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Sampled-data and discrete-time H2 optimal control 

Harry L. Tkentelman 
Mathematics Institute 
University of Groningen 
P.O. Box 800 
9700 AV Groningen 
The Netherlands 

Abstract 
This paper deals with the sampled-data H2 optimal control 
problem. Given a linear time-invariant continuous-time sys- 
tem, the problem of minimizing the H2 performance over 
all sampled-data controllers with a fixed sampling period 
can be reduced to a pure discrete-time H2 optimal control 
problem. This discrete-time Ha problem is always singular. 
Motivated by this, in this paper we give a treatment of the 
discrete-time H2 optimal control problem in its full general- 
ity. The results we obtain are then applied to the singular 
discrete-time H2 problem arising from the sampled-data Hz 
problem. In particular, we give conditions for the existence 
of optimal sampled data controllers. We also show that the 
H2 performance of a continuous-time controller can always 
be recovered asymptotically by choosing the sampling pe- 
riod sufficiently small. Finally, we show that the optimal 
sampled-data H2 performance converges to the continuous- 
time optimal H2 performance as the sampling period con- 
verges to zero. 

1 Introduction 
Recently, much attention has been paid to H2 and H, opti- 
mal control of linear systems using sampled-data control (see 
[2,4,6,7,11] and [1,3,5,9,10,14,17]). For a given continuous- 
time plant, a sampled-data controller consists of the cas- 
cade connection of an A/D converter, a discrete-time con- 
troller, and a D/A converter. The A/D device converts the 
continuous-time measured plant output into a discrete-time 
signal, which is used as an input for the discrete-time con- 
troller. The discrete-time controller generates a discrete-time 
output signal, which, in turn, is converted into a continuous- 
time signal that is used as a control input for the continuous- 
time plant. 
Apart from a control input and a measurement output, the 
plant under consideration has an exogenous input and an 
output to be controlled. The quality of a controller is given 
by the performance of the corresponding closed-loop system. 
This performance measures the influence of the exogenous 
input on the output to be controlled. In the present paper, 
we will take as performance measure the H2 performance of 
the closed loop system. 
In contrast to the H ,  performance of a sampled-data control 
system, which in analogy with the pure continuous-time con- 
text can simply be defined as the norm of the input/output 
operator between the exogenous inputs and the outputs to 
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be controlled, it i c ~  not cleu from the outset how one should 
define the Ha performance of a sampled-data control system. 
An, in our opinioh, natural definition was given indepen- 
dently in [2,11]. Ih these references, the crucial observation 
is that the c l d - l o o p  system resulting from a sampled data 
controller, albeit timavarying, is in fact a periodic system, 
with period equal to the 8ampbg period. It is then argued 
that, instead of aglying impulsive inputs at  time t = 0, one 
should in fact apply these inputs at all time instances be- 
tween 0 and the sampling period, and take the mean of the 
integral squares ofthe resulting outputs. This leads to an H2 

performance measure that captures the essential features of 
a sampled-data cfosed-loop system more satisfactorily. For 
a given continuou$-time plant, the sampled-data H2 optimal 
control problem is then to  minimize the H2 performance of 
the closed-loop system over all internally stabilizing sampled 
data controllers with a fixed sampling period. It is the latter 
problem that will be studied in the present paper. 
It was shown in [2,4,11] that the sampled-data Hz optimal 
control problem can be reduced to a pure discrete-time HZ 
optimal control Ejroblem in the following way. First one de- 
fines an auxiliary time-invariant discrete-time system. Next, 
one expresses the sampled-data H2 performance in terms 
of the ‘normal’ & perfarmance of the closed loop system 
obtained by interconnecting the auxiliary discrete-time sys- 
tem and the discrete-time controller defining the sampled 
data controller. Thus, the sampled data H2 optimal control 
problem under consideration is completely resolved once the 
auxiliary discrete-time H2 problem is. This procedure makes 
use of the so-called lifting technique (see [l, 3,191). 
Now, i t  turns out that the auxiliary discrete-time H2 pro- 
blem obtained in this way ir always a singular problem: the 
direct feedthrough matrix from the exogenous input to the 
measurement output is always equal to 0. Apart from this, 
in the auxiliary discrete-time system the direct feedthrough 
matrix from the control input to the output to be controlled 
is in general not injective. In [Ill,  this difficulty is partly 
removed by introducing an additional noise on the sampled 
measured output signal and by aasuming the corresponding 
feedthrough matrix to be surjective. 
In the present paper we want to consider the completely 
general formulation of the sampled-data H2 problem. We 
will take M a starting point the auxiliary discrete-time H2 
problem derived in [Z, 111. As noted, this problem is in- 
herently singular. To our best knowledge, no resolution of 
the discretetime singular I f 2  optimd is known in the liter- 
ature. Therefore, a aubstantial part of this paper is devoted 
to a study of the completely general discrete-time H2 pro- 
blem (no assumptions on the direct feedthrough matrices, 
no assumptions on the absence of zeros on the unit circle). 
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I 
We will describe a complete resolution to this problem, in- 
cluding a characterization of the optimal performance, and 
necessary and sufficient conditions for the existence of opti- 
mal controllers. The expression for the optimal performance 
is different from the one that might be expected in analogy 
with the continuous-time case (see [15]). Due to the fact 
that the role of the imaginary axis is taken over by the unit 
circle, for the discrete-time HZ performance to be finite it 
is no longer required that the closed loop transfer matrix is 
strictly pmper. Intuitively, this enlarges the class of admis- 
sible controllers and yields a smaller optimal performance. 
We will apply our results on the discrete-time H2 optimal 
control problem to the sampled-data H2 problem by simply 
applying them to the auxiliary discretetime system derived 
in [2,11]. Our expression for the optimal sampled-data Ha 
performance will be an immediate consequence of these re- 
sults. We will however also be interested in conditions guar- 
anteeing the existence of optimal sampled-data controllers. 
Our results on the general discrete-time H2 problem give 
such conditions in terms of the auxiliary discrete-time sys- 
tem, but we will reformulate these conditions in t e m s  of the 
original continuous-time plant. Preliminary results in that 
direction were also found in [Ill. 
Obviously, the sampled-data H2 optimal performance is a 
function of the sampling period. An important question is, 
what happens if the sampling period tends to zero. In par- 
ticular, we will answer the following two questions. Firstly, 
if we control the original continuous-time plant by a 'normal' 
continuous-time compensator, is it then possible to recover 
this performance asymptotically by using a sampled data 
controller with sufficiently small sampling period? This que* 
tion was also studied for the H ,  performance and for the H z  
performance b la Chen and Francis in [6]. A second, related, 
question that we will answer is: does the optimal sampled 
data H2 performance converge to the optimal continuous- 
time H Z  performance as the sampling period decreases to 
zero? 
The outline of this paper is as follows. In section 2 we will 
define the sampled data H2 opimal control problem and re- 
call the main results of [2,11]. We will also introduce some 
notation. In section 3 we deal with the discrete-time H2 o p  
timal control problem. Then, in section 4, we return to the 
sampled-data context, and apply the results of sections 3 to 
the sampled-data H2 optimal control problem. In particular, 
we will derive conditions in terms of the original continuous- 
time plant that guarantee the existence of optimal controllers 
for the sampled-data H2 problem. Finally, in section 5 we 
study the aforementioned questions regarding the behaviour 
of the (optimal) performance as the sampling period tends 
to zero. 

2 Problem formulation 
Consider a continuous-time, linear, time-invariant, finite- 
dimensional plant C. Let C have inputs d and U, and outputs 
z and I, where d is an exogenous input, U is a control input, z 
is an output to be controlled, and 1 is a measured output. We 
want to control C by means of sampled data feedback control. 
We take a fixed A > 0, called the sampling period. From the 
measured output g we obtain a discrete-time signal 8 = { yk} 
defined by Jk := (SA#)&, where SA denotes the sampling o p  
erator defined by (sA$!)k := y(kA). This discrete-time signal 

is taken as input for a discrete-time, linear, time-invariant, 
finite-dimensional compensator r&. The latter compen- 
sator generates a discrete-time signal ti = {Uk} which, in 
turn, yields a (piecewise constant) continuous-time input 
signal U for the plant by defining u(t)  := ( H ~ a ) ( t ) ,  where 
HA is the hold operator defined by ( H ~ i i ) ( t )  := Uk ( t  E 
[kh ,  (k + 1)A)). This type of feedback control is depicted in 
the following diagram. 

d 1 Z 

If we control the system C by means of a sampled data 
controller with sampling period A, then the resulting clo- 
sed loop system will no longer be time-invariant. In [2,1l] 
the following definition of HZ performance in the context 
of sampled data control is proposed. First, it is observed 
that the closed loop system resulting from a sampled data 
controller with sampling period A is always a time-varying, 
A-periodic system. Then, for A-periodic systems the notion 
of H Z  performance is defined as follows. Suppose we have 
a finite-dimensional, time-varying, A-periodic system Cper 
described by 

rt 
z ( t )  = 1 G(t ,  s)d(s)ds. 

I t  is argued in [l l]  and [2] that a natural way to define the 
H2 performance of (2.1) is 

Next, if r is a sampled data controller with sampling period 
A, the performance is defined as &,A(r)  := IlC x r ( ( f ,  i.e. the 
H2 performance of the (A-periodic) closed loop system C x r .  
The sampled data HZ problem is then to minimize, for a 
fixed sampling period A, the performance criterion JZ,A(r)  
over all internally stabilizing sampled data controllers r with 
sampling period A. It as shown in [2,11] that this problem 
can be reduced to a discrete-time 'normal' H2 optimal con- 
trol problem. To be specific, let the plant C be given by the 
equations 

with z ( t )  E R", ~ ( t )  E Rm, d(t) E IR', y(2) E Rp and 
z ( t )  E RQ. It will be a standing assumption in this paper 
that (A,B) is stabilizable and that (C1,A) is detectable, 
both with respect to C- := (s E C I Re s < 0). Introduce a 
finite-dimensional linear time-invariant discrete-time system 
CA : 
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X k + 1  = AAZk + B a U k  + Eadk , 
yk  = C l Z k  1 

Zk = C2,AZk + Dn,aUk , 
where we define 

A 
AA := eAA, BA := etAdtB, 

where EA is any matrix satisfying 

EAEz = erAEETetATdt, I" 
and where C2,A and &,A are matrices satisfying 

Here we have denoted 

A : = (  A B  0 0 ) .  

Let A denote the set of sampling periods for which either 
(AA,BA) is not stabiliaable or (C1,An) is not detectable, 
both with respect to the open unit disc {z E C I It1 < 1). It is 
w d  known ( [8,12]) that if (A, 8 )  is atabilisbble and (CI , A) 
is detectable, then every bounded subset of @ contains only 
finitely many elements of A. We will restrict ourselves to 
sampling periods that are not in A. The plant C is controlled 
using sampled data controllers I' := HaI'dirSa, with I'dr 
given by the equations 

Let us denote by JcA(I'di.) the diecrefe-time H2 perfor- 
mance of the c l d  loop system CA x rdi., i.e. the value 

t r  (GIG:), where {Gk} denotes the pube raponee of 
the closed loop system. The main result of [2,11] is the 
following: 

Theorem 2.1 : Assume that A A, Then there exists a 
sampled data controller I' with sampling period A such that 
the closed loop system C x I' is internally stable. The Sampled 
data controller I' = HArdiSsA internally stabilizes C if and 
only if the discrete time controller I',jir internally stabilizes 
CA. Furthermore, for every such controller the closed loop 
cost JE,A(I') is equal to 

We shall use this theorem as a starting point and study in 
this paper the discrete-time Ha optimal control problem for 
the discretetime system CA given by (2.4). This H2 pro- 
blem is inherently singular, due to the fact that the direct 
feedthrough matrix from the disturbance input to the me& 
s u r d  output is always equal to 2er0. 

3 The discrete-time HZ problem 
In this section we shall consider the discretetime H2 pro- 
blem. Consider the system &is given by the equations 

It will be a standing assumption that (A,B) is stabilizable 
and that (Cl, A) is detectable, both with respect to the open 
unit diec. Besides them asnumptions which are needed to 
guarantee the existence of a stabilizing controller, no other 
assumptions are made on the system. 
w e  d consider &rete-time controllers rdir  given by (2.8). 
For any internally s tabi l ihg controller I'di., let Jcdi, (rdi.) 
be its HZ performance. Denote by J' the optimal perfor- 
mance, i.e. the infimum over all internallly stabilising con- 
trollen rdir. 
For a given matrix M, we will denote by Mt ita Moore- 
Penrose inverse. The solution of the discrete-time H2 opti- 
mal control problem centers around the following two alge- 
braic Riccati equations: 

P = A ~ P A  + c:c2 - (C:D~ + A ~ P B )  x 

(DZDz + B'PB)'(D,TCz + BTPA), (3.2) 

Q = AQAT + EET - (AQCT + ED:) x 

(DID: + CiQc:)+(DiET + ciQAT). (3.3) 

For any real symmetric matrix P, we shall denote: 

D p  := (D:D2 + BTPB)*,  

Cp := Df (D,TCz + BT PA). 

(3.4) 

(3-5) 

Note that, since for any matrix M 2 0 we have (Mi)+ = 
(Mt)b, we have DfCp  = (D:D2+BTPB)t(DzC2+BTPA). 
If, in addition, P is a real symmetric solution of (3.2), then 
Cp'Cp = ATPA- P+C:Cz. Note also that Dp is symmetric 
by definition. Finally, since im (D?Ca + BTPA) C im DP, 
we have DpCp = DZC2 + BTPA. (Note: it is a property 
of the Moore-Penrtwe inverse that MMt is the orthogonal 
projection onto im M.) 
The following is a corrected and slightly extended version of 
a theorem from [13]. A proof can be given along the lines of 
the proof of [13, theorem 181. 

Theorem 3.1 : Consider the system (A, B ,  C2, D2) togeth- 
er with the algebmic Riccati equation (3.2). The algebmic 
Riccati equation (3.2) has a real symmetric solution P with 
the following property: there exists a matrix F1 such that 

la(A - ED$Cp + B ( I  - D$Dp)Fi)( 5 1. (3.6) 

firthermore, if P satisfies this condition, it is the unique real 
symmetric solution of (3.2) for which this condition holds. In 
addition, P is positiue semi-definite and is in fact the largest 
real symhetn'c rolution of '(8.2). 
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Next we consider the dual algebraic Riccati equation (3.3). 
For any real symmetric matrix Q, denote 

DQ := ( D I D :  + CiQCT)*,  

EQ := (AQC: + ED:)D$. 

(3.7) 

(3.8) 

By dualizing the previous theorem, the corresponding result 
on the Riccati equation (3.3) can be found: 

Theorem 3.2 : Consider the system (A,  E ,  C1 ,Dl )  togeth- 
er with the algebraic Riccati equation (3.3). The algebraic 
Riccati equation (3.3) has a real symmetric solution Q with 
the following property: there exists a matrix K I  such that 

( @ ( A  - EQD$CI + K l ( I  - D Q D $ ) C I ) ~  5 1. (3.9) 

Furthermore, if Q satisfies this condition, it is the unique real 
symmetric solution of (3.3) for  which this condition holds. I n  
addition, Q is positive semi-definite and is in fact the largest 
real symmetric solution of (3.3). 

In the remainder of this section we will always denote by 
P and Q the largest real symmetric solution of (3.2) and 
(3.3), respectively. We will now state the main result of this 
section: 

Theorem 3.3 : Consider the system (3.1). Assume that 
(A,  B )  is stabilizable and ( C l ,  A)  is detectable. Then we 
have: 

J' = tr  ( E T P E )  + tr  (CpQC;)  

- tr  ( ( D ~ N ' D ~ ) ( D ~ N ' D ~ ) ~ ) ,  (3.10) 

where N' is defined b y  

N' := - (D$)2(DpCpQC: + B T P E D T ) ( D z ) 2 .  (3.11) 

Under two standard assuptions we can actually guarantee 
the existence of optimal controllers: 

Theorem 3.4 : Assume that the systems (A,  B ,  CZ, Dz)  and 
(A,  E ,  CI, 01) have no zeros on the unit circle. There exists 
an optimal controller, i.e. an internally stabilizing controller 
I'iis such that Jzdi, (I'&,) = J'. One such optimal controller 
is given by  the following 'construction': 

( i )  Choose a state feedback F such that (u(A + B F ) (  < 1 

(ii) Choose an output injection G such that lu(A+GCl)I < 

( i i i )  Define I"& = ( K ' , L ' , M ' , N ' )  b y  choosing N' ac- 
cording to (3.11), and by  choosing K' := A + BF + 
GC1-BN'C1, L':= BN'-G,  andM' := F-N'C1. 

Although the above theorem guarantees the existence of a 
suitable controller under some standard assumptions, we will 
derive necessary and sufficient conditions for the existence of 
an optimal controller which are weaker than the two assump 
tions made in the above theorem. 
In [18], it is shown that the existence of an optimal controller 
is equivalent to the existence of a strictly proper controller 

and Cp + DpF = 0. 

1 and EQ + GDQ = 0 .  

which achieves disturbance decoupling with internal stability 
for a related system. This system can be constructed explic- 
itly. The disturbance-decoupling problem has been studied 
extensively in [16]. One of the main results of [16] gives 
necessary and sufficient conditions for the existence of an in- 
ternally stabilizing, strictly proper compensator which 
achieves disturbance decoupling for a system &is of the form 
3.1. 
We have used the above method to derive necessary and suf- 
ficient conditions for the existence of an optimal controller. 
We define the subspace Vg by: 

(3.12) 

where for a given matrix M,  Xg(M) is the sum of the gen- 
eralized eigenspace of M associated with its eigenvalues in 
1.1 < 1, and where < M I C > is the smallest M-invariant 
subspace contained in C. Moreover, we define the subspace 
s, by 

S, := &(A - EQD:Cl)n < Cy'im DQ I A - E Q D + ~ C ~  >, 

(3.13) 

where &(M) is the sum of the generalized eigenspaces of 
M associated with its eigenvalues in 1.1 2 1 and where < 
C I M > is the largest M-invariant subspace containing C. 
We obtain the following necessary and sufficient conditions 
for the existence of an optimal controller for the discrete- 
time 112 optimal control problem associated with the system 
Cdir : 

Theorem 3.5 : Consider the system (3.1). Assume that 
(A,  B )  is  stabilirable and (C1 ,A)  i s  detectable. Let P and 
Q be the largest real symmetric solution of (3.2) and (3.3), 
respectively. Let V, and S, be given by  (3.12) and (3.13). 
Then we have: there exists an optimal controller, i.e. an in- 
ternally stabilizing controller I'iis = (K', L', M', N') such 
that Jzdi,(I'iis) = J',  if and only if the four subspace inclu- 
sions are satisfied: 

Vg 3 im ( E g - B D $ R * ) ,  
S, C ker(Cp - R'DACl). 

4 The sampled data H2 problem 

We now return to the sampled data H2 problem. Consider 
the continuous-time system C given by (2.3), and let A 4 A 
be a given sampling period. Let the discrete-time system 
Ca be given by (2.4). According to theorem 2.1, the optimal 
sampled data HZ performance J;,p is equal to 

A-* 

where JgA is the optimal discrete-time H2 performance as- 
sociated with CA. According to theorem 3.3, the optimal 
performance JgA can be found in terms of two algebraic 
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Riccati equations associated with CA. According to theo- 
rem 3.5, an optimal compensator rdi',A exists if and only if 
four subspace inclusions involving subspaces associated with 
the system CA are satisfied. According to theorem 3.4, if 
the systems (AA, BA, CZ,A, &,A) and (AA, EA, ci,O) have 
no zeros on the unit circle, then an optimal compen~ator 
rdi#,A exists and can be calculated using the 'construction' 
in the statement of theorem 3.4. The sampled data controller 
r := HArdir ,ASA b then O p t h d  for the S a p l e d  data Hz 
problem under consideration. 
In this section we study the following question: what are 
conditions in terms of the original system C that guarantee 
that there exists an optimal compensator for the sampled 
data H2 problem? Instead of being completely general, we 
will study the following question: what are necessary and 
sufficient conditions in terms of the original system C such 
that (AA, BA, CZ,A, Dz,A) and (AA, EA, C1,O) have no zeros 
on the unit circle? 
We define the controllability subspace 'R of (A, 8, C, D) as 
follows: 

72 :=e A + BF I V n BkerD >, 
for any F such that (A + BF)V c V and (C + DF)V = 0 
(any such F yields the same 'R). It was shown in [13] that 
the system (A, B, C, D) is left-invertible if and only if ker Bfl 
kerD = 0 and V n  BkerD = 0. Note that Vn BkerD = 0 
if and only if 'R = 0. 
The main results of this section are the following: 

Theorem 4.1 : Consider the system E. Let A > 0. 

(i) Let X be a zero of (AA,BA,CZ,A, Dz,A), X # 0. Then 
there ezists an unobservable eigenvalue p of (C2,A) 
such thot X = epA. 

(ii) If (A, B,Cz,Dz) ie left-invertible then also the wn- 
verse of (i) holds: if p is an unobservable eigenvalue of 
(CZ, A), then epA is a zero of (AA, BA,CZ.A, Dz,A).  

(iii) 1 is a zero of (AA, BA, CZ,A, &,A) if and only if at 
least one of the following two conditions hold: 

(a) 0 is a zero of (A,B,Cz,Dz), 

(b) 'Re< kerC2 I A > . (4.1) 

(iv) If (A, B, C2,Dz) is left-invertible then 0 is a zero of 
(A,B,Cz, Dz) if and only if 1 is a zero of (AA, BA, 
(%.,A, D2,a) 

Corollary 4.2 : Consider the system C. Let A > 0. 

If (Cz, A) has no unobservable eigenvalues on the imag- 
inary azis, 0 is not a zero of (A, B ,  CZ, Dz), and 'R C< 
kerC2 I A >, then (AA,BA,C~,A,DZ,A) has no zeros 
on the unit circle. 

If (A, B, Cz, Dz) is left-invertible then (CZ, A) has no 
unobservable eigenvalues on the imaginary an's and 0 
is not a Zen, of (A, B, C2, Dz) if and only if (AA, BA, 
CZ,A, &,A) has no zeros on the unit circle. 

Clearly the above theorem and corollary have a dual. How- 
ever, due to the different structure the results are quite dif- 
ferent. 

Theorem 4.3 : Consider the spatem C. k t  A > 0 .  

(i) Let X be a zero of (AA, EA,CI,O). Then there exists 
an uncontrollable eigenvalue p of (A, E) such that X = 
epA. 

(ii) If (A, E, Cl, 0) is right-inuertible then 0180 the wnverse 
of "(i) holds. i.e., if p is an uncontrollable eigenvalue 
of (A, E) then epA is a zero of (AA, EA,C~,O). 

Corollary 4.4 : Consider the system E. Let A > 0. If 
(A, E) ha8 no uncontrollable eigenvalues on the imaginary 
axis, then (AA, EA, CI, 0 )  has no t m d  on the unit circle. 
If, in addition, (A, E, C1,O) is right-invertible then also the 
converse holds: (AA, EA, C1,O) ha8 no zeros on the unit cir- 
cle if and onlu if (A, E) has no uncontrollable eigenvalues on 
the imaginary an's. 

5 Performance recovery and convergence 
of optimal performance 

In this section we study the connection between the 'ordi- 
nary' continuous-time H2 problem and the sampled data Hz 
problem. In particular, we are interested in the following 
questions: 

0 Suppose that we control the system C by means of 
an internally stabilizing continuous-time compensator 
rcon, yielding continuous-time H2 performance 
Is it true that for all E > 0 there exists A > 0 and an 
internally stabbing sampled data controller r with 
sampling period A such that (Jc(rco.) - . h , A ( r ) l  < e? 

0 Suppose that J&o, b the optimal continuous-time Elz 
performance sssociated with the system C and, as b e  
fore, denote the optimal sampled data Hz performance 
by IS it true that limaio Js ,A  = J s p n ?  

The first question above was studied before in 16, theorem 41 
using a different definition of Hz performance, and for the 
61, performance criterion ( [6, theorem 51). In this section 
we will show that both questions have an affirmative anBwer. 
Let C be given by (2.2). If the system C is controlled by a 
continuous-time compensator rcon given by the equations 

i ( t )  = Rw(t )  + &I/@) , 
u(t) = @ W ( t )  + N y ( t )  , 

with w(t) E az', then the associated closed-loop system C x 
rcOn ie given by 

with 

If rcon is internally stabilizing, i.e., U ( A e )  C C-, then the 
H2 performance of the closed loop system C x rcon is equal 
to 



where P e  is the unique solution of the Lyapunov equation 

ATP, + PeAe + CzCe = 0. (5.2) 

On the other hand, if the system C is controlled by the sam- 
pled data controller = B a r d i g S A ,  with rdi. given by (2.8), 
then the discrete-time closed loop system CA x rdir is given 
by the equations 

Ze,k+l = A e , h z e , k  Ee ,Ayk  , 
zk = c e , A z e , k  

with 

Ce,A := ( cZ ,A + Dz,ANCI &,AM) * 

If r is internally stabilizing, equivalently IU(Ae,A)l < 1, then 
the H Z  performance of the closed-loop system C x is given 
bY 

1 
( E e , A P e , A E z A ) ,  (5.3) 

(5.4) 

where Pe ,A is the unique solution of the Lyapunov equation 

A z , p P e , A A e , A  - Pe ,A + C 2 ~ C e . a  = 0. 
The following theorem shows that our first question above 
indeed has an affirmative answer: 

Theorem 5.1 : Let rCon be a continuous-time compensator 
which stabilizes C. For any A > 0 define a discrete-time con- 

be the corresponding sampled data controller with sampling 
period A. Then we haver there esists A1 > 0 such that for 
all A E A with 0 < A < AI,  r A  is internally stabilizing. 
Furthermore, 

t t V h  rdir by rdir := S A r c o n H A ,  and k t  r A  := H A r d i g S A  

JE,A(rA)  - J E ( r c 0 n )  (A IO). 

We now turn to the second question posed above. Let J&,, 
be the optimal continuous-time HZ performance, i.e., the in- 
fimum of .Tx(rcon) over all internally stabilizing continuous- 
time compensators (5.1). It was shown in [15] that if (A, B) 
is stabilizable and (CI, A) is detectable, then 

= tr  (EE~P)  + tr  ( ( A ~ P  + PA + c,Tc~)Q), (5.5) 

where P and Q are the largest real symmetric solutions of 
the following two linear matrix inequalities 

( AQ+ Q,“:l+ EET %Q ) 2 0. 

pB + czDz ) 2 0. 
(5.7) 

ATP + PAT + CTCz ( BTP+D:Cz D2TDz 

Let Jg,A be the optimal sampled data HZ performance. Our 
next theorem gives an affirmative answer to the second ques- 
tion posed in the introduction to this section. 

Theorem 5.2 : Let (A,B) be stabilizable and (C1,A) be 
detectable. Then there esists AI such that for all 0 < A < 
AI,  J 5 , p  < CO. We have limaio J i , A  = 
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