitude fluctuations in the channel, 
due to both signal (image) and noise. The exact amount 
of channel noise is not very critical for the calculations 
below [for the spatiotemporal filter of Fig. 4(a), varying 
the channel noise by a factor of 10 changes the position 
of the peak by c lo%, and changes the sensitivity most 
at the lowest spatial and temporal frequencies, by less 
than a factor of 21. The total r.m.s. value in the channel 
can be determined by adding, integrating, and taking the 
square root of the power spectra corresponding to the 
three amplitude spectra of Fig. 3(e) (see the Appendix 
for details). One limitation imposed upon the neural 
filter of Fig. 3(d) is that is must have a gain such that the 
dynamic range of the channel is fully utilized, but not 
exceeded. 

From Fig. 3(e) we can determine the signal-to-noise 
ratio as a function of frequency (SNR; note the different 
use of SNR and SNR: SNR is a function of frequency, 
while SNR, an average of the SNR over frequency, is 
not). From the SNR the information density as a 
function of frequency follows directly [Fig. 3(g); see 
Goldman, 1953; and also the Appendix]. The total 
amount of information flowing per second through the 
channel is given by the integral of information density 
over all temporal frequencies. In fact, this information 
rate was maximized by a suitable choice of the neural 
filter: the neural filter of Fig. 3(d) is such that it produces 
the maximum possible rate of information [integral over 
the trace in Fig. 3(g)] while still keeping channel ampli- 
tude fluctuations [as determined from Fig. 3(e)] within 
the limits of the channel’s dynamic range. We see in 
Fig. 3(g) that low temporal frequencies contain more 
information than higher ones, but this bias is much less 
than one would expect on the basis of Fig. 3(c). The 
reason is that, with SNR = 100, the neural filter [Fig. 
3(d)] is reducing low temporal frequencies, while favour- 
ing higher frequencies. 

It can be shown (van Hateren, 1993) that the peak 
of the neural filter is always at a frequency where the 
SNR of the prefiltered image equals 1 [cf. Fig. 3(c, d)]. 
Lower frequencies are reduced because they are so 
strongly present in natural images that they threaten to 
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FIGURE 3. An example in the time domain. (a) Amplitude spectrum fr of the temporal variations of a natural image 
stream. (b) Temporal prefilter, m,. (c) Solid line, prefiltered image, s,m,; dashed line, noise n, added to the prefiltered image. 
(d) Neural filter m,, maximizing the information rate in the channel. (e) Solid line, image after pre- and neural filtering, 
s,m,m,; dashed line, noise after neural filtering, n,m,; dotted line, additive channel noise n,. (f) Combination of prefilter 
and neural filter, m,m,. (g) Information derived from the SNR following from (e). (h) Sensitivity (see text for explanation). 

occupy much of the dynamic range of the channel at the 
expense of other frequencies. In general, it is better to 
have many different frequencies of moderate SNR than 
to have some of very high and some of very low SNR 
(this is because information is proportional to the log 
[l + WWzl, which increases most strongly when 
SNR = 11. The highest frequencies are also reduced by 
the neural filter, because their original SNRs are already 
so much smaller than 1 that their contribution to the 
information is negligible. Thus it is better to reduce these 
frequencies in order to prevent the associated noise to 

occupy too much of the channel’s dynamic range. The 
position of the peak of the neural filter depends on the 
level of noise in Fig. 3(c). For higher SNR it shifts to the 
right, and for lower SNR to the left. 

Figure 3(f, h) finally show filter characteristics that 
could be observed directly. Figure 3(f) shows the combi- 
nation of prefilter and neural filter, which is the transfer 
function of the total system. Figure 3(h) gives the 
sensitivity of the system as a function of frequency. The 
sensitivity is defined here as the signal-to-noise ratio in 
the channel resulting from presenting a single temporal 
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a 
0 
m 1 sensitivity for !$%=9.7 

b 
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FIGURE 4. Spatiotemporal contrast sensitivities for two SNRs. 

frequency of 100% modulation (I will_use SRR to 
denote this signal-to-noise ratio). This SNR is obtained 
by taking the square root of the ratio of signal power and 
noise power, i.e. the signal power in the channel resulting 
from the stimulus, and the total noise power in the 
channel (integrated over all temporal frequencies). Note 
that this is a rather conservative estimate of the signal- 
to-noise ratio: it assumes that a decision on the presence 
or absence of the stimulus would be based only upon 
the asrage power in the channel. At a sensitivity of 
1 (SNR = 1) there would be twice the amount of 
power in the channel than there would have been 
without the presence of the stimulus. Obviously, with 
more sophisticated analysis on the channel’s signal (i.e. 
looking at signal and noise in narrow frequency bands, 
averaging over time, or pooling channels over space, 
etc.) the sensitivity would be higher (see e.g. Watson, 
1992). 

Spatiotemporal examples 

The transfer function of the temporal prefilter, already 
mentioned in the previous section, is given by (Watson, 
1986) 

1 
mt(ft) = [(2$r)2 + l].P ’ (2) 

with n = 9 and z = 5.65 msec. This value of z yields a 
temporal impulse-response with .a full width at half- 
maximum of 40 msec (Schnapf et al., 1990). 

For the spatial prefilter I chose an approximation to 
a transfer function as determined by Campbell and 
Gubisch (1966) for the optics of the human eye. I found 
that the data points of their Fig. 9, pupil diameter 2 mm, 
are reasonably well described by the transfer function 

(3) 

wheref, is the spatial frequency, a a constant (a = 0.28), 

and f,,,, the cutoff frequency of a lens of diameter 
D = 2 mm and a wavelength 1 = 570 nm (f,,, = D/A = 
3.5 x lo3 c/rad = 61.2 c/deg). I used equation (3) sub- 
sequently for both directions of spatial frequencies (f, 

and fY ). 
Finally, I treated the constant cu needed in the velocity 

model [equation (l)] as a free parameter in the theory. 
I adjusted 6, such that spatiotemporal sensitivities re- 
sulted close to those measured psychophysically in the 
human visual system. The data I present below are for 
o, = 0.63 deg/sec. The results are not very sensitive to the 
exact value of 0,: varying 0, by a factor of 2 shifts the 
position of the sensitivity peak of Fig. 4(a) (see below) 
by about 25% (see also the Discussion). 

Figure 4 shows spatiotemporal sensitivities for two 
different ms. Although only one spatial frequency 
axis is shown, calculations were actually performed in 
two spatial dimensions (and one temporal dimension). 
At high SNR the sensitivity is band-pass, whereas at low 
SNR it is low-pass for most spatial and temporal 
frequencies. Also note in Fig. 4(a) that the filter is 
spatially band-pass for low temporal frequencies, 
spatially low-pass for high temporal frequencies, tem- 
porally band-pass for low spatial frequencies, and 
temporally low-pass for high spatial frequencies. This is 
precisely what has been found in numerous psychophysi- 
cal investigations of human spatial, temporal, and 
spatiotemporal contrast sensitivities (e.g. de Lange, 
1958; Kelly, 1961, 1977, 1979; van Nes, Koenderink, 
Nas & Bouman, 1967; Koenderink, Bouman, Bueno de 
Mesquita & Slappendel, 1978; Koenderink & van 
Doorn, 1979). 

Spatiotemporal contrast sensitivity as a function of light 
intensity 

In the previous sections results were presented for the 
various Seas (the average signal-to-noise ratio). Often, 
this SNR is not manipulated directly in psychophysical 
experiments, but it is varied indirectly by using different 
background intensities. Thus, in order to compare the 
theoretical results with psychophysical results we need a 
relation between the ambient light intensity and the 
resulting SNR in the photoreceptors. This appears not 
yet to have been measured, and therefore we will rely on 
an educated guess. If Z is the light intensity (in arbitrary, 
dimensionless units), and m,,,,, the maximum SNR 
that the photoreceptors can accomplish (due to inherent 
noise limitations), the resulting $Xi? is assumed to be 
given by 

(4) 
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-5 0 

log intensity 
5 

FIGURE 5. Resulting SNR as a function of intensity according to 
equation (4). 

This function is depicted in Fig. 5. For small Z equation 
(4) approximates fi, thus the SNR increases as the 
square root of the intensity, in accord with the quantum 
fluctuation theory (de Vries, 1943; for a review see 
Bouman, van de Grind & Zuidema, 1985). For high Z, 
equation (4) goes asymptotically to SNK,, which has 
been set to 10 in Fig. 5. This value for SNR,, has also 
been used for all calculations below. Although it is only 
a guess, it seems likely that it is of the right order of 

a temporal frequency 0 Hz 

___-----_. 

1 10 100 

spatial frequency (cycles/degree) 

spatial frequency 0 cycles/degree 
C 10Zz__ 

10 

temporal frequency (Hz) 

magnitude. Recently, I found that the SNR in blowfly 
photoreceptors saturates for high light intensities at 
about 20 (van Hateren, 1992; see also Howard & Snyder, 
1983; Howard, Blakeslee & Lauding, 1987). Recause 
blowfly photoreceptors are electrically coupled and 
probably of lower input resistance than human cones, 
they are likely to have slightly higher Sirs. 

The intensity axis of Fig. 5 is in arbitrary, dimension- 
less units. However, assuming photon noise to be the 
dominating source of noise at the lowest intensities, 
assuming a 30% quantum efficiency of the eye (pro- 
portion of photons absorbed in cones to photons avail- 
able at the cornea), and using a conversion formula due 
to Boynton (cited in Pokorny & Smith, 1986, pp. 8-14), 
I estimate that Z = 10 in Fig. 5 (and subsequent figures) 
corresponds to a retinal illuminance of 5 td. This gives 
only an indication of the order of magnitude, however, 
because of the uncertain value of the quantum efficiency 
of the eye. 

Using equation (4) we can now compute how the 
spatiotemporal sensi~vity varies with background light 
intensity (i.e. adaptional level). Figure 6 shows sensi- 
tivities for combinations of four different light intensi- 
ties, and two spatial and two temporal frequencies. 
Sensitivities are low-pass for low light intensities, and for 
high temporal and spatial frequencies, but band-pass for 

temporal frequency 25 Hz 
102’. ‘1”’ ” 

! 
----------- ----____ 

1 

spatial frequency (cycles/degree) 

spatial frequency 26 cycles/degree 

1 10 

temporal frequency (Hz) 

100 

FIGURE 6. Contrast sensitivities at various spatial and temporal frequencies, and various intensities I. The intensity Z is 
in arbitrary units, where Z = 10 approximately corresponds to a retinal illuminance of 5 td. 
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higher light intensities at low spatial and temporal 
frequencies. Also note that sensitivities increase with 
increasing light intensity. The ordinate (sensitivity) 
shows the Sm for a single channel (as before, the Sm 
is the signal-to-noise ratio at one particular frequency). 
On the basis of a single channel it would k difficult to 
perceive a spatiotemporal stimulus if the SNR would be 
around or below 1. However, in psychophysical exper- 
iments there are many channels available that could be 
used by the visual system for discrimination of a particu- 
lar stimulus. By pooling theseJhannels the combined 
result would yield a better SNR than that shown in 
Fig. 6. As the amount of this pooling (possibly also 
extending over time) is not known exactly, we have no 
absolute calibration of the sensitivity axis of Fig. 6 
against human contrast sensitivity. Nevertheless, most 
calculations Lompare favourably with psychophysical 
results if a SNR z 0.1 is assumed as the threshold, which 
implies a pooling of about 100 statistically independent 
units. Note that a full correspondence between the 
performance of a single channel and psychophysical 
performance may be further complicated by processes 
such as probability summation. Recently, Bijl (1991) 
presented a model designed to predict psychophysical 
performance from the behaviour of retinal X-cells. 

We can compare the shape, if not the absolute ampli- 
tude, of the curves with psychophysical results (e.g. 
Kelly, 1979; Koenderink et al., 1978). The general 
conclusion is that, although there are certainly differ- 
ences in details, the general behaviour of these curves as 
a function of spatial frequency, temporal frequency, and 
light intensity is very well predicted by the theory. 

Kelly (1979, his Fig. 6) noted that the shape of the 
spatiotemporal sensitivity surface was very similar along 
lines of fixed velocity [i.e. skew lines, originating in the 
origin, in e.g. Fig. 4(a) of this article], apart from a shift 
along the spatial frequency axis. This result is also 
produced by the theory presented here, as depicted in 
Fig. 7. 

Various psychophysical laws 

The theory predicts several classical psychophysical 
laws. Figure 8(a) shows the Ferry-Porter law (the critical 

spatial frequency (cycles/degree) 

FIGURE 7. Contrast sensitivities at fixed velocities v (covarying 
spatial and temporal frequencies) for an intensity I = 10. 

flicker frequency depends linearly on the logarithm of 
the background light intensity). As the critical flicker 
frequency (CFF) depends on the number of channels 
pooled when making psychophysical judgements, I show 
two cases, one with the CFF at Sm = L(one channel 
utilized), and one with the CFF at SNR = 0.1 (e.g. 
effectively 100 statistically independent channels uti- 
lized), the latter ca% being probably more realistic than 
the former. For SNR = 0.1 there is a qualitative agree- 
ment with the results of Kelly (1961, his Fig. 8), although 
the theoretical CFF at the highest intensities is about 
40% lower than actually measured (note, however, that 
Kelly’s wide-field stimulus also stimulated the parafoveal 
retina, whereas the present calculations deal with fovea1 
properties only; see also the Discussion). 

Figure 8(b) shows the de Vries-Rose law for low 
intensities (sensitivity proportional to the square root of 
the background light intensity) and Weber’s law for high 
light intensities. Weber’s law is here indicated by the 
constant sensitivity for higher intensities, with sensitivity 
defined as before, namely the signal-to-noise ratio in the 
channel resulting from a stimulus of 100% modulation. 
If the signal-to-noise ratio in the channel is constant, 
thresholds are a constant proportion of the signal ampli- 
tude, which is a formulation of Weber’s law. The thin 
line on the left in Fig. 8(b) shows a slope of f (corre- 
sponding to the de Vries-Rose law). The curves shown 
are for f, = 0 c/deg, and three different temporal fre- 
quencies. Figure 8(b) shows that the transition to the 
Weber regime is occurring at lower light intensities for 
low temporal frequencies than for high temporal fre- 
quencies, as is also observed experimentally (e.g. Kelly, 
1961). I obtained analogous results as in Fig. 8(b) for a 
temporal frequency ft = 0 Hz, and various spatial fre- 
quencies. 

Figure 8(c) presents results (for two different intensi- 
ties and two stimulus sizes) showing Bloch’s law 
(threshold contrast inversely proportional to stimulus 
duration for short durations, with threshold contrast 
being proportional to l/sensitivity), depicted by the 
slope of - 1 of the leftmost thin line. For longer 
durations, the curves have roughly a slope of - f 
(compare with the rightmost thin line), i.e. the inverse 
square law. For a large stimulus size and a high light 
intensity, the curves get slopes closer to 0. The results in 
Fig. 8(c) are very similar to those obtained by Barlow 
(1258, Fig. 2). Sensitivity is here defined, as before, as the 
SNR obtained from taking the square root of the ratio 
of the total power due to the stimulus, and the total noise 
power. 

Finally, Fig. 8(d) illustrates Ricco’s law (threshold 
contrast inversely proportional to stimulus area for 
small areas; i.e. a slope of - 1 in a plot with logarithmic 
axes) and Piper’s law (threshold contrast proportional to 
the square root of stimulus area, i.e. a slope of -f). 
Again, these results are quite similar to Barlow’s (1958, 
Fig. 3), apart from a spatial scaling factor due to the fact 
that Barlow measured parafoveally. 

Note that the results of Fig. 8(c, d) follow directly 
from the shape of the spatiotemporal contrast sensitivity 
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FIGURE 8. Several psychophyzcal laws as pEdicted by the theory. (a) Ferry-Porter law; CFF, critical flicker frequency; 
the fiyre shows the CFF for SNR = 1 and SNR = 0.1. (b) de Vries-Rose/Weber law. The spatial frequency is 0 c/deg. (c) 
Bloch’s law for two intensities I and two stimulus sizes (the stimulus is a square of width s). (d) Ricco’s law and Piper’s 

law for two intensities I and two stimulus presentation times 1. 

[e.g. the surface of Fig. 4(a)], without further assump- 
tions. 

DISCUSSION 

In this article I presented spatiotemporal contrast 
sensitivities of early vision, constructed on the premise 
that a main task of early vision is to maximize the 
information available to the brain, given noisy channels 
of limited dynamic range. Based on the spatiotemporal 
structure of natural image streams, and utilizing known 
properties of the human visual system for the prefilter, 
the theory produces results that correspond remarkably 
well with psychophysical measurements: 

l spatiotemporal sensitivities are mostly low-pass 
in space and time for low intensities, and they 
are band-pass for all but the highest spatial and 
temporal frequencies for high intensities; 

l sensitivities extend to much higher spatial and 
temporal frequencies for higher light intensities 
than for lower ones; 

l spatiotemporal sensitivities are shaped similarly 
when plotted for constant velocity; 

l the theory predicts several psychophysical laws 
(Ferry-Porter, de Vries-Rose, Weber, Bloch, 
Ricco, Piper), including many of the details 
displayed when varying spatial or temporal fre- 
quency, stimulus size or duration, and light 
intensity. 

I want to emphasize that these results were not 
obtained by a complicated model with many free par- 
ameters, but instead by a basically very simple theory 
(Fig. 2), almost completely based on first principles. The 
only important free parameter is (T,,, the parameter 
determining the velocity model, though there is some 
experimental justification for the value of this parameter 
(see below). The main determinant of the theoretical 
results, however, is the spatial structure of the natural 
world, and, of course, the assumption that maximizing 
information flow is the basic strategy of early vision. 

The role of v, and 0” 

The spatial and temporal prefilters used can be charac- 
terized by two constants, cs = 14.7 c/deg and 6, = 9.7 Hz, 
which correspond to the l/e-values of the spatial and 
temporal transfer functions. I will call their ratio the 
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characteristic velocity a, of the visual system, with 
o, = Qr, = 0.66 deg/sec. The characteristic velocity is a 
measure of the velocity required to cross a typical 
photoreceptor receptive field in a typical photoreceptor 
integration time (see Glantz, 1991, for similar consider- 
ations on invertebrate vision). It is illuminating to 
compare 6, [the parameter determining the width of the 
velocity distribution, see equation (l)] to ZJ, . The results 
presented in this article are based on Q, x 1. For this 
ratio the spatiotemporal filter changes, as a function of 
light intensity, similarly for spatial and temporal fre- 
quencies. However, if a,/~, $ 1, it is mainly the spatial 
properties that change as a function of light intensity, 
with virtually fixed temporal properties. If g”/u, + 1, on 
the other hand, spatial properties are hardly changing 
(width remains the same, although some lateral inhi- 
bition develops), whereas temporal properties are chang- 
ing very much. This case may be expected for human 
extrafoveal vision (0, about constant or even increasing 
somewhat, and 6, declining appreciably, thus u, increas- 
ing; u, increases probably much more than go, which will 
also increase because the viewing point will on average 
be more misaligned with the heading point than for 
fovea1 vision). A similar case with IS,/U, = 0.1 was re- 
cently investigated in detail in the fly visual system (van 
Hateren, 1992). 

The value of 0” was adjusted to yield good correspon- 
dence with psychophysical results. The value used, 
cv = 0.63 deg/sec, is of the same order of magnitude as 
that of the velocity distributions reported by Steinman 
and Collewijn (1980) on residual retinal image motion 
during head movements. 

Limitations and extensions of the theory 

The contrast sensitivities calculated seem to extend to 
slightly higher spatial frequencies and slightly lower 
temporal frequencies than measured contrast sensi- 
tivities, although it is difficult to be certain because there 
is quite some variation in psychophysical results among 
different authors. Both of these discrepancies could 
easily be resolved by assuming slightly different par- 
ameters of the prefilters. The band-width of the temporal 
prefilter is based on measurements of Schnapf et al. 
(1990) on isolated macaque cones, and it is quite possible 
that human cones in the intact retina show somewhat 
faster impulse-responses when completely light-adapted. 
It is also possible that other retinal elements are the real 
limiting factors and should be considered as determining 
the temporal prefilter. Similar arguments apply to the 
spatial prefilter, which is likely to be an overestimation 
of the spatial-frequency-response, as it only takes into 
account the lens optics. In particular, the cone aperture 
(waveguide effects), optical coupling of cones, intraret- 
inal light scattering, electrical coupling, involvement of 
horizontal cells, etc. are all factors potentially influenc- 
ing the spatial prefilter. 

In fact, the components of the theory should not be 
taken too literally: they do not represent specific com- 
ponents in the nervous system. In particular, all adaptive 
properties of the theory schematized in Fig. 2 are 

projected into the neural filter rather than partly into 
the prefilter. This alone already makes the theoretical 
prefilter a much simpler device than a real photo- 
receptor: the adaptive properties of the photoreceptor 
are, for simplicity, incorporated into the (adaptive) 
frequency-response of the neural filter. Preferably, the 
scheme of Fig. 2 should be considered as an abstraction 
of early vision, not as a specific model of a particular 
visual system. 

Although the theory predicts the amplitude of the 
neural transfer function, it does not predict its phase. 
Spatial phase is not a problem if we assume circularly 
symmetrical receptive fields, but temporal phase is a 
harder nut to crack. One possibility yielding impulse- 
responses minimally spread in time is a minimum phase 
filter combined with a pure time delay (see e.g. Roufs, 
1972). This kind of filter is apparently realized in 
second order neurons of the blowfly visual system (van 
Hateren, 1992), but there are certainly other reasonable 
possibilities. 

Finally, it would probably be a mistake to consider the 
spatiotemporal filters presented here as the sole agents of 
early vision. Obviously, they can not transfer all the 
available information in the photoreceptor image, due 
to their limited dynamic range. Thus there seems to 
be ample opportunity for more specialized neurons, 
even early in the visual system, to fill the information 

gap. 
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APPENDIX 

in the following we will assume a discrete spatiotemporal system, with 
XX samples along the spatial x-axis spanning a width w,, N, samples 
along the spatial y-axis spanning a width ‘Y,, , and N, samples along the 
temporal t-axis spanning a time w,. This formulation leads to discrete 
mathematics, which can readily be implemented in a computer pro- 
gram. N, samples spanning a width w, lead to N, spatial frequencies 
f,, spaced at AfX = l/w,: 

(see e.g. Bracewell, 1978). Similarly, there are NY spatial frequencies&, 
spaced at A[” = l/wr , and N, temporal frequencies S,, spaced at 
AA = l/w,. 

The spatial Power density of natural images is given by 

&yKz 0 = I 2 cs _~._._________ 
c,(l +cZ)(fI+f:) 

otherwise, 

with c, a calibration constant, given by 

and the spatial contrast c, of the image defined as 

(6) 

If the density of objects in the environment (i.e. in three dimensions) 
is CI, and if we assume that objects in the world are homogeneously 
distributed, it follows that the probability P(x)dx of observing an 
object between a distance .X and x f dx equals 

P(x)dx = z exp( -ax)dx, (9) 

which is similar to Beer’s iaw for absorption of light in an absorbing 
medium. Assuming that the animal moves with a velocity a, &erpen- 
dicularly to the direction of the object), the resulting velocity of the 
object in the image is 

f.‘ 
,t ZJ, 

I 

With a change ofvariabIes (x to t:) we find from equations (9) and f 10) 
the probability u&)do of observing an object with an e&ctive speed 
in the image between tl and 6% + de: 

a,: (a)du = av, -- exp( -tit) du 

cZ (11) 

Thus for large t‘, u,(u) behaves as L’-‘. This applies to all possible 
translational velocities ri of the animal As a reasonable guess for the 
total, velocity distribution we then choose 

with u, a positive constant regulating the width of the distribution, and 
c,. a constant such that 

The second part follows from a change of variables 
(.&, f,, o)-+(f,, f,, f,), with f, the temporal frequency, and from 
[assuming no correlation between the direction of the velocity u and 
the spatial frequency vector (,f,, f,)] 

with 

i.e. f? is the amplitude of the spatial frequency vector. 

(14) 
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With the change of variables (f,, f,, u)+(f,, A, f;), and by ap- 
proximating the contribution of frequencies lower than l/iv, by 
substituting f, = 1/2w, for the case f, = 0 and f; # 0, we finally get for 
the spatiotemporal power density 

: 

1 

(1 +cf)AfxA&AX 
iff,=O and f,=O 

S,,,(f,* f,> f,) = %U”(,f,W.) iff,=O and f;#O 
I 6 

lee; nf, 
2c, (1 + c:)f; au 2f, ( > 

otherwise. (16) 

For the spatial prefiltering we use a spatial modulation transfer 
function m,(f, , A): 

ms(f,. f,) = J~idich,-~‘), (17) 

withf, defined in equation (15), f,, mar the cut-off frequency of the optics 
(here with f,, _ = 61.2c/deg), and a a constant (here with a = 0.28). 
For the temporal transfer function, m,(f,) we use 

m,(fi) = 
1 

[(2nf; T)2 + 1 ]n’Z ’ (18) 

with n = 9 and r = 5.65 msec. 
The power density of the signal in the photoreceptor after this 

filtering is 

S,&> f,> 1;) = SX,,(f,> f,>fr)lm,(f,* f,)121~,(f,)12~ (19) 

Next, we assume that to this signal a noise power density N, is 
added, assumed to be constant in the volume of space and time where 
the analysis is performed. We then define the average signal-to-noise 
ratio (SNR) at the level of the photoreceptors as 

Both signal and noise are subsequently filtered in space and time by 
a neural filter with a power transfer function p. (f, , f, ,1;). Finally, the 
result is delivered to a channel with a limited dynamic range, K, and 
a limited information capacity due to internal noise (power density Ni). 
For the calculations I chose K/a = 10 and K = 10. The value of K 

(the r.m.s. value of the response in the channel) is not important for 
the results, however, because it only influences the scaling of the 
transfer functions. 

Now we have for the signal power density S and the noise power 
density N in the channel 

S(f,, f,, A) = &,(f,> _f& f,lP”(fX, f,. “0 (21) 

Nf,, f,> 1;) = N,P,(L f,, f,) + N,. (22) 

The requirement that the total of signal and noise remain within the 
dynamic range of the channel leads to 

c (S+N)Af,L\f,AL=K2, (23) 
/X./Y& 

where we have used the fact that the mean square value of a signal 
equals the integral over its power spectrum (see e.g. van der Ziel, 1970). 
Finally, we require that the information transfer rate R is as large as 
possible, with R defined as (e.g. Goldman, 1953): 

(24) 

where we have chosen log rather than log, for mathematical conven- 
ience. This means that if we want to express the information transfer 
rate in bits per second per steradian, we have to multiply the R of 
equation (24) by log, e. Thus R has to be maximized while keeping the 
constraint in equation (23). Following Goldman (1953, p. 159), this 
problem can be solved using the method of Lagrange multipliers, 
which leads to 

- N, (2N, + &,) + Nf St, - 4N,S,,, N, ; 

p.= 
2N,W, + Sm) 

(25) 

with 1 a Lagrange multiplier (for a derivation see van Hateren, 1992b). 
Now we can find p, by choosing I such that equation (23) is satisfied. 
This has to be done numerically by varying I, thus varying p, [equation 
(2511 and thereby S [equation (21)], N [equation (22)], and finally the 
summation of equation (23). 

The power transfer function 1 msrn I* of the total spatiotemporal filter 
F transforming the original image is now given by 

Im,,Jf,, f,, f,)l*= Im,(fx. f,)121m,(f,)lz~n(fx~ f,, f,). (26) 

Through equation (26) we know the power transfer function of F, and 
thus the amplitude of its transfer function, ]mrrn] 


